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Abstract

Personal data is an essential input for the digital economy. Yet, individuals of-

ten have limited control over its use and are rarely compensated for it. What inef-

ficiencies does this status quo generate? Which market institutions could improve

upon it? We study the competitive equilibria of an economy where platforms ac-

quire consumers’ data and use it to intermediate consumers and sellers. We find

that granting consumers control over their data can backfire: It can lead to lower

social welfare than when consumers are simply expropriated of their data. Even

in the best-case scenario, allowing consumers to choose to whom they sell their

data can only reach second-best efficiency. We show that to achieve full efficiency

a large set of markets would need to open, which allows platforms and consumers

to contract on how their data will be used. We comment on the difficulties of de-

centralizing in a practical way these efficient outcomes.
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1 Introduction

Personal data has become a critical input in the business of many firms. For example, it allows

marketers to access individual consumers using detailed information about their tastes, and to

recommend them the right product at the right time. This has fueled a multi-billion dollars

online-advertisement industry. In similar ways, personal data underlies the functioning of many

e-commerce platforms, social-media networks, and, more in general, any recommendation-

based platform system. Despite the important role that personal data play in the modern econ-

omy, however, we have not witnessed a corresponding development of large and competitive

data markets where this personal data is traded. Today, the vast majority of personal data is ei-

ther non-tradable, as it is a proprietary asset owned by large quasi-monopolistic firms, or it is

traded in markets that lack transparency and barely involve the consumers (see, Federal Trade

Commission, 2014).

The current arrangement of data markets can be a source of inefficiencies. First, since trade

between firms is artificially restrained, markets cannot guarantee that personal data is used by

the firms that can make the most profitable use of it. Second, since consumers have limited

control over who owns their data, they cannot escape the externalities associated with how it

is used. Third, since consumers are imperfectly compensated for their data, their incentive to

supply better data may be inefficiently low. In recent years, many scholars have expressed con-

cerns regarding the functioning of these markets and reasoned about which market institutions

could be promoted to increase efficiency and fairness (e.g., Posner and Weyl (2018) and Seim

et al. (2022)).

This paper formalizes these concerns and studies the extent to which different market ar-

rangements affect the welfare of its participants. We model an economy with buyers, sell-

ers, and intermediaries called platforms. Each buyer is uniquely identified by a “data record,”

which serves a dual purpose: It contains information that allows its owner to “access” the cor-

responding buyer (e.g., the record may contain this buyer’s IP address, telephone number, or

e-mail address) as well as information about her preferences (e.g., her age, gender, and educa-

tion).1 Platforms acquire a database of records to intermediate the corresponding buyers with

a given set of sellers. Specifically, the platform acts as an information designer: It provides in-

formation about each buyer to its sellers to influence their product offers, which then affect the

payoff of all participants in the economy.

1This definition of a data record is reminiscent of “marketing lists,” which are one of the main information

products traded in data-brokerage markets (see Federal Trade Commission (2014)).
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We begin by studying an economy where buyers are passive: They have been expropriated

of their data and platforms can trade it without their consent. We show that this boils down to

a rather standard exchange economy and study its competitive equilibria. In equilibrium, each

data record is allocated to the platform that uses it in the most profitable way. The converse is

also true: any platform-optimal data allocation can be supported as an equilibrium. However,

these equilibria ignore the external effects that platforms create on buyers and, as such, are

generally inefficient.

Next, we enrich the previous economy by granting buyers ownership over their data: A buyer

chooses whether to sell her record and to which platform. Perhaps surprisingly, we find that

empowering buyers can backfire. Specifically, there can be equilibria whose welfare is lower

than that the previous economy achieves. The reason is that, while buyers can now be directly

compensated for the value their data create for the platforms, they cannot be fully compensated

for the value their data create for other buyers. By selling her record, a buyer can change a

platform’s database and, thus, the way it is used: This can affect the payoff of other buyers.

We show how this market failure relates to the “pooling externalities” identified in Galperti,

Levkun, and Perego (2023) (henceforth GLP).

In the special case of an economy where all platforms behave as direct sellers—rather than

intermediaries with complex objectives—we show that this particular source of inefficiency

disappears and the equilibrium does a fairly good job at efficiently allocating data records. And

yet, this economy is still inefficient The reason is that, once a platform has acquired a database,

it can use it as it wants. The way data records are used is not contractible and this can create

an inefficiency, which is akin to moral hazard.

To address these issues, we further enrich our economy following the work of Arrow (1969)

and Laffont (1976). We create markets where buyers can trade not only the ownership of

the data records but also how these records are to be used by the platform. We show that

competitive equilibria in this economy exist, are efficient, and can be characterized as solutions

to a grand information-design problem. The shortcoming of this economy is its realism: to

achieve efficiency, a large number of markets need to exist. We comment on the challenges of

decentralizing these equilibria with simple institutions.

In conclusion, we believe that our paper contributes to the burgeoning literature on data mar-

kets in two ways. First, we introduce a framework to study data markets that is both classi-

cal and tractable. It is classical because it is rooted in the general-equilibrium tradition. It is

tractable because it exploits the recent progress of the information-design literature.2 Second,

2Relatedly, we show that the equilibria of some of the economies that we consider are solutions to a “grand”
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we analyze some of the market institutions that have been proposed in practice—chiefly, grant-

ing buyers control over their data and a compensation for their use—and study their effects on

welfare and possible shortcomings.

Related Literature. TBW

2 Model

This section introduces the main building blocks of the economies that we will analyze in this

paper. For concreteness, we present the model in the context of the e-commerce industry. There

are buyers (she), sellers (he), and platforms (it). The platforms intermediate the interactions

between buyers and sellers using data records. Our analysis applies more broadly to other types

of intermediaries that information to influence the behavior of other agents.

Denote by K the set of sellers and assume they are partitioned among a set of I intermediaries.

Let Ki ⊆ K be the sellers who participate in platform i. The partition {Ki}i∈I is exogenously

given. Each seller k ∈ Ki chooses an action in Ak, which can be interpreted as the price,

quality, or variety of his product. We denote the set of action profiles of the sellers active on

platform i by Ai := ∏k∈Ki
Ak. All these sets are assumed to be finite.

There is a continuum population of buyers. Each buyer demands at most one of the products

sold by the sellers (unit demand). Her preference is pinned down by a payoff type ω ∈ Ω.

We denote by q̄(ω) ≥ 0 the mass of buyers of type ω and assume that Ω is finite. A buyer

of type ω obtains a payoff gi(ai, ω) ∈ R when platform i’s sellers choose action profile ai. In

this case, given ai and ω, platform i and seller k obtain (real-valued) payoffs of ui(ai, ω) and

πk(ai, ω), respectively.

Each buyer is uniquely identified by a data record, which will be the commodity traded in

the economies that we consider. A data record can be owned either by a platform or by the

corresponding buyer. A data record serves a dual purpose. First, it contains information that

allows a platform to “access” this buyer (e.g., the record may contain this her IP address, tele-

phone number, or e-mail address). Access means that the platform can intermediate the inter-

action between this buyer and its sellers Ki. Second, the record contains information about this

buyer’s type ω (e.g., her age, gender, and education). We make two simplifying assumptions:

information-design problem. This suggests that the many tools that have been developed by the literature in recent

years to characterize these problems (see, e.g., Kamenica (2019) and Bergemann and Morris (2019) for a review)

could be repurposed to further characterize equilibria of data markets.
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First, we assume that ownership of a record is exclusive. Namely, no two platforms can own

the same record. Second, the record fully reveals the buyer’s payoff type ω. Because of the

latter, we call ω records those data records that identify buyers whose payoff type is ω.

A platform is an intermediary that provides its sellers with information about the buyers.

