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1. Introduction

1.1. Background and Overview of Main Findings
Recent years have witnessed an increased interest in
the use of pricing in operations management practices,
with a particular focus on the integration of inventory
control and dynamic (state-dependent) pricing strate-
gies. Concomitantly, studies focusing on the interface
between capacity investment and replenishment strat-
egies have led to further understanding of capacitated
inventory systems and supply chains. A very useful
qualitative insight in this context has been the under-
standing that capacity and inventory are in essence
strategic substitutes. Roughly speaking, decision vari-
ables are said to be strategic substitutes if increasing
the value of one variable decreases the return from
increasing the other; a more precise definition will be
advanced in section 4. One of the main motivations for
the present paper is to develop similar insights that
pertain to pricing and capacity decisions. As the lit-
erature review at the end of this section indicates, we
are only aware of a few papers to date that focus on
the problem of joint capacity planning and pricing
strategies, and even less that go on to explore the
three-way relationship between capacity, inventory,
and pricing decisions.

In this paper, we study a stylized problem in which
a centralized monopolistic firm sells a product over a
finite selling horizon; the number of periods consti-
tuting this time horizon measure the time elapsed
from the first introduction of the product to the mar-
ket, up until the point where the firm terminates its
production and sale. The firm reviews the state of the
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system periodically and at the beginning of each pe-
riod makes three decisions: (i) invest or disinvest in
production capacity, (ii) replenish inventory (con-
strained by production capacity), and (iii) fix a price
for the produced goods that will take effect in the fol-
lowing period. Subsequent to these decisions, demand
is observed. We first allow the firm to carry inventory
from one period to the next, and orders are allowed to
be backlogged. Subsequently, we introduce a restriction
that disallows carry-over of inventory from period to
period; the firm must then either satisfy inventory
shortage using emergency replenishment or by paying
penalty fees. In the next stage, we also restrict the firm’s
pricing flexibility by only allowing markdowns, i.e., the
price of the product can only decrease over its life cycle.

The main contribution of this paper is in studying
the relationship between pricing and capacity deci-
sions in the context of a dynamic optimization
problem that has capacity, inventory, and price as its
variables. The analysis proceeds by first showing that
the optimal capacity investment policy in the presence
of pricing and inventory decisions is of a target interval
form (see Theorem 1). Given a fixed capacity level, the
optimal joint pricing-inventory decisions are seen to
follow a modified base-stock list-price policy (see
Theorem 2). These results serve as a basis for studying
a model where no inventory carry-over is allowed,
and pricing is restricted to markdowns. In this im-
portant scenario we show that price and capacity are
strategic substitutes both as decision variables and as
state variables (see Theorem 3); an important impli-
cation is that these levers can be used in a com-
plementary manner (see discussion in section 5.3).
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Several numerical examples illustrate some of these
findings.

This section concludes with a review of related lit-
erature and known results. Section 2 describes the
model and sets up the dynamic optimization problem.
Section 3 provides the first set of results. Section 4
discusses the cases where no carry-overs are allowed
and when pricing is restricted to markdowns. Section
5 summarizes some qualitative insights that are
gleaned from the main results and also provides a
simple example that illustrates the key findings. All
proofs are collected in the supporting information
Appendix S1.

1.2. Literature Review and Positioning of the
Present Paper

Given the voluminous literature on the topic of inter-
est in this paper, we restrict our review to work that is
closely related in terms of thrust and problem formu-
lation. For a recent survey and further references on
pricing, inventory, and capacity decisions the reader is
referred to Chan et al. (2004, section 4.2).

1.2.1. Inventory Decisions in Capacitated Systems.
Federgruen and Zipkin (1986) consider a single-item,
periodic-review inventory model with uncertain
demands. Under the assumption of finite production
capacity in each period, they show that a modified
basic-stock policy is optimal. Some extensions include
Aviv and Federgruen (1997) that deals with non-
stationary demand, and Ozer and Wei (2004) that deals
with information acquisition and replenishment costs.

