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Abstract

In a data economy, transactions of goods and services generate data, which is stored, traded

and depreciates. How are the economics of this economy different from traditional production

economies? How do these differences matter for measurement of GDP, firm values, deprecia-

tion rates, welfare and externalities? We incorporate active experimentation and data as an

intangible asset to devise a tractable recursive representation of the data economy. The model

rationalizes why apps are often “free” and why even non-digital economic activity might be

greater than GDP suggests. Calibrating the model using a combination of macroeconomic and

financial moments suggests that the mis-measurement in US GDP due to missing value of data

has been as high as 6% in 2018.

*MIT Sloan School of Business, NBER, and CEPR; farboodi@mit.edu.
�Columbia Graduate School of Business, NBER, and CEPR, 3022 Broadway, New York, NY 10027; lv2405@columbia.edu.

Thanks to Adrian Casillas, Rebekah Dix and Ran Liu for invaluable research assistance and to participants and discussants at
numerous research seminars and conferences for helpful comments and suggestions. Keywords: Data, growth, digital economy,
data barter.



Does the data economy have new economics? In the age of big data, production increasingly

revolves around information. Many firms, particularly the most valuable U.S. firms, are valued

primarily for the data they have accumulated. We have known since Wilson (1975) that ideas,

data and other non-rival inputs have returns to scale. Because large firms benefit more from data,

produce more data and grow bigger, data typically has increasing returns. At the same time, any

data scientist will tell you that data has decreasing returns: Most of the predictive value comes

from the first few observations. Understanding these opposing forces and what they mean for an

economy requires constructing a new, dynamic equilibrium framework, with data as a state variable.

Our model of the data economy teaches us that the long-run dynamics and welfare resemble an

economy with capital accumulation and decreasing returns. However, the short-run features new

dynamics, like increasing returns, negative profits, and the barter of data for goods.

The primary contribution of this paper is a tool to value data, measure its effects and to think

clearly about the aggregate economic consequences of data accumulation. Measuring and valuing

data are complicated by the fact that customers often provide their data, in exchange for a free

digital service. Our value function assigns a positive value to goods and to data, even if they have

a zero transaction price. In so doing, it moves aggregate models beyond price-weighted valuation

and toward a modern way of thinking about economic value in a data economy.

As such, the contribution is not the particular predictions we explore. Some of our predictions

are unsurprising, given the model assumptions. But the realism of the predictions supports the

notion that the framework is a relevant and useful one. This degree of realism enables us to

calibrate the model to macroeconomic and financial moments, which in turn informs us about the

mis-measurement in aggregate GDP due to missing data.

Modeling the data economy is a challenge. A key feature is that firms/customer actions produce

data, which is a form of information. When actions are chosen, taking into account the data those

actions will generate, this is active experimentation. Micro models of active experimentation are

typically challenging to solve (Bergemann and Välimäki, 2000), even without the complicating

equilibrium forces. As an additional challenge, a useful model of the data economy should feature

data as a long-lived, depreciating and tradeable asset. That calls for a recursive Bellman approach,

with a data state variable. Tractably valuing data that a) comes from active experimentation, b)

generates value for many periods, c) is traded in markets with equilibrium prices and d) eventually

1



depreciates, calls for a new set of tools. While the resulting model looks like a standard framework,

achieving this degree of simplicity requires care.

The model in Section 1 describes “data” as a particular type of digitized information: Data is the

transaction-generated information, used by firms to optimize their business processes, by accurately

predicting future outcomes. The data economy blossomed with breakthroughs in machine learning

and artificial intelligence. These are prediction algorithms. They require troves of data, which are

naturally generated by transactions: buyer characteristics, traffic images, textual analysis of user

reviews, click-through-date data, and other evidence of economic activity. Predictions help firms

optimize by forecasting demand, costs, earnings, labor needs, targeting advertising or selecting

investments or product lines (Agrawal et al., 2022).

Because of its simple structure, the model can be applied and extended in many ways. We ex-

plore some in the paper; others, such as imperfect competition or firm size dispersion, are discussed

in the conclusion. While adding features to the main model could allow it to better address one

question or another, keeping the model streamlined allows it to be used flexibly.

Section 2 shows how to value and depreciate data, both tough to observe directly. However, our

model offers a way to estimate how quickly a particular type of data loses its value. Bayes’ Law and

its cousin, the Kalman filter dictate the rate at which information precision depreciates depending

on the current economic conditions and point us to a simple estimation procedure. Knowing how

data depreciates allows us to build up a recursive value function structure that looks similar to

ones used to value capital, but embodies the value of production as active experimentation and the

unique way in which data depreciates.

Section 3 explores the path a given firm takes when growing to its steady state–the short run.

When data is scarce, it may have increasing returns, because of a “data feedback loop.” More data

makes a firm more productive, which results in more production and transactions, which generate

more data, further increasing productivity and data generation. This is the dominant force when

data is scarce. Increasing returns also generates poverty traps. Firms with low levels of data earn

low profits, which makes little production optimal. But little production generates little data, which

keeps the firm data-poor. Firms may even choose to produce with negative profits, as a form of

costly investment in data and may still have high equity market valuations, despite having minimal

book value. This rationalizes observed “data barter.” Many digital services, like apps, which are
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costly to develop, are given away to customers at zero price. The exchange of customer data for a

service, at a zero monetary price, is a barter trade.

Section 4 examines the data economy in the long run. We find that, in the long run, diminishing

returns dominate. The long-run data economy looks like a long-run capital economy, but for

different reasons: First, prediction errors can only be reduced to zero which places a natural bound

on how much prediction error data can possibly resolve. Second, unforecastable randomness limits

how accurate firms’ forecasts can possibly be. Either one of these forces ensures that data alone

cannot sustain growth. Of course, if we change the model to make data an input into research and

development (R&D) it can sustain growth (Section 4.3). The main take away is the importance of

measuring data used for R&D separately, similar to how we typically distinguish between regular

capital investment and R&D investments.

Some of the most heated policy debates today revolve around firms’ use of data. Thinking

about regulation and welfare requires building out the household side of the model that micro-

founds the demand curve. Section 5 does this and finds that, despite the non-rivalry, the increasing

returns, and the production of data as a by-product of economic activity, equilibrium choices are

efficient. That doesn’t mean that data cannot cause harm. It just means that the simple forces our

model describes do not compromise welfare, by themselves. When we add externalities, it prompts

excessive data trade, which suggests a new direction to look to gauge welfare harms.

Section 6 calibrates the model using a combination of macroeconomic and financial moments and

uses the it to measure the extent of GDP mis-measurement due to data barter. Our calibration

suggests that GDP should be 3-6% higher annually in 2003-2018 due to the missing value of

transactions implicitly paid by the consumer data acquired by the firms. It also illustrates the

quantitative importance of properly depreciating data.

Section 7 extends the model to information that is industry, input or firm-specific and shows

how the same model can describe firms that use data for product innovation. Finally, Section 8

provides directions for future research and concludes.

Related literature This work builds on insights from multiple literatures, each of which has

some, but not all, of the features of this model. Work on information frictions in business cycles

(Caplin and Leahy, 1994; Veldkamp, 2005; Lorenzoni, 2009; Ordonez, 2013; Ilut and Schneider,
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2014; Fajgelbaum et al., 2017) have versions of a data-feedback loop that operate at the level of the

aggregate economy: More data enables more aggregate production, which in turn, produces more

data. The key difference is that in those papers information is a public good, not a private asset.

The private asset assumption in the current paper changes firms’ incentives to produce data, allows

data markets to exist and is what raises welfare concerns.

Choosing to acquire data is technically similar to the information choice in Broer et al. (2021)

or rational attention choices in Maćkowiak and Wiederholt (2009), Matějka and McKay (2015)

or Reis (2008). Our work borrows modeling strategies directly from Morris and Shin (2002) and

Angeletos et al. (2006) and shares a focus on the social value of information. Work on media in the

macroeconomy (Chahrour et al., 2019; Nimark and Pitschner, 2019) shares our focus on information

markets. A novelty of a data economy is that transactions create data.

What differentiates our model from data and growth models is that our data is digitized in-

formation. Something is information if it predicts something. In Jones and Tonetti (2018), Cong

et al. (2021) and Cong et al. (2020), data contributes directly to productivity. This is okay for

their objective – exploring growth versus privacy. But without modeling data as an input into a

prediction, they miss the tension between diminishing and increasing returns that is central to data

valuation. The insight that the stock of knowledge can serve as a state variable appears in the

five-equation toy model sketched in Farboodi et al. (2019).

Work exploring the interactions of data and innovation sounds similar, but has essential dif-

ferences. For example, in Garicano and Rossi-Hansberg (2012), IT allows agents to accumulate

more knowledge, which facilitates innovation. Agrawal et al. (2018) explore how breakthroughs in

AI could enhance discovery rates and economic growth. In models of learning-by-doing (Jovanovic

and Nyarko, 1996; Oberfield and Venkateswaran, 2018) and organizational capital (Atkeson and

Kehoe, 2005; Aghion et al., 2019), firms also accumulate a form of knowledge. But unlike prediction

data, this knowledge is not a tradeable asset. Our work analyzes data accumulation, in the absence

of technological change. Once we understand this foundation, one can layer these insights about

innovation and automation on top.
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1 A Data Economy

Because machine learning and AI are prediction technologies, we build a framework in which data is

used for prediction. To isolate the effect of data accumulation, the model holds fixed productivity,

aside from that which results from data accumulation. There are inflows of data from new economic

activity and outflows, as data depreciates. The depreciation comes from the fact that firms are

forecasting a moving target. Economic activity many periods ago was quite informative about the

state at the time. However, since the state has random drift, such old data is less informative about

what the state is today.

The key differences between our data accumulation model and a capital accumulation model

are three-fold: 1) Data is used for prediction; 2) data is a by-product of economic activity, and

3) data is, at least partially, non-rival. Multiple firms can use the same data, at the same time.

These subtle changes in model assumptions are consequential. They alter the source of diminishing

returns, create increasing returns and data barter, and produce returns to specialization.

1.1 Model

Real goods production Time is discrete and infinite. There is a continuum of competitive

firms indexed by i. Each firm can produce kαi,t units of goods with ki,t units of capital. These goods

have quality Ai,t. Thus firm i’s quality-adjusted output is

yi,t = Ai,tk
α
i,t

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory component: θt + ϵa,i,t. Neither

component is separately observed. The persistent component θt follows an AR(1) process: θt =

θ̄+ ρ(θt−1 − θ̄) + ηt. The AR(1) innovation ηt ∼ N(0, σ2θ) is i.i.d. across time.1 Firms have a noisy

prior about the realization of θ0. The transitory shock ϵa,i,t ∼ N(0, σ2u) is i.i.d. across time and

firms and is unlearnable.

1One might consider different possible correlations of ηi,t across firms i. An independent θ processes
(corr(ηi,t, ηj,t) = 0, ∀i ̸= j) would effectively shut down any trade in data. Since buying and selling data hap-
pens and is worth exploring, we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). It is also possible to
achieve an imperfect, but non-zero correlation.
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The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

technique θt + ϵa,i,t:

Ai,t = g
(
(ai,t − θt − ϵa,i,t)

2
)
. (1)

The function g is strictly decreasing and known to all agents. A decreasing function means that

techniques far away from the optimum result in worse quality goods.

Data The role of data is that better predictions allow firms to choose better production tech-

niques. We are agnostic about whether firms predict demand, transportation logistics, supply chair

risks, labor needs, competition or one of the many other uncertainties firms face. Instead, we build

a structure where more accurate predictions help firms optimize business processes to be more

profitable.

Transactions help to reveal uncertain outcomes, but the economic environment is constantly

changing. Firms must continually learn to catch up. Observing production and sales processes

at work provides useful information for optimizing business practices. For now, we model data as

welfare-enhancing. Section 5 relaxes that assumption.

Specifically, data is informative about θt. At the start of date t, nature chooses a countably

infinite set of potential data points for each firm i: ζit := {si,t,m}∞m=1. Each data point m reveals

si,t,m = θt+1 + ϵi,t,m,

where data noise, ϵi,t,m ∼ N(0, σ2ϵ ), is i.i.d. across firms, time, and signals.

The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t,

where zi is the parameter that governs how much data a firm can mine from its customers. A data

mining firm is one that harvests lots of data per unit of output. Thus, firm i’s production uncovers
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signals {sm}ni,t

m=1.

We assume that the ni,t data points that firm i observes at time t includes the information

inferred from the firm’s own productivity Ai,t.
2 The transitory shock ϵa,i,t is important in preserving

the value of past data and ensuring the ni,t data points the firm gets are not perfectly revealing.

It prevents firms, whose payoffs reveal their productivity Ai,t, from inferring θt at the end of each

period. Without it, the accumulation of past data would not be a valuable asset. If a firm knew

the value of θt−1 at the start of time t, it would maximize quality by conditioning its action ai,t

on period-t data ni,t and θt−1, but not on any data from before t. All past data is just a noisy

signal about θt−1, which the firm now knows. Thus preventing the revelation of θt−1 keeps old data

relevant and valuable.

Data trading and non-rivalry Let δi,t be the amount of data traded by firm i, after producing

in date t. If δi,t < 0, the firm is selling data. If δit > 0, the firm purchased data.We restrict δi,t ≥ δ,

where δ ≤ 0. This does not prohibit selling or even selling multiple copies of data. But it does

bound sales so that a firm cannot sell so much data that it is left with a negative stock of knowledge.

If the firm buys δi,t > 0 units of data, it adds the data it produced and the data it purchased,

ni,t + δi,t units of data, to its stock of data.

Let the price of one piece of data be denoted πt.

Of course, data is non-rival. Some firms use data and also sell that same data to others. If there

were no cost to selling one’s data, then every firm in this competitive, price-taking environment

would sell all its data to all other firms. In reality, that does not happen. Instead, we assume that

when a firm sells its data, it loses a fraction ι of the amount of data that it sells to each other firm.

Thus if a firm sells an amount of data δi,t < 0 to other firms, then the firm has ni,t + ιδi,t data

points left to add to its own stock of knowledge. Recall that for a data seller, ιδ < 0 so that the firm

has less data than the ni,t points it produced. This loss of data could be a stand-in for the loss of

market power that comes from sharing one’s own data. It can also represent the extent of privacy

regulations that prevent multiple organizations from using some types of personal data. Another

interpretation of this assumption is that there is a transaction cost of trading data, proportional

2Previous versions of this paper treated information inferred from productivity separately from data generated
through transactions. That complicated the exposition and did not change any results. Results available upon
request.
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to the data value.

Data adjustment and the stock of knowledge The information set of firm i when it chooses

its technique ai,t is
3 Ii,t = {Ii,t−1, {si,t−1,m}ωi,t−1

m=1 , Ai,t−1}, where ωi,t−1 is the net number of data

points added (or subtracted if ω is negative), after accounting for data purchases or sales. To make

the problem recursive and to define data adjustment costs, we construct a helpful summary statistic

for this information, called the “stock of knowledge.”