Specifically, suppose that platform i owns a database of records qi ∈ RΩ
+. Sellers in Ki know qi

and can sell to the corresponding buyers. However, sellers cannot tell these buyers apart. They

have no information about them except for the frequencies implied by qi. The platform acts

as an information designer: It conveys information about each buyer’s record to its sellers so

as to influence their actions ai = (ak)k∈Ki . To do so, the platform commits to an information

structure that maps the set of types Ω into random signals. By standard arguments (e.g., see

Bergemann and Morris (2016)), this information-design problem can be represented as choos-

ing a recommendation mechanism xi : Ai × Ω → R+ subject to incentive-compatibility and

feasibility constraints:

Pi : max
xi :Ai×Ω→R+

∑
ω∈Ω,ai∈Ai

ui(ai, ω)xi(ai, ω)

s.t. for all k ∈ Ki, and ak, âk ∈ Ak

∑
ω, a−k∈∏k,k′∈Ki

Ak′

(
πk(ak, a−k, ω)− πk(âk, a−k, ω)

)
xi(ak, a−k, ω) ≥ 0 (1)

and for all ω ∈ Ω,

∑
ai∈Ai

xi(ai, ω) ≤ qi(ω) (2)

We call xi obedient if it satisfies (1). The obedience constraint requires that the sellers find

it optimal to follow their recommended action conditional on the information it conveys. The

resource constraint in (2), instead, requires that some recommendation be sent for every record

in the database. For each i and qi, fix once and for all x∗qi
—a solution to Pi—and denote the

platform’s payoff given database qi by

Ui(qi) := ∑
ai,ω

x∗qi
(ai, ω)ui(ai, ω).

By standard arguments, Ui(qi) is continuous and concave in qi and represents the platform’s

preference over databases. The payoff of ω buyers whose record belongs to qi is given by:

Giω(qi) := ∑
ai

x∗qi
(ai, ω)

qi(ω)
gi(ai, ω). (3)

In this expression, x∗qi
(ai, ω)/qi(ω) is the conditional probability that recommendation ai is

sent given ω. Finally, note that unlike Ui, the buyer’s payoff Giω may fail to be continuous in

qi, as x∗qi
can be discontinuous in qi.
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We postpone the discussion of the model to Section 6. Here, we briefly comment on the role

of data records, discuss an important special case, and offer a few examples.

Data Records. In this paper, data records are rival goods and we study markets where these

goods are traded. For this to be the case, we made two important assumptions. First, we as-

sumed that ownership of a record is necessary to access the corresponding buyer. Implicitly,

we consider situations where accessing a specific buyer without her data record is prohibitively

costly due to the large size of the population. Second, we assumed that ownership is exclusive:

At most one platform can own a record at each given time. Both assumptions are strong and

may not be descriptive of all data markets. Yet, our data records are reminiscent of “market-

ing lists,” which are the main information product traded in the data-brokerage industry (see

Federal Trade Commission (2014)). Moreover, both assumptions can be partially weakened,

as discussed in Section 6. In the same section, we will discuss the other stylized assumptions

that we made.

A Special Case of the Model. Our model accommodates the special case of a “platform”

that sells directly to buyers. To do so, fix i and assume |Ki| = 1 and u(ai, ω) = πk(ai, ω) for

all ai and ω. In this case, the incentives of i and k are perfectly aligned. Thus, obedience con-

straints (1) are trivially satisfied and the problem of the platform becomes a decision problem,

rather than an intermediation one. Equivalently, we can think of this platform as a seller with

direct, i.e. non-intermediated, access to the buyers. An important special case of our model

(see Section 4) is the one where all platforms are sellers in the sense just explained. We will re-

fer to this as the no-intermediation case. Another special case that is worth mentioning is that

of a platform with Ki = ∅. We interpret this platform as a pure data-broker. △

An Example for the Payoffs. As an example, suppose sellers sell an homogeneous product

at zero marginal cost and compete on price. Let ω be the buyer’s willingness to pay for the

product and ak the price set by seller k. Then, gi(ai, ω) = maxk∈Ki{ω − ak, 0}. This payoff

incorporates an outside option (in this case 0) that the buyer can exercise upon observing the

sellers’ action. Seller k’s payoff is πk(ai, ω) = ak if it charges the lowest price (ties broken at

random) and zero otherwise. Finally, the platforms’ payoff ui(ai, ω) is proportional to the sum

if the seller’s profits ∑k∈Ki
πk(ai, ω), as if the platform charged a transaction fee on sellers’

profits. △
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3 A Baseline Economy

The goal of this paper is to study how different market designs affect the welfare of the par-

ticipants of the economy. We begin our analysis with a simple market organization. We con-

sider an exchange economy where only platforms can trade data records. Buyers have been

expropriated of their records and cannot participate in this market. This is a salient benchmark

to study as it resembles the current arrangement of many real-world data-brokerage markets,

where data records are collected without the consent or even the knowledge of the correspond-

ing buyers (see Federal Trade Commission (2014) and Seim et al. (2022)).

We refer to this baseline economy as E1. In this economy, platforms are endowed with some

of the data records and their preferences are quasilinear in money. Taking prices as given, the

problem of platform i is then equivalent to choosing a database qi to solve

max
qi∈RΩ

+

Ui(qi)− ∑
ω

p(ω)qi(ω), (4)

where p(ω) denotes the market price for ω records.

A data allocation in economy E1 is a profile q ∈ RΩ×I
+ , specifying a database qi ∈ RΩ

+ for

each platform i. A data allocation is feasible if ∑i qi(ω) ≤ q̄(ω) for all ω. A competitive

equilibrium is defined as follows:

Definition 1 (Equilibrium for E1). A price vector p∗ ∈ RΩ and a feasible data allocation

q∗ ∈ RΩ×I
+ constitute an equilibrium of economy E1 if:

1. For each platform i, q∗i maximizes (4) taking p∗ as given;

2. All markets clear: for all ω ∈ Ω, p∗(ω)
(
q̄(ω)− ∑i q∗i (ω)

)
= 0.

The market clearing condition simply requires that either there is no excess supply of ω records

or, if there is, the price of ω records must be zero.

Economy E1 is a standard exchange economy, with the only peculiarity that the goods being

traded are data records. Equilibria of this economy exist and they maximize the unweighted

sum of platforms’ payoffs. That is, if (p∗, q∗) is an equilibrium of E1, the data allocation q∗

solves the following social-planner problem:

T B : max
q∈RΩ×I

+

∑
i

Ui(qi)

s.t. ∑
i

qi(ω) ≤ q̄(ω) for all ω.
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In equilibrium, markets optimally allocate the data records among the platforms that make the

most profitable use of them. By quasilinearity, this also implies that equilibria are Pareto opti-

mal. The converse is also true: Any solution q∗∗ to T B can be supported as an equilibrium of

this economy E1. These two results are a standard instance of the first and second Welfare The-

orems for an appropriately defined notion of welfare, namely T B. However, it is evident that,

while the equilibrium allocation is optimal from the point of view of the platforms, it ignores

the external effects that platforms create on buyers by using their data. Indeed, T B stands for

“third-best” efficient to indicate the fact that equilibria in this economy are, in general, not “so-

cially” efficient. We will come back to this point in the next sections. Before that, our first re-

sult summarizes the aforementioned properties.

Proposition 1. Economy E1 admits an equilibrium. Moreover, the equilibrium data allocation

q∗ is third-best efficient, namely, it solves T B. Conversely, for any q∗∗ that solves T B, there

is a price p∗∗ such that (p∗∗, q∗∗) is an equilibrium.