1.2.2. Inventory and Pricing Decisions. Federgruen
and Heching (1999) study the relationship between
price and inventory in an uncapacitated system with
stochastic demand. They characterize the structure of the
optimal price-inventory policy, and show that inventory
and price are strategic substitutes. Further references in
this stream of literature are surveyed in Elmaghraby and
Keskinocak (2003); a deterministic analysis of such
problems dates back to Thomas (1974) and Kunreuther
and Schrage (1973). Recently, Ketzenberg and Zuidwijk
(2009) studied the joint pricing, ordering decisions, and
return policies for consumer goods, and Huh et al. (2010)
studied the optimal pricing and production for
subscription-based products.

1.2.3. Inventory and Capacity Decisions. Angelus
and Porteus (2002) study capacity decisions in cases
where a firm can and cannot hold inventories. In the
former case, they establish that capacity and inventory
are strategic substitutes. (For an example of an
analysis of a deterministic model, see Rao 1976.)
Eberly and Van Mieghem (1997) study a problem that
can be viewed as a generalization of the “no-carry-
over” version of Angelus and Porteus (2002). They

characterize the optimal capacity policy when
capacity is multi-dimensional and it is costly to
reverse capacity investments. Duenyas and Ye (2007)
generalize Angelus and Porteus’ (2002) ‘“no-
carry-over” model by allowing fixed and variable
costs in capacity adjustments.

1.2.4. Joint Pricing, Production, and Capacity
Decisions. Maccini (1984) studies the effects of inven-
tory dynamics and capital on pricing and capacity
decisions from a macroeconomic perspective. He finds
that excess capacity tends to cause prices to decrease
below their acceptable long-run levels. Gaimon (1988)
shows, by means of a numerical study, that upgrading
capacity lowers the firm’s per unit production cost and
thus the prices it charges. Li (1988) introduces a point
process model of a production firm with intensities
parameterized by production, capacity, and price,
respectively. A distinction is made between static
decision making (capacity levels are set at time zero),
and dynamic operating decisions (pricing and
production). Van Mieghem and Dada (1999) study
different possible postponement strategies in a single-
period problem when firms make three decisions:
capacity investment, production (inventory) quantity,
and price. (See also Boyaci and Ozer 2007 for a study
of information acquisition through advance selling.)

A notable entry absent from the above list is work
focusing on joint pricing and capacity decisions in an
inventory setting, and the present paper indeed
strives to fill that gap. In terms of the model and
analysis tools, our work is most closely related to
that by Angelus and Porteus (2002) and Federgruen
and Heching (1999): the former studies the relation-
ship between inventory and capacity, and the latter
discusses inventory and prices. Our research is in-
tended to complement theirs.

2. Problem Formulation

We consider a monopolistic firm that produces a sin-
gle product whose capacity, inventory, and price are
reviewed periodically. At the beginning of each period
the firm makes three decisions: (i) capacity investment
(or disinvestment), (ii) production level, and (iii) the
price it will charge for the product. We assume that
capacity investments and produced goods become
available instantaneously. The life cycle of the prod-
uct, and therefore the time horizon, is set to be T
periods. The sequence of events in each period,
t=1,...,T,1is as follows:

1. Investment or disinvestment in capacity, setting
it to a level equal to z;.

2. Production (if needed) to set the inventory level
to y;.

3. A price p; is set and held fixed up until period ¢+1.
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4. Demand is realized and satisfied if it is less than
available inventory, or backlogged otherwise.
Backlog and holding costs are incurred.

Demand in period ¢, D,;, depends on the prevailing
price which is given by a general additive stochastic
demand function

Dy = di(pr) + &, (1)

where p; is the price charged in period ¢ and ¢, is the
sequence of independent random variables.

Feasible price levels are confined to the interval [p, p],
where p and p are the highest and lowest prices, re-
spectively. (In sections 4 and 5, we indicate how the
main results extend to more general demand functions.)

Let x; be the inventory level at the beginning of
period t before ordering and y; be the inventory level
at the beginning of period ¢ after ordering. The
firm incurs two types of production and inventory
costs: the end-of-period inventory carrying (and back-
logging) costs, and a variable production cost.
Specifically, hi(x) is the inventory (or backlogging)
cost incurred in period t with terminal inventory level
equals x and ¢, is the per unit purchasing or produc-
tion cost in period ¢.

