
Bayesian Social Learning from Consumer Reviews∗

Bar Ifrach† Costis Maglaras‡ Marco Scarsini§ Anna Zseleva¶

First submission June 29, 2013; Revision: December 28, 2017

Abstract

Motivated by the proliferation of user-generated product-review information and its widespread

use, this note studies a market where consumers are heterogeneous in terms of their willingness-

to-pay for a new product. Each consumer observes the binary reviews (like or dislike) of con-

sumers who purchased the product in the past and uses Bayesian updating to infer the product

quality. We show that the learning process is successful as long as the price is not prohibitive

and therefore at least some consumers, with sufficiently high idiosyncratic willingness-to-pay,

will purchase the product irrespective of their posterior quality estimate. We examine some

structural properties of the dynamics of the posterior beliefs.

Finally, we study the seller’s pricing problem, and we show that, if the set of possible prices

is finite, then a stationary optimal pricing policy exists. If putting one item on the market

involves a constant cost, then under this optimal policy, learning fails with positive probability.

1 Introduction

Online review sites are playing an increasingly large role in consumers’ purchasing decisions.

The hotel and hospitality industry has been transformed through the availability and impact of

reviews on travelers’ decisions1. Similarly, other industries such as online retail, motion pictures,

and restaurants have seen consumers’ decisions increasingly influenced by reviews. The proliferation
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of smartphones is making access to such review sites easier than ever. This note studies the problem

of Bayesian social learning from online reviews.

Specifically, a monopolist seller introduces a new product with unknown quality to a market

of heterogenous consumers who have access to reviews generated by consumers that purchased the

product in the past, and where: (a) consumers use Bayesian updating to infer from past reviews

the product quality; (b) the mechanism by which consumers report their reviews resembles that of

online review sites, albeit in a simplified way; and (c) consumers have heterogeneous preferences

(willingness-to-pay) for the product. The new product (or service) features observed attributes, e.g.,

location, and unobserved attributes that we denote with the term quality, which, to facilitate the

Bayesian inference, can either be High (H) or Low (L). The quality experienced by a consumer who

purchases the product is equal to the true quality of the product plus some random perturbation,

e.g., due to variability in the service delivery process.

Consumers differ in their preferences for the observed product attributes, which is akin to having

a heterogenous willingness-to-pay for a base good of low quality. Consumers arrive sequentially over

time and make a Bayesian inference about the product quality based on the information available

in the market, as described at the end of this paragraph. Following that, consumers make a once-

and-for-all decision of whether to purchase or to forgo the product, depending on their posterior

quality distribution and on their idiosyncratic preference for the observed attributes that jointly

determine their willingness-to-pay. Specifically, if a consumer perceives that the expected quality

is Q̂, her idiosyncratic preference for the other attributes is Θ and the price is p, then the consumer

purchases the product if her expected net utility is non-negative, i.e., if Θ + Q̂− p ≥ 0; we assume

that the no-purchase option produces zero utility. The heterogeneity in preferences is captured by

consumers’ types that are private information. Buyers submit a binary review that takes the form

of a “like” if their ex-post net-utility was non-negative, and a “dislike” if their ex-post net-utility

was negative. The review is based on the true quality of the product plus the effect of the random

perturbation experienced upon consumption of the product. It is only partially informative due

to the heterogeneity in preferences that remains unseen and the fluctuations in the experienced

quality of the product. Each agent observes the ordered sequence of consumer reviews.

In the first part of our paper we assume that the price is static and non-prohibitive, in the

sense that even if consumers perceived the quality to be low, there are still some consumers with

sufficiently high type that will choose to purchase and write a review. Proposition 3.2 shows that

the conditional beliefs of the above-mentioned Bayesian learning process converge to a point mass

distribution on the true state of the world, i.e., eventually consumers learn the true quality of the

product almost surely. No-purchase decisions do not contribute any information to the learning

process, therefore the fact that they are not observed has no influence on the decisions of the
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following consumers.

Contrasting to the literature on social learning, and, specifically, Banerjee (1992) and Bikhchan-

dani, Hirshleifer, and Welch (1992), in our model, before buying the product, consumers have no

private information (signals) on the state of the world, and are heterogeneous in their preferences;

see also Chamley (2003). Information does not aggregate by observing the sequence of purchasing

actions and making inferences about past beliefs and signals, but rather information accumulates

through the effect of online reviews. In common to these papers, consumers are Bayesian and

the unknown quality parameter takes on two possible values, namely H or L. Our assumption

on the price and type distribution ensures that some consumers will always purchase and gener-

ate new reviews. This ultimately drives the learning result. Our assumption is analogous to the

one introduced in Smith and Sørensen (2000), who show that asymptotic learning holds if agents’

signals have unbounded strength (i.e., may try the product irrespective of the observed actions of

all predecessors). In our model heterogeneous willingness-to-pay drives experimentation, which in

turn drives learning, whereas in the model with signals a sufficient number of consumers have a

sufficiently accurate quality information so as to always follow their own signal in their decision.

Moreover, in the model of signals, learning implies that all consumers make the same decision. This

is not true in our model, where after the market has learned, there will be a set of consumers that

choose to purchase and a set of consumers that will choose not to purchase, and even among the

purchasers, there will be some fraction that will ultimately dislike the product due to the quality

noise when they experience the good. One essential novelty of the paper is that only agents whose

preference is above a threshold take an action and thus future agents need to filter out this bias.

Focusing on the learning trajectory, Proposition 3.6 shows that the posterior after the review

sequence (like, dislike) will be greater than the posterior after the review sequence (dislike, like),

highlighting that the order of reviews affects the dynamics of consumers’ beliefs and the importance

of early reviews on the product’s demand. As a corollary, one can show that the likelihood that

the next review will be positive is decreasing with the belief, or in other words that reviews tend

to be negative following high quality expectation.

Most papers on Bayesian social learning assume a structure where consumers are endowed with

private signals on the unknown quality of the product. Acemoglu, Dahleh, Lobel, and Ozdaglar

(2011) consider agents who are embedded on a general social network and find conditions on the

social network and signal structure for asymptotic learning. Herrera and Hörner (2013) consider a

model where, like in this paper, agents make a binary choice—“buy” and “not buy”—but only the

“buy” decision can be observed by predecessors. They show that asymptotic learning occurs when

signals have unbounded strength and agents observe the time elapsed since the product launch. In

the model considered by Acemoglu, Bimpikis, and Ozdaglar (2014) agents can collect information
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by forming costly communication links or by delaying their irreversible action. Goeree, Palfrey, and

Rogers (2006) consider a model where agents make choices sequentially and their payoff depends

not only on the state of the world and their action, but also on an idiosyncratic privately observed

shock.