To prove this result, we take advantage of the special linear structure of this economy, which

is inherited by the fact that each Pi is an information-design problem. Indeed, by combining

each platform’s Pi, we obtain a “grand” information-design problem P :

P : max
x1,...,xI

∑
i

∑
ai,ω

ui(ai, ω)xi(ai, ω)

s.t. for all ω, ∑
i

∑
ai

xi(ai, ω) ≤ q̄(ω) (5)

and for all i, k, ak
i , âk

i

∑
ω∈Ω,a−k

i

(
πk((ak

i , a−k
i ), ω)− πk((âk

i , a−k
i ), ω)

)
xi((ak

i , a−k
i ), ω) ≥ 0.

This grand information-design problem P is equivalent to T B in the sense that every solution

(x∗∗i )i∈I to P implies a solution (q∗∗i )i∈I to T B, and vice versa. In problem P , a social

planner chooses the recommendation mechanism on behalf of each platform to maximize the

sum of their payoffs. A solution (x∗∗i )i∈I to P pins down, not only how data records are

allocated—namely, q∗∗i (ω) := ∑a x∗∗i (a, ω) for all ω and i— but also how they are used by

each platform. In the proof of Proposition 1, we show that a solution to P exists and that the

implied data allocation solves T B. Moreover, we show that, as it is standard, the dual variables

of constraints (5) in P constitute a price vector that supports q∗∗ as a competitive equilibrium

of the economy.

In summary, P constitutes a tractable and compact way to determine how data are allocated,

how they are used, and (through its dual) what their market price will be. The fact that P
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is an information-design problem can be useful in itself. It suggests that the many tools that

have been developed by the literature in recent years to characterize these problems (see, e.g.,

Kamenica (2019) and Bergemann and Morris (2019) for a review) can be applied to study the

equilibrium of data markets.

To illustrate this, we can further characterize the equilibrium. First, the equilibrium price p∗

is tightly related to the values that each platform i individually derives from using each record

in its database qi. Denote this value by v∗qi
(ω), which is the dual variable of constraint (2) in

problem Pi. These values and how they depend on the database qi have been analyzed by GLP.

We have the following result.

Corollary 1. Let (q∗, p∗) be an equilibrium of economy E1. For every i, there is an individual

value v∗q∗i (ω) that equals p∗(ω).

This means that, as it is standard in these simple economies, all platforms that use ω records

must derive the same value from them, even if they use them in different ways and for different

objectives. Second, the price of data records depends on their aggregate supply q̄ in a simple

fashion. Since P is an information design problem, it follows from Proposition 3 in GLP

together with Proposition 1 above that the scarcer ω records are (i.e., the lower q̄(ω) is), the

higher their equilibrium price p∗(ω).

4 Giving Buyers Ownership of Their Data Records

The previous section established that equilibria of E1 maximize the sum of the platforms’

payoff. However, they may still be inefficient from a broader societal perspective. This is

because the use of data records can (and, in general, will) directly affect the buyers’ payoffs

in ways that platforms do not internalize. In this section, we enrich economy E1 with new

institutions that aim at correcting these inefficiencies. We show that, while these institutions

may help improve efficiency, they do not entirely resolve the problem and, in fact, could worsen

it.

We consider an economy, called E2, where each buyer has ownership over her data records

and decides to which platform to sell it (if any). Since all buyers of the same type ω are

identical, we will treat them as a single representative buyer who is endowed with the entire

stock of ω records, namely q̄(ω). We will refer to this agent as the “representative ω buyer.”

As before, there is a market for each type of data record. Unlike before, records are supplied

endogenously by the buyers.
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This economy is a natural benchmark to study, as it captures some of the salient institutions

(chiefly, buyers have property rights and are compensated for their data) that some authors have

advocated for as tools that could improve the efficiency of data markets (see, e.g., Posner and

Weyl, 2018; Seim et al., 2022).

In economy E2, a data allocation is a profile q ∈ RΩ+Ω×I
+ , which is richer than before as

it includes data that buyers may decide to keep for themselves. Specifically, a data allocation

specifies a database q0 ∈ RΩ
+, where each q0(ω) denotes the quantity of ω records that the

representative ω buyer keeps for herself; for each i, it also specify a database qi ∈ RΩ
+, where

qi(ω) denotes the quantity of ω records allocated to platform i. We assume that each record

that the representative buyer keeps for herself gives her a unit payoff of rω ≥ 0, which we

interpret as the value of preserving her privacy. Since rω ≥ 0, it is without loss of generality to

focus attention on data allocations that are feasible in the strict sense that, for all ω, q0(ω) +

∑i qi(ω) = q̄(ω) (i.e. no data is disposed of).

In this economy, the platform’s problem is identical to that described in Section 3. Namely,

platform i chooses qi, where qi(ω) represents the demanded quantity of ω records. Denoting

by p(ω) the market price for ω records, platform i chooses qi to solve the problem in (4), just

as before.

The novelty is that in this economy the supply of records is endogenous. The representative

ω buyer chooses how many of her records to keep for herself and how many to sell and to which

platforms. We denote this choice by qω = (q0
ω(ω), q1

ω(ω), . . . , qI
ω(ω)) ∈ R1+I

+ , which has

the following interpretation: q0
ω(ω) denotes the quantity her records that she keeps for herself;

qi
ω(ω) denotes the quantity of ω records she suppply to platform i.

For a given data allocation q ∈ RΩ+Ω×I
+ , we denote by qω ∈ R1+I

+ the dimensions corre-

sponding to ω records.3 Then, the total payoff of the representative ω buyer can be written as:

Uω(qω, (qω′)ω′,ω) = rωq0
ω(ω) + ∑

i
qi

ω(ω)Giω(qi
ω(ω), (qi

ω′(ω′))ω′,ω).

The first term on the right-hand side is the utility of self-consumption. The second term is the

sum of the “external effects” that are imposed by the platforms on this representative buyer

(recall equation (3)). Buyers’ preferences are assumed to be quasilinear in money and, thus,

the problem of a representative buyer can be written as follows:

max
qω∈R1+I

+

Uω(qω, (qω′)ω′,ω) + p(ω)∑
i

qi
ω(ω) (6)

3We use the notation qω to specifically refer to the choice of the representative ω buyer. Given a data allocation

q, market clearing will require that qi(ω) = qi
ω(ω) and, therefore, q = (qω)ω∈Ω.
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In this equation, the second term is the price p(ω) that this buyer gets for each data record

she sells to a platform. Note that, importantly, this buyer has no control over the quantity of

records that other buyers sell to the platforms. This means that, in this economy, the market

allocation is not determined exclusively by a market mechanism (i.e., it is not entirely mediated

by prices). In other words, the strategic interactions among buyers matter and the competitive

equilibrium notion is that of Nash-Walras (Ghosal and Polemarchakis (1997)).

Definition 2 (Equilibrium for E2). A nontrivial price vector p∗ = (p∗(ω))ω∈Ω and a feasible

data allocation q∗ = (q∗0 , (q∗i )i∈I) ∈ RΩ+Ω×I
+ constitute an equilibrium for economy E2 if:

1. For each ω, q∗ω ∈ R1+I
+ maximizes (6) taking as given prices p∗ and (q∗i (ω

′))i∈I,ω′,ω.

2. For each platform i, q∗i maximizes (4) taking taking as given prices p∗.

3. All markets clear: for all ω, p∗(ω)
(

q̄(ω)− ∑i q∗i (ω)− q∗0(ω)
)
= 0.