Let

Gi(y,p) = B(y — Dy) = By — de(p, &) (2)

denote the single-period expected inventory and
backlogging costs for period t, for a given price p
and an inventory level (after ordering) y, where the
expectation here, as well as in the remainder of the
paper, is taken with respect to the distribution of the
random noise term. We assume that:

(A1) Elgt|<oo, forallt=1,...,T,

(A2) h(-)is convex forallt=1,...T.

(A3) d; (p, &) =a,—byp,+e where a;, b, >0, a; /by > p,
forallt=1,..,T.

These assumptions ensure that the cost functions
Gy, p) are well defined, finite, and jointly convex in y
and p forallt=1,..,T.

RemARk 1. The assumption of linear demand can be
generalized to any demand function which is
continuous and strictly decreasing in the price
variable, and for which the revenue rate dE(d; ! (d, &))
is concave in d, where d;” ! is the inverse function of d,
for fixed &. This assumption is rather benign and
quite standard in the revenue management literature;
Ferguson et al. (2006) provide examples of a linear
function and an exponential demand function that
satisfy these conditions; see also Chen and Simchi-
Levi (2002) for further discussion. In that case, one
would need to impose directly that G(-,-) is jointly
convex; see Federgruen and Heching (1999) for
conditions ensuring that this holds.

Let y; (y,p) denote the expected contribution in
profits in period ¢, if the firm has y units at the
beginning of the period (i.e., post-production) and it
charges p per produced unit that is sold on the
market. That is, in period ¢

70y, p) = pE[d:(p. &)] — cry — Gy, p)- (3)

Let z; be the capacity level at the beginning of period ¢
after adjustment. We define three capacity related
costs: K, the cost of adding a unit of capacity; k, the
return from selling a unit of capacity; k., the capacity
overhead cost per unit.

Hence h. amalgamates all costs that are associated
with maintaining production, but are independent of
the production volume. We assume that K > k, which
reflects the fact that capacity is usually sold for less
than the purchase price. Revenues and costs are
discounted with a discount factor «e(0,1]. We note
that all capacity-related costs are taken to be time-
homogeneous for simplicity, and the analysis that
follows can easily be adjusted to account for such
temporal dependency. We assume that a firm begins
the life cycle of the product with capacity level z; and
inventory level x, (allowing for the possibility of
xo =0, zo =0). Note that our work pertains primarily
to industries in which there is short lead time for
capacity changes, as well as low fixed costs for
capacity changes (apart from the friction of selling-
buying). In industries, such as medical devices, in
which soft-tooling is being used, such quick capacity
changes are possible.

Let f/(z,x) be the maximum expected present value
of the total net profits that can be earned in months ¢
and on, given that the capacity level is z and inventory
level is x at the beginning of period t. That is,

fi(x,z) =max{y;(y,p) + cxx — C(z' - z)
- I/lCZ/ + OCIEff+1 (y - dt(Pv 8t)7z/) : (4)
z’zo,xgygx—i-z',gépﬁﬁ}

fort=1,..., T, where

Clz) = { kz if z<0, 5)

Kz if z>0.

At the terminal period, we assume that demand is
satisfied and the remaining capacity is sold immedi-
ately thereafter, that is, we set

fri1(x,z) = kz — hryq (x).

To recapitulate, at the beginning of each period
t=1,...,T, the firm must determine a capacity invest-
ment level z’, an inventory level y, and a price p based
on the initial inventory and capacity, x and z. These
decisions are held fixed throughout period t. The
objective of the firm is to maximize the sum of dis-
counted profits over the time horizon T with respect to
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the above-mentioned decision variables; the maxi-
mum value of this dynamic optimization problem is
given by fi(x, z).

For future purposes it will be convenient to rewrite
fi(x,z) as follows (see Angelus and Porteus 2002):

fi(x,z) = n}%([ctx —C(Z' —z) —hZ +T(x,2)], (6)
where

Iy(x,z) = max{at(y,p,z) (Y € x,x+2z],p€ [E,ﬁ]},

a(y, p,z) = 7y, p) + alfr1(y — de(p, 1), 2)
(7)
forall t=1,..,T.

3. The Optimal Policy and Key
Relations

3.1. Main Results

In this section, we characterize the structure of a pol-
icy that maximizes the expected discounted profits.
The results are very much in the spirit of those in
Federgruen and Heching (1999) (albeit for a non-
capacitated system) and Angelus and Porteus (2002)
(for a model with exogenously given prices).