Each firm’s flow of ni,t new data points allows it to build up a stock of knowledge Ωi,t that it

uses to forecast future economic outcomes. We define the stock of knowledge of firm i at time t

to be Ωi,t. We use the term “stock of knowledge” to mean the precision of firm i’s forecast of θt,

which is formally:

Ωi,t := E[(E[θt|Ii,t]− θt)
2]−1. (2)

Note that the conditional expectation on the inside of the expression is a forecast. It is the firm’s

best estimate of θt. The difference between the forecast and the realized value, E[θt|Ii,t] − θt, is

therefore a forecast error. An expected squared forecast error is the variance of the forecast. It’s

also called the variance of θ, conditional on the information set Ii,t, or the posterior variance. The

inverse of a variance is a precision. Thus, this is the precision of firm i’s forecast of θt.

Our data adjustment cost Ψ captures the idea that if a firm that does not store or analyze any

data wants to transform itself to a machine learning powerhouse, it would require new computer

systems, workers with different skills, and learning by the management team. As a practical matter,

if there is no data adjustment cost, a firm would immediately purchase the optimal amount of data,

just as in models of capital investment without capital adjustment costs. Data adjustment costs

are important because they make dynamics gradual.

3We could include aggregate output and price in this information set as well. We explain in the model solution
why observing aggregate variables makes no difference in the agents’ beliefs. Therefore, for brevity, we do not include
these extraneous variables in the information set.
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Equilibrium definition A firm chooses a sequence of production, quality and data-use decisions

ki,t, ai,t, δi,t to maximize

∞∑
t=0

(
1

1 + r

)t

E
[
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t|Ii,t

]
Firms update beliefs about θt using Bayes’ law. Each period, firms observe last period’s revenues

and data, and then choose capital level k and production technique a. The information set of firm

i when it chooses its technique ai,t and its investment ki,t is Ii,t.

Pt denotes the equilibrium price per quality unit of goods. In other words, the price of a good

with quality A is APt. By assumption, the inverse demand function and the industry quality-

adjusted supply are:

Pt = P̄ Y −γ
t , (3)

Yt =

∫
i
Ai,tk

α
i,tdi.

Firms take the industry price Pt and the parameter P̄ as given. Price is not random because,

by the central limit theorem, the aggregate or average A converges to a known value.4 The data

price πt equates data demand and supply. As in Solow (1956), we take the rental rate of capital as

given. This reveals the data-relevant mechanisms as clearly as possible. This could be an industry

or a small open economy, facing a world rate of interest r.

1.2 Interpreting Model Assumptions

Alternatives to data as a forecasting tool. In this model, the defining feature of data is that it is

a tool to forecast a future state θt+1. This is not the only way to represent data. As mentioned

before, some papers model more data as a direct contribution to TFP, which may well be a useful

shorthand for data that is an input into R&D. Another approach to modeling data is as an improved

matching technology. It could improve the match between customers and goods or between workers

and tasks. Matching and noisy information are not separate phenomena. They are two ways of

4Appendix A shows that, because there are infinitely many firms with independent signals and a noisy prior,
independent forecast errors imply independence in Ai,t’s and that this implies a deterministic price and aggregate
output.
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representing an information friction. So, this could be a matching model. In this case, the noisy

signal model was a more tractable formulation.

Can data be sold multiple times? Our setting allows this. Whether a firm sells d data points or

sells 1 data points d times makes no difference, as long as ι of knowledge is lost, each time a firm

sells a data point.

Investing in data quality. If a firm can pay for a higher z data processing ability, then this

will further accentuate the data feedback loop and increasing returns. Larger firms with more

transactions to process will get a higher marginal benefit from better data technology and will

acquire even more knowledge than small firms. While that additional channel is interesting and

may be quantitatively important, it doesn’t change any of the ideas we develop in this paper.

Therefore, we hold z fixed for simplicity.

Why this formulation of quality? It makes sense to assume g is decreasing because otherwise,

worse forecasts improve quality. But the argument of the g function is quadratic in the difference

between actions and optimal actions. This quadratic form is an approximation to many relation-

ships. It has a long history in tracking problems like Morris and Shin (2002). Most importantly, this

formulation simplifies the solution because it ensures that conditional variance is an approximate

sufficient statistic for mapping what a firm knows to their value function.

1.3 Model Solution: Optimal Technique and Expected Quality

A key to simplifying the problem to a one-state variable problem lies in understanding the expected

quality that results from the optimal choice of technique.

Taking a first order condition with respect to the technique choice, we find that the optimal

technique is a∗i,t = Ei[θt|Ii,t]. Thus, expected quality of firm i’s good at time t in (1) can be

rewritten as E[Ai,t] = E
[
g
(
(Ei[θt|Ii,t]− θt − ϵa,i,t)

2
)]
. The squared term is a squared forecast

error. It’s expected value is a conditional variance, of θt + ϵa,i,t. That conditional variance is

denoted Ω−1
i,t + σ2u.

To compute expected quality, we first take a second-order Taylor approximation of the quality

function, expanding around the expected value of its argument: g(v) ≈ g(E[v]) + g′(E[v]) · (v −

E[v]) + (1/2)g′′(E[v]) · (v − E[v])2. Next, we take an expectation of this approximate function:

E[g(v)] ≈ g(E[v]) + g′(E[v]) · 0 + (1/2)g′′(E[v]) · var(v). Recognizing that the argument v is a
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chi-square variable with mean Ω−1
i,t + σ2u and variance 2(Ω−1

i,t + σ2u), the expected quality of firm i’s

good at time t in (1) can be approximated as

E[Ai,t|Ii,t] ≈ g
(
Ω−1
i,t + σ2u

)
+ g′′

(
Ω−1
i,t + σ2u

)
·
(
Ω−1
i,t + σ2u

)
. (4)

If the g function is not too convex, then quality is a deceasing function of expected forecast

errors. Or put simply, more data precision increases the quality of a firm’s good. We will return

to the question of highly convex, unbounded g functions in the next section.

2 Valuing and Depreciating Data

Before exploring predictions of the model, we work out what this model structure teaches us about

how data should be depreciated and valued.

2.1 Data Depreciation

Solving our dynamic model requires taking a stand on the depreciation rate of data. This depreci-

ation rate estimation is of independent interest. For the most valuable firms in the world, data is

arguably their most valuable asset. Yet, data valuation and data accounting are in their infancy.

A key question for valuing data is assessing how quickly data depreciates.

Luckily, our model also points us to a method for quantifying depreciation. It teaches us that the

depreciation rate of data is a particular function of the persistence and volatility of the environment

that data is used to forecast. We derive and explain this depreciation formula, which can be used

in this model, or in any environment where data is used for forecasting and where a linear and

normal stochastic environment is a reasonable approximation.

To derive this depreciation formula, we start from the state evolution equation. Recall that it

is an AR(1): θt+1 = θ̄+ ρ(θt − θ̄) + ηt+1. Consider the beliefs about the time-t state and how they

change when the same information is used to forecast the t + 1 state. At the start of date t, the

conditional variance of beliefs about the state θt is V [θt|It] := Ω−1
t , where Ωt is what we’ve called

the “stock of knowledge” and is the object we want to depreciate.

Next, we simply apply the same conditional variance operator, with the same information set,
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to the AR(1) equation above: V [θt+1|It] = ρ2V [θt|It]+σ2θ = ρ2Ω−1
t +σ2θ . This holds in the absence

of learning any additional information about the state during all of period t. In this no date-t

learning case, we invert the variance and rearrange V [θt+1|It]−1 to get:

Ωno learning
t+1 =

Ωt

ρ2 + σ2θΩt
.

To be clear, this is not the correct law of motion for the state Ω in this model because firms learn

new information every period. But examining the no-learning case is instructive because the only

thing changing the stock of knowledge from one period to the next is depreciation. While typically,

one would depreciate a capital stock by multiplying capital kt times a term like (1 − δk). The

equivalent multiplicative term here is (ρ2 + σ2θΩt)
−1, which multiplies Ωt. Thus, the depreciation

rate, the equivalent of δk in a capital accumulation model, is

data depreciation rate = 1− 1

ρ2 + σ2θΩt

A larger fraction of the stock of knowledge is lost to depreciation when the state changes lots from

one period to the next (high σ2θ), when there is lots of knowledge to begin with (high Ωt), and when

high persistence makes the state a more variable process (high ρ).5

Depreciation rates are typically linear operators on the stock being depreciated. Appendix A.3

describes three types of economies where the data depreciation rate will be well-approximated by

a standard-looking multiplicative constant term.

Accounting rules depreciate all data like software, by amortizing it over three years. That is a

depreciation rate of 30% per year. Our results suggest that the depreciation rate of data may vary

widely, depending on whether the data is used to forecast something more static, like consumer

location or tastes, or something more ephemeral like equity order flow.

5One might wonder why this depreciation rate can be negative for small values of ρ2 + σ2
θΩt. These are cases

where the firm is so uncertain that its conditional variance is higher than the unconditional variance of next period’s
outcomes. This is not a scenario that ever arises in our model. If an agent were so uncertain, then simple mean-
reversion should reduce their uncertainty. This natural reduction in uncertainty, without any additional data, is what
would show up as a negative rate of depreciation.
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2.2 A Law of Motion for Data

To get from this depreciation rate to the law of motion for the stock of knowledge requires adding

new data from three sources: 1) data that was a by-product of production, 2) data that was bought

or sold and 3) data that was inferred from a firm seeing its own quality at the end of the period.

These pieces of information are incorporated into beliefs using Bayes’ law.

The number of new data points generated by firm i’s production, ni,t is assumed to be data

mining ability times end of period physical output: zik
α
i,t. Bayes law tells us that the posterior

precision of a normal variable is the sum of the prior precisions and signal precisions. This means

that the sum of the precisions of all the data points, ni,tσ
−2
ϵ , should be added to the stock of

knowledge.

At the firm level, data inflows need to be adjusted for data trade. If a firm buys data (δi,t > 0),

we add all the newly-acquired data precision δi,tσ
−2
ϵ to the stock of knowledge. If a firm sells data

(δi,t < 0), we subtract a fraction ι of that signal precision from their stock of knowledge. Since δi,t

is negative, we add the negative number δi,tσ
−2
ϵ to subtract off the lost knowledge.

Lemma 1 puts the data depreciation and data inflows together. It tells us how the stock of

knowledge evolves from one period to the next.

Lemma 1 Evolution of the Stock of Knowledge In each period t,

Ωi,t+1 =
[
ρ2Ω−1

i,t + σ2θ

]−1
+
(
ni,t + δi,t(1δi,t>0 + ι1δi,t<0)

)
σ−2
ϵ (5)

The proof of this lemma and of all the lemmas and propositions that follow are in Appendix

A. The proof is an application of Bayes’ law, or equivalently, the Ricatti equation of a modified

Kalman filter. Because the information structure is similar to that of a Kalman filter, the sequence

of conditional variances, or their inverse, the sequence of precisions, is deterministic.

Information from aggregate prices One might wonder why firms do not also learn from

seeing aggregate price and the aggregate output. They reflect aggregate quality, which depends on

the squared difference between θt and other firms’ technique ajt. That squared difference reflects

how much others know, but not the content of what others know. Because the mean and variance

of normal variables are independent, knowing others’ forecast precision reveals nothing about θt.
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Seeing one’s own outcome Ai,t is informative only because a firm also knows its own production

technique choice ai,t. Since firms’ actions are not observable, aggregate prices or quantities reveal

what other firms predicted well. But they convey no useful information about whether θt is high

or low.

2.3 Valuing Data: A Recursive Representation

One of the most important valuation questions for modern economists, investors and accountants

is how to value data. While some data is transacted and might be valued at its price, lots of data is

retained by a firm, for its own use. A value function approach assigns a value to a firm with a given

amount of data. While that is not a cookbook recipe for assigning a dollar value to data, it offers a

first step, a clear way to think about data value and what its components are. Our value function

can guide data valuation, in the same way that capital value functions have guided economists’

measurement of capital values, for decades.

Lemma 2 The optimal sequence of capital investment choices {ki,t} and data sales {δi,t ≥ −ni,t}

solve the following recursive problem:

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t +

(
1

1 + r

)
V (Ωi,t+1) (6)

where E[Ai,t|Ii,t] is an increasing function of Ωi,t, given by (4), ni,t = zik
α
i,t, and the law of motion

for Ωi,t is given by (5).

This result greatly simplifies the problem by collapsing it to a deterministic problem with choice

variables k and δ and one state variable, Ωi,t, the stock of knowledge. In expressing the problem

this way, we have already substituted in the optimal choice of production technique. The quality

Ai,t that results from the optimal technique depends on the conditional variance of θt.

Since Ωi,t can be interpreted as a discounted stock of data, V (Ωi,t) captures the value of this

data stock. V (Ωi,t) − V (0) is the present discounted value of the net revenue the firm receives

because of its data. Therefore, the marginal value of one additional piece of data, of precision 1, is

simply ∂Vt/∂Ωi,t. When we consider markets for buying and selling data, ∂Vt/∂Ωi,t represents the

firm’s demand, its marginal willingness to pay for data.
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3 Transition Path in the Data Economy

A key source of difference between a capital-based and a data economy is the short-run convexity of

data accumulation, at the firm level. The convexity is a form of increasing returns that arises from

the data feedback loop: Firms with more data produce higher quality goods. The higher profit

per unit from higher quality goods induces more production, which results in more transactions

and more data. Thus more data begets more data. While that sounds positive, it also creates

the possibility of a firm growth trap, with very slow growth and financial losses, early on the in

the lifecycle of a new firm. As a result, the life-cycle path of book-to-market or Tobin’s Q of data

firms looks very different from capital-intensive firms. Finally, the fact that transactions generate

data as a by-product explains why every exchange includes an element of barter, where goods are

exchanged for data, frequently at a positive monetary price. But sometimes, the exchange of goods

for data happens at a zero monetary price, in which case pure barter arises.

While these results may not be a surprising distance from our assumptions, they all demonstrate

the ability of the framework to make sense of and re-interpret new data economy phenomena. Tools

to model data phenomena can, in turn, be used to inform ongoing policy debates. Establishing

that this is an economically-relevant collection of assumptions is important before using it for

measurement or welfare analysis.

3.1 Increasing Returns in the Short Run

Focusing on the dynamics of one firm growing makes forces clearer. The simulated model will

show all firms growing. But these results explain the logic behind the transitions. While all others

are in steady state, we drop in one, atomless, low-data (low Ωi,t) firm and observe its growth and

transition to a high-data firm. For this section, we adopt a linear quality function, for simplicity:

g(x) = Ā− x. We relax this asssumption later on, when we discuss the long run.

Proposition 1 S-Shaped Accumulation of Knowledge When all firms are in steady state,

except for one firm i, then the firm’s net data flow Ωi,t+1 − Ωi,t

a. increases with the stock of knowledge Ωi,t when that stock is low, Ωi,t < Ω̂, when goods production

has sufficient diminishing marginal return, α < 1
2 , adjustment cost Ψ is sufficiently low, P̄ is

sufficiently high, and the second derivative of the value function is bounded V ′′ ∈ [ν, 0); and
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Figure 1: A single new firm grows slowly: Inflows and outflows of one firm’s data.
Line labeled inflows plots Equation (7). Line labeled outflows plots (8). Firm i is in an economy where all other firms
are in steady state.

b. decreases with Ωi,t when Ωi,t is larger than
ˆ̂
Ω.