What are the welfare properties of this equilibrium? Since we allowed buyers to participate

in the markets for data records, it is natural to wonder whether the equilibrium allocation

maximizes the sum of platforms’ and buyers’ payoffs. For any data allocation q, let us denote

this notion of welfare by W(q) = ∑i Ui(q) + ∑ω Uω(q).4 We say that a feasible allocation

that maximizes welfare W is “second-best” efficient. Namely, it solves

SB : max
q∈RΩ+Ω×I

+

∑
i∈I

Ui(qi) + ∑
ω∈Ω

Uω(q)

s.t. for all ω

q0(ω) + ∑
i

qi(ω) = q̄(ω)

Are equilibria in E2 second-best efficient? In general, the answer is negative. Since platforms

act as intermediaries, the presence of nontrivial obedience constraints (1) makes the optimal

mechanism x∗qi
“non-separable” in ω. This means that the recommended actions for ω records

x∗(·, ω) depend on the actions recommended for ω′ records, and vice versa. This implies

that the payoff Giω(qi) that ω buyers experiences when platform i uses her data is affected by

qi(ω
′), the quantity of records other than ω. Even though buyers are allowed to trade their

data records, there are no markets where ω buyers can purchase claims regarding the quantity

of ω′ records that platform i should buy. Intuitively, this can lead to inefficiencies.

4Note that in this calculation we ignore the sellers’ welfare. We explain the reason for this choice at the end

of Section 6.
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Proposition 2. Let (p∗, q∗) be an equilibrium of economy E2. The sum of equilibrium payoffs

of platforms and buyers is lower than that achieved by the solution to SB. Moreover, the

equilibrium welfare W(q∗) in E2 may be lower than that induced by any equilibrium of E1.

The first part of this result formalizes the sense in which this economy is inefficient. This

inefficiency appears related to that of economies with incomplete markets a la Greenwald and

Stiglitz (1986) and Geanakoplos and Polemarchakis (1986). The second part of this result

shows that, perhaps counter-intuitively, allowing buyers to trade their records can backfire and

lower the welfare of the economy below the levels of E1. This is reminiscent of older results in

general equilibrium showing that financial innovation in economies with incomplete markets

may make agents worse off (see Hart (1975) and Elul (1995)).

We present a stylized example of an economy that illustrates that giving buyers control over

their data can backfire. That is, there is an equilibrium in E2 whose welfare is lower than that

of E1. The economy in the example is meant to be simple rather than realistic. It is based on

Bergemann et al. (2015) and builds on results from Galperti et al. (2023).

Example. There is a single platform I = {1} with a single seller K1 = {k}. There are

two types of buyer Ω = {1, 2}, and ω denotes her willingness to pay for the seller’s prod-

uct. Let q̄(2) > q̄(1). Let Ak = Ω and note that A1 = Ak. The seller maximizes profits,

i.e., πk(a1, ω) = a11(ω ≥ a1) . The platform maximizes buyers’ surplus, i.e, u1(a1, ω) =

max{ω − a1, 0}. Let g1(a1, 1) = max{1 − a1, 0} and g1(a1, 2) = α max{2 − a1, 0}. Sup-

pose that low types care more about their privacy than the high types, namely r1 = β and

r2 = 0. We assume α > β > 1.

The equilibrium allocation q∗ of E1 is trivial and unique: the platform obtains all the data.

By Proposition 1, the (unique) equilibrium price vector can be computed from the dual of P ,

which in this example equals P1. These prices are p∗(1) = 1 and p∗(2) = 0 (see Appendix E

in GLP). The platform chooses x∗q̄ as to create two segments: The first one pools all low-type

buyers and q̄(1) high-type buyers. For this segment, it recommends the seller to charge a1 =

1; The second segment contains all the remaining (q̄(2) − q̄(1)) high-type buyers. For this

segment, the platform’s recommendation is to charge a1 = 2. Given this, welfare is as follows:

The low-type buyers earn nothing; a share q̄(1) of high-type buyers earn α; the platform earns

q̄(1). Therefore, the sum of buyers and platform’s payoff is W(q∗) = (1 + α)q̄(1).

Now consider E2. As a preliminary observation, note that p∗(1) that results from the dual of

P1 also equals the platform’s willingness to pay for records of type 1 (see GLP). Moreover, we

know from the previous paragraph that p∗(1) = 1 if q∗(1) < q∗(2) and otherwise p∗(1) ≤
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1 by the scarcity principle (see GLP, Proposition 3). Since r1 > 1, it follows that in any

equilibrium (q∗∗, p∗∗) of E2 we must have q∗∗0 (1) = q̄(1) and so q∗∗1 (1) = 0—that is, low-

type buyers hold on to their data. Given this, the optimal mechanism for the platform given

q∗∗1 is trivial and leads to zero surplus for each buyer of type 2, which implies p∗∗(2) = 0.

At this price, buyers of type 2 are indifferent between selling and keeping their records, so

the allocation q∗1(2) = q̄(2) and q∗0(2) = 0 solve the buyer’s problem. To complete the

equilibrium characterization, we need to find p∗∗(1) that supports this candidate q∗∗ leading to

market clearing. To this end, we can let p∗∗(1) = 1 + β
2 . Given this, we have established the

existence of an equilibrium and that any equilibrium leads to the following welfare: The low-

type buyers get βq̄(1); the high-type buyers get 0; the platform gets 0. Therefore, W(q∗∗) =

βq̄(1) and it is strictly lower than W(q∗).

The reason why giving buyers control over their data reduces welfare is simple. Type-1

records help the platform generate a positive surplus for type-2 buyers using the mechanisms

like the x∗q̄ described above. However, the markets in E2 do not allow buyers of type 2 to

compensate buyers of type 1 for the positive externality that they exert, at least not at a level that

would exceed their intrinsic desire to hold on to their data (i.e., r1). As a result, the platform is

denied the use of such data, which hurts type-2 buyers more than it benefits type-1 buyers. △

Before proceeding, it is important to note that another potential issue with economy E2 is

that equilibrium existence is not guaranteed in general. The reason is that the component of

the buyer’s payoff Giω(qi) is not continuous in qi, since x∗qi
can change discontinuously in qi.

These issues that characterize economy E2 could be addressed in two ways. One is to further

enrich the economy by opening new markets, a solution we will consider in the next section.

Another is to consider a special case of this economy. This special case is instructive as it will

help us understand that the source of the inefficiency is deeper than what one may think. It

is instructive also because it will reveal which market should be opened in the next section to

achieve efficiency.

The No-Intermediation Case. Recall from the very end of Section 2 that a special case of

a platform is the one where |Ki| = 1 and ui = πk. This platform has a single seller with

perfectly aligned incentives. Therefore, the obedience constraints (1) drop. In other words, the

platform is the seller and faces a decision (rather than an intermediation) problem. For the next

result, we specialize our model to the case where all the platforms are in this situation. We

refer to this as the no-intermediation case.

In this special case, the platform’s optimal mechanism x∗qi
, i.e., the one that solves Pi, is
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“separable” in the sense that the optimal action for ω, x∗(·, ω), does not depend on the optimal

action for ω′, x∗(·, ω′). Therefore, it does not depend on the quantity of ω′ records in the

database qi.5 As a consequence, the representative buyer’s payoff Uω only depends on her

own choice qω and not on the choices of other buyers (qω′)ω′,ω. In other words, in the no-

intermediation case, the payoff of the representative ω buyer is not affected by which records

of type other than ω a platform acquires. The only way in which platform i affects the payoff

of this buyer is through the extensive margin qi(ω)—how many ω records platform i acquires.

This margin is mediated by a market in which this buyer can participate. Intuitively, this should

make equilibria of E2 efficient in the sense of SB. The next result formalizes this intuition.

Corollary 2. In the no-intermediation case, any equilibrium data allocation of economy E2 is

second-best efficient, namely, it solves SB.

When platforms do not act as intermediaries, the prices in E2 are enough to make platforms

internalize the effects that their use of the data generates on buyers. Two final comments are in

order.