Social learning with Bayesian consumers who read reviews before purchasing has been consid-

ered by Besbes and Scarsini (frth) in a setting where the reviews are not binary. A recent paper by

Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2017) shows that, for a fixed price, under some

conditions, learning stops with positive probability. These authors study the speed of convergence

of learning, when it is achieved.

Next, we explore the effect of social learning from reviews on the seller’s pricing decisions. We

assume that there is a fixed cost c per unit sold in the market, so, specifically, pricing at p > c may

lead to profitable sales for the seller, while pricing at p < c results in a loss if the respective units sold

at such prices. We allow the seller to use state-dependent pricing, and consider the setting where the

seller is herself uninformed about the true quality of the product and learns from the reviews posted

by consumers. Under the latter assumption, which is common in the related literature, pricing has

no signaling effect on the true product quality.2 Theorem 4.6 shows that ex-ante the seller benefits

from social learning in the sense that her ex-ante expected revenue increases if consumers engage

in social learning; however, ex-post, i.e., after the true quality has been revealed, the seller is better

off if the quality is high, and worse off, otherwise. Bose, Orosel, Ottaviani, and Vesterlund (2006)

have argued that social learning benefits the seller in a setting with signals, and the above result

justifies their conclusion in a setting with reviews and heterogenous preferences.

Moreover, we show that the unit production cost c plays an important role in the optimal

dynamic pricing policy, and on whether consumers ultimately learn the true quality of the product.

If c is sufficiently small so that the seller can profitably participate in the market even if the product

is of low quality, then the seller does not exit the market and learning is achieved under the optimal

dynamic pricing. On the other hand, if the production cost c is sufficiently high, specifically such

that when the posterior belief is low, consumers will not purchase the product unless it is priced

below cost, then, first, the seller may indeed choose to price below cost for a short period to

incentivize sales and the possibility of reviews; and, second, that the seller exits the market when

2Apart from the relative analytical tractability it yields, it could be motivated by the practical reality that while
consumers are learning about some initially unobserved product quality attribute, e.g., the quality of service provided
by the hotel staff, the seller is simultaneously learning the impact of that quality on the consumers’ willingness-to-pay.
That is, in many practical settings when a new product is introduced in the market, there is a joint learning problem
where the seller is learning the demand model while consumers are learning about the product quality. The revenue
management literature has studied the seller’s problem of learning the demand model. A separate motivation, is to
consider that the learning interaction is primarily between the review aggregator platform and consumers, and where
the platform itself is uninformed, similarly to the consumers it interacts with.
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the posterior belief falls below a specified threshold.

A more complete treatment of the dynamic pricing problem in this model with Bayesian learning

seems intractable. A natural next step would be to appeal to asymptotic analysis of the underlying

stochastic system, e.g., using a mean-field approximation that can be justified under a functional

strong law of large numbers in large scale settings. This approach is pursued in Crapis, Ifrach,

Maglaras, and Scarsini (2017) in a model where consumers learn from online reviews but use a

naive mechanism to interpret the online reviews.

Even if characterizing the optimal pricing policy is not feasible, we can nevertheless say some-

thing about the interaction between pricing and learning, when even the most optimistic consumer

would not buy a low-quality product, if sold at cost (p = c). In this situation we show that learning

can stop with positive probability because the optimal price for the product will be too high. Any

price that guarantees some purchase would involve a long term loss for the seller and is therefore

not optimal. Notice that, since the seller is also uninformed about the quality, pricing below cost

could be optimal, but only for a short exploring period.

The paper is organized as follows. Section 2 introduces the Bayesian learning model from re-

views, and Section 3 establishes the asymptotic learning result and studies the structural properties

of the learning trajectory. Section 4 provides some results on the seller’s pricing problem.

Notation. Given any sequence {Xt} of i.i.d. random variables, the distribution function of X1

is denoted by FX , its survival function by FX , its density by fX . The symbol 1A denotes the

indicator of the event A.

2 The model

A monopolist introduces a product or service of unknown quality to a market of heterogeneous

consumers who try to learn about this quality through a social learning mechanism and make

their respective purchase decisions accordingly. Specifically, the monopolist introduces a product

of intrinsic quality Q that for simplicity is assumed to take one of two possible values L or H,

where H > L. The intrinsic quality of the product is determined through a random draw at time

t = 0, and takes value H with probability π0 and value L with probability 1− π0. The realization

of Q is assumed to be unknown to the potential consumers.

Consumers arrive sequentially and are indexed by their arrival time t ∈ {1, 2, . . .}. They are

heterogeneous with respect to their preference for the product. Consumer t’s preference is repre-

sented by her type Θt. Types are i.i.d. random variables whose support is a (possibly unbounded)
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interval. We call FΘ their continuous distribution function. The type Θt is known to consumer t,

but not to the other consumers. A consumer t who purchases the product will experience a quality

level Qt = Q + εt, where εt is a random fluctuation around the nominal and initially unknown

quality level Q. This fluctuation could be the result of variations in the product itself, or even

variations in the way individuals experience or perceive quality. The random variables εt are i.i.d.

with a continuous, zero mean distribution function Fε, independent of the types Θt.

Each consumer t makes a once-and-for-all purchase decision denoted by Bt ∈ {0, 1}: she either

buys the product (Bt = 1) or does not buy it (Bt = 0). If a consumer buys the product, her payoff

is given by the following simple additive form Vt := Θt+Qt−p, where p is the price of the product,

which, in the first part of this paper, is assumed to be constant over time. If she chooses to forgo

the product, her payoff is given by 0, without loss of generality. That is, the payoff of consumer t

is given by BtVt. Whatever the purchase decision is, consumers do not revisit it in later periods.

If Bt = 1, once consumer t has bought the product and experienced its quality, she publicly

posts a review Rt, where

Rt =


U if Bt = 1, and Vt ≥ 0,

D if Bt = 1, and Vt < 0,

7 if Bt = 0,

that is, depending on the consumer’s ex-post net-utility, a review is either positive or negative.3

Although consumers who do not buy the product do not review it, it is useful to suppose that they

report a blank review 7. We will show that, in contrast to models with private signals, in our model

7’s are not informative.