To understand this result, it is helpful to split the stock of knowledge into inflows and outflows.

We define the additions to the data stock that are generated by time-t economic activity to be

inflows (nit data points, each with precision σ−2
ϵ ). We define the total losses due to depreciation

(derived in Lemma 1) as outflows.

Inflows: Ω+
it = σ−2

ϵ zik
α
i,t + δit1δi,t>0σ

−2
ϵ (7)

Outflows: Ω−
it = Ωit −

[
ρ−2Ω−1

i,t + σ2θ

]−1
+ ιδit1δi,t<0σ

−2
ϵ . (8)

Figure 1 illustrates the inflows, outflows and dynamics of a single firm. This figure illustrates one

possible economy. Data production may lie above or below the data outflow line. The difference

between data inflows (solid line) and data production (dashed line) is data purchases. These

purchases push the inflows line up and help speed up convergence.

The quality-adjusted production path of a single, growing firm mimics the path of its stock

of knowledge. The difference between the S-shaped inflows and nearly linear outflows in Figure 1

traces out the S-shaped output path of a new entrant firm in this environment.

Firm size distribution One reason the S-shaped accumulation of data is interesting is that it

implies an important role for firm size. Small firms grow slowly because they generate little data.
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Only later, when they are larger and generate more data can they grow quickly. This lends itself to

a bifurcated firm size distribution. There are many new firms that are stuck small and data-poor.

Then, there are firms that have reached the explosive growth phase in the middle of the S-curve and

grew large. In a world with increasing and then decreasing returns, firms do not remain mid-sized

for long.

Single firms can have decreasing returns For some parameter values, the diminishing

returns to data is always stronger than the data feedback loop. Proposition 7 in the appendix

shows that, when learnable risk is abundant, knowledge accumulation is concave. In such cases,

each firm’s trajectory looks like the concave aggregate path in Figure 3. But the appendix describes

the set of parameters that make the data feedback loop sufficiently strong, to make data inflows

convex at low levels of knowledge.

3.2 New Entrant Profits, Book Value and Market Value

In a data economy, the trajectory of a single firm’s profits, book value and market value are

quite different from those in an economy driven by capital accumulation. Since empirical evidence

on profits, book value and market value are easily available, it is useful to explore the model’s

predictions along these dimensions. In doing so, we relate to the literature on using Tobin’s Q to

measure intangible capital.

In a standard model, a young, capital-poor firm has a high marginal productivity of capital.

The firm offers high returns to its owners and has a book and market value that differ only by the

capital adjustment cost. In a data economy, data scarcity makes a young firm’s quality and profits

low. In fact, there is a range of parameters for which young firms cannot possibly make positive

initial profits. Start by defining a firm’s profit:

Profitt = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t. (9)

Proposition 2 Negative Profits for New Entrants. Assume that g(σ2u + σ2θ) < 0. Then for

a firm entering with zero data, Ωi,0 = σ−2
θ , the firm cannot make positive expected profit at any

period t unless it has made strictly negative expected profit at some t′ < t.
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The reason such a firm produces even though producing loses money, is that production gen-

erates data, which has future value to the firm. This firm is doing costly experimentation. This is

like a bandit problem. There is value in taking risky, negative expected value actions because they

generate data–active experimentation. Costly production at time t is effective payment to generate

data, which will allow the firm to be profitable in the future. The reason that the firm’s production

loses money is that if g(σ2u + σ2θ) < 0, the initial expected quality of the firm’s good is too low to

earn a profit. But production in one period generates information for the next, which raises the

average quality of the firm’s goods, and enables future profits.

The idea that data unlocks future firm value implies that in order to increase its stock of

knowledge, a new firm both produces low quality goods to self-produce data, and buys some data

on the data market, as depicted in Figure 1. The two mechanisms of building stock of knowledge

lead to a discrepancy between a firm’s book value and market value. It is so because accounting

rules do not allow a firm’s book value to include data, unless that data was purchased. Therefore,

we define the firm book value to be the discounted value of all purchased data. The indicator

function 1δi,t>0 captures only data purchases, not self-produced data. If we equate the book value

depreciation rate to the household’s rate of time preference β, then

Data Book Valuet =
t∑

τ=0

βt−τπτδτ1δi,τ>0. (10)

The market value of the firm is the Bellman equation value function V (Ω) in (6). In the context

of our simple model, the firm rents but does not own any capital. However, a firm without data

does have value, V (0), which measures the installed value of any unmeasured assets the firm might

have. Therefore, to obtain the book value of a firm, we add the data book value to V (0).

Figure 2 plots the book-to-market value and profits of a young firm, over time. The ratio of the

market value to the book value of a firm is used to measure intangible assets. Using a Q-theory

approach, Crouzet and Eberly (2021) document that the share of intangibles in firm value rose

from 23% to 29% between the late 1980’s and 2017. Our book-to-market ratio starts at 0.849 and

falls to 0.697. This implies that the fraction of market value accounted for by intangible assets not

counted for in the firm’s accounting/book value rose from 15% to 30% in the model.

The negative profits described in Proposition 2, representing costly experimentation, also show
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Figure 2: S-shaped growth can create initial profit losses and dampens the book-to-market ratio
that follows from the missing value of data in the book value.
Book-to-market value is (V (0) + Data Book Valuet)/V (Ωt). Data book value is defined in (10). Parameters are in
Appendix B. Steady state prices of goods and data are reported as the end points of the dashed lines in Figure 3.

up in Figure 2, in the first period. Producing goods at a loss eventually pays off for this firm. It

generates data that allows the firm to become profitable. This situation looks like Amazon at its

inception. In its early days, Amazon lost $2.8 billion before turning an enormous profit.

3.3 Data Barter and Missing GDP

Data barter arises when goods are exchanged for customer data, at a zero price. While this is a

knife-edge possibility in this model, it is an interesting outcome because it illustrates a phenomenon

we see in reality. In many cases, digital products, like apps, are being developed at great cost to

a company and then given away “for free.” Free here means zero monetary price. But obtaining

the app does involve giving one’s data in return. That sort of exchange, with no monetary price

attached, is a classic barter trade. The possibility of barter is not shocking, given the assumptions.

But the result demonstrates the plausibility of the framework, by showing how it speaks to data-

specific phenomena we see.

The analysis also reveals that not only are zero-price transactions, like free apps, being missed,

every transaction, in principle, has a data barter element to it. Every firm should charge slightly

less for every product, because of the value of the data that accompanies its sale. In practice, a

whole segment of the economy is not being captured by traditional GDP measures because the

transactions price misses the value of data being paid.

Proposition 3 Bartering Goods for Data It is possible that a firm will optimally choose
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positive production kαi,t > 0, even if its price per unit is zero: Pt = 0.

At Pt = 0, the marginal benefit of investment is additional data that can be sold tomorrow, at

price πt+1. If the price of data is sufficiently high, and/or the firm is a sufficiently productive data

producer (high zi), then the firm should engage in costly production, even at a zero goods price, to

generate the accompanying data. Our framework allows us to assign a value to such barter trades

and partial-barter trades, despite their zero monetary price.

These results could enable better measurement of GDP. Investment in a stock of valuable

knowledge is missing from aggregate measures of economic activity. Even if we cannot observe the

data-adjusted true price of a transaction, if we can measure the value of the asset being generated,

we can fill in this missing value. The value of the knowledge asset generated by all this barter

trade is V (Ωi,t) − V (Ωi,t−1), for each firm i. Typical numerical approaches to approximating a

value function could be applied to V (Ωi,t). Alternatively, one might use revenue data, use hiring

and wages of workers who maintain data stocks and work with data, or look for the covariance of a

firms’ choices with the random variables it needs to forecast. A detailed discussion of the myriad of

approaches to measure this value function is beyond the scope of this paper. However, frameworks

like this are important inputs into digital economy measurement because they guide our thinking

about what is missing and how to infer this missing aggregate economic activity.

4 Long-Run Features of a Data Economy

While the previous section emphasized the contrasts, this section highlights similarities between

the data economy and a capital-based production economy. Within the model, there is no long run

growth because data has diminishing returns, a property documented empirically by (Bajari et al.,

2018). To explore this, we describe a general class of models in which the accumulation of data

does and does not enable long-run growth. The non-rivalry of data does not sustain growth because

non-rivalry simply allows something to be used by many and therefore abundant. The following

results show that no matter how abundant data is, its potential is limited, unless it facilitates

technological innovation.
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4.1 Diminishing Returns and Zero Long Run Growth

Conceptually, data has diminishing returns because its ability to reduce variance gets smaller and

smaller as beliefs become more precise. Is there some other model, without innovation, where

data accumulation can sustain growth? For sustained growth to be possible, two things must both

be true: 1) Perfect one-period-ahead foresight implies infinite real output; and 2) the future is a

deterministic function of today’s observable data.6 Both conditions are at odds with most theories.

In order to formalize this idea, we start with two definitions.

Definition 1 (Sustainable Growth) Let Yt =
∫
i E[Ai,t]k

α
i,tdi, such that ln(Yt+1) − ln(Yt) is the

aggregate growth rate of expected output. A data economy can sustain a minimum growth rate g > 0

if ∃ T such that in each period t > T , ln(Yt+1)− ln(Yt) > g.

The next definition, “fundamental randomness,” formalizes the notion of learnability in the

data economy. Recall that ζi,t is the set of all signals that nature draws for firm i. These are

all potentially observable signals. Not all will be observed. Define Ξt to be the Borel σ-algebra

generated by {ζi,t ∪Ii,t}∞i=1. This is the set of all variables that can be perfectly predicted with Ii,t

and time-t observable data.

Definition 2 (Fundamental Randomness) v has time-t fundamental randomness if v ̸ ∈ Ξt.

Fundamentally random variables are simply those that are not perfectly learnable. In our model,

fundamental randomness or unlearnable risk is present when σ2u > 0.

We now use the the above two definitions to provide general conditions under which positive

growth can be permanently sustained in the data economy.

Proposition 4 Sustainable Growth In our data economy, sustainable growth requires the

following two conditions to hold simultaneously

1. There exists a v such that as v → v the quality function approaches infinity g(v) → ∞; i.e.,

forecasts must enable infinite output.

6It is also true that inflow concavity comes from capital having diminishing returns. The exponent in the production
function is α < 1. But that is a separate force. Even if capital did not have diminishing marginal returns, inflows
would still exhibit concavity.
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2. Suppose that v = 0 and the quality function g is finite almost everywhere, except at v = 0.

Productivity-relevant variables (θt and εa,i,t) have no time-(t− 1) fundamental randomness.

The first conditions says that growth can only be sustained if E[Ai,t] can become infinite in the

high-data limit. The reason is that expected aggregate output is
∫
i E[Ai,t]k

α
i,tdi. From the capital

first order condition, we know that capital choice ki,t will be finite, as long as expected quality

E[Ai,t] is finite. If output is finite, sustained growth is not possible.

If society as a whole knows tomorrow’s state, they can simply produce today what they would

otherwise be able to produce tomorrow. Thus, imposing finite real output at zero forecast error is

a sensible assumption. But this common-sense assumption then leads to the conclusion that data

has diminishing returns.

The second condition relates to the observation that realistically, not everything can be perfectly

learned in the economy. Note that the assumption that g is finite-valued, except at zero, simply

rules out the possibility that firms that have imperfect forecasts and still make mistakes can still

achieve perfect, infinite quality. Under this assumption, the second condition asserts that even if

you believe perfect one-period-ahead forecasts can produce infinite output, you still get diminishing

returns because of the existence of fundamental, unlearnable randomness.

To sum up, if one believes that some events tomorrow are fundamentally random, data must

have diminishing returns. Conversely, even if one believes that nothing is truly random, but they

believe that with one-period ahead knowledge, an economy can only produce the finite amount

today that they would otherwise produce tomorrow, then data must also have diminishing returns.

4.2 Equilibrium Price Effects

While Figure 1 represented a single firm’s transition, Figure 3 illustrates the transition of a whole

economy of symmetric firms, growing together. The difference between the two is the effect of

equilibrium goods and data prices. When all firms are data-poor, all goods are low quality. While

aggregate knowledge and output exhibit growth with diminishing returns, the prices of data and

goods fall, as they become more abundant. These changing prices create two equilibrium effects,

both of which speed up growth. Goods prices are high initially because quality units are scarce.

The high price of goods induces these firms to produce abundant goods, creating data and speeding
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Figure 3: Aggregate Growth Dynamics: Diminishing Returns and Falling Equilibrium Prices. See
Appendix B for parameters and numerical solution details.

growth. In contrast, when the single firm enters, others are already data-rich. Quality goods are

abundant, so prices are low. This absence of the equilibrium price effect in the one-firm case makes

it costlier and slower for the single firm to grow. The second equilibrium price effect comes from

the price of data. The high initial price of scarce data also induces firms to produce more, for the

purpose of generating valuable data.

The reason knowledge and output plateau in both settings is that eventually, every firms’ inflows

and outflows (Equations (7) and (8)) cross at the steady state. The equilibrium effects govern what

happens early in the transition, when data is scarce.

4.3 Endogenous Growth

If data is used for research and development, data accumulation can sustain growth. Following

a logic similar to Grossman and Helpman (1991), assume that instead of Equation (1), product

quality follows a non-decreasing process:

Ai,t = Ai,t−1 +max{0,∆Ai,t} with ∆Ai,t = g
(
(ai,t − θt − ϵa,i,t)

2
)
.

The solution inherits the same structure as before: the expected change in quality of firm i’s good

at time t, E[∆Ai,t|Ii,t], can be approximated by
(
Ω−1
i,t + σ2u

)
. The interpretation is that more data

allows for more precisely targeted innovations, which increase the size of the technology advance. An

illustrative example is when g
(
(ai,t − θt − ϵa,i,t)

2
)
= Ā− (ai,t − θt − ϵa,i,t)

2. With this formulation,
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depending on Ā, more data can make the innovation viable: E[∆Ai,t|Ii,t] > 0. A similar structure

with multiplicative ∆Ai,t could sustain exponential growth.

This extension teaches us that data used for research should be measured separately from data

used for other purposes, just like economists typically do for capital expenditures. Of course, for

this formulation to make sense, one needs to believe that information resulting from transactions

can be used to discover growth-sustaining technologies.

5 Welfare and Data Externalities

Before now, our framework lacked two important features needed to assess welfare and consider

optimal policy. The first is micro-foundations for demand, which reveal consumer utility. The

other feature is a negative externality of data. Incorporating these assumptions justify the previous

model by delivering the same inverse demand as in (3). They also reveal that the only source of

inefficiency is the data externality. We consider a symmetric firm environment. Since not all firms

can buy (or all sell) data, this implies no data trade.

5.1 A Micro-founded Model for Welfare Analysis

Consider an economy with two goods: a numeraire good, mt and a retail good ct, that is produced

using capital and data. Let Pt denote the price of the retail good in terms of the numeraire.