First, while we can Corollary 2 as “good news,” it comes with the caveat that, in many

modern digital markets, platforms have often complex objectives that leads them to optimally

withhold some information from the sellers (see, e.g., Xu and Yang, 2022). As discussed in

GLP, this usually leads to “pooling externalities,” which would then generate the problems

described in Proposition 2.6

Second, even in the stylized case of the no-intermediation economy, the equilibrium only

reaches what we called “second-best” efficiency. At this point, the reader may wonder what

could prevent the economy from doing better than this. We address this question in the next

section.

5 Trading Externalities of Data Use

The economy discussed in the previous section, even under the simplifications introduced by

the no-intermediation case, cannot do better than second-best. The reason is that, once a plat-

5To see this note that, conditional on ω, the platform chooses x∗(·, ω) to maximize ∑ai∈Ai
ui(ai, ω)xi(ai, ω)

subject to ∑ai∈Ai
xi(ai, ω) = qi(ω). This problem is independent of ω′ and, therefore, of qi(ω

′).
6Pooling externalities are likely not the only way in which the problems described in Proposition 2 may arise.

We conjecture that “learning externalities” would generate inefficiencies that would further contribute to lowering

social welfare below second-best. These externalities are discussed in Choi et al. (2019), Bergemann et al. (2022),

Acemoglu et al. (2021), and Ichihashi (2021).
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form has acquired its database, it can use it as it wants. That is, given qi, mechanism x∗qi
is

chosen to maximizes platform’s payoff only. Since the way data records are used is not con-

tractible, this can create inefficiency (which is akin to moral hazard). The representative ω

buyer may be even willing to give a platform more data if only it used them differently. Unfor-

tunately, such a contract cannot be written and there are no markets where claims for how data

records should be used are traded.

In this section, we further enrich our economy following standard ways of modeling com-

petitive economies with externalities (e.g., Arrow (1969) and Laffont (1976)).7 We will re-

fer to this economy as E3. Specifically, we assume that buyers are allowed to trade the way

their records are used. As before, the representative ω buyer choose the quantity q0
ω(ω) of

ω records that she wants to keep for herself. Unlike before, she also chooses the quantity of

records that she is willing to sell to platform i and their intended use, denoted x̂i(ai, ω) for all

ai. Likewise, platform i chooses xi(ai, ω), which is the quantity of ω records she is willing to

acquire and use for recommendation ai.

In this economy, it is useful to distinguish between a data allocation, which is as before a q ∈
RΩ+Ω×I

+ , and a data use, which is a profile of recommendation mechanisms (xi)i∈I . Recall,

however, that it is without loss to focus on allocations that are feasible in the sense that q0(ω)+

∑i qi(ω) = q̄(ω). Then, a data use (xi)i∈I pins down an allocation q (namely, qi(ω) =

∑ai
xi(ai, ω) for all i, ω) as long as the former is feasible, i.e., if ∑i,ai

xi(ai, ω) ≤ q̄(ω). In the

following, we will sometimes talk about a feasible data use (xi)i∈I leaving implicit the data

allocation it implies.

The price system in this economy is richer than the one of the previous sections. As before,

there is a price p(ω) for each “physical” ω record traded on the market. In addition, for

all i, ai and ω, there is a price pi(ai, ω) for when the platform i uses record ω to induce

recommendation ai. This price pi(ai, ω) should be interpreted as a unit transfer that goes from

platform i to the representative ω buyer.

In this economy, the problem of platform i is

max
xi :Ai×Ω→R+

∑
ai,ω

(
ui(ai, ω)− p(ω)− pi(ai, ω)

)
xi(ai, ω) (7)

s.t. for all k ∈ Ki, and ak, âk ∈ Ak

∑
ω∈Ω,a−k∈A−k

i

(
πk(ak, a−k, ω)− πk(âk, a−k, ω)

)
xi(ak, a−k, ω) ≥ 0

Note that this problem boils down to (4) when pi(ai, ω) = 0 for all ai and ω.

7See also, Bonnisseau et al. (2022).

14



The problem of the representative ω buyer is

max
q0

ω(ω),(x̂i(ai,ω))i∈I,ai∈Ai

(
rω − p(ω)

)
q0

ω(ω) + ∑
i,ai

(
gi(ai, ω) + p(ω) + pi(ai, ω))

)
x̂i(ai, ω).

(8)

Note that even when pi(ai, ω) = 0 for all ai, ω, and i, this problem does not boil down to (6).

The difference is that, through the choice of x̂i, the buyer can determine the external effect Gi

that platform i creates on her.

We now define the (Lindahl) equilibrium for economy E3.

Definition 3 (Equilibrium for E3). A nontrivial price system (p∗, (p∗i )i∈I), a feasible data

allocation q∗ ∈ RΩ+Ω×I
+ , and a data use (x∗i )i∈I form an equilibrium of economy E3 if:

1. The data allocation and the data use are consistent, namely q∗i (ω) = ∑ai
x∗i (ai, ω) for

all ω and i.

2. For each i, x∗i maximizes (7) taking the price system as given.

3. For each ω, q∗0(ω) and (x∗i (ai, ω))i∈I,ai∈Ai maximize (8) taking the price system as

given.

4. Markets clear: for all ω, p∗(ω)
(

q̄(ω)− ∑i q∗i (ω)− q∗0(ω)
)
= 0.

Given the (admittedly unrealistic) large number of markets that have been introduced in this

economy, it is natural to wonder whether an equilibrium achieves or, in fact, surpasses second-

best efficiency. Indeed, this economy reaches “first-best” efficiency: not only databases are

allocated to maximize the sum of payoffs of buyers and platforms (as in SB) but are also used

in a socially optimal way (unlike in SB). Formally, let us define the following social-planner

problem:

FB : max
(xi)i∈I

∑
i,ω,ai

(
ui(ai, ω) + gi(ai, ω)

)
xi(ai, ω) + ∑

ω

rω

(
q̄(ω)− ∑

i,ai

xi(ai, ω)
)

s.t. for all i, k ∈ Ki, and ak, âk ∈ Ak,

∑
ω,a−k∈A−k

i

(
πk(ak, a−k, ω)− πk(âk, a−k, ω)

)
xi(ak, a−k, ω) ≥ 0

and for all ω,

∑
i,ai

xi(ai, ω) ≤ q̄(ω). (9)

Note that unlike in SB, the social planner can choose (xi)i∈I to maximize the sum of platforms’

and buyers’ payoffs. We refer to FB as the benchmark for first-best efficiency.
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Proposition 3. The economy E3 admits an equilibrium. Moreover, any equilibrium is first-best

efficient, namely, its data use solves FB. Conversely, for any data use (x∗∗i )i∈I that solves

FB, there is a price system (p∗∗, (p∗∗i )i∈I) that supports the data use (and its implied data

allocation) as an equilibrium for E3.

In economy E3, platforms internalize all the external effects that their choice of xi creates on

the buyers. This leads to first-best efficiency. The other direction of the result exploits the spe-

cial structure of the social planner’s problem in FB. Just like P , FB is a “grand” information-

design problem, where a social planner chooses the mechanism xi on behalf of each platform to

maximize the sum of the payoffs of buyers and platforms, subject to obedience and feasibility.

This linear program admits a solution. Moreover, in the associated dual, the dual variables cor-

responding to the feasibility constraints (9) determine p∗. The additional step needed consists

in retrieving (p∗i (ai, ωj))∀i,j,ai . This can be done simply by setting p∗i (ai, ωj) = −gi(ai, ωj).

This makes buyers indifferent by fully compensating them for the use of their data records and

makes the platforms fully internalize the externalities of how they use data. This simple spec-

ification of p∗i works due to the linearity of both the platforms’ and the representative buyers’

objectives, which is a consequence of the underlying information-design structure of the plat-

forms’ problems.