Recall, the maximum value of this objective is given
by fi(-,-), where f,(-, -) is defined in (6). We will begin
by analyzing the optimal capacity investment policy.
Then, given the optimal capacity at the beginning of a
period, we will derive the optimal joint inventory-
pricing policy. It is important to note that the three
decisions are made simultaneously; the optimal policy
is described in a sequential manner to allow for a
more transparent representation.

To characterize the optimal capacity investment
policy, we first describe a family of ISD policies (in-
vest/stay put/disinvest), often referred to as target
interval policies.

DEerINITION 1. A sequence {z,}{-1 constitutes a target
interval policy with respect to a sequence of non-neg-
ative real numbers {L;, Ut}tT: 1, if

i L, < U
(ii) L; and U; are independent of z; _4;
(111) Lt if Ziq <Lt,
zr=1 z1 if Ly <z 1 < U,

Ut if Zt_1>Ut forallt:l,...,T.

The upper and lower targets L; and U; can be func-
tions of the state of the system (and past information
observed up until time #), and the notation L(-) and
U,(-) will be used to indicate this dependence; in the
following theorem, both are functions of the initial
inventory x.

THEOREM 1. (Optimal capacity investment policy) The op-
timal capacity investment decision follows a target interval
policy in each period, with lower- and upper-capacity tar-
gets Ly(x) and Ulx) for each t=1,...,T and each initial
inventory level x € R.

Based on the optimal capacity investment, we will
now show that the optimal joint production—pricing
decision takes the form of a modified base-stock list-
price policy (we use the term “modified” because of
the capacity constraint on the production). This policy
is characterized by a base-stock level and a list-price
combination (¥,(x,z),p,(x,z)) which are given as a
function of the initial inventory and capacity (x, z); the
former and latter functions are the optimal inventory
position and price levels, respectively, given that pe-
riod t begins with capacity z and inventory level x,
and are derived as follows:

(yf(xvz)vf)t(x7z)) :argmax{ai(y’paz) :
velxx+zpelppl.

The existence and uniqueness of ¥,(x,z) and p,(x,z)
for given initial capacity and inventory levels, x and z,
are established in the proof of Theorem 2. Note that
the “hat” notation is used to distinguish the optimal
policy. For the purpose of the following theorem, we
introduce the following definitions.

DEeFINITION 2. Variables u#,v € R are said to be strategic
substitutes with respect to a function f(u,v) : R* — R,
if f(u,v) is submodular in # and v.

For a definition of submodularity, see, e.g., Topkis
(1978), and for further discussion of economic impli-
cations and interpretation, see, e.g., Milgrom and
Roberts (1990).

THEOREM 2. (Optimal pricing—inventory policy)

(a) An optimal inventory—pricing policy is a base-stock
list price with base-stock ¥,(x,z) and list price p,(x,
z) fort=1,...,T. At period te{1,..., T} and given
a capacity level z: if x <y,(x,z) < x +z, it is opti-
mal to order up to the base-stock level 1y,(x,z) and to
charge the list price p,(x,z); if x>7,(x,z), it is op-
timal not to order and to charge p; < p,(x,z); and if
V,(x,z)>x +z, it is optimal to order z units and
charge p; > p,(x,z).

(b) For each period te{1,...,T} and fixed capacity and
inventory state values x,z € R,, the price and inven-
tory decision variables (y;, py) are strategic substitutes
with respect to the function a/(-, - ,z) given in (7).

ReMARK 2. (Discussion) The result of the theorem states
that if the inventory level, x, is below the base-stock
level, it is increased to that value and the list price is



Allon and Zeevi: Relationship between Pricing and Capacity Decisions

Production and Operations Management 20(1), pp. 143-151, © 2010 Production and Operations Management Society 147

charged. If the inventory level is above the base-stock
level, then nothing is ordered, and a price discount is
offered, i.e., the price charged is below the list price.
(The higher the excess in the initial inventory level,
the larger the optimal discount offered.) If the sum of
inventory and capacity is below the base-stock level,
the maximum possible amount is produced (i.e., the
production level equals the capacity level), and the
price charged is higher than the list price. No dis-
counts are offered unless the product is overstocked,
and no higher than list prices are charged unless the
product is in shortage, which happens when the cur-
rent capacity is not sufficient to support the “desired”
inventory level. Numerical illustrations of this result
are given in section 5.