Households There is a continuum of homogeneous infinitely lived households, with quasi-

linear preferences over consumption of the retail good ct and the numeraire good mt. Households

have CRRA utility for retail good consumption: u(ct) = P̄
c1−γ
t
1−γ . The representative household’s

optimization problem is

max
ct,mt

+∞∑
t=0

u(ct) +mt

(1 + r)t
s.t. Ptct +mt = Φt ∀t (11)

The budget constraint equates consumption expenditures on the two goods to household income,

which is firm profits Φt. Since aggregate output is non-random, as argued earlier, aggregate profits

and the optimization problem are also not random, within each period t.
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Retail Good Production The producers of the retail goods live forever. They use capital,

rented at rate r, trade data, and produce the retail good using their capital and data. There are

two types of retail firms. They are identical, except for their, zi, the efficiency with which they

produce data. We consider a measure λ of low data-productivity firms with zi = zL , and a measure

(1− λ) of high data-productivity firms with zi = zH , where zL < zH .

Profit is revenue minus adjustment costs, minus data costs (if δ > 0) or plus revenue from data

sales (if δ < 0), minus the cost of capital, Φit := PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t. The profit

the households get is the aggregate firm profit,

Φt =

∫
Φitdi = Pt

∫
i
Ai,tk

α
i,tdi−

∫
i
Ψ(∆Ωi,t+1)di− r

∫
i
ki,tdi,

Firms maximize the expected present discounted value of their profit:

max
{ki,t,δi,t}∞t=0

V (Ωi,0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
. (12)

Data governs the expected quality of goods, E[Ai,t]. To simplify the exposition, we use the

following specification for g(.) in Equation (1):

Ai,t = Ā−
(
ai,t − θt − ϵa,i,t

)2
. (13)

The law of motion for data is expressed in Equation (5).

The retail sector represents an industry where consumption and data are industry-specific, but

capital is rented from an inter-industry market, at rate r, paid in units of numeraire.7

Equilibrium We restrict our attention to economies with λ, zH and zL such that there exists

a symmetric, pure-strategy equilibrium, where all firms of the same type make the same choices;

if zi = zj , then δi,t = δj,t and ki,t = kj,t ∀t. An equilibrium is household choices of ct and mt that

maximize (11), firm choices of capital ki,t and data δi,t that maximize (12) and prices Pt and πt

7Equivalently, we can interpret this as a small, open economy where capital and numeraire goods are tradeable
and retail goods are non-tradeable. The world rental rate of capital is r. This simplification puts the focus on data.
An endogenously determined rental rate of capital would increase when firms are more productive. This would create
a wealth effect for capital owners. These equilibrium effects are well-studied in previous frameworks, but are not
related to economics of data.
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that clear markets (they satisfy aggregate resource constaints):

Retail good : ct = λAL,tk
α
L,t + (1− λ)AH,tk

α
H,t,

Numeraire good : mt + r (λkL,t + (1− λ)kH,t) +
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
= 0

Data : λδL,t + (1− λ)δH,t = 0.

Proposition 5 Welfare The steady state allocation is socially efficient.

Equilibrium capital investment and data production are efficient because there are no exter-

nalities. The constraint, that data may only be produced through the production of goods, is a

constraint that is faced both by the planner and the firm. Prices of goods and data reflect their

marginal social value. This aligns the private and social incentives for production.

5.2 Data for Business Stealing

When data can be used for marketing or other forms of business stealing, firms’ use of data harms

others. Using data for business stealing can be represented through a quality externality:

Ai,t = Ā−
[(
ai,t − θt − ϵa,i,t

)2 − b

∫ 1

j=0

(
aj,t − θt − ϵa,j,t

)2
dj
]

for b ∈ [0, 1] (14)

Notice that the business stealing externality does not change firms’ choices because it does not

enter in a firm’s first order condition.8 Therefore, it does not change data inflows, outflows, data

sales or capital choices, at a given set of prices. However, it does influence aggregate good quality.

The baseline model is represented by b = 0. In this case, Equations (14) and (13) are identical and

there is no externality.

If b > 0, this captures the idea that when one firm uses data to market effectively, it reduces

the ability of all other firms to generate value by reaching their preferred customers. The extreme

case where data does not have any social value is b = 1. The aggregate losses from business stealing

entirely cancel out the productivity gains from data:
∫
Ai,tdi = Ā.

8To see why this is the case, note that firm i’s actions have a negligible effect on the average productivity term∫ 1

j=0

(
aj,t − θt − ϵa,j,t

)2
dj. So the derivative of that new externality term with respect to i’s choice variables is zero.

If the term is zero in the first order condition, it means it has no effect on choices of the firm. This formulation of
the externality is inspired by Morris and Shin (2002).
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Proposition 6 Welfare with Business Stealing If b > 0, there is over-investment in the

steady state level of capital and excessive trade in the data market in equilibrium.

Proposition 6 incorporates two distinct inefficiencies: excessive production and excessive data

trade. Higher data production and sales reduces the quality of other firms’ goods. Thus, in

equilibrium, too much output is produced and too much data is traded.

The idea that firms sell too much data might appear counter-factual, since social networks and

search engines do not primarily sell data directly. Instead, they use their data primarily to sell

data services to their business customers. For example, Facebook revenue comes primarily from

advertising, which is a data service. However, sales of data services is a type of data sales. A formal

analysis of the equivalence between data services and data sales is in Admati and Pfleiderer (1990).

6 GDP Mis-measurement: Data Barter

A key purpose of building macroeconomic frameworks is to enable measurement. We calibrate the

model and use it to estimate the magnitude of GDP mis-measurement that arises from data barter.

For this calibration, we consider a linear approximation to the quality function

g(Ω) = Ā− sΩΩ
−1.

Our calibration suggests that GDP should be 3-6% higher annually in 2003-2018 due to the missing

value of transactions implicitly paid by the data exchanged. For brevity, we summarize the cali-

bration and results in this section. Appendix B provides a detailed description of the measurement

procedure and more extensive results.

Calibration Table 1 reports the externally calibrated parameter values, the data series we used

for matching model implied moments, as well as the parameters calibrated using the model. The

first block constitutes the data series that we use.

Since our objective is to value data, not to explain where it comes from, we feed in a measure

of firms’ data to the model, the US Public firm sales forecast errors from I/B/E/S database. That

measure is the forecast errors firms make when reporting their sales revenue. Since firms only
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Model object Data series

Ω−1
t Sales forecast errors for US public firms, following Kohlhas

and Asriyan (2024) using data from I/B/E/S Guidance
kt BEA real net stock of fixed assets
ṗt Inflation: Gross Domestic Product Price Deflator

Parameter Description (Target) Value / Range

α Capital share of income 0.4
γ Inverse demand elasticity (Guvenen, 2006) 0.93
ρ, σ2θ AR(1) coefficients from TFP (Fernald, 2014) 0.98, 0.0026
ψt Data adjustment cost (Brynjolfsson et al., 2021). 0.5-7.5
P̄ Price level of goods (model moment) 5.04
Ā, sΩ Quality function intercept and slope (model moments) 1.18, 1.90

Table 1: Model calibration targets. See Appendix B for details.

revenue uncertainty in the model comes from uncertainty about the state θt, we link sales forecast

errors to the conditional variance of firms’ θt+1 forecast at time t, which maps directly into an

amount of data.9

We use the real stock of fixed assets kt, to impute a capital return series rt that rationalizes the

observed capital stock in our model.10 Matching capital ensures that errors in the estimates of the

data value as a fraction of GDP come only from the data part of the economy, not from the capital

part. We use GDP price deflator for to computer the inflation series.

The second block in Table 1 reports the calibrated parameters. The first three rows, α, γ, ρ, σ2θ ,

report the parameters that are are informed by the literature, along with the source and values

of each one. The next row corresponds to the data adjustment cost series ψt. Brynjolfsson et

al. (2021) estimates this series using q-theory to impute an adjustment cost for intangible assets

related to R&D. We extend their estimate until the end of our time interval. The time series is

reported in the appendix.

Finally, P̄ , Ā and sΩ are parameters that we calibrate using moments from the models and

the data series reported in the first block of Table 1. Note that these three parameters are key

parameters for valuing data: P̄ governs the price level of goods, and Ā and sΩ govern the g(.)

function that maps forecast precision into output quality. We jointly estimate P̄ , Ā and sΩ to

9An alternative exercise is to start the model with an initial amount of data and let it predict how much data
firms accumulate and value that accumulated data. That exercise is more relevant if one wants to predict the future
evolution of the data economy. Figure 3 reports the endogenous data outcome from the calibrated model.

10Of course, capital returns are endogenous. There would be a capital friction or wedge that we could calibrate
to match the capital stock, in each period, at the equilibrium rental rate. But such an exercise would require much
more computation for little gain in a model that is not designed to speak to the physical capital stock.
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match three moments of the data: 1) GDP series, 2) BEA reported estimate of 2003 value of firms

own data, and 3) sensitive of capital investments to data provision reported by Gorodnichenko et

al. (2023).

The GDP series allows our price of goods to have the right scale so that when we report dollar

values, they are relative to a GDP level that is plausible. The rationale for matching a 2003

estimate of the one-period value of data value is to get data value on the right scale, but give the

model freedom to predict the evolution over time. That value estimate, by the Bureau of Economic

Analysis, is based on the cost of accumulating, processing and maintaining a firm’s data. Finally,

the investment sensitivity to data comes from a randomized control trial by Gorodnichenko et al.

(2023). Their experiment treats some firms with data and measures their investment reaction. In

our model, the quality function g governs this sensitivity.

Data value estimates To measure the uncounted GDP that arises from data barter, we need

to know the value of all the data consumers transferred to firms in a year. This is the payment

customers made to firms, above and beyond the monetary price. To value only the data generated

in one period, we construct a counter-factual value function Ṽ (Ωt) that has all the same firm data,

except for the nt data points generated in a single period t (Equation (43)). The present discounted

value of data generated in a period pdv(∆Ωt) is used to pay for goods and services, but is uncounted

by GDP. This missing economic value is the difference between firm value with time-t data and

without: pdv(∆Ωt) = V (Ωt)− Ṽ (Ωt), accounting for changes in the aggregate price level.

Figure 4 reports this present discounted value as a percentage of GDP between 2003 and 2018.

Our calculations suggest that GDP should be 3-6% higher because the value of a transaction is

measured by the value of the payment and the data exchanged. While the present value of data is

much higher than its one-period value, the rate of growth of that present value is slower. While the

one-period value of data has quadrupled in the last two decades, the present value has doubled. This

discrepancy is largely because abundant data depreciates faster. The constant depreciation value

starts lower, but rises at a similar rate to the one-period value. Firms need to accumulate more

and more data to gain a small improvement in their predictions. This illustrates the importance

of the model’s explanation for how data depreciates. Because it is information, Bayes’ law tells

us that data depreciates in a way that is fundamentally different from capital. That difference is
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Figure 4: Estimated GDP mis-measurement that comes from bartered data. One-period value
(left) and present value (right) of data generated each year. Solid line reports the model-implied
value. Dashed line reports the present value of data that depreciates at the constant 6.6% rate,
dictated by GAAP accounting rules.

evident in the right side of Figure 4.

Sensitivity As the previous discussion shows, the value of data is highly sensitive to the discount

rate. The estimates are not very sensitive to γ and Y. Appendix B shows that they are also

remarkably insensitive to the interest rate r. Even doubling the interest rate in the middle of the

simulation produces only a modest response in data value. The adjustment cost is important to

have, but its precise level and its fluctuations over time make little difference for the calculation.

The one-period estimate of data value is also likely noisy. Fortunately, while it determines the

initial present of data, that effect fades within the first 5 years. For the long-run present value of

data, the key moments are the investment sensitivity to data and the amount of data.

The appendix also explores the interest rate and the predicted rate of data growth as over-

identifying moments that reveal the model to have plausible predictions.

7 Industry or Firm-Specific Data and Product Innovation

For simplicity, we started with a tracking problem with only one random variable θt to forecast.

However, firms learn about industry, input-specific or firm-specific conditions as well. When a firm

has many attributes to learn about, they not only choose how much to produce, but also choose

what to produce. They use data to do product design and innovation. An extension of the model

30



to N dimensions can capture such problems, without losing any of the tractability of the original

model.

Model setup Consider N products whose profits depend on N attributes. These attributes

could be related to cost and optimal operations. They could be related to fads and fashion, or

they could represent dimensions of worker skills and human resources decisions a firm must make.

For each attribute, there is a optimal action: the best supplier of a material, a hottest color, the

optimal degree of quant versus verbal skill than a manager should have. For attribute k, this

optimal choice is the kth entry of the N × 1 vector θt + ϵit. The N × 1 state θt follows the AR(1)

process θt = θ̄+ρ(θt−1− θ̄)+ηt. The N×1 innovation vector ηt ∼ N(0,Σθ) is i.i.d. across time. The

innovations are independent across attributes. In other words, Σθ is a diagonal matrix.11 Firms

have a noisy prior about the realization of θ0. The transitory N ×1 shock ϵa,i,t ∼ N(0, σ2uI) is i.i.d.

across time and firms and is unlearnable.

Firms use data for product innovation and design. After observing and analyzing their data,

they choose a location in the product space, represented by the N × 1 vector xit. The jth entry

of xit reports the weight firm i’s product places on attribute j. The quality of firm i’s product is

then x′itAit. To have a distinct notion of quantity and product location, we normalize the sum of

weights x to one: x′it1N = 1.

In order to add richness and still see the mechanisms clearly, we simplify. From here on, we

assume that the production technology for goods has an Ak structure (α = 1). To focus on

product choice, we shut down data markets (ι = 1). Since data is no longer traded, we replace

the adjustment cost of data with a quadratic investment cost rk2it to keep the problem concave

(ψ(·) = 0). Finally, the quality of attribute j produced by firm i at time t is the jth entry of the

vector Ait = Ā− (ait− θt− ϵit)⊙ (ait− θt− ϵit), where ⊙ denotes the Hadamard product (element-

by-element multiplication). This quality expression represents the same squared loss function as in

the univariate case.

Firms get data about the optimal attribute production technique, for every attribute they

produce. They get more data about attributes their good loads on more heavily. The effective

11This is without loss of generality. If attributes have correlated innovations, we could construct a new linear
combination of goods that does have independent innovations and call that the attributes. For example, we might
think of attributes as the principal components of the variance of shocks.
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number of data points a firm sees about each attribute is the vector n′it = zikitx
′
it. As before, each

data point has precision σ−2
ϵ .

Equilibrium The equilibrium price of each attribute Pt depends on the aggregate supply of

that attribute. As before, Pt = P̄ Y −γ
t . Yt is an N × 1 vector of the equilibrium prices and supply

of each of the N attributes:

Yt =

∫
i
(xit ⊙Ai,t)ki,tdi

The price of the good that firm i produces is the linear combination of its attributes and the price

of each attribute, x′itPt.

Firms update beliefs with Bayes’ law. The evolution of the stock of knowledge is the same as

in the uni-variate problem, but with a vector-matrix representation:

Ωi,t+1 =
[
ρ2Ω−1

i,t +Σθ

]−1
+ ni,tσ

−2
ϵ .