Define the time indices of consumers who choose to purchase the product

τ1 = min(t | Bt = 1) and τk = min(t | t > τk−1, Bt = 1)

and let the corresponding review history be, for τk ≤ t < τk+1,

ht = (Rτ1 , . . . , Rτk),

Consumer t observes history ht−1. Let Ht be the set of all histories ht. Note that the realization

of Θt and εt is never revealed to consumers different from t. Here consumers generate information

about the quality of the product when they review it, whereas in the literature on social learning

with signals, they reveal privately held information when making a purchase decision.

3All our results extend to the case when each buying consumer writes a review with fixed positive probability, as
long as this is independent of the reviews of past consumers and the experienced utility Vt.
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The form of the utility function, review decision, information structure, and all the distributions

of the relevant random variables are assumed to be common knowledge.

Consumer t chooses either to buy or forgo the product to maximize her expected payoff

Bt E[Vt | Θt, ht−1].

Note that, conditionally on Q, Vt is independent of the actions of the other consumers, including

the ones taken by consumers 1, . . . , t−1; past actions affect player t’s inference, not her payoff. We

call B = (B1, B2, . . .) the sequence of all consumers’ decisions. Notice that Bt is ht−1-measurable.

3 Asymptotic learning

Given history ht, define

π(ht) := P(Q = H | ht).

We frequently use the shorthand notation πt := π(ht). The belief determines the buyers’ purchase

decision. Consumer t will buy the product if and only if the expected net utility from buying is

greater than zero:

E[Vt | ht−1,Θt] = Θt + E[Qt | ht−1]− p = Θt + πt−1H + (1− πt−1)L− p ≥ 0,

or, alternatively, if and only if Θt ≥ θ(πt−1, p), where

θ(π, p) := p− (πH + (1− π)L) = p− Eπ[Q]. (3.1)

Note that εt does not affect the purchase decision since it has zero mean and is independent of the

history and Θt. Given the purchase criterion, in each period t the seller faces an expected demand

function FΘ(θ(πt−1, p)). The following assumption will hold throughout the paper.

Assumption 3.1. (a) supp(εt) = R.

(b) given the fixed product price p, FΘ(p− L) > 0.

Assumption 3.1(a) assures that there is always a positive probability that a consumer will derive

positive or negative net utility from buying the product, irrespective of whether the intrinsic quality

Q is high or low and of the value of the consumer type. Assumption 3.1(b) will prove necessary

for social learning to occur. It assures that under the firm’s price, there will be some consumers

who have sufficiently high idiosyncratic type Θ and therefore will choose to buy regardless of the
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product true quality. The assumption trivially holds when the support of Θt is unbounded, and it

is reminiscent of Assumption 3 in Goeree et al. (2006).

The belief πt is a random variable in [0, 1]. Due to the binary nature of the quality, we can see

that π((ht, r)) depends on ht only through π(ht), therefore the updating procedure is stationary

and independent of t. Lemma A.1 demonstrates some basic properties of the belief. First, starting

from any history ht, the belief increases after aU and decreases after aD,

π((ht,D)) ≤ π(ht) ≤ π((ht,U)),

and this inequality is weak only when π(ht) ∈ {0, 1}. This is expected, since the ex-post net utility

of a buyer is higher when the intrinsic quality is high, which itself increases the probability of a

positive review. The opposite result holds in case ofD.

Following a no-buy, the posterior will not change, since the sequence of reviews remains un-

changed. However, this would have been the case even if 7 reviews had been observable. A no-buy

decision of consumer t + 1 merely reveals that her type is lower than θ(π(ht), p). This carries no

information about the quality of the product. This observation is in sharp contrast with the liter-

ature on social learning from signals, where any action can be informative by revealing the agent’s

private signal. Our main result is the following:

Proposition 3.2. Let Assumption 3.1 hold. If π0 ∈ (0, 1), then πt → 1{Q=H} with probability 1.

As long as consumers purchase the product, the drift of the belief process is positive when the

quality is high and negative when it is low. As the number of reviews grows large, the posterior

will converge and correctly identify the intrinsic quality Q of the product.

Although the learning result appears intuitive, it is not trivial, due to the fact that learning

happens only when consumers buy and the section of consumers who buy is not a random repre-

sentative of the whole population of consumers. The bias that the purchasing induces has to be

filtered out in order to achieve asymptotic learning. Moreover the observations are not exchange-

able and no finite-dimensional sufficient statistic exists. Although the observations are the result of

the censoring, due to the purchasing decision of the consumers, the usual models of inference under

censored observations cannot be applied since the censoring is endogenous and not independent of

the types. The following corollaries will clarify the conditions for learning to occur.

Corollary 3.3. If FΘ(p − L) = 0, then with positive probability consumers stop buying at some

finite time t, so no learning occurs.

Corollary 3.3 shows that it is possible that consumers do not learn the quality of the object,
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even asymptotically. This is due to the fact that at some point they stop buying. The reason for

this is that their type distribution is bounded above, so when the probability that the quality is

high goes below a certain level, nobody has an incentive to buy.

There is a connection and a difference with respect to the classical literature on social learning

based on private signals à la Smith and Sørensen (2000). In both cases the boundedness of a

distribution makes the difference between learning and not learning. In the private-signal model

not learning corresponds to consumers getting stuck on a dominated action. In our model it just

implies that consumers do not update their posterior any longer and they stop buying. Nevertheless

not buying may be the right decision. This will never be discovered.

Corollary 3.4. If εt = 0 for all t, then π(ht) = 0 if ht contains at least oneD. Otherwise π(ht)

converges monotonically to 1.

Corollary 3.4 says that when the quality of the object is exactly revealed to buyers, learning

either happens fast or is monotone. If a consumer posts aD, then learning is immediate, since

this betrays that the quality is low. Otherwise the probability that the quality is high converges to

1 monotonically and every consumer makes the right decision.

Corollary 3.5. If P(−η ≤ ε1 ≤ η) = 1, with η < H − L, then, if Q = L, there exist a finite t and

a history ht such that P(ht) > 0 and π(ht) = 0.

Corollary 3.5 deals with the case where the quality is revealed almost exactly. Here the phe-

nomenon of immediate learning (of the bad quality) can happen with positive probability.

We conclude this section with a couple of structural properties of the dynamics of the learning

process. Specifically, in the spirit of comparative statics analysis, we compare outcomes of the

social learning process under a single change in model parameters or review histories.

Identical reviews may carry different information, because the reviewers observed different past

review histories. Thus, reviews are not exchangeable random variables and potentially carry differ-

ent weights on the posterior distributions of a future consumer. Do earlier or later reviews carry

more weight in forming a posterior belief? How does self-selection bias due to a low belief (after

negative reviews) or a high belief (after many positive reviews) affect the likelihood of positive or

negative reviews, respectively? The next proposition answers these two questions. It compares the

belief resulting from two pairs of reviews: one where a positive review is followed by a negative

one, hU,D := (U,D) and the reverse sequence hD,U := (D,U). The resulting structural

result then offers insight onto the effect of self-selection bias.