From a methodological point of view, P and FB offer tractable ways to compute equilibrium

prices and allocations of their respective economies. These are information design problems

and many specific tools exist to analyze them. Their direct comparison is useful to better

understand how changing the way markets are organized (e.g., who has property rights and

which trades can be executed) affects the price of data. For example, one wonders under what

conditions it is true that empowering buyers leads to higher prices for their data. This is a

direction for future research.

Similarly, one may wonder how increasing rω, perhaps because buyers care intrinsically

more about their privacy, will affect equilibrium price p∗(ω). It is easy to construct examples

of non-trivial intermediation problems where increasing rω for some ω can reduce p∗(ω′) for

some ω′ , ω. This can never happen for non-intermediation problems.

Finally, and in our opinion most importantly, one needs to recognize that economy E3 re-

quires an unrealistic number of markets to be open and a high level of finesse. It is natural to

ask whether there are practical ways to decentralize (perhaps partially) economy E3. Perhaps,

these solutions may not achieve first-best efficiency but could still improve on the economy E2

discussed in Section 4. These questions remain open for future research.
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6 Discussion

As explained in Section 2, this paper treats data records as rival goods. Two assumptions are

key for this: the ownership of a record is exclusive and it is necessary in order to access the

corresponding buyer. These assumptions can be partially relaxed, as discussed below.

The first assumption is exclusivity. It can be partially relaxed by allowing multiple platforms

to own the same record as long as the corresponding buyer will only contemplate an offer

chosen at random. Since buyers are a continuum, this version of the model is mathematically

equivalent to the one we analyzed so far. To see this, suppose platform i and i′ mutually

own a given quantity of ω records. Suppose these buyers independently toss a fair coin to

decide whether to consider ai or ai′ . Then, this situation is equivalent to one where i and i′

have exclusive ownership of half of these records. A richer model of mutual ownership would

require that i and i′ compete for the same buyers, even conditional having purchased their

records. This would mean that the optimal mechanism for i may depend on the one chosen by

i′. This setting may change some of the results in this paper and is a natural avenue for future

research.

The second assumption is that ownership of a record is necessary for accessing the corre-

sponding buyer. This paper deals with situations where accessing a buyer without knowing her

identifier is prohibitively costly for a platform. For example, a platform may have a hard time

reaching a buyer with an offer if it does not know her telephone number or email address. We

can partially relax this assumption by giving buyers an outside option (which may depend on

which platform own their data). An outside option captures the idea that a buyer may receive

untargeted offers from platforms that do not own her records. In this case, the platform that

owns her record will need to promise this buyer an expected payoff that is higher than her out-

side option in order to successfully intermediate her. In the baseline model, this outside option

is normalized to zero, or it is already incorporated in the payoffs of the platform, sellers, and

buyers through their implicit response to the sellers’ offers. A richer model would require that

these outside options are endogenous. This would imply that the optimal mechanism for a plat-

form depends on the outside options offered by other platforms. As before, this setting may

also change some of the results in this paper. We believe that this is another natural avenue for

future research.

Our model makes other stylized assumptions, which we find less important. First, we as-

sumed that data records are fully informative of the buyers’ preferences. It is straightforward

to allow for records that are only partially informative (see GLP, Section 4). Second, we as-
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sumed that the sellers on platform i are different from those on platform i′ (i.e., {Ki} partitions

K). However, we can easily accommodate the case where the same seller participates on mul-

tiple platforms at the cost of additional notation. Importantly, note that because of exclusivity,

sellers on different platforms do not compete with each other. Third, we assumed that sellers

are exogenously allocated to platforms. This assumption can be weakened simply by adding

an (exogenous) participation constraint for the seller (as done in GLP, Appendix B). Finally,

we assumed platforms act as information designers. More generally, we can allow the platform

to take contractible actions as a function of ω (e.g., monetary transfers).

Finally, this paper focused on the welfare of buyers and platforms. We ignored the sellers’

profits for two reasons. First, by assumptions, sellers do not directly participate in the market

for data.8 Instead, they are “agents” of the platforms. It is well known that, when the principal

and its agents have conflicting interests, the optimal mechanism will not in general maximize

the agents’ profits. This is an additional source of inefficiency in this model. However, this

inefficiency is rather standard and, more importantly, has nothing to do with data markets.

As such, it seems of second-order importance for this paper. Second, our model is flexible

enough that it accommodates platforms whose objective is to maximize sellers’ profits, i.e.,

ui(ai, ω) = ∑k∈Ki
πk(ai, ω). For example, this is the case of a platform that earns transaction

fees on every dollar that sellers make. Under this assumption, our welfare results would extend

to incorporate the sellers’ profits.
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A Proofs

A.1 Proposition 1

Step 1: We begin by showing that T B and P are equivalent. Consider any solution (q∗1 , . . . , q∗I )

of problem T B. For each qi, there is an associated optimal x∗qi
that solves Pi.9 It follows that

∑
i

∑
ω,ai

ui(ai, ω)x∗q∗i (ai, ω) = ∑
i

Ui(q∗i )

≥ ∑
i

Ui(qi) for all (q1, . . . , qi) such that ∑
ω

qi(ω) ≤ q̄(ω) ∀ω

≥ ∑
i

∑
ω,ai

ui(ai, ω)xi(ai, ω),

for all (x1, . . . , xI) such that each xi satisfies the obedience constraints (1) and ∑i,ai
xi(ai, ω) ≤

q̄(ω) for all ω. It follows that the implied (x∗q∗1 , . . . , x∗q∗I ) is a solution of P .

Conversely, consider any solution (x∗1 , . . . , x∗I ) of P . For every i and ω, define q∗i (ω) =

∑ai
x∗i (ai, ω). The same inequalities as before imply that

∑
i

Ui(q∗i ) ≥ ∑
i

Ui(qi) for all (q1, . . . , qi) such that ∑
ω

qi(ω) ≤ q̄(ω) ∀ω.

Therefore, the so defined (q∗1 , . . . , q∗I ) is a solution of T B.

Step 2: Next, we argue that P and its dual D have a solution. The existence of an optimal

solution to P follows from the same argument showing the existence of an optimal solution of

each Pi (Footnote 9). This implies that the dual of P also has an optimal solution. In particular,

9The existence of x∗qi
follows from the boundeness of ui and the non-emptiness of the constraint set defined

by (1). To see the latter, given qi, construct a Bayesian game between the sellers on platform i using the payoff

functions (πk
i )k∈Ki

and the common prior µi(ω) = qi(ω)
∑ω′ qi(ω′) for all ω. This game has at least one BNE, which

induces a conditional distribution yi(ω) ∈ ∆(Ai) for all ω. If we now define xi(ai, ω) = yi(ai|ω)qi(ω) for all

ai, ω, the resulting xi satisfies both constraints in Pi.
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let p∗ be the optimal dual variables corresponding to the constraint (5). By strong duality, we

have that

∑
ω

p∗q̄(ω) = ∑
i

∑
ω,ai

ui(ai, ω)x∗i (ai, ω).

Step 3: We now show that p∗ and (x∗1 , . . . , x∗I )—hence, the induced (q∗1 , . . . , q∗I )—form

an equilibrium of economy E1. To this end, note that each platform i’s problem (4) can be

equivalently expressed as

max
xi

∑
ω,ai

ui(ai, ω)xi(ai, ω)− ∑
ω

p∗(ω)∑
ai

xi(ai, ω)

subject to constraint (1). We need to show that x∗i maximizes this problem. To see this, note

that the value of the dual of the maximization problem faced by platform i is constant and equal

to zero (because the right-hand-side of constraint (1) involves all zeros). Hence, by strong

duality, x∗i maximizes the platform’s problem if

∑
ω,ai

ui(ai, ω)x∗i (ai, ω)− ∑
ω

p∗(ω)∑
ai

x∗i (ai, ω) = 0.