The sequential problem of a firm can be expressed recursively in terms of firm i’s data and an

approximate sufficient statistic of other firms’ data Ω̄t:

V (Ωit, Ω̄t) = max
xit,kit

x′it(Pt ⊙ E[Ait|I])kit − rk2it +

(
1

1 + r

)
V (Ωt+1, Ω̄t+1).

First, solve for the firm’s joint choice of quantity and product location: x̃it := xitkit, using the

first order condition:

x̃it =
1

2r

[
Pt ⊙ E[Ait|I] +

(
1

1 + r

)
∂V (Ωt+1, Ω̄t+1)

∂Ωi,t+1
σ−2
ϵ

]
.

To recover product design and quantity separately, recognize that if the elements of xit must sum

to one, then kit = x̃′it1 is the sum of the entries of x̃it and the product choice is xit = x̃it/kit.

This problem is separable in attributes because attributes are defined as dimensions with in-

dependent shocks and independent data. Thus, the choice of x is simply N parallel choices of the

single-state model we described at the start.
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8 Conclusion

The economics of transactions data bears some resemblance to technology and some to capital. It

is not identical to either. Data has the diminishing returns of capital, in the long run. But it has

the increasing returns of ideas and technologies, early in the transition path to steady state. Data

generated from economic activity also changes firms’ choices of production over their life-cycle.

Thus, while the accumulation and analysis of data may be the hallmark of the “new economy,” this

new economy has many economic forces at work that are old and familiar.

We conclude with future research possibilities that our framework could enable.

Firm size dispersion. One of the biggest questions in macroeconomics and industrial organiza-

tion is: What is the source of the bifurcation in firm size? As Section 3.1 explains, one possible

source is the accumulation of data. Future work might quantify this effect.

Firm competition. Instead of assuming price taking behavior, one could model a finite number

of firms that consider the price impact of their production decisions. Firms’ data affect the how

they compete (Eeckhout and Veldkamp, 2022). Alternatively, a monopolist may price discriminate

(Farboodi et al., 2024). Placing these mechanisms in a recursive setting like this one, could give us

insights about how data changes firms’ dynamic competitive strategies.

Investment in AI and data processing technology. The fixed data productivity parameter zi

represents the idea that certain industries will spin off more data than others. A firm could invest

in collecting and analyzing the data by choosing its data processing technology, zi, at a cost.

Optimal data policy. A benevolent government might adopt a data policy to promote the growth

of small and mid-size firms. The policy solution to increasing return-growth traps is typically a form

of big push investment. In the context of data investment, the government could collect data itself,

from taxes or reporting requirements, and share it with firms. For example, China shares data

with some firms, in a way that seems to facilitate their growth (Beraja et al., 2020). Alternatively,

the government might facilitate or promote data sharing among firms or act to prevent data from

being exported to foreign firms.

This simple framework enables research on many data-related phenomena. It can be a founda-

tion for thinking about many more.
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Maćkowiak, Bartosz and Mirko Wiederholt, “Optimal sticky prices under rational inatten-

tion,” American Economic Review, 2009, 99 (3), 769–803.
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A Appendix

A.1 Proof of Lemma 1: Belief Updating

The information problem of firm i about its optimal technique θi,t can be expressed as a Kalman filtering system, with
a 2-by-1 observation equation. We start by describing the Kalman system, and show that the sequence of conditional
variances is deterministic. Note that all the variables are firm specific, but since the information problem is solved
firm-by-firm, for brevity we suppress the dependence on firm index i.

Belief updating. At time, t, the firm takes as given its last-period beliefs, µ̂t−1 = E
[
θt−1 | Ii,t−1

]
and Ωt−1 =

V ar
[
θt−1 | Ii,t−1

]−1
.

Next, use the law of motion θt+1 = θ̄ + ρ(θt − θ̄) + ηt+1 and take the expectation on both sides of the equation
to get: E

[
θt | It−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1

]
− θ̄
)
. If we take the variance of both sides of the equation, we get

V
[
θt | It−1

]
= ρ2Ω−1

t−1 + σ2
θ .

Data points are not depreciated like Ω because they contain information directly about next period’s state θt+1.
Here, we introduce a new piece of notation: the number of new data points added to the firm’s data set. ωi,t. For
firms that do not trade data, this is ωi,t = ni,t = zkαi,t. More generally, the number of new data points depends on
the amount of data traded:

ωi,t := ni,t + δi,t(1δi,t>0 + ι1δi,t<0).

The set of signals {st,m}m∈[1:ωi,t] are informationally equivalent to a single average signal s̄t such that s̄t = θt+1+ϵs,t,

where ϵs,t ∼ N (0, σ2
ϵ/ωit).

Of course, at the end of date t, each firm observes a signal derived from observing their own output quality A.
However, we have assumed that this information is included in the nit signals generated by output. We do recognize
that this signal from own quality is not normal. But we assume that the distribution of the other output information
complements this information to make the composite information normally distributed. In earlier versions of the
paper, we modeled the inference from A separately. It complicates the problem, without providing any additional
insight. Results available upon request.

Then, the final step is to use the mean and variance above as prior beliefs and use Bayes law to update them
with the average signal s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2Ω−1

t−1 + σ2
θ

]−1

· E
[
θt | It−1

]
+ ωtσ

−2
ϵ s̄t[

ρ2Ω−1
t−1 + σ2

θ

]−1

+ ωtσ
−2
ϵ

(15)

Ω−1
t = V ar

[
θt | It

]
=
{[
ρ2Ω−1

t−1 + σ2
θ

]−1

+ ωtσ
−2
ϵ

}−1

. (16)

Equations (15) and (16) constitute the Kalman filter describing the firm dynamic information problem. Impor-
tantly, note that Ωt is deterministic.

A.2 Proof of Lemma 2: Making the Problem Recursive

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive problem with one state variable.
Consider the firm sequential problem:

max
kt,at,deltat

∞∑
t=0

(
1

1 + r

)t

E [PtAtk
α
t −Ψ(∆Ωi,t+1)− πtδi,t − rkt|Ii,t]

We can take a first order condition with respect to at and get that at any date t and for any level of kt, the optimal
choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − ϵa,t)
2|Is] = E[V ar[θt + ϵa,t|It]|Is] = E[V ar[θt|It]|Is] + σ2

u,

for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for any information set
that does not contain the realization of θt.
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We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) =

max
kt,at,deltat

E
[
PtAtk

α
t −Ψ(∆Ωi,t+1)− πtδi,t − rkt +

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|Ii,t

]
with ωi,t being the net amount of data being added to the data stock. Taking a first order condition with respect
to the technique choice conditional on It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the
optimal choice of at into At and rewrite the value function as

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) = max
kt,δt

E
[
Ptg
(
(E[θt|Ii,t]− θt − ϵa,t)

2)kαt −Ψ(∆Ωi,t+1)− πtδi,t − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|Ii,t

]
.

Note that ϵa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

E
[
(E[θt|It]− θt − ϵa,t)

2
]
= E

[
(E[θt|Ii,t]− θt)

2
]
+ σ2

u = Ω−1
i,t + σ2

u

E[(E[θt|It] − θt)
2|Ii,t] is the time-t conditional (posterior) variance of θt, and the posterior variance of beliefs is

E[(E[θt|It] − θt)
2] := Ω−1

t . Expected productivity determines the within period expected payoff, which using Equa-
tion (4) depends on posterior variance. The posterior variance Ω−1

t is given by the Kalman system Equation (16),
which depends only on Ωt−1, nt, and other known parameters. It does not depend on the realization of the data.
Thus, {st,m}m∈[1:ωt], yt−1, µ̂t do not appear on the right side of the value function equation; they are only relevant
for determining the optimal action at. Therefore, we can rewrite the value function as:

V (Ωt) = max
kt

PtE[Ai,t|Ii,t]k
α
t −Ψ(∆Ωi,t+1)− πtδi,t − rkt +

(
1

1 + r

)
V (Ωt+1)

]
Next, we do a change of variables and optimize not over the amount of data purchased or sold δi,t, but rather

the closely related, net change in the data stock ωi,t. We also substitute in ni,t = zik
α
i,t and substitute in the optimal

choice of technique ai,t. The problem becomes

V (Ωi,t) = max
ki,t,ωi,t

Ptg
(
Ā− Ω−1

i,t − σ2
u

)
kαi,t − π

(
ωi,t − zik

α
i,t

1ωi,t>ni,t + ι1ωi,t<ni,t

)
− rki,t

−Ψ(∆Ωi,t+1) +

(
1

1 + r

)
V (Ωi,t+1)

where Ωi,t+1 =
[
ρ2Ω−1

i,t + σ2
θ

]−1
+ ωi,tσ

−2
ϵ

Since
∂Ωi,t,t+1

∂ωi,t
= σ−2

ϵ , the first order condition for the optimal ωi,t is

FOC[ωi,t] : −Ψ′(·)σ−2
ϵ − π̃ +

(
1

1 + r

)
V ′(Ωi,t+1)σ

−2
ϵ = 0

where π̃ ≡ π/(1ωi,t>ni,t + ι1ωi,t<ni,t) is the price of data, adjusted for non-rivalry. It is lower for data sales since less
data is lost per unit of data sold.

A.3 Lemma 3, 4, 5: Linearity of Data Depreciation

One property of the model that comes up in a few different places is that the depreciation of knowledge (outflows)
is approximately a linear function of the stock of knowledge Ωi,t. There are a few different ways to establish this
approximation formally. The three results that follow show that the approximation error from a linear function is
small i) when the stock of knowledge is small; ii) when the state is not very volatile; and iii) when the stock of
knowledge is large.

Lemma 3 Linear Data Outflow with Low Knowledge ∃ϵ > 0 such that ∀Ωi,t ∈ Bϵ(0), data outflow is

approximately linear and the approximation error is bounded from above by
ρ4σ2

θϵ
2

(1+ρ2σ2
θ
ϵ)3

. The approximation error is

small when ρ or σθ is small, or when Ωi,t is very close to 0.

39



Proof:
Recall that data outflows (eq 8) for an individual firm are dΩ−

i,t = Ωit −
[
(ρ2Ωit)

−1 + σ2
θ

]−1
= Ωit − Ωitρ

2

Ωitρ2σ
2
θ
+1

. Let

m(Ωit) ≡ Ωitρ
2

Ωitρ2σ
2
θ
+1

be the nonlinear part of data outflows. Its first order Taylor expansion around 0 is m(Ωit) =

m(0) + m′(0)Ωit + o(Ωit), with m′(0) = ρ2. Thus
∂dΩ−

it
∂Ωit

= 1 − m′(Ωit) ≈ 1 − m′(0) for Ωi,t in a small open ball

Bϵ(0), ϵ > 0, around 0. The maximum error in approximating dΩ−
i,t through the first order approximation of m(Ωi,t)

is given by |o(Ωi,t)| =
ρ4σ2

θΩ
2
i,t

(1+ρ2σ2
θ
Ωi,t)3

. Now, |o(Ωi,t)| ≥ 0 and equals 0 if and only if Ωi,t = 0. Thus, ∃ϵ > 0 such that

|o(Ωi,t)| increases with Ωi,t for all Ωi,t ∈ Bϵ(0). Therefore, this error term is bounded above by |o(ϵ)| = ρ4σ2
θϵ

2

(1+ρ2σ2
θ
ϵ)3

for all Ωi,t ∈ Bϵ(0).

Lemma 4 Linear Data Outflow with Small State Innovations ∃ϵσ > 0 such that ∀σθ ∈ Bϵσ (0), data outflows

are approximately linear and the approximation error is bounded from above by
Ω2

i,tρ
4ϵ2σ

1+Ωi,tρ2ϵ2σ
. The approximation error

is small when σθ is close to 0.

Proof:
Recall that data outflows are dΩ−

i,t = Ωit − Ωitρ
2

Ωitρ2σ
2
θ
+1

. The non-linear term m(Ωi,t) ≡ Ωitρ
2

Ωitρ2σ
2
θ
+1

is linear when

σθ = 0. Therefore, ∃ϵσ > 0 such that ∀σθ ∈ Bϵσ (0), m(Ωi,t) is approximately linear. The approximation error

|m(Ωi,t)−ρ2Ωi,t| =
Ω2

i,tρ
4σ2

θ

1+Ωi,tρ2σ
2
θ
is increasing with ϵσ and reaches its maximum value at σθ = ϵσ, with value

Ω2
i,tρ

4ϵ2σ
1+Ωi,tρ2ϵ2σ

.

Lemma 5 Linear Data Outflow with Abundant Knowledge When Ωi,tρ
2 ≫ σ−2

θ , discounted data stock is
very small relative to Ωi,t, so that data outflows are approximately linear. The approximation error is small when ρ
is small or when σθ is sufficiently large.

Proof:

Rearrange data outflows above as dΩ−
i,t = Ωit −

Ωitρ
2σ−2

θ

Ωitρ2+σ−2
θ

. Let m(Ωit) ≡ Ωitρ
2σ−2

θ

Ωitρ2+σ−2
θ

be the nonlinear part of data

outflows. Since (ρ2Ωit)
−1 ≥ 0, we have m(Ωit) ≤ σ−2

θ .
When Ωitρ

2 ≫ σ−2
θ , m(Ωit) ≈ σ−2

θ which is small when σθ is sufficiently large. The constant m implies that
outflow is approximately linear.

For low levels of ρ, (Ωitρ
2)−1 is large, Ω−

it ≈ Ωit − Ωitρ
2 and the approximation error is |m(Ωit) − ρ2Ωit| =

Ω2
itρ

4

σ−2
θ

+Ωitρ2
which is small when ρ is small.

A.4 Deterministic Aggregate Output.

Why is there no expectation operator around aggregate output, profits or prices? Φt is not random at date t because
aggregate quality

∫
Ai,tdi converges to a non-random value, even though each Ai,t for each firm i is a random variable.

The reason is that the random shocks to Ai,t’s are independent and converge, by the central limit theorem.
Recall that quality is Ai,t = g((ait − θt − ϵa,i,t)

2). The ϵa shocks are obviously idiosyncratic and independent.
That is not a cause for concern so we set those aside. However, one might think that shocks to θt would cause Ai,t to
covary across firms and create aggregate shocks to quality and output. The reason this does not happen is that the
action choice ait is firm i’s conditional expectation of θt. So, ait − θt is a forecast error. The forecast errors are what
are independent. What ensures this is the noisy prior assumption made in the model setup. When the prior is noisy,
beliefs about θt are the true θt, plus idiosyncratic signal noise. Thus, forecast errors are idiosyncratic, or independent.
Since any function of an independent random variable or variables is independent, Ai,t = g((ait − θt − ϵa,i,t)

2) is
independent across firms. Since the random component of Ai,t is independent, its integral over an infinite number of
firms, its mean, converges to a constant, by the central limit theorem.

Since we have a continuum of firms, then for any finite types of firms, like the H and L firms later, the quality
of each type of firm also has independent noise. Therefore, the type-specific quality averages AL,t and AH,t, that we
make use of later, will also be non-random variables.
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A.5 Proof of Proposition 1: S-shaped Accumulation of Knowledge

We proceed in two parts: convexity and then concavity.