Proposition 3.6.
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(a) If fε is log-concave, then for any two finite sequences of reviews h′ and h′′, we have

π(h′, hU,D, h′′) ≥ π(h′, hD,U, h′′).

(b) For any π ∈ (0, 1) and q ∈ {L,H} we have that P
(
Rt+1 =U | (Bt+1, πt, Q) = (1, π, q)

)
is

decreasing in π and P
(
Rt+1 =D | (Bt+1, πt, Q) = (1, π, q)

)
is increasing in π.

Part (a) shows that under some weak assumption on the distribution of εt, the earlier review is

more influential4. This result holds for any distribution of types Θ. Proposition 3.6(a) should be

understood in the context of consumers’ self-selection given their unobservable types (e.g., see Li

and Hitt, 2008). As reviews vary over time, the corresponding cutoff for purchase, θ(πt, p) varies as

well. Holding Q fixed, a consumer who purchases when the cutoff θ(πt, p) is low is more likely to be

disappointed than a consumer who purchases when the cutoff is high, since the latter is more likely

to be a high type. As a result,D is a weaker negative signal in hU,D than in hD,U. Similarly,

a purchasing consumer with a low cutoff is less likely to be satisfied, because on average her type

is low, resulting is a stronger positive effect of theU in hU,D than in hD,U. In conclusion,

earlier reviews have a higher effect on the posterior belief.

Part (b) shows another effect of self-selection bias: namely, that the likelihood that the next

review will be positive is decreasing with the belief, or with the expected quality. Actually it is

decreasing with πt−1H + (1 − πt−1)L − p. This shows that not only the likelihood of a consumer

writing a good review is decreasing in π, it is also increasing in the price p. When either π goes

up or p goes down, the probability that a consumer buys increases. With this the probability that

a consumer will be unsatisfied increases. All the above is in the sense of comparative statics, that

is, ceteris paribus if in situation A the probability πt is higher (or the price p is lower) than in

situation B, then the probability of seeing a favorable review from consumer t is lower in A than

in B.

4 Learning and pricing

In this section we consider a model where the price is optimally and dynamically chosen by

the seller. If the price pt changes over time, then histories are now richer than in the model

considered in the previous section. In particular we consider the following (price, review) histories

4As will become clear in its proof, this result could be stated under more general assumptions. We present it this
way for the sake of simplicity.
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for τk ≤ t < τk+1:

ht = (pτ1 , Rτ1 , . . . , pτk , Rτk),

h+
t = (ht, pt+1) = (pτ1 , Rτ1 , . . . , pτk , Rτk , pt+1).

(4.1)

(4.2)

At each period t the seller observes ht−1, while consumer t observes history h+
t−1. Let Ht the set

of all histories ht and H +
t the set of all histories h+

t . As before we define πt := π(Q = H | ht).

Remark 4.1 (Seller’s information). The seller does not hold any private information about the

quality of the product or value of the disturbances around it, but rather is as informed as consumers

are on the realization of the product’s quality, i.e., the seller does not know ex-ante whether the

product is of high quality. Under this assumption, the price is not itself a signal of quality that

consumers could use to learn Q. The analysis of the paper would readily extend to a setting where

the seller may in fact know Q but due to external factors, such as competition or other marketing

considerations, the price of the product is again not indicative of the realization of Q.

We assume that there is a cost of producing and marketing an item. This will have relevant

implications for the optimal pricing.

Assumption 4.2. There is a cost c > 0 of putting one item on the market. This cost is constant

over time and linear in the number of items.

At every time t, based on the history ht−1, the seller chooses the price for that period, denoted

by pt. Hence, the seller’s strategy is a measurable function φ : H → A ⊂ R+, where H := ∪t≥0Ht

is the set of all possible histories. If we assume that the set A of possible prices is finite, then

the following proposition guarantees the existence of a stationary optimal pricing strategy, i.e., a

strategy that depends only on the posterior belief and not on time, so, with an abuse of notation,

if φ is stationary, we write

φ(ht) = φ(πt). (4.3)

Proposition 4.3. If the set A of possible prices is finite, then there exists a stationary optimal

pricing strategy for the firm.

We call Φ the set of stationary strategies. The seller seeks to maximize her expected discounted

profit, given by

E

 ∞∑
t=0

βt(pt − c)Bt

 , (4.4)

11



where β ∈ (0, 1) is the discount factor. If we call

Ψ(φ) := E

 ∞∑
t=0

βt(φ(πt−1)− c)Bt

 , (4.5)

then the seller program is

max
φ∈Φ

Ψ(φ)

and we define

φ∗ ∈ argmaxφ∈Φ Ψ(φ),

if the maximum is achieved.

We consider first the seller’s problem of maximizing the expected revenue from a single consumer

with belief π. This will be useful in the consideration of the dynamic pricing. Concretely, in the

case of a single consumer, the seller is interested in maximizing the revenue function

W (π, p) := (p− c)D(π, p),

where

D(π, p) = FΘ(θ(π, p)) = FΘ+πH+(1−π)L(p) (4.6)

is the demand function. Having defined W , we can rewrite the seller’s objective (4.4) as

E

 ∞∑
t=0

βtW (πt−1, pt)

 .
The next assumption is standard in the revenue management literature (see, e.g., Lariviere and

Porteus, 2001).

Assumption 4.4. The revenue functionW (π, p) has a unique global maximum in p for all π ∈ [0, 1].

Lariviere (2006) shows that W has a unique global maximizer if the generalized failure rate

of Θ + πH + (1 − π)L is increasing, where the generalized failure rate of X computed at x is

xfX(x)/FX(x).

Let p∗(π) := arg maxp∈R+ W (π, p) be an optimal price and W ∗(π) := W (π, p∗(π)) the corre-

sponding maximal revenue.

Lemma 4.5. Under Assumption 4.4 the function W ∗(π) is convex in π.

This result is the counterpart of Bose et al. (2006, Proposition 3) who show convexity of the
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revenue function for a model with homogeneous preferences and learning from signals.

Now we consider the problem of dynamic optimal pricing. First we show that social learning is

beneficial for the seller.