In particular, by weak duality, we must have

∑
ω,ai

ui(ai, ω)x∗i (ai, ω)− ∑
ω

p∗(ω)∑
ai

x∗i (ai, ω) ≤ 0. (A.1)

Therefore, summing over i, we must have

∑
i

{
∑
ω

p∗(ω)∑
ai

x∗i (ai, ω)− ∑
ω,ai

ui(ai, ω)x∗i (ai, ω)
}
≤ ∑

ω

p∗(ω)q̄(ω)−∑
i

∑
ω,ai

ui(ai, ω)x∗i (ai, ω)

because (x∗1 , . . . , x∗I ) satisfies constraint (5). However, the right-hand side equals zero. Since

the left-hand side is a sum over non-negative terms, it follows that all inequalities in (A.1) must

hold with equality, as desired.

Finally, market clearing holds because by complementary slackness we must have

p∗(ω)
(

∑
i,ai

x∗i (ai, ω)− q̄(ω)
)
= 0, ∀ω.

A.2 Proof of Corollary 1

Step 1: We start by writing the dual D of P . To this end, for every i, k ∈ Ki, and ak, âk ∈ Ak,

define a scalar λk
i (âk|ak) ≥ 0. Using this, for every i, ω, and ai ∈ Ai, define

ti(ai, ω; λi) = ∑
k∈Ki

∑
âk∈Ak

(
πk(ak, a−k, ω)− πk(âk, a−k, ω)

)
λk

i (âk|ak). (A.2)
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Letting p ∈ RΩ
+, we then have

D : min
p,λ

∑
ω

p(ω)q̄(ω)

s.t. for all ω, i, ai

p(ω) ≥ ui(ai, ω) + ti(ai, ω; λi).

Denote the (generically unique) solution of D by (p∗, λ∗).

Step 2: We now write the dual Di of Pi given q∗i induced by x∗i that is part of the optimal

solution of P . Letting v ∈ RΩ
+, we then have

D : min
v,λi

∑
ω

v(ω)q∗i (ω)

s.t. for all ω, ai

v(ω) ≥ ui(ai, ω) + ti(ai, ω; λi).

Step 3: We now argue that (p∗, λ∗
i ) must be a solution of each Di and therefore p∗ is equal

to some solution v∗q∗i of Di for all i. This is because (p∗, λ∗
i ) satisfies all the constraints of Di.

Therefore, we must have

∑
ω

p∗(ω)q∗i (ω)− ∑
ω

v∗q∗i (ω)q∗i (ω) ≥ 0. (A.3)

Moreover, by strong duality,

∑
ω

v∗q∗i (ω)q∗i (ω) = ∑
ω,ai

ui(ai, ω)x∗i (ai, ω).

Therefore,

∑
i

{
∑
ω

p∗(ω)q∗i (ω)− ∑
ω

v∗q∗i (ω)q∗i (ω)
}

= ∑
i

{
∑
ω

p∗(ω)q∗i (ω)− ∑
ω,ai

ui(ai, ω)x∗i (ai, ω)
}

= ∑
ω

p∗(ω)q̄(ω)− ∑
i

∑
ω,ai

ui(ai, ω)x∗i (ai, ω) = 0,

where the second equality uses market clearing (or equivalently complementary slackness) and

the last equality follows from strong duality for P and D. It follows that each inequality in

(A.3) must hold with equality, which means that p∗ is part of an optimal solution of each Di.

A.3 Proof of Proposition 2

Recall that a data allocation is a vector q ∈ RΩ+Ω×I
+ . This includes: a database q0 ∈ RΩ

+,

where each q0(ω) denotes the quantity of ω records for the representative ω buyer; and, for
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each i a database qi ∈ RΩ
+, where qi(ω) denotes the quantity of ω records for platform i.

Recall that a data allocation q is feasible if, for all ω, ∑I
ℓ=0 q(ω) = q̄(ω).

Let (p∗, q∗) be an equilibrium of E2. Fix i ∈ I and qi ∈ RΩ
+. Condition 2 in Definition 2

implies that:

Ui(q∗i )− Ui(qi) ≥ ∑
ω

p∗(ω)
(

q∗i (ω)− qi(ω)
)

.

Summing this expression over i, we obtain that, for every feasible data allocation q,

∑
i

Ui(q∗i )− ∑
i

Ui(qi) ≥ ∑
ω

p∗(ω)
(

∑
i

q∗i (ω)− ∑
i

qi(ω)
)

. (A.4)

Now fix ω and consider the problem of the representative buyer in Equation (6). Recall that a

deviation for this buyer consists of choosing qω ∈ R1+I
+ where q0

ω(ω) and qi
ω(ω) is the quan-

tity of ω records that this representative buyer assigns to herself and the platform i, respec-

tively. A deviation is feasible if ∑I
ℓ=0 qℓω(ω) = q̄(ω). Condition 1 from Definition 2 implies

that, for every feasible deviation qω ∈ R1+I
+ (i.e., one such that ∑I

ℓ=0 qℓω(ω) = q̄(ω)), the

following holds

rωq∗0(ω) + ∑
i

q∗i (ω)Giω(q∗i ) + p∗(ω)∑
i

q∗i (ω) ≥

rωq0
ω(ω) + ∑

i
qi

ω(ω)Giω

(
qi

ω(ω), (q∗i (ω
′))ω′,ω)

)
+ p∗(ω)∑

i
qi

ω(ω)

Summing over ω gives that, for every profile of feasible buyers’ deviations (qω)ω∈Ω ∈
RΩ+Ω×I

+ :

∑
ω

Uω(q∗)− ∑
ω

(
rωq0

ω(ω) + ∑
i

qi
ω(ω)Giω

(
qi

ω(ω), (q∗i (ω
′))ω′,ω

))
≥ ∑

ω

p∗(ω)
(

∑
i

qi
ω(ω)− ∑

i
q∗i (ω)

)
Note that a profile a feasible buyers’ deviations is a feasible data allocation and vice versa. Fix

any feasible data allocation q ∈ RΩ+Ω×I
+ and denote by qω ∈ R1+I

+ the part that concerns ω

records. That is, q = (qω)ω∈Ω. Summing the previous expression with equation (A.4), we

obtain that,

∑
i

Ui(q∗i ) + ∑
ω

Uω(q∗)− ∑
i

Ui(qi)− ∑
ω

Uω(qω, (q∗ω′)ω′,ω)

≥ ∑
ω

p∗(ω)
(

∑
i

q∗i (ω)− ∑
i

q∗i (ω)− ∑
i

qi(ω) + ∑
i

qi
ω(ω)

)
= 0.

The last equality holds because of feasibility. Therefore, the equilibrium data allocation q∗

satisfies

W(q∗) := ∑
i

Ui(q∗i ) + ∑
ω

Uω(q∗) ≥ ∑
i

Ui(qi) + ∑
ω

Uω(qω, (q∗ω′)ω′,ω)) (A.5)
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for every feasible data allocation q ∈ RΩ+Ω×I
+ .

By SB, a data allocation q∗∗ is second-best efficient if it is feasible and, for all q ∈ RΩ+Ω×I
+ ,

satisfies

W(q∗∗) := ∑
i

Ui(q∗∗i ) + ∑
ω

Uω(q∗∗) ≥ ∑
i

Ui(qi) + ∑
ω

Uω(q).

We conclude that W(q∗∗) ≥ W(q∗) and therefore the equilibrium welfare is weakly worse

than second-best efficient.