Part a. Convexity at low levels of Ωt. In this part, we first calculate the derivatives of data infow and outflow
with respect to Ωi,t, combine them to form the derivative of data net flow, and then show that it is positive in given
parameter regions for Ωi,t < Ω̂.

Since all other firms, besides firm i are in steady state, we take the prices πt and Pt as given. Since data is
sufficiently expensive, data purchases are small. We prove this for zero data trade. By continuity, the result holds
for small amounts of traded data.

Recall that data inflow is dΩ+
i,t = zi,tk

α
i,tσ

−2
ϵ and its first derivative is

∂dΩ+
i,t

∂Ωi,t
= αzi,tk

α−1
i,t σ−2

ϵ
∂ki,t

∂Ωi,t
. We then need

to find
∂ki,t

∂Ωi,t
.

Since we assumed that Ψ is small, consider the case where ψ = 0. In this case, the data adjustment term drops
out and the capital first-order condition reduces to

k1−α
i,t =

α

r

(
PtAi,t + ziσ

−2
ϵ

1

1 + r
V ′(Ωi,t+1)

)
. (17)

Differentiating with respect to Ωi,t on both sides yields

∂k1−α
i,t

∂Ωi,t
=
∂k1−α

i,t

∂ki,t
· ∂ki,t
∂Ωi,t

= (1− α)k−α
i,t · ∂ki,t

∂Ωi,t

Differentiating (17) with respect to Ωi,t and using the relationships
∂Ai,t

∂Ωi,t
= Ωi,t

−2 and
∂Ωi,t+1

∂Ωi,t
= ρ2[ρ2 + σ2

θΩi,t]
−2,

yields

∂ki,t
∂Ωi,t

= kαi,t
α

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ϵ

1

1 + r
V ′′(Ωi,t+1)ρ

2[ρ2 + σ2
θΩi,t]

−2

)
.

Therefore,

∂dΩ+
i,t

∂Ωi,t
= zi,tk

2α−1
i,t σ−2

ϵ
α2

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ϵ

1

1 + r
V ′′(Ωi,t+1)ρ

2[ρ2 + σ2
θΩi,t]

−2

)
= zi,tk

2α−1
i,t σ−2

ϵ
α2

(1− α)r
PtΩi,t

−2 + z2i,tk
2α−1
i,t σ−4

ϵ
α2

1− α

1

r(1 + r)
V ′′(Ωi,t+1)ρ

2[ρ2 + σ2
θΩi,t]

−2.

(18)

Next, take the derivative of data outflow dΩ−
i,t = Ωi,t −

[
(ρ2Ωi,t)

−1 + σ2
θ

]−1
with respect to Ωi,t:

∂dΩ−
i,t

∂Ωi,t
= 1− 1

ρ2Ω2
i,t(σ

2
θ + ρ−2Ω−1

i,t )
2
.

The derivatives of net data flow is then

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−

i,t

∂Ωi,t
= zi,tk

2α−1
i,t σ−2

ϵ
α2

(1− α)r
PtΩi,t

−2 + z2i,tk
2α−1
i,t σ−4

ϵ
α2

1− α

1

r(1 + r)
V ′′(Ωi,t+1)ρ

2[ρ2 + σ2
θΩi,t]

−2

+
1

ρ2Ω2
i,t(σ

2
θ + ρ−2Ω−1

i,t )
2
− 1. (19)

For notational convenience, denote the first term in (19) asM1 = zi,tk
2α−1
i,t σ−2

ϵ
α2

(1−α)r
PtΩi,t

−2 > 0, the second term as

M2 = z2i,tk
2α−1
i,t σ−4

ϵ
α2

1−α
1

r(1+r)
V ′′(Ωi,t+1)ρ

2[ρ2 + σ2
θΩ

−2
i,t )]

−2 ≤ 0 and the third term as M3 = 1

ρ2Ω2
i,t(σ

2
θ
+ρ−2Ω−1

i,t )
2
> 0.

Notice thatM3−1 < 0 always holds, and thusM2+M3−1 < 0.
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
> 0 only holds when Pt is sufficiently

large so that M1 dominates. Pt is sufficiently large when P̄ is sufficiently large.
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Assume that V ′′ ∈ [ν, 0). Let h(Ωi,t) ≡M1(P̄ ) +M2(ν). Then

h′(Ωi,t) = (2α− 1)zi,tk
3α−2
i,t α

(
α

r(1− α)

)2

σ−2
ϵ

[
P̄Ωi,t

−2 + zi,tσ
−2
ϵ

1

1 + r
νρ2[ρ2 + σ2

θΩi,t]
−2

]2
+zi,tk

2α−1
i,t

α2

(1− α)r
σ−2
ϵ

[
−2P̄Ω−3

i,t − zi,tσ
−2
ϵ

1

1 + r
νρ2

2σ2
θ

(ρ2 + σ2
θΩi,t)3

]
.

The first term is positive when α > 1
2
, and negative when α < 1

2
. And the second term is positive when P̄ < f(Ωi,t),

and negative when P̄ > f(Ωi,t). To see this, note that

zitk
2α−1
it

α2

(1− α)r
σ−2
ϵ

[
−2P̄Ω−3

it − zitσ
−2
ϵ

1

1 + r
νρ2

2σ2
θ

(ρ2 + σ2
θΩit)

3

]
> 0

if and only if P̄ < f(Ωi,t), where

f(Ωi,t) := −zitσ−2
ϵ

1

1 + r
νρ2Ω3

it
σ2
θ

(ρ2 + σ2
θΩit)

3

Notice by inspection that f ′(Ωi,t) < 0.
Let Ω̂ be the first root of

h(Ωi,t) = 1−M3,

then if α < 1
2
, when Ωi,t < Ω̂ and P̄ > f(Ω̂), we have that h(Ωi,t) is decreasing in Ωi,t and h(Ω) ≥ 1 −M3. Since

ν ≤ V ′′, we then have M1 +M2 ≥ 1−M3, that is
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
> 0. By the same token, if α > 1

2
and P̄ < f(Ωi,t),

then
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
< 0.

Part b. Concavity at high levels of Ωt. In this part, we first calculate limit of the derivatives of net data flow
with respect to Ωi,t is negative when Ωi,t goes to infinity and then prove that when Ωi,t is large enough,

∂dΩi,t

∂Ωi,t
is

negative.

For ρ ≤ 1 and σ2
θ ≥ 0, data outflows are bounded below by zero. But note that outflows are not bounded

above. As the stock of knowledge Ωi,t → ∞, outflows are of O(Ωi,t) and approach infinity. We have that
∂dΩ−

i,t

∂Ωi,t
=

1− (ρΩi,t)
−2(σ2

θ + ρ−2Ω−1
i,t )

−2. It is easy to see that limΩi,t→∞
∂dΩ−

i,t

∂Ωi,t
= 1.

For the derivative of data inflow (18), note that
∂dΩ+

i,t

∂Ωi,t
≤ zi,tk

2α−1
i,t σ−2

ϵ
α2

(1−α)r
PtΩi,t

−2 because 0 < α < 1 and

V ′′ < 0. Thus limΩi,t→∞
∂dΩ+

i,t

∂Ωi,t
≤ 0.

Therefore, limΩi,t→∞
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
≤ −1. Since data outflows and inflows are continuously differentiable,

∃ ˆ̂Ω > 0 such that ∀Ωi,t >
ˆ̂
Ω, we have

∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
< 0, which is the decreasing returns to data when data is

abundant.

A.6 Proof of Proposition 2: New Firms Earn Negative Profits

Without any production or any data purchased, Ω0 = σ−2
θ , because this is the prior variance of the state θ. This is

the case when the firm is entering.
Consider the approximation in Equation (5): Ei[Ai,t] ≈ g

(
Ω−1

i,t + σ2
u

)
+ g′′

(
Ω−1

i,t + σ2
u

)
·
(
Ω−1

i,t + σ2
u

)
. g(v) is

decreasing. When g′′(.) = 0 (the standing assumption of this part of the paper), then the second term is zero. Thus
E[Ai,0] = g(σ2

u + σ2
θ) < 0. The inequality is the assumption stated in the proposition.

If expected quality E[Ai,0] is less than zero, then expected profit is negative, for any positive level of production,
because the steady state price level for goods is positive P ss > 0. This can be seen in (9), noting that adjustment
cost Ψ, capital rental r and data prices π are all non-negative, by assumption or by free disposal.

Of course, a firm can always choose zero production ki,t = 0 and zero data to achieve zero profit. A firm that
chose this every period, would have no profit ever and thus zero firm value.

Thus, the only way to get to positive firm value is to produce. Either the firm first buys data and then produces,
first produces, or does both together. If the firm first buys data, then profit is negative in the period when the
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firm buys the data and is not yet producing. If the firm produces first, profit is negative because expected quality
is negative, as per the argument above. If the firm produces and buys data at the same time, then profit is more
negative because of negative expected quality and the cost of the data purchase. In every scenario, the firm must
incur some negative profit to achieve positive production and positive firm value.

A.7 Proof of Proposition 3: Firms Sell Goods at Zero Price (Data Barter)

Proof: Suppose the price goods is Pt = 0. We want to show that an optimal production/ investment level Kt can be
optimal in this environment. Consider a price of data πt is such that firm i finds it optimal to sell a fraction χ > 0
of its data produced in period t: δi,t = −χni,t. In this case, differentiating the value function (6) with respect to

k yields (πt/ι)χziαk
α−1 = r +

∂Ψ(∆Ωi,t+1)

∂ki,t
. Can this optimality condition hold for positive investment level k? If

k1−α = πtχziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then the firm optimally chooses ki,t > 0, at price Pt = 0. □

A.8 Data Accumulation Can be Purely Concave

Data accumulation is not always S-shaped, only for some parameter values. For others, it can be that data accumu-
lation is purely concave. Instead, the net data flow (the slope) decreases with Ωi,t, right from the start.

Proposition 7 Concavity of Data Inflow ∃ϵ > 0 such that ∀Ωi,t ∈ Bϵ(0), the net data flow decreases with Ωi,t.

We proceed in two steps. In Step 1, we prove that data outflows are approximately linear when Ωi,t is small.
And then in Step 2, we first calculate the derivative of net data flow with respect to Ωi,t and then characterize the
parameter region where it is negative.

Step 1: Data outflows are approximately linear when Ωi,t is small.
This is proven separately in Lemma 3.

Step 2: Characterize the parameter region where the derivative of net data flow with respect to Ωi,t is negative.
A negative least upper bound is sufficient for it be negative.

Recall that the derivative of data inflows with respect to the current stock of knowledge Ωt is
∂dΩ+

i,t

∂Ωi,t
= ρ2

[
ρ2 + σ2

θΩi,t

]−2
> 0 (see the Proof of Proposition 1 for details). Thus

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−

i,t

∂Ωi,t
≈ ρ2

[
ρ2 + σ2

θΩi,t

]−2
+ ρ2 − 1.

Since this derivative increases in ρ2 and decreases in Ωi,t = 0, so its least upper bound 1 is achieved when ρ2 = 1 and

Ωi,t = 0. A non-negative least upper bound requires 0 ≥ σ2
θ . Since σ

2
θ > 0, the supreme of

∂dΩ+
i,t

∂Ωi,t
−

∂dΩ−
i,t

∂Ωi,t
is negative,

so it will always be negative ∀Ωi,t ∈ Bϵ(0).

A.9 Proof of Proposition 4

Part 1 Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I

di = 0, producing infinite data ni,t → ∞ implies finite
firm output yi,t < ∞. Thus My ≡ supi{yi,t}+ 1 exists and is finite. By definition, yi,t < My, ∀i. If the measure of
all firms is also finite, that is ∃0 < N <∞ such that

∫
i
di < N . As a result, the aggregate output is also finite in any

period t+ s, ∀s > 0:

Yt+s =

∫
i

yi,tdi < My

∫
i

di < MyN <∞. (20)

On the other hand, given that the aggregate growth rate of output ln(Yt+1) − ln(Yt) > g > 0, we have that in
period t + s, ∀s > 0, output growth is ln(Yt+s) − ln(Yt) = [ln(Yt+s) − ln(Yt+s−1)] + · · · + [ln(Yt+1)− ln(Yt)] > gs.

This implies that Yt+s > Yte
gs.. Thus for ∀s > s ≡ ⌈ ln(MN)−ln(Yt)

g
⌉,

Yt+s > Yte
gs > Yte

gs > Yte
g

ln(MyN)−ln(Yt)

g =MyN,

which contradicts (20).
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Part 2 We break this part into two sub-parts. Part (a) of the result is that in order to have infinite output in
the limit, an economy will need (ai,t − θt − ϵa,i,t)

2 to approach zero.
Part (b) says: For (ai,t − θt − ϵa,i,t)

2 to approach zero, marginal utility relevant variables θt and ϵa,i,t must be
in the set Ξt−1.

Proof part a: From Proposition Part 1, we know that sustaining aggregate growth above any lower bound g > 0
arises only if a data economy achieves infinite output Yt → ∞ when some firm has infinite data ni,t → ∞. Since Yt

is a finite-valued function, except at 0, infinite output requires that the argument of g, which is (ai,t − θt − ϵa,i,t)
2

becomes arbitrarilty close to zero.

Proof of part b. Suppose not. The optimal action that can achieve infinite output when g is not finite-valued is
a∗t = θt+ϵa,i,t. If the optimal action is not in Ξt−1, then it is not a t-measurable action. There is some unforecastable
error such that E[(ai,t − θt − ϵa,i,t)

2] > z > 0.
If it is not a measurable action, it cannot be chosen with strictly positive probability in a continuous action

space. Since the optimal action must be in Ξt−1, then θt + ϵa,i,t must be in Ξt−1 as well. Since θt and ϵa,i,t are
unconditionally and conditionally independent, for the sum to be perfectly predictable, each element must also be
perfectly predictable. Thus, θt and ϵa,i,t must be in Ξt−1.

A.10 Competitive Equilibrium

In order to prove our welfare result, we begin by characterizing competitive equilibrium. Then we characterize the
solution to the social planner problem. Finally, we compare the two solutions to determine the efficiency of the
equilibrium outcome.

Household problem Let Γt denote the Lagrangian multiplier of the individual problem on his budget
constraint. Individual problem can be written as:

max
ct,mt

+∞∑
t=0

1

(1 + r)t
(u(ct) +mt) with u(ct) = P̄

c1−γ
t

1− γ

s.t. Ptct +mt = Φt ∀t

where Φt is the aggregate profit of all firms:

Φt =

∫
Φitdi = Pt

∫
i

Ai,tk
α
i,tdi−

∫
i

Ψ(∆Ωi,t+1)di− r

∫
i

ki,tdi.

The first order conditions for optimal household choices of consumption of ct and the numeraire good mt are

ct :
1

(1 + r)t
u′(ct) = PtΓt,

mt : Γt =
1

(1 + r)t
,

The first order conditions imply that agents equate their marginal utility of c to its price: Pt = u′(ct).