Theorem 4.6. Under Assumptions 4.2–4.4 the expected discounted revenue of the seller under

social learning is greater than the expected discounted revenue when consumers do not engage in

social learning, i.e.,

sup
φ∈Φ

E

 ∞∑
t=0

βtW (πt−1, φ(πt−1))

 ≥ E

 ∞∑
t=0

βtW ∗(π(ht−1))

 ≥ E

 ∞∑
t=0

βtW ∗(π0)

 =
W ∗(π0)

1− β
.

Theorem 4.6 shows that social learning is beneficial for the seller ex-ante, before knowing the

true quality of the product. Ex-post the seller loses when the quality is low (with probability

1 − π0) and gains when it is high (with probability π0). To gain intuition, compare the maximal

revenue extracted from consumer 1, W ∗(π0), and the expected maximal revenue extracted from

consumer 2, E[W ∗(π1)]. Combining Lemma A.3, Lemma 4.5, and Jensen’s inequality, we can see

that E[W ∗(π1)] ≥ W ∗(E[π1]) = W ∗(π). Thus, on average the seller extracts more revenue from

the second consumer than from the first, due to social learning. This argument can be repeated to

establish Theorem 4.6.

This result formalizes and demonstrates the claim of Bose et al. (2006) who argue that social

learning benefits the seller in a setting with signals. We point out here that our result does not

depend on our particular learning model; it would hold for any learning process with the same

preference model as long as πt is a martingale. In particular, it could be adapted to a setting where

consumers are heterogeneous in preferences and learn from signals.

In Proposition 3.2 we showed that learning is achieved under the hypothesis that some buyers

(an infinite number of them) would buy the product even knowing that the quality is low. As-

sumption 3.1(b) clarifies which values of the price guarantee this. Under dynamic pricing, if for all

t ≥ 1 we have FΘ(pt − L) > 0, then a simple modification of the proof of Proposition 3.2 shows

that learning occurs.

We consider now a situation where buying may stop at some point.

Proposition 4.7. Assume that L + θ̄ + β(H − L) < c. If πt is sufficiently low, then the optimal

price is so high that no consumer buys the product.

Under the assumption of the proposition there is a range of πt when it is not profitable for the

monopolist to sell the product. In that case the consumers do not learn the quality.

13



When Assumption 3.1(b) does not hold, learning may fail. In particular this happens when the

types Θt are bounded above and the price is high enough as to be sustainable only if the quality is

high. In this situation, it may be the case that, at the beginning, the expected quality is sufficiently

high for some consumers to purchase the product. If dislikes start piling up, then it may happen

that, at some time t, the conditional expected quality E[Q | πt−1] is such that FΘ(θ(πt−1, pt)) = 0,

so no consumer will want to buy the product at price pt. At this point learning will stop. This

may happen when the quality is low (actually in this case it will happen almost surely). This

scenario is not so bad for the consumers, since it represents a situation where initial uncertainty

is solved and, as a consequence, consumers make the right decision of not buying. Most of the

consumers make the decision that they would have made, had they known for sure the quality of

the product. Notice that purchasing may stop also when the actual quality is high, if, by chance,

some of the initial reviews happen to be dislikes and the conditional expected quality is pushed

down below the critical threshold where nobody wants to buy. In this case learning will stop for

the wrong reason and many consumers will not buy the product, whereas they would have bought

it, had they had perfect information about the quality. This shows that, with positive probability,

an infinite number of consumers will make the wrong decision. This phenomenon is akin to the

one observed in bandit models, the difference being that a classical bandit model involves only one

decision maker, whereas here we have an infinite sequence of them. A model with a similar flavor

has been studied by Papanastasiou, Bimpikis, and Savva (frth).

Definition 4.8. Call

π̂ :=
c− θ̄ − L
H − L

(4.7)

the threshold below which no consumer buys the product when its price equals the cost c.

The following proposition gives a sufficient condition for subsidizing. That is, under this con-

dition it is profitable for the monopolist to sell the product at a price below cost for a certain

period.

We have

P(Rt = r | π(ht) = π,Q = q, pt = p) =



∫∞
θ(π,p) F ε(p− q − x) dFΘ(x) for r =U,∫∞
θ(π,p) Fε(p− q − x) dFΘ(x) for r =D,

FΘ(θ(π, p)) for r = 7

14



Define

G(r, π, q, p) := P(Rt = r | πt = π,Q = q, p),

G(r, π, p) := πG(r, π,H, p) + (1− π)G(r, π, L, p),

ηt := κt−1H + (1− κt−1)L+ θ, (4.8)

where κ0 ∈ (0, 1) is given and, for all t ∈ {1, 2, . . . }, κt is a Bayesian update of κt−1 after a like

review at price ηt. For any natural number n ≥ 2 let

P (n) = (η1 − c) +

n∑
t=2

βt−1(ηt − c)
t−2∏
s=0

G(U, κs, ηs+1)

 . (4.9)

Proposition 4.9. Assume that π0 < π̂. If there exists a natural number m ≥ 2 such that P (m) > 0

with κ0 = π0, then φ∗(π0) < c, that is, the optimal policy φ∗ subsidizes in period 1.

The proof of Proposition 4.9 is based on the construction of a suboptimal pricing strategy that

subsidizes in period 1 and achieves a positive expected discounted payoff when P (m) > 0. Then a

comparative argument shows that a fortiori the optimal policy subsidizes in period 1, as well.

When π0 < π̂ the monopolist can choose between pricing below cost or not selling at all, because

consumers would not purchase the product at a price above cost. Assume that in the first period

the seller sets such a low price that the probability of purchasing is 1, and she only continues selling

if her product receives a like review. Under the given condition P (m) > 0, even with this strategy,

the seller receives a positive expected payoff, so it is profitable to sell the product. However, when

π0 < π̂, she can only sell if she prices below cost in the first period. An example in the proof shows

that the existence of m such that P (m) > 0 is not a vacuous hypothesis.

A Proofs

Proofs of Section 3

Given random variables X, its failure rate is denoted by λX and its reverse failure rate by ρX ,

that is,

λX(x) =
fX(x)

FX(x)
and ρX(x) =

fX(x)

FX(x)
.

Notice that
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P(Rt = r | π(ht) = π,Q = q) =



∫ ∞
θ(π,p)

F ε(p− q − x) dFΘ(x) for r =U, (A.1a)∫ ∞
θ(π,p)

Fε(p− q − x) dFΘ(x) for r =D, (A.1b)

FΘ(θ(π, p)) for r = 7, (A.1c)

where θ(π, p) is defined as in (3.1). We can therefore define the shorthand notation

G(r, π, q) := P(Rt = r | πt = π,Q = q),

G(r, π) := πG(r, π,H) + (1− π)G(r, π, L).