REMARK 3. (Structural results) The proof of the theorem
establishes certain monotonicity results for y,(x,z) and
pi(x, z) with respect to the variables x and z. For exam-
ple, Lemma 3 establishes that y:( -, z) is non-decreasing.
The results of Lemma 4 imply that pi(-,z) is non-
increasing. Similar statements can be derived for the
dependence on z for the post-adjustment capacity.

4. Joint Capacity Planning and Pricing

In this section, we analyze a particular instance of the
joint capacity planning and pricing problem when in-
ventory cannot be carried over from period to period
and prices can only be decreased throughout the time
horizon. This situation arises when firms cannot use
inventory produced in “off-peak” periods to absorb
“peak-demand.” To this end, we assume that stockouts
are satisfied at the end of the period in which they
occur; Federgruen and Heching (1999) describe such a
mechanism as emergency purchases or production runs.

4.1. Main Results

Let f}(z, p) denote the maximum expected present value
of the total profits that can be earned in periods t up until
T, given that period t starts with capacity z and price p.
The optimality equations for t=1,..., T are given by

fi'(z:p) = max {n(y.p) — C(& —2) ~het

+obf (0. 2) 0 <y <2 p <y <pl,
f%l(z) = kz.

The decision variables in the above equation are the
price (p') and capacity (z') set in period ¢t. We then have
the following result.

THEOREM 3. Assume a firm cannot carry inventories and
increase prices from period to period. Then, the following
properties hold for all t=1,..., T

(@) fM(z,p) is submodular and jointly concave in the
state variables (p, z).

(b) The decision variables p' and z' are strategic substi-
tutes with respect to fY(-,-).

(c) The optimal capacity policy is a target interval policy
in each period. The capacity targets L(p) and U(p)
satisfy Li(p) < Uy(p) for each t=1,..., T, and each
initial price p.

(d) L{p) and U(p) are non-increasing in p for each
t=1,...,T.

Note that the upper and lower barriers L;(-), U(-),
t=1,...,T, are now functions of the price in the be-
ginning of the period, unlike the case where inventory
carry-overs and bi-directional price changes are al-
lowed, in which case these barriers were functions of
the inventory level in the beginning of the period.

RemaRrk 4. The model can be extended to treat non-
linear demand functions by assuming that pEd;(p, &)
is concave in p and that Gy, p) is jointly concave
in (yp) for all t=1,...,T. The first condition is
easily satisfied for a broad family of demand func-
tions. For a discussion of conditions that ensure
the joint concavity of G4(-,-), see Federgruen and
Heching (1999).

5. Discussion and Qualitative Insights

5.1. An Illustrative Example of the Joint Pricing—
Inventory—Capacity Model

5.1.1. A Two-Period Problem with Quadratic
Holding Costs. To illustrate the relationship
highlighted in Theorem 2, we analyze a two-period
problem (one period in which a decision is being
made and a terminal period). The demand in period
t=1,2 is given by d{pye) =a;,—bp;+e and the
inventory holding cost is given by hi(x) = hx?. Thus
we obtain that Gy, p) =h[o—%+(y—ut+btpt)2] and
vy, p) = pa, — bp) —cry — ho? — h(y — at-f—btp)z, where
o7 = Var(e;). Note that fre1(x, 2) =kz—hx* Tt is easy
to show that

prﬁ E and
e e[, 1 ®)
N RN A

Put ¢ = br+((a+1)h) ~'. Then the optimal pricing—
inventory policy (given capacity z) can be described as
follows:

e if x <y, <x +z, order up to i and set price to p;

o if y,>x+42z order z units and set price to
P +2) = a(1/2 + §/2bp) /¢ — (x +2) /&

e if x>j,, order no more units and set price to

p(x) = a1+ ¢/br)/p —x/d.
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One can observe that, given the capacity level
(after adjustment), z, the target inventory level at the
beginning of the period is independent of the in-
ventory level at the end of the previous period, x if
x<ar/2 —cr¢p/2<x+z. Otherwise, keeping the ca-
pacity level fixed, the target inventory level is
increasing linearly in x. Note that changing x may
affect the optimal capacity level, and thus, indirectly
affect the optimal inventory level. We next study the
impact of the optimal capacity on the optimal or-
dering policy. It is easy to see that, unless az/2
—cr¢/2>x+z, the optimal target inventory level is
independent of z.