Firm problem Firms’ sequential optimization problem is

max
{ki,t,δi,t}∞t=0

V (0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t|Ii,t]k

α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
.

Equivalently, in recursive form

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t|Ii,t]k
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t +

V (Ωi,t+1)

1 + r
(21)

s.t. Ωi,t+1 =
(
ρ2Ω−1

i,t + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ϵ (22)

The profits of the firm at time t are Φi,t = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t.
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Market clearing (resource constraint) is given by

retail good : ct =

∫
i

Ai,tk
α
i,tdi,

numeraire good : mt +

∫
i

(
rki,t +Ψ(∆Ωi,t+1)

)
di = 0

data :

∫
i

δi,tdi = 0.

The adjustment cost Ψ is incorporated in the market clearing/resource constraint for the numeraire good so that it
shows up in the planner’s objective function.

Steady state In equilibrium, households (HHs, hereafter) maximize utility by choosing ct and mt, firms
maximize profits by choosing {ki,t, δi,t}i=L,H , and markets clear.

In this section we focus on steady state equilibrium outcomes with two types of firms, i = L,H. HH budget
constraint simplifies to

P eqceq +meq = Φeq

Φeq = P eq
(
λE[Aeq

L ](keqL )α + (1− λ)E[Aeq
H ](keqH )α

)
− r
(
λkeqL + (1− λ)keqH

)
where HH optimization implies P eq = u′(ceq). In steady state, the market clearing conditions simplify to

retail good : ceq = λE[Aeq
L ](keqL )α + (1− λ)E[Aeq

H ](keqH )α,

numeraire good : meq + r
(
λkeqL + (1− λ)keqH

)
= 0

data : λδeqL + (1− λ)δeqH = 0.

Firms’ optimal capital choices There are two equations for first order condition (FOC) with respect to
ki, i = L,H. We will use the sequential problem to get this first order condition. Consider FOC of firm i with respect
to ki,t:

1

(1 + r)t

(
αPtE[Ai,t|Ii,t]k

α−1
i,t − ∂Ψ(∆Ωi,t+1)

∂ki,t
− r

)
+

1

(1 + r)t+1

(
Pt+1

∂E[Ai,t+1|Ii,t]

∂ki,t
kαi,t+1 −

∂Ψ(∆Ωi,t+1)

∂ki,t

)
= 0.

Substitute
∂E[Ai,t+1|Ii,t]

∂ki,t
= αziσ

−2
ϵ kα−1

i,t Ω−2
i,t+1g′.

Multiply both sides by 1
(1+r)t

. Steady state implies a stable level of knowledge (∆Ω = 0). With a quadratic adjustment

cost function that is 0 at 0, Ψ′(0) = 0. Thus, in the steady state
∂Ψ(∆Ωi,t+2)

∂ki,t
=

∂Ψ(∆Ωi,t+1)

∂ki,t
= 0. Imposing this

condition simplifies the firm’s FOC:

αPkα−1
i

(
E[Ai] +

ziσ
−2
ϵ

1 + r
Ω−2

i g′kαi
)
= r. (23)

Firm’s optimal data choices. In the steady state, where the adjustment cost is zero, the firm’s FOC with
respect to data purchases/sales is πt =

1
1+r

V ′(Ωi,t+1)σ
−2
ϵ (1δi,t>0 + ι1δi,t<0), which can be rearranged as

V ′(Ωi,t+1) =
(1 + r)πt

σ−2
ϵ (1δi,t>0 + ι1δi,t<0)

(24)

Next, differentiate the value function of the firm with respect to Ωi,t and use the envelope condition to hold the
choice variables constant:

V ′(Ωi,t) = Ptk
α
i,tΩ

−2
i,t +

1

1 + r
V ′(Ωi,t+1)

∂Ωi,t+1

Ωi,t
, (25)
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Differentiating Equation (22) with respect to Ωi,t,

∂Ωi,t+1

∂Ωi,t
=

ρ2

(ρ2 + σ2
θΩi,t)

2 . (26)

Substitute Equation (24) for V ′(Ωi,t) = V ′(Ωi,t+1) (in steady state) in (25):(
1− 1

1 + r

∂Ωi,t+1

∂Ωi,t

)
V ′(Ωi,t) = Ptk

α
i,tΩ

−2
i,t

Next substitute for V ′(Ωi,t) in Equation (24), using the expression for
∂Ωi,t+1

∂Ωi,t
from Equation (26). Then, multiply

through by 1 + r, and re-arrange. This yields one condition for the optimal capital-knowledge ratio for L firms and
one for H firms: (

1 + r − ρ2

(ρ2 + σ2
θΩi)2

)
π

Pσ−2
ϵ (1δi>0 + ι1δi<0)

= kαi Ω
−2
i i = L,H

If we guess and verify that H firms will sell data and L firms will buy it, then we can simplify (1δi>0 + ι1δi<0), by
equating it to 1 for L firms and ι for H firms. Taking the ratio of the L and H optimality conditions allows us to
cancel out Pt, which delivers Equation (29).

Thus the 6 equilibrium steady state real variables, (Ωeq
L ,Ω

eq
H , k

eq
L , k

eq
H , δ

eq
L , δ

eq
H ) are determined by the following

system of 6 equations. Note that (27) and (28) represent two equations each.

Ωeq
i =

[
ρ2(Ωeq

i )−1 + σ2
θ

]−1
+
(
zi(k

eq
i )α + δeqi (1δ

eq
i >0 + ι1δ

eq
i <0)

)
σ−2
ϵ i = L,H (27)

r = αP̄ (ceq)−γ(keqi )α−1

[
E[Aeq

i ] +
ziσ

−2
ϵ

1 + r
(keqi )α(Ωeq

i )−2

]
i = L,H (28)

(keqL )α/(Ωeq
L )2

ι(keqH )α/(Ωeq
H )2

=
1 + r − ρ2(ρ2 + σ2

θΩ
eq
L )−2

1 + r − ρ2(ρ2 + σ2
θΩ

eq
H )−2

(29)

λδeqL + (1− λ)δeqH = 0. (30)

Equation (27) represents the two law of motions for stock of knowledge, one for each type of firm i = L,H. Equa-
tion (28) comes from (23) with P ′ = u(c) and u′(c) = P̄ c−γ substituted in. It represents the two first order conditions
for capital choice, one for each type of firm i = L,H. (29) is a single equation, the ratio of first order conditions
for the data choice for the two types of firm. Taking the ratio enables us to eliminate the steady state data price
πeq from the system of equations. Finally, Equation (30) is the resource constraint for the total traded data, which
should be zero.

A.11 Social Planner Problem

The planner maximizes HH total discounted utility, taking the resource constraints into account. Thus planner’s
problem can be written as

max
{ki,t,δi,t}i=L,H

∞∑
t=0

1

(1 + r)t

(
u(ct)− r

∫
i

ki,tdi−
∫
i

Ψ(∆Ωi,t+1)di

)

or in recursive form

V P ({Ωi,t}i) = max
{ki,t,δi,t}i

u(ct)− r

∫
i

ki,tdi−
∫
i

Ψ(∆Ωi,t+1)di+
1

1 + r
V P ({Ωi,t+1}i)

s.t. ct =

∫
i

Ai,tk
α
i,tdi ( with multiplier Ξt) ∀t∫

i

δi,tdi = 0 ( with multiplier ηt) ∀t

Ωi,t+1 =
[
ρ2Ω−1

i,t + σ2
θ

]−1
+
(
zi(ki,t)

α + δi,t(1δi,t>0 + ι1δi,t<0)
)
σ−2
ϵ ∀i, t

E[Ai,t] ≈ g
(
Ω−1

i,t + σ2
u

)
∀i, t.

Similar to equilibrium, as the household consumption equal the aggregate production of a continuum of firms, it
is deterministic at each time t.
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Social Planner’s optimal capital choice. The planner’s first order condition with respect to ki,t is

rλi =
∂u(ct)

∂ki,t
+

1

1 + r

∂u(ct+1)

∂ki,t
for i = L,H (31)

Again, focus on two types of firm i = L,H where the firms in each group are identical. Then λi = λ when i = L and
λi = 1− λ when i = H. The planner objective simplifies to

V P (ΩL,t,ΩH,t) = max
{ki,t,δi,t}i=L,H

u(ct)− r
(
λkL,t + (1− λ)kH,t

)
−
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
+

1

1 + r
V P (ΩL,t+1,ΩH,t+1)

Furthermore, ct = λE[AL,t]k
α
L,t + (1− λ)E[AH,t]k

α
H,t. Thus

∂ct
∂ki,t

= αλiE[Ai,t]k
α−1
i,t

∂ct
∂Ωi,t

= λi
∂E[Ai,t]

∂Ωi,t
kαi,t = λiΩ

−2
i,t g′k

α
i,t (32)

In steady state, substitute in the expressions above into (31),

r =αP̄ (copt)−γ(kopti )α−1

[
E[Aopt

i ] +
ziσ

−2
ϵ

1 + r
(kopti )α(Ωopt

i )−2g′
]

i = L,H (33)

This is the same as Equation (28). Thus the capital FOCs are the same between optimum and equilibrium.

Social Planner’s optimal data choice. Let V P
i denote the derivative of the social planner value function with

respect to Ωi,t, i = L,H. To solve for V P
i in steady state, differentiate the value function and apply the envelope

condition to get:

V P
i (Ωi,t,Ω−i,t) =

∂u(ct)

∂Ωi,t
+

1

1 + r
V P ′
i (Ωi,t+1,Ω−i,t+1)

∂Ωi,t+1

∂Ωi,t

The data first order condition reveals that the Lagrange multiplier ηt on the data constraint is

λiηt =
1

1 + r
V P
i (ΩL,t+1,ΩH,t+1)σ

−2
ϵ (1δi,t>0 + ι1δi,t<0). (34)

In steady state, V p
i (Ωi,t,Ω−i,t) = V P

i (Ωi,t+1,Ω−i,t+1). Use this equality and Equations (26) and (34) to replace

for
∂Ωi,t+1

∂Ωi,t
and V P

i (Ωi,t+1,Ω−i,t+1) to get

(
1 + r − ρ2(ρ2 + σ2

θΩi,t)
−2) ηtλi

σ−2
ϵ (1δi,t>0 + ι1δi,t<0)

=
∂u(ct)

∂Ωi,t
i = L,H (35)

which in steady state can be written as(
1 + r − ρ2(ρ2 + σ2

θΩ
opt
i,t )

−2) ηλi

P̄ (copt)−γσ−2
ϵ (1

δ
opt
i >0

+ ι1
δ
opt
i <0

)
= λi(k

opt
i )α(Ωopt

i )−2g′ i = L,H (36)

In steady state, H firms sell data. For them, (1
δ
opt
i >0

+ ι1
δ
opt
i <0

) = ι while L firms buy data. For them, (1
δ
opt
i >0

+

ι1
δ
opt
i <0

) = 1. Next take the ratio of the H and L conditions from (36). (copt)−γ and the Lagrange multiplier η both

drop out of the resulting equation, thus we have

(koptL )α/(Ωopt
L )2

ι(koptH )α/(Ωopt
H )2

=
1 + r − ρ2(ρ2 + σ2

θΩ
opt
L )−2

1 + r − ρ2(ρ2 + σ2
θΩ

opt
H )−2

, (37)

which is the same as Equation (29).
Finally, the planner’s first order conditions with respect to consumption choice tells us that the Lagrange multi-

plier on the consumption resource constraint is Ξt = u′(ct).
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A.12 Proof of Proposition 5: Efficient Equilibrium

The decentralized equilibrium is characterized by Equations (27) for i = L,H, (29), (30), and (28) for i = L,H.
The social planner’s optimum is characterized by Equations (27) for i = L,H and (30) (all for optimum variables),

Equation (33) for i = L,H, and Equation (37).
The resulting capital first order conditions for each form i = L,H, as well as the ratio of the data first order

conditions across two types of firms, for both problems are the same. Thus, the equilibrium is efficient because the
decentralized economy and the social planner end up making the same choices.

A.13 Proof of Proposition 6: Inefficiency with Business Stealing

With business stealing externality, i.e. when b = 1, the only difference is that Ai is determined by Equation (14).
Thus in a symmetric allocation, with 2 types, where all firms of type i are the same, in equilibrium we have

E[Ai,t] =
(
Ā− (Ωi,t)

−1 − σ2
u

)
+
(
λi

(
Ω−1

i,t + σ2
u

)
+ (1− λi)

(
Ω−1

−i,t + σ2
u

) )
= Ā− (1− λi)(Ω

−1
i,t − Ω−1

−i,t).

By construction, aside from the change in the equilibrium steady state value of E[Aeq
i ], the business stealing

externality does not change the firm optimization problem. In particular, it does not affect any of the first order

condition, such as
∂E[Ai,t+1]

∂ki,t
. Thus the equilibrium is still characterized by Equations (27) for i = L,H, (29), (30),

and (28) for i = L,H.
For the optimum, Equations (27) for i = L,H and (30) clearly remains the same. The other optimum equations

change as the quality of every firm is affected by the capital and data choices of each individual firm i.
Planner’s Optimal Data with Business Stealing Observe that the amount of data traded by firm i at time

t, δi,t does not affect the stock of knowledge of firm j at t+ 1, Ωj,t+1 conditional on δj,t. Furthermore, Ωi,t does not
affect Ωj,t+1, j ̸= i. However, ∂ct

∂Ωi,t
is adjusted to reflect data used for business stealing:

∂ct
∂Ωi,t

= λik
α
i,t
∂E[Ai,t]

∂Ωi,t
+ (1− λi)k

α
−i,t

∂E[A−i,t]

∂Ωi,t
= λi(1− λi)k

α
i,tΩ

−2
i,t − (1− λi)

2kα−i,tΩ
−2
i,t

= (1− λi)Ω
−2
i,t

(
λik

α
i,t − (1− λi)k

α
−i,t

)
. (38)

Comparing Equations (32) and (38) clarifies that data with business stealing, data is less useful to increase the
consumption level. The firms do not internalize that selling data ot others decreases their quality. Thus, there is an
over-supply of data on the data market, and too much data trade. With business stealing, Equations (36) and (37)
change to(

1 + r − ρ2

(ρ2 + σ2
θΩ

opt
i )2

)
ηλi

P̄ (copt)−γσ−2
ϵ (1

δ
opt
i >0

+ ι1
δ
opt
i <0

)

= (1− λi)(Ω
opt
i )−2 (λi(k

opt
i )α − (1− λi)(k

opt
−i )

α) ∀i

(
1− λ

λ

)2
(
λ(koptL )α + (1− λ)(koptH )α

)
(Ωopt

L )−2

ι
(
(1− λ)(koptH )α + λ(koptL )α

)
(Ωopt

H )−2
=

1 + r − ρ2(ρ2 + σ2
θΩ

opt
L )−2

1 + r − ρ2(ρ2 + σ2
θΩ

opt
H )−2

, (39)

Equation (39) is different from equilibrium Equation (29) on the left hand side.
This is the first externality. With business stealing, the planner internalizes that the data that a firms sells on

the data market, decreases its own quality. Since firms do to internalize this effect, they sell more data on the data
market than what is efficient. There is excessive data trade.