(A.2)

(A.3)

Lemma A.1 illustrates some properties of the Bayesian updating,

Lemma A.1. Let Assumption 3.1 hold.

(a) For all π ∈ (0, 1), G(U, π,H) > G(U, π, L).

(b) For all π ∈ (0, 1), G(D, π,H) < G(D, π, L).

(c) There exist G,G ∈ (0, 1) such that G ≤ G(r, π, q) ≤ G for r ∈
{
U,D

}
, q ∈ {H,L},

π ∈ (0, 1).

(d) For all q ∈ {H,L} and π ∈ (0, 1) we have G(D, π, q) +G(U, π, q) = FΘ(θ(π, p)).

(e) For any history ht−1, we have π(ht−1,7) = π(ht−1).

(f) Whenever π(ht−1) ∈ (0, 1) we have

π(ht−1,D) < π(ht−1) < π(ht−1,U).

Proof. (a) Since F ε is nonincreasing, we have

G(U, π,H) =

∫ ∞
θ(π,p)

F ε(p−H − x) dFΘ(x) >

∫ ∞
θ(π,p)

F ε(p− L− x) dFΘ(x) = G(U, π, L).

(b) Since Fε is nondecreasing, we have

G(D, π,H) =

∫ ∞
θ(π,p)

Fε(p−H − x) dFΘ(x) <

∫ ∞
θ(π,p)

Fε(p− L− x) dFΘ(x) = G(D, π, L).

(c) This follows from Assumption 3.1, since there exists a fraction of consumers that would always

choose to buy the product, and since the support of ε is large enough.
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(d) Just add (A.1a) and (A.1b) and consider that given πt the probability of buying is independent

of Q.

(e) In general, by Bayes’ rule,

π(ht−1, r) =
P(Rt = r | ht−1, Q = H)π(ht−1)

P(Rt = r | ht−1, Q = H)π(ht−1) + P(Rt = r | ht−1, Q = L)(1− π(ht−1))
.

(A.4)

Hence

π(ht−1,7) =
G(7, π(ht−1), H)π(ht−1)

G(7, πt, H)π(ht−1) +G(7, π(ht−1), L)(1− π(ht−1))
= π(ht−1),

since G(7, π, q) = FΘ(θ(π, p)) for all q ∈ {H,L}.

(f) We have

π(ht−1,D) =
G(D, π(ht−1), H)π(ht−1)

G(D, π(ht−1), H)π(ht−1) +G(D, π(ht−1), L)(1− π(ht−1))

<
G(D, π(ht−1), H)π(ht−1)

G(D, π(ht−1), H)π(ht−1) +G(D, π(ht−1), H)(1− π(ht−1))

= π(ht−1)

=
G(U, π(ht−1), H)π(ht−1)

G(U, π(ht−1), H)π(ht−1) +G(U, π(ht−1), H)(1− π(ht−1))

<
G(U, π(ht−1), H)π(ht−1)

G(U, π(ht−1), H)π(ht−1) +G(U, πt, L)(1− π(ht−1))

= π(ht−1,U).

where the first inequality follows from (b) and the second from (a).

The following lemma is needed to prove Proposition 3.2.

Lemma A.2. Define the function

g(x, y, z) = log

(
x

y

)
x+ log

(
z − x
z − y

)
(z − x). (A.5)

Then, 0 < x ≤ y < z implies g(x, y, z) ≥ 0 with equality if and only if x = y.

Proof. All variables in the proof are assumed to satisfy the condition in the statement of the lemma.

We will show that g is strictly monotonically decreasing in x and that g(x, x, z) = 0. We first show
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that g is convex with respect to the first argument,

∂g(x, y, z)

∂x
= log

(
x

y

)
− log

(
z − x
z − y

)
,

and,
∂2g(x, y, z)

∂x2
=

1

x
+

1

z − x
> 0.

It is easy to see that for δ > 0 small,

∂g(x, y, z)

∂x

∣∣∣∣∣
x=y

= 0 and
∂g(x, y, z)

∂x

∣∣∣∣∣
x=y−δ

< 0.

By convexity we have that g(x, y, z) ≥ g(y, y, z) = 0, with equality if and only if x = y.

Lemma A.3. We have

E[πt+1 | ht] = πt. (A.6)

Proof of Lemma A.3. For t ≥ 1 call

hfull
t := (p1, R1, . . . , pt, Rt) and hfull+

t := (p1, R1, . . . , pt, Rt, pt+1)

the full histories including 7 reviews. As before π(hfull
t ) = π(hfull+

t ). Define

πfull
t = π(hfull

t ).

We have

E[πt+1 | ht] = E[πfull
t+1 | hfull

t ] = πfull
t = πt,

where the first and last equality follow from A.1(e) and the second from fact that πfull
t is a Doob

martingale.

Proof of Proposition 3.2. For t ≥ 1, let hfull
t := (R1, . . . , Rt) be the full history including 7 reviews;

recall that in contrast the observed history ht only includes information from the consumers that

bought τ1, . . . , τk. Define πfull
t = π(hfull

t ). We have

πt = πfull
t = P(Q = H | hfull

t )→ π∞,

using the martingale convergence theorem (see, for instance, Karlin and Taylor, 1975). Since

πt ∈ [0, 1] for all t ≥ 0, we further conclude that π∞ ∈ [0, 1], and that π0 = E[πt] = E[π∞].
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Recall the definitions of G in (A.2) and (A.3). We have

E[log πt | πt−1, Q = H] = log

(
G(7, πt, H)πt−1

G(7, πt)

)
G(7, πt, H)

+ log

(
G(D, πt, H)πt−1

G(D, πt)

)
G(D, πt, H)

+ log

(
G(U, πt, H)πt−1

G(U, πt)

)
G(U, πt, H)

= log πt−1

+ log

(
G(D, πt, H)

G(D, πt)

)
G(D, πt, H)

+ log

(
G(U, πt, H)

G(U, πt)

)
G(U, πt, H)

= log πt−1 + g
(
G(D, πt, H), G(D, πt), FΘ(θ(πt, p))

)

(A.7)

where the second equality stems from

G(7, πt, H) = G(7, πt, L)

G(7, πt, H) +G(D, πt, H) +G(U, πt, H) = 1,

and Lemma A.1(d). The function g was defined in (A.5).

We can show that there exists G > 0 such that

G ≤ G(D, πt, H) ≤ G(D, πt) < FΘ(θ(πt, p)) < 1.