A.4 Proof of Corollary 2

Recall that in the no-intermediation case, Giω(qi
ω(ω), (qi(ω

′))ω′,ω) = Ḡiω, for any i, ω, and

data allocation q ∈ RΩ+Ω×I
+ . This implies that Uω(qω, (q∗ω′)ω′,ω) = Uω(qω). Under this

condition, equation A.5 becomes

W(q∗) := ∑
i

Ui(q∗i ) + ∑
ω

Uω(q∗) ≥ ∑
i

Ui(qi) + ∑
ω

Uω(qω).

for all feasible q ∈ RΩ+Ω×I
+ . Note that this is also the definition of q∗∗, the data allocation

that solves SB. Therefore, W(q∗) = W(q∗∗), i.e. the equilibrium data allocation is second-

best efficient. □

A.5 Proof of Proposition 3

Step 1: We first prove that an equilibrium allocation ((x∗i )i∈I , (q∗ω)ω∈Ω)) must solve FB. By

platform i’s maximization, we have that

∑
ai,ω

ui(ai, ω)x∗i (ai, ω)− ∑
ai,ω

ui(ai, ω)xi(ai, ω) ≥ ∑
ai,ω

(
p∗(ω) + p∗i (ai, ω)

)
x∗i (ai, ω)

− ∑
ai,ω

(
p∗(ω) + p∗i (ai, ω)

)
xi(ai, ω)

for all xi that satisfy (1). Therefore, the same holds summing over i on both sides:

∑
i,ai,ω

ui(ai, ω)x∗i (ai, ω)− ∑
i,ai,ω

ui(ai, ω)xi(ai, ω) ≥ ∑
i,ai,ω

(
p∗(ω) + p∗i (ai, ω)

)
x∗i (ai, ω)

− ∑
i,ai,ω

(
p∗(ω) + p∗i (ai, ω)

)
xi(ai, ω)

for all xi that satisfy (1) for all i and (9).
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Similarly, by the maximization of the representative ω buyer, we get

rωq∗ω(ω) + ∑
i,ai

gi(ai, ω)x∗i (ai, ω)− rωqω(ω)− ∑
i,ai

gi(ai, ω)xi(ai, ω) ≥

p∗(ω)q∗ω(ω)− ∑
i,ai

p∗i (ai, ω)x∗i (ai, ω)− p∗(ω)qω(ω) + ∑
i,ai

p∗i (ai, ω)xi(ai, ω)

for all qω(ω) and xi. Therefore, the same holds summing over ω on both sides:

∑
ω

rωq∗ω(ω) + ∑
i,ai,ω

gi(ai, ω)x∗i (ai, ω)− ∑
ω

rωqω(ω)− ∑
i,ai,ω

gi(ai, ω)xi(ai, ω) ≥

∑
ω

p∗(ω)q∗ω(ω)− ∑
i,ai,ω

p∗i (ai, ω)x∗i (ai, ω)− ∑
ω

p∗(ω)qω(ω) + ∑
i,ai,ω

p∗i (ai, ω)xi(ai, ω).

If we now combine the inequalities for the platforms and the representative buyers, we obtain

that for all (qω)ω∈Ω and xi that satisfy (1) for all i and (9)

∑
i,ai,ω

(
ui(ai, ω) + gi(ai, ω)

)
x∗i (ai, ω) + ∑

ω

rωq∗ω(ω)

− ∑
i,ai,ω

(
ui(ai, ω) + gi(ai, ω)

)
xi(ai, ω)− ∑

ω

rωqω(ω)

is greater than or equal to

∑
ω

p∗(ω)
(

∑
i,ai

x∗i (ai, ω) + q∗ω(ω)
)
− ∑

ω

p∗(ω)
(

∑
i,ai

xi(ai, ω) + qω(ω)
)

= ∑
ω

p∗(ω)q̄(ω)− ∑
ω

p∗(ω)
(

∑
i,ai

xi(ai, ω) + qω(ω)
)
≥ 0,

where the equality follows from market clearing and the inequality follows from feasibility.

Step 2: We now prove that for any allocation ((x∗∗i )i∈I , (q∗∗ω )ω∈Ω)) that solves FB, there

is a price system (p∗∗, (p∗∗i )i∈I) that together with the allocation constitutes an equilibrium of

E3. First of all, FB has an optimal solution for the same reason that P has one. Second, we can

define p∗∗i (ai, ω) = −gi(ai, ω) for all i, ai, ω, so that each representative ω buyer is indifferent

across all possible x̂i(·, ω) and we can therefore assume to choose x̂i(·, ω) = x∗∗i (·, ω) for

all i.

Next, we let p∗∗ be the optimal dual variables associated with constraint (9) for every ω that

solve the dual of FB. In particular, this dual involves choosing p ∈ RΩ
+ and λk(âk|ak) ≥ 0

for every i, k ∈ Ki, and ak, âk ∈ Ak to minimize

∑
ω

p(ω)q̄(ω)
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subject to for all ω

p∗∗(ω) ≥ max
{

rω, max
i,ai

{ui(ai, ω) + gi(ai, ω) + ti(ai, ω; λi)}
}

,

where ti was defined in (A.2). Therefore, if p∗∗(ω) > rω, then q∗∗ω (ω) must be zero by com-

plementary slackness. But in this case, given p∗∗(ω) it is also optimal for the representative

ω buyer to sell all her data and choose q̂ω(ω) = 0. If instead p∗∗(ω) = rω, then q∗∗ω (ω) can

be positive and we can let q̂ω(ω) = q∗∗ω (ω) because the representative ω buyer is indifferent

between keeping and selling any record. Combining these observations, we have that q∗∗ω (ω)

and (x∗∗i )i∈I solve each representative buyer’s maximization problem given the defined price

system.

It remains to check the platforms’ maximization. Using the suggested price system, platform

i’s problem becomes to choose xi to maximize

∑
ai,ω

(
ui(ai, ω) + gi(ai, ω)− p∗∗(ω)

)
xi(ai, ω)

s.t. for all k ∈ Ki, and ak, âk ∈ Ak

∑
ω∈Ω,a−k∈A−k

i

(
πk(ak, a−k, ω)− πk(âk, a−k, ω)

)
xi(ak, a−k, ω) ≥ 0

This is a linear program whose dual must have a constant value equal to zero. Therefore, we

only need to show that x∗∗i achieves a value of zero. To this end, note that by weak duality, for

every i,

∑
ω

p∗∗(ω)∑
ai

x∗∗i (ai, ω)− ∑
ai,ω

(
ui(ai, ω) + gi(ai, ω)

)
x∗∗i (ai, ω) ≥ 0,

which implies that

∑
i

{
∑
ω

p∗∗(ω)∑
ai

x∗∗i (ai, ω)− ∑
ai,ω

(
ui(ai, ω) + gi(ai, ω)

)
x∗∗i (ai, ω)

}
≥ 0. (A.6)

Now, by complementary slackness, if q∗∗ω (ω) > 0, then p∗∗(ω) = rω. Also, by strong duality,

we have

∑
i,ai,ω

(
ui(ai, ω) + gi(ai, ω)

)
x∗∗i (ai, ω) + ∑

ω

rωq∗∗ω (ω) = ∑
ω

p∗∗(ω)q̄(ω)

= ∑
ω

p∗∗(ω)
(

q∗∗ω (ω) + ∑
i,ai

x∗∗i (ai, ω)
)

,

where the last equality uses complementary slackness for constraint (9). Therefore, we con-

clude that the left-hand side of (A.6) equals zero. Since this side is the sum of non-negative

terms, each term must be zero, which implies that x∗∗i maximizes platform i’s objective given

the suggested price system for all i. This completes the proof.

26


	Introduction
	Model
	A Baseline Economy
	Giving Buyers Ownership of Their Data Records
	Trading Externalities of Data Use
	Discussion
	Proofs
	Proposition 1
	Proof of Corollary 1
	Proof of Proposition 2
	Proof of Corollary 2
	Proof of Proposition 3