In order to find the optimal capacity policy we
need to compute the boundary functions L(x) and
Ur(x). It is straightforward to show that

K
b = 20 bt M
UT(X) k x+ M,

T b/ +2(1—br/¢) (a4 Dk

where M is a constant that depends explicitly on the
problem parameters.

Thus, the width of the inactivity band can be com-
puted in closed form and we observe that, as
anticipated, the inactivity region increases with the
difference between the cost of increasing capacity, and
the price for sold capacity. Moreover, we observe that
as the initial inventory level increases, both the upper
level and the lower level of the inactivity region de-
crease, and thus as the inventory level increases, the
optimal capacity level (weakly) decreases.

Note that if the initial capacity level zge(Ly(x),
Uy(x)), the capacity level is independent of the initial
inventory. If this is indeed the case, the optimal in-
ventory level depends on x only directly, as was
discussed above. Thus, an increase in the initial in-
ventory increases the target inventory level unless
x<ar/2 —cr¢p/2<x+zp. Note that in this region, the
target inventory level does depend on the initial ca-
pacity level, and it increases with the initial capacity
level. In all other regions, the target inventory level
does not depend on the initial capacity level, but
may depend on the target capacity level.

If, on the other hand, zy>Ui(x), then z = U;(x)
= Ut — x. Note that, then, an increase in x, will de-
crease z, yet the sum of the two will remain constant.
As the target inventory level depends only on the
x+z, the target inventory level is independent of x,
once x is above a level such that zy> Uy(x).

We observe that for fixed by, as the holding cost
decreases to zero, the inactivity region shrinks. Thus,
capacity adjustments are always made if holding
costs are negligible. At the same time, for any given
value of 1, if the price sensitivity br decreases to zero

the inactivity region will remain proportional to the
holding cost. Thus, the higher the holding cost, the
less likely that capacity adjustments will be made. To
summarize: as the holding cost increases or price
sensitivity decreases, the value of adjusting capacity
decreases. As mentioned above, the inactivity region
also depends on the difference between the cost of
purchasing capacity and its selling value. In many
firms, capacity changes are fairly costly. In these
cases the difference between the costs will increase
the size of the inactivity region, thus allowing the
firms to only modify price and inventory levels,
while keeping the capacity level unchanged.

5.1.2. Numerical Illustration. Consider a firm that
produces and sells a product during three periods, and
a fourth period being the terminal one in which the
firm sells off its capacity. The firm starts off with no
capacity and zero inventory. Demand is anticipated to
be low in the first period, increase during the middle
period, and then return to its initial level in the final
period. To encode this using our model parameters, we
put a; =a3 =5 and a4, = 10 in the demand function. We
set by = b; =1 and b, = 2. For purposes of this example,
we take the error term ¢ to follow a Poisson dis-
tribution with mean 1, independent for each period
t=1,2,3. The firm’s variable cost of production
is cg=c;=c3=1. We set the holding cost to
h(x) = h" max(x,0) — h ~ min(x, 0), where h;~ =1.9, and
hi =1.5 for t=1,2,3. The discount factor is o = 0.9.

Figure 1 depicts the target inventory levels and
optimal capacity levels for different levels of initial
inventory. First, one can observe that in this case the
optimal inventory level is a non-decreasing function
of the initial inventory level, and that capacity level
is a non-increasing function of the initial inventory.
Note that the crossed line depicts the sum of the
initial inventory and the optimal capacity level. This

Figure1 Optimal Capacity and Inventory Levels as a Function of Initial

Inventory

-
o

Inventory level (y) and Capacity level (Z)
o = N W & OO0 O N 0 ©

Initial Inventory (x)