Indeed, the first inequality follows from Lemma A.1(c); the second inequality stems from Lemma A.1(b)

and (A.2); the third inequality follows from Lemma A.1(d) and (A.2); the last inequality is a con-

sequence of Assumption 3.1(b).

Define

γ(π) := g
(
G(D, π,H), G(D, π), FΘ(θ(π, p))

)
.

Using Lemma A.1(c) and (A.2), we see that

G(D, πt, H) = G(D, πt)

if and only if π = 1. Therefore, by Lemma A.2,

γ(π) > 0 for π ∈ [0, 1) and γ(π) = 0 for π = 1.
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Assume now, by contradiction, that there exist δ, η > 0 such that

P(π∞ < 1− η | Q = H) > 2δ.

Then there exists an integer T such that for all t > T

P(πt < 1− η | Q = H) > δ.

The function γ is continuous and strictly positive for all π ∈ [0, 1− η], therefore

min
π∈[0,1−η]

γ(π) =: γ > 0.

Finally, using (A.7) iteratively, we get

E[log πT+k | Q = H] = log π0 +
T+k∑
i=1

E[γ(πi) | Q = H]

≥ log π0 +

T+k∑
i=T

E[γ(πi) | Q = H]

≥ log π0 +
T+k∑
i=T

E[γ(πi)1{πi≤1−η} | Q = H]

≥ log π0 + kγδ,

and we conclude that E[log(πT+k) | Q = H] > 0 by taking k large enough, which contradicts the

fact that log πt ≤ 0. Therefore, P(π∞ < 1 | Q = H) = 0, or P(π∞ = 1 | Q = H) = 1.

The same argument can be used to prove that P(π∞ = 0 | Q = L) = 1.

Proof of Corollary 3.3. By Lemma A.1(d) we have

G(D, π, q) +G(U, π, q) = FΘ(θ(π, p)).

Hence if FΘ(θ(π, p)) = 0, then

G(7, π, q) := P(Rt = 7 | πt = π,Q = q) = 1,

that is, with probability one no consumer buys. Since the event θ(πt, p) = p − L has positive

probability, buying and therefore learning stop with positive probability.

Proof of Corollary 3.4. Consumer t buys iff Θt + πt−1H + (1− πt−1)L− p ≥ 0. If εt = 0, then she
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dislikes the product iff Θt +Q− p < 0. This can happen only if Q = L.

By Lemma A.1(f) π(ht−1) < π(ht−1,U), therefore, if noD appears, then the convergence of

πt to 1 is monotone.

Proof of Corollary 3.5. If every εt falls in the interval [−η, η] and Rt =D, then

Θt + πt−1H + (1− πt−1)L− p ≥ 0,

Θt +Q+ εt − p < 0,

that is,

Q− η ≤ Q+ εt < p−Θt ≤ πt−1H + (1− πt−1)L. (A.8)

If Q = H, then (A.8) holds iff (1 − πt)(H − L) ≤ η. Therefore when η < (1 − πt)(H − L), the

quality Q can only be L. This happens with positive probability.

Define
Γ(π) =

π

1− π
,

Λ(r, π) =
G(r, π,H)

G(r, π, L)
,

Definition A.4. We say that the condition ILR (increasing likelihood ratio) holds if

Λ(r, π)

is nondecreasing in π for r ∈
{
U,D

}
.

We next discuss some sufficient conditions for ILR, which will depend on the following defini-

tions.

Definition A.5. (a) The distribution of a random variable X is IFR (increasing failure rate) if

its failure rate is nondecreasing.

(b) The distribution of a random variable X is DRFR (decreasing reverse failure rate) if its

reverse failure rate is nonincreasing.

Proposition A.6. If the distribution of ε is both IFR and DRFR, then condition ILR holds.

The proof of Proposition A.6 requires some properties of TP2 (total positivity of order two),

for which the reader is referred to Karlin (1968) and Karlin and Rinott (1980).
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Proof of Proposition A.6. Notice that ε is IFR iff its survival function F ε is log-concave. Write

P(Θ + ε > s,Θ > θ) =

∫ ∞
θ

F ε(s− x) dFΘ(x) =

∫ ∞
−∞

1{(θ,∞)}(x)F ε(s− x) dFΘ(x).

Notice that F ε is log-concave iff K(s, x) := F ε(s − x) is TP2. Moreover L(x, θ) := 1{(θ,∞)}(x) is

TP2. Therefore the convolution∫
K(s, x)L(x, θ) dFΘ(x) = P(Θ + ε > s,Θ > θ)

is TP2. This implies that for π1 < π2 we have

P(Θ + ε > p−H,Θ > p− θ(π2))P(Θ + ε > p− L,Θ > p− θ(π1)) ≥
P(Θ + ε > p−H,Θ > p− θ(π1))P(Θ + ε > p− L,Θ > p− θ(π2)).

Hence

G(U, π2, H)G(U, π1, L) ≥ G(U, π1, H)G(U, π2, L),

that is,
G(U, π,H)

G(U, π, L)

is nondecreasing in π.

Next, notice that if ε is DRFR, then its distribution function Fε is log-concave.

Write

P(Θ + ε ≤ s,Θ > θ) =

∫ ∞
θ

Fε(s− x) dFΘ(x) =

∫ ∞
−∞

1{(θ,∞)}(x)Fε(s− x) dFΘ(x).

Notice that Fε is log-concave iff K(s, x) := Fε(s − x) is TP2. Moreover L(x, θ) := 1{(θ,∞)}(x) is

TP2. Therefore the convolution∫
K(s, x)L(x, θ) dFΘ(x) = P(Θ + ε ≤ s,Θ > θ)

is TP2. This implies that for π1 < π2 we have

P(Θ + ε ≤ p−H,Θ > p− θ(π2))P(Θ + ε ≤ p− L,Θ > p− θ(π1)) ≥
P(Θ + ε ≤ p−H,Θ > p− θ(π1))P(Θ + ε ≤ p− L,Θ > p− θ(π2)).

Hence

G(D, π2, H)G(D, π1, L) ≥ G(D, π1, H)G(D, π2, L),
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that is,
G(D, π,H)

G(D, π, L)

is nondecreasing in π, and therefore ILR holds.

A stronger yet simpler sufficient condition is the following.

Corollary A.7. If the density fε is log-concave, then ILR holds.

Proof. If the density fε is log-concave, then both the distribution function Fε and the survival

function F ε are log-concave, therefore the proof of Proposition A.6 can be applied.

Corollary A.7 shows that ILR is a fairly natural assumption on ε given its interpretation as

a mean zero noise around the product’s quality. For example, ILR holds if ε has a normal or a

Gumbel distribution. We can now prove our result.