The solid line depicts the optimal capacity level, the starred line
depicts the optimal inventory level, and the crossed line depicts the
sum of the initial inventory and the optimal capacity level.
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allows us to identify three production regions. As
long as the initial inventory x is below 2, there is
limited capacity and the firm sets the target inven-
tory to x+z. When the inventory is the interval
2 <x <5, the optimal inventory level is set to 7,
which is independent of x and z. When the initial
inventory level is >5, the target inventory is iden-
tical to the initial inventory, i.e., ¥ = x. The capacity
policy is as follows: as long as the initial inventory is
below 6, the capacity is set to the upper limit,
which decreases with the initial inventory. Once the
initial inventory reaches —4, the capacity level
reaches the inactivity region, and the capacity
remains unchanged wuntil the inventory level
reaches — 1. Note that due to the change in the pro-
duction region, the slope of the capacity function
changes again around inventory levels 2 and 5.
One can also observe that when z is below the lower
limit (e.g., when —7 <x < —4), x+z is kept con-
stant, and thus the optimal inventory is independent
of either, as predicted by the analysis of the two-
period model.

5.2. Ilustrative Examples of the Joint Capacity—
Pricing Problem

5.2.1. Two-Period Problem with Quadratic
Holding Cost. We, again, analyze the two-period
model with quadratic cost in order to gain insights
into the structure of the solution of the joint capacity—
pricing model with no carry-overs. One can show
that, if p<ar/2br+cr/2, then

Flep) = (p — cr)(ar — brp) + ¢%/2h — ho% + okz
plar — brp) — crz — ha% — h(z — ar + pr)2 + akz

where Ar=ar/2—cr/2(1/h+br). We observe that
once the current price is below this threshold level,
it will remain at its current level. Note that if z> A7,
the firm’s optimal capacity level is Ay, while if it is
below we have to examine the upper and lower
boundary functions. We observe that Ly(p) =ar—brp
—(cr—ak+K—hc)/2h and Ur(p) =ar—brp— (cr—ok
+k—hc)/2h. The inactivity region is given by
((K—=Kk)(1 —a))/2h. Note that here (i.e., when p<ar/
2br+cp/2) the capacity inactivity region is
independent of price. As the firm cannot use a price
lever anymore, the decision whether to use the other
two decision variables depends only on the ratio
between the capacity cost difference (K—k) and the
holding cost (). If this ratio is “high” (i.e., cost of
adjusting capacity is high relative to the holding cost),

we expect the firm to restrict use to inventory in order
to meet variability in demand.

In the region in which the initial price p>ar/
2br+cr/2, we have that if z is below a certain level,
and K > k, then both price and capacity are kept
fixed. As capacity is below the level Aj, the firm
cannot further reduce price without incurring exces-
sive shortage costs, and thus it will keep the price
fixed. Capacity cannot change because related costs
are too high. In this situation, inventory is essentially
the only useful lever.

5.2.2. A Three-Period Example Illustrating the Re-
lationship Between Price Markdown and Capacity
Investment Decisions. We again consider a firm that
produces and sells a product during three periods; the
fourth being the terminal period in which the firm
sells off its capacity. The firm starts off with no
capacity and zero inventory. Demand is anticipated to
be low in the first period, increase during the middle
period, and then return to its initial level in the final
period. To encode this using our model parameters,
we put a; = a3 =8 and a4, = 10 in the demand function.
We set b, =1 for t=1,2,3. For purposes of this
example, we take the error term ¢; to follow a Poisson
distribution with mean 1, independent for each period
t=1,2,3. The firm’s variable cost of production is
¢; = =c3=1. To reflect the fact that the firm cannot
carry inventory and is thus inclined to resolve any
excess demand within the period, we set h =3,
h” =15 for t =1,2,3. The discount factor is « = 0.9.

Figure 2 is concerned with three capacity invest-
ment irreversibility values: K/k=2,6,8 (dotted,

if z>Ar,

otherwise,

dashed, and solid lines, respectively). For each of
these ratios, we computed the optimal policy that
maximizes the average profit over the finite horizon
using standard dynamic programming. The figure
depicts the optimal policy under a “typical” path
that is obtained by setting the noise variable &, to its
mean value. We observe that as long as the ratio is
lower than 6, the firm essentially uses the same
pricing scheme, charging US$5, US$4, and US$3, and
lowers the level of acquired capacity. However, once
the ratio increases above 8, the firm utilizes a differ-
ent pricing scheme, charging US$6, US$5, and US$4
while lowering the capacity level it purchases. As the
firm can foresee that it will not be able to absorb
demand using a high level of production (and ca-
pacity), and because it cannot increase its price in the
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Figure2 Optimal Capacity and Price Levels for Different Capacity Investment Irreversibility Ratios K/k
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Note: The left (right) panel depicts the optimal capacity (pricing) level over the planning horizon for a “typical” demand path.

middle of the product life cycle, it elects to charge a
relatively high price in the first period even though
the demand in this period is not greater than other
periods.

The firm then decreases prices in each subsequent
period. In terms of capacity planning: the firm al-
ways invests in capacity in the first period, may
invest in the second period (to accommodate the
peak-demand anticipated in period 2), and “stays
put” in the third period (even tough demand is ex-
pected to be lower than in the second period). The
above may be viewed as an illustration of comple-
mentarity between price and capacity. To wit, the
first period commences with a relatively high price,
and a relatively low level of capacity, leading to a
high utilization of this capacity. In the second period,
the firm increases capacity level to its maximum, and
lowers price to increase demand. In the third period,
because the firm already has acquired a significant
level of capacity, it will again lower its price to allow
for full utilization of the capacity, even though the
expected demand is lower than that in the middle
period.

5.3. Additional Discussion

5.3.1. Price and Capacity as Strategic Substitutes.
The fact that price and capacity are strategic substitutes
is equivalent to a complementarity relation between the
level of capacity investment and the level of price
decrease (relative to the maximum price p). The notion
of complementarity that we are referring to is due to
Edgeworth, according to which activities are considered
complements if increasing the level of any one of them
results in an increase in the return of engaging more in
the other; see Milgrom and Roberts (1990, 1995) that

summarize the principal results of the theory of
supermodular optimization which underlies the notion
of complementarity. They describe supermodularity as a
way to formalize the intuitive idea of synergistic effects.
In our example, a firm that coordinates sales planning
and capacity investment has the potential to increase its
profits on the basis of the observed complementarity.

5.3.2. Benefits of Capacity Flexibility in the Pres-
ence of Restrictions on Price Changes (Table 1). To
explore further the importance of capacity flexibility,
we compare the expected profits of a firm in two
configurations: (i) the firm sets its capacity level at the
beginning of the life cycle and (ii) the firm is capable
of adjusting its capacity periodically. For each of
these settings, we compute the optimal average
profit function when beginning with zero inventory
on-hand and zero capacity, using standard dynamic
programming. In both cases, the firm is only allowed
to markdown its prices, and cannot carry inventories
from period to period.

We observe in Table 1 that when the cost of
adjusting capacity (i.e., the ratio K/k) is low, the
value added from capacity flexibility is negligible. In
particular, the firm can sell the capacity at the end

Table1 Expected Profits: The Value of Capacity Flexibility

Kk 1 2 6 8
Fixed capacity 44.5365 40.5018 28.0212 26.0132
Flexible capacity 44.8183 40.7027 30.0208 29.70307
Percentage increase 0.63 0.50 7.14 14.18

The first row depicts expected profits when capacity level is set at the beginning
of the horizon. The second row depicts expected profits when capacity can be
adjusted periodically. The third row depicts percentage improvement due to
flexibility.



Allon and Zeevi: Relationship between Pricing and Capacity Decisions

Production and Operations Management 20(1), pp. 143-151, © 2010 Production and Operations Management Society 151

of the life cycle without incurring any losses, and
thus will probably invest in the maximum required

capacity.

5.3.3. Future Research. In this note we have made
several simplifying assumptions for purposes of
mathematical tractability and facilitating the
analysis. Among these, the most desirable extensions
include relaxing the stipulation of zero lead time for
both procurement and capacity adjustment, as well as
verifying the applicability of the main results for more
general demand models. Fixed capacity investment
costs will complicate the analysis in a significant
manner, and lead to potentially much more complex
policy structures; some indication of this can be seen
in Duenyas and Ye (2007) in the more restricted
setting of joint capacity and inventory control.
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Supporting Information

Additional supporting information may be found in
the online version of this article:

Appendix S1. Proofs of the Main Results.
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the content or functionality of any supporting mate-
rials supplied by the authors. Any queries (other than
missing material) should be directed to the corre-
sponding author for the article.
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