Proof of Proposition 3.6. Part (a). We have

Γ
(
π(hU,D)

)
− Γ

(
π(hD,U)

)
= Γ(π0)

[
Λ
(
U, π0

)
Λ
(
D, π(U)

)
− Λ

(
D, π0

)
Λ
(
U, π(D)

)] (A.9)

We know from Lemma A.1(f) that

π(D) ≤ π0 ≤ π(U).

Therefore, by the ILR property (Definition A.4),

Λ
(
U, π0

)
≥ Λ

(
U, π(D)

)
and Λ

(
D, π(U)

)
≥ Λ

(
D, π0

)
,

which implies that the right hand side of (A.9) is nonnegative. Nonnegativity of the left hand side

provides the result π(hU,D) ≥ π(hD,U).

Note that h′ is summarized in π0 in (A.9). Since the result holds for all π0, it will hold for all

prior histories h′. By monotonicity of the Bayesian update in the belief, the inequality is preserved

after history h′′. This completes the proof of part (a).

Part (b). Note that

P
(
Rt+1 =U | (Bt+1, πt, Q) = (1, π, q)

)
= G(U, π, q)/FΘ(θ(π, p))
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and

P
(
Rt+1 =D | (Bt+1, πt, Q) = (1, π, q)

)
= G(D, π, q)/FΘ(θ(π, p)).

For ease of notation, we omit the arguments of the cutoff function θ(π, p) in this proof and write θ

instead. Consider the derivative

∂ P
(
Rt+1 =U | (Bt+1, πt, Q) = (1, π, q)

)
∂π

= (H − L)(FΘ(θ))−2

[
F ε(p− q − θ)fΘ(θ)FΘ(θ)− fΘ(θ)

∫ ∞
θ(π,p)

F ε(p− q − x)fΘ(x) dx

]

= (H − L)fΘ(θ)(FΘ(θ))−2

[
F ε(p− q − θ)FΘ(θ)−

∫ ∞
θ

F ε(p− q − θ)fΘ(x) dx

]
< (H − L)fΘ(θ)F ε(p− q − θ)(FΘ(θ))−2

[
FΘ(θ)−

∫ ∞
θ

fΘ(x) dx

]
= 0,

where (H − L) = −∂θ(π, p)/∂π, the inequality follows from the fact that FΘ is decreasing in

x ∈ [θ,∞), and the final equality from the definition of survival function. Note that

P
(
Rt+1 =U | (Bt+1, πt, Q) = (1, π, q)

)
+ P

(
Rt+1 =D | (Bt+1, πt, Q) = (1, π, q)

)
= 1,

and so

∂ P
(
Rt+1 =D | (Bt+1, πt, Q) = (1, π, q)

)
∂π

= −
∂ P
(
Rt+1 =U | (Bt+1, πt, Q) = (1, π, q)

)
∂π

> 0.

Proofs of Section 4

Proof of Proposition 4.3. The result follows from Blackwell (1965, Theorem 7(b)). His hypotheses

are satisfied here. The discount factor β ∈ (0, 1). If π0 ∈ (0, 1) then the state space is an open

interval, hence a Borel set. If π0 ∈ {0, 1}, then πt = π0 for all t, so it is enough to solve a

single-period optimization problem.

Since P(Rt = r | πt−1 = π,Q = q) is continuous in π and q, so are the functions G(r, π, q) in

(A.2) and G(r, π) in (A.3). Therefore the conditional probability πt is continuous, hence Baire.

The daily reward (pt − c)Bt is also a Baire function in (πt−1, pt). Since the set A of possible

prices is finite, the function is also bounded.
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Proof of Theorem 4.6. From Lemma A.3 we have that E[πt+1 | ht] = πt. Therefore for all t ≥ 1 we

have that π(ht) is a dilation of π(ht−1), hence E[ψ(π(ht))] ≥ E[ψ(π(ht−1))] for all convex functions

ψ. A direct implication of Lemma 4.5 is that the the expected revenue extracted from consumer

t is increasing in t, i.e., E[W ∗(π(ht+1))] ≥ E[W ∗(π(ht))]. Iteration of the argument proves the

result.

Proof of Proposition 4.7. By assumption

0 <
c− L− θ̄ − β(H − L)

(1− β)(H − L)
.

Take a πt such that

πt <
c− L− θ̄ − β(H − L)

(1− β)(H − L)
. (A.10)

The highest price that the monopolist can set in period t+ 1 is θ̄ + πtH + (1− πt)L. Imagine the

following optimistic scenario. The next consumer buys the product at period t+ s for this highest

possible price, and from period t+ s+ 1 the monopolist sells the product every time period at the

highest possible price θ̄ +H. Then the profit of the monopolist would be

βt+s−1

(
θ̄ + (πtH + (1− πt)L)− c+ (θ̄ +H − c) β

1− β

)
and due to (A.10) this is negative. If even under this optimistic scenario the profit is negative,

then under any outcome the profit would be negative. Thus in case of (A.10) the monopolist would

have to price so much below cost that there is no scenario that would make it profitable to sell the

product.

Proof of Proposition 4.9. Given a posterior κt−1, the price ηt defined in (4.8) guarantees that the

probability of a purchase is 1, so the review R1 is eitherU orD. Now we consider the following

suboptimal history-dependent pricing strategy. In period 1 the seller sets price η1. For any period

t ∈ {2, 3, . . .}, if all the previous reviews wereU, then the seller sells at price ηt. Otherwise, she

stops selling forever.

Given this history-dependent pricing strategy, the expected profit of the first m periods is P (m),

given in (4.9), which is assumed to be positive. Note that whenever aD appears, the seller’s

expected payoff from future periods is 0, so P (m) is computed considering only the probability of

having a string of positive reviews. Since the expected profit is positive, it is profitable for the firm

to sell. Clearly a higher expected payoff could be achieved through a different pricing strategy.

However, since π0 < π̂, consumers will only buy if the first period price is below cost c. So for any

pricing strategy with a positive expected payoff, the first period price must be below cost. This
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means that the seller is forced to subsidize to achieve a positive profit.

To show that the assumptions are not vacuous, we provide a set of parameters for which the

condition holds. Let β = 0.999, Fε ∼ N(0, 1), FΘ ∼ U(0, 1), L = 0, H = 100, c = 99.1 and m = 3.

That is, with the above-mentioned strategy the expected profit within three periods is positive.

So the optimal strategy must also provide a positive expected payoff, therefore it is profitable to

subsidize in the first period.
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