Planner’s Optimal Capital with Business Stealing The first order condition for the planner’s capital choice
becomes rλi = ∂u(ct)/∂ki,t+

1
1+r

∂u(ct+1)/∂ki,t for i = L,H. Substituting in the same expressions for marginal utility
as before yields

r =αP̄ (kopti )α−1(copt)−γ

[
E[Aopt

i ] +
ziσ

−2
ϵ (1− λi)

1 + r

(
(kopti )α − 1− λi

λi
(kopt−i )

α
)
(Ωopt

i )−2

]
. i = L,H (40)

Equation (40) is different from Equation (28).
This is the second externality. With business stealing, the planner internalizes that an increase in capital of firm

i, increases data production, which decreases the quality of every other firm in the sector. Since firms do to internalize
this effect, they over-invest in capital to get more data than what is efficient. There is excessive production.
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B Model Calibration

The model has 8 parameters: α, γ, ρ, σ2
θ , ψt (a series), P̄ , Ā, and sΩ, whose values are summarized in Table 1.

We calibrate the first five parameters externally, either directly from the literature or using procedures suggested
in previous work. To calibrate the last three parameters, P̄ , Ā and sΩ, we use model equations to match three
moments: 1) mean-squared error between realized and model estimated time-series of real US GDP during 2003-
2018, 2) BEA estimate of firm investment in own-account data assets in 2003, 3) sensitivity of capital investments
with respect to uncertainty, reported by Gorodnichenko et al. (2023). We then use the calibrated model to estimate
the GDP mis-measurement due to data barter during 2003-2018. To do this, we execute the following steps.

Conversion of nominal to real value function Begin with the Bellman equation in which firm i’s
value at time t is the recursive and deterministic result of a firm’s stock of knowledge Ω and their capital choice kt.
We consider an economy where symmetric firms do not trade data and assume that the data adjustment cost takes a
quadratic form, Ψ(Ωi,t+1) = ψt(

Ωi,t+1−Ωi,t

Ωi,t
)2, while the quality function is linear in knowledge, a generalized version

of Equation (13):

g(Ω−1
i,t + σ2

u) = Ā− sΩ(Ω
−1
i,t + σ2

u)

We assume ι = 1 to calibrate the model so that in steady state there is no data trade. Thus, the nominal value
function can be written as:

V (Ωi,t) = max
ki,t

Pt(Ā− sΩ(Ω
−1
i,t + σ2

u))k
α
i,t −Ψ(Ωi,t+1)− rtki,t +

(
1

1 + rt

)
V (Ωi,t+1)

This measures aggregate economic value, across all firms in a given period. Let V̄t denote the real value of data:

V̄t =
Vt

Pt

The Bellman equation for firm value, normalized by the price of goods, is:

V̄ (Ωt) = max
kt

(Ā− sΩ(Ω
−1
i,t + σ2

u))k
α
t − 1

Pt
(ψt(

Ωi,t+1 − Ωi,t

Ωi,t
)2) + rtkt +

(
1

1 + rt

)
V̄ (Ωt+1) (41)

The inflation rate determines the price level of goods as: Pt = P0

t−1∏
τ=0

(1 + ṗτ ), where the initial price is P0 =

P̄ ((Ā− sΩ(Ω
−1
i,0 + σ2

u))k
α
0 )

−γ and where ṗt is the time-t inflation rate.
The first order condition with respect to the capital choice kt is

α(Ā− sΩ(Ω
−1
i,t + σ2

u))k
α−1
t − 1

Pt
(2ψt(

Ωi,t+1 − Ωi,t

Ω2
i,t

)
dΩt+1

dkt
) + rt +

1

1 + rt
V̄ ′(Ωt+1)

dΩt+1

dkt
= 0. (42)

External calibration We calibrate five of the model parameters externality using existing values from the
literature: the capital share of income α, inverse demand elasticity γ, the AR(1) coefficients of the state ρ and σ2

θ ,
and the marginal adjustment cost of data ψt.

A capital share of 40% is used in many papers, including the handbook of macroeconomics. The demand elasticity
parameter γ is the exponent on quantity in the price function. While elasticity estimates can be controversial, for our
purposes, this parameter is not very important. Because it mostly just governs the price level, if we choose a different
elasticity, we end of re-calibrating the price scaling parameter P̄ to achieve the same results. That being said, we
still choose the elasticity parameter with care. This price function is an inverse demand curve. It takes in the supply
Y , which is the quantity demanded if the market clears, and spits out a price. When demand elasticity is high, it
means that small changes in the price deliver large changes in quantity demanded. But in the pricing function, this
implies that large changes in quantity Y deliver small changes in price. Thus, γ is the inverse of price elasticity. In the
micro-founded model of Section 5, this inverse demand comes from a CRRA household utility function. The curvature
in that utility function is also γ. Optimizing households purchase until price is marginal utility. The marginal utility
of the household is c−γ . Thus, the pricing function takes the form p = c−γ . Since markets clear, this is P = Y −γ . In
a dynamic model, this curvature parameter γ is also the inverse of the elasticity of intertemporal substitution (IES).
Guvenen (2006) survey measures of the IES and report that, if one wants to match the macro evidence with one IES
value, then a value that fits the evidence well is 1.07. That implies γ = 1/1.07 = 0.93. We have explored a value ten
times smaller and, after re-calibrating P̄ , obtained results that are visually indistinguishable.

The persistence and innovation variance of the optimal technique process, ρ and σ2
θ , come from fitting an AR(1)

49



process to the productivity process estimated via Fernald (2014)12, for our sample period. The argument is not
that technique and productivity are the same, but rather that a major source of changes in technique might be
technological and thus the processes would have similar properties.

The data adjustment cost parameter ψt follows the estimation procedure in Brynjolfsson et al. (2021). It is
a coefficient from a cross-sectional regression of the market value of a firm on its R&D expenses (with firm fixed
effects and controlling for overhead costs). Brynjolfsson et al. (2021) estimate the adjustment cost annually for their
sample. We extend their estimation through 2018. The argument for why this measures AI costs is that, according
to q-theory, incurring an investment cost should only increase firm value at the margin, if there is some unmeasured
adjustment cost that prevents the firm from investing more. Figure 5 plots the calibrated data adjustment cost series.

Figure 5: Calibrated adjustment cost series ψt using the methodology in Brynjolfsson et al. (2021).

Time-series input data In order to calibrate the remaining parameters of the model, we uese the time-series
for capital, inflation, and firms’ sales forecast error.

The stock of knowledge, Ωt, is the conditional precision of firms’ forecasts about the learnable component of
their optimal technique θt. Their precision is the inverse of the firms’ expected squared forecast error. The technique
uncertainty, Ω1

t also has an unlearnable component σ2
u. Taken together, Ω1

t +σ
2
u, are the only source of uncertainty in

firms’ revenues. Therefore, technique uncertainty Ω1
t +σ2

u is proportional to revenue uncertainty, as measured by the
expected squared error of a firm’s revenue forecast. Since the two types of uncertainty enter additively throughout
the model, we calibrate their sum, but do not need to decompose the two.

To compute firm forecast errors, we follow Kohlhas and Asriyan (2024) and use the data from I/B/E/S Guidance
to measure sales forecast accuracy of US public firms. I/B/E/S Guidance extracts quantitative company expectations
from press releases and transcripts of corporate events. Kohlhas and Asriyan (2024) show that forecast accuracy is
correlated with features of firms that ought to predict their information choices.

We retrieved the annual sales guidance from I/B/E/S Guidance via the WRDS platform on April 20, 2023.
We use both the “Detail” and “Identifiers” tables. The “Detail” table contains financial estimates (e.g., annual or
quarterly sales or earnings) made by firms. The “Identifiers” table contains “ticker” and “cusip” identifiers. We
merge the two tables and only keep US firms (observations with “usfirm”=1). Our sample runs from 2002 to 2021.
We choose 2002 as the starting date because the sales guidance data only became available for more than 10 firms
after 2001. Firms revise and update their annual sales guidance over the course of the fiscal year as realized quarterly
sales data comes in. Since our analysis focuses on firms’ ability to forecast annual sales, we only keep the initial
estimates, which are not affected by realized quarterly data. When the sales forecast is expressed as a range, we take
the mid-point (the average of the lower bound and upper bound). We express all the sales numbers in 2002 dollars,
deflating with the Consumer Price Index for All Urban Consumers (CPIAUCSL) monthly series downloaded from
the FRED.

Average sales forecast increased from 800 million dollars in 2002 to 1600 million dollars in 2018, then declining
to 1000 million dollars in 2021 because of the pandemic and adverse macroeconomic conditions. We compare firms’
sales guidance with realized sales data (retrieved from Compustat North America) and define the squared relative

12The updated dataset is available here: https://www.johnfernald.net/TFP.
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Figure 6: Time series of US public firm forecast errors calculated following Kohlhas and Asriyan
(2024), using data from I/B/E/S Guidance (left) and capital stock as the net stock of nonresidential
fixed assets from BEA’s Fixed Assets Accounts (right).

forecast error as:

Squared Relative Forecast Error =

∣∣∣∣ Forecasted Sales−Actual Sales

(Forecasted Sales + Actual Sales) /2

∣∣∣∣2
We winsorize the relative forecast error at the one percent level on the right tail. In each year, we take the average
of the squared relative forecast error across firms. The time series is shown in Figure 6. We can see that the error
decreases over time. However, there is a sudden upsurge in uncertainty during the pandemic.

We use the capital stock (net stock of nonresidential fixed assets) kt from BEA Fixed Assets Accounts (2003-
2018) to determine the capital rental rate rt that rationalize the observed capital stock. (U.S. Bureau of Economic
Analysis, Table 1.2. Chain-Type Quantity Indexes for Net Stock of Fixed Assets and Consumer Durable Goods,
Line 4.) The reason is that when we report the value of data, as a fraction of GDP, it is a more useful measure if
it doesn’t have additional noise that arises from a capital series in the model that does not correspond to empirical
measures. The model is not a rich enough model to capture capital dynamics well because it is designed to focus on
the dynamics of data. Therefore,

We use inflation, ṗt, to turn the nominal value function into the real one. It is the percent change in FRED’s
Gross Domestic Product: Implicit Price Deflator (GDPDEF).13

One could go one step further and design a series of investment frictions that would produce the rental rate series
rt as an endogenous outcome, that would in turn, explain the observed capital stock. But that adds complication for
no additional insight. Instead, we feed in a price series that ensures capital is not a source of noise that still allows for
meaningful measurement of data value. In Section B.1, we check if the resulting capital rental rates are plausible.14

Calibration using model moments There are three parameters left to estimate using model equations:
The maximum product quality, Ā, the marginal effect of forecast errors on product quality, sΩ, and the multiplier
that determines the level of goods price, P̄ . Since we want a meaningful comparison with real economic data, we
choose a price multiplier that comes close to matching the level of real GDP. Then, we need two moments related
to the effect of data that allow us to pin down the quality function parameters Ā and sΩ. We use estimates from
the BEA and Gorodnichenko et al. (2023) of the aggregate and firm-specific effects of data to jointly calibrate the
parameters. The specific moments we match are as follows.

As our first moment, we use the time-series of real GDP for the 2003-2018 period. We minimize the mean-
squared error between realized and model estimated real GDP. Our model implied real GDP is maxkt g(Ω−1

t +
σ2
a)k

α
t − 1

Pt
Ψ(Ωt+1) − rtkt. We want to minimize the MSE between the modeled and realized real GDP across the

sample period. The fit to annual real GDP is shown in Figure 7.
As our second moment, we match the one-period value of data to the BEA estimate. The BEA estimated that

13Inflation is calculated using the data reported in https://fred.stlouisfed.org/series/GDPDEF.
14Thanks to Kurt Mitman for suggesting this exercise.
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Figure 7: Calibration fit. Real GDP in the model and data.

firm investments in own-account data assets had a flow value of $72bn in 2003 (0.25% of GDP).15 We match this to
the model’s one-period value of data, as a fraction of the model GDP: opv(∆Ωt)/GDP2003 and derived below in (44).
The model’s estimated one-period values of data are shown in the left panel of Figure 4.

The downside of this approach is that is rests on an external cost and markup-based approach to data valuation.
The upside is that it is a value clearly related to data. We calibrate to the 2003 data value and let the model predict
the rest of the evolution of data value. After a couple of decades, the data value is not so sensitive to the starting
value.

As our third and last moment, we match the sensitivity of capital investments with respect to uncertainty.
Gorodnichenko et al. (2023) estimate that a one percentage point increase in macroeconomic uncertainty results in
a 7.5% decrease in firm capital investments. We increase Ω−1 by 1pp and use Equation 42 to solve for k∗t under this

increased uncertainty. We want
k∗
t

kt
to imply a 7.5% decrease in optimal capital investment given a 1pp increase in

uncertainty in 2018, which is close to the date of their survey.
Estimation details. For each guess of Ā, sΩ, and P̄ , we estimate V̄ and r iteratively using Equations (41) and

(42). We start with an initial guess of V̄ which is strictly increasing on Ω and solve for its sequence of implied rental
rates. V̄ and r are continuously reestimated until V̄ converges. We run this estimation procedure on a grid of Ā, sΩ,
and P̄ and select the combination of parameters which optimize the criteria listed above.

Valuing data The reason for doing this calibration is to use the model to estimate the value of data. Specifically,
we compute the value of all data received by all firms, in a year. There are two ways to express the value of data.
One is the value the firm derives from the data, in the current period. The other is to compute the present discounted
value of all the revenue that will be derived from the data they currently own, in all future periods. We report both
in Figure 4.

In order to measure the present value of the data generated in a year, we construct a counter-factual value function
without one year’s worth of new data. We introduce an unexpected loss of the new data that the representative firm
acquires in a single year. If a firm receives no new data in a period, then their stock of knowledge in the next period
is the depreciated current stock: Ω̃t+1 = Ωt

ρ2+σ2
θ
Ωt

= (1− δot )Ωt. This loss of knowledge stock changes firm value going

forward. Let Ṽ denote the firm value function without time-t generated data:

Ṽ (Ωt) =max
kt

g(Ωt)k
α
t − 1

Pt
Ψ(Ω̃t+1)− rtkt +

1

1 + rt
V̄ (Ω̃t+1) (43)

The difference between the actual real value of data, V̄ (Ωt), and this counter-factual value, Ṽ (Ωt), and is the net
present discounted value of the bartered data acquired in period t:

pdv(∆Ωt) =V̄ (Ωt)− Ṽ (Ωt).

Alternatively, the value derived from a year of data in one period (opv) is the same as pdv(∆Ωt) at time t (when the
usable data is the same) and t+1 (when the lost data compromises product quality), but reverts to its original value

15See https://www.bea.gov/system/files/2022-05/BEA-ACM-Data-Assets-Presentation-05132022.pdf.
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in period t+ 2:

opv(∆Ωt) =max
kt

g(Ωt)k
α
t − 1

Pt
(Ψ(Ωt+1) + rtkt)

+ V̄ (Ωt)−
1

1 + rt
[max
kt+1

A(Ω̃t+1)k
α
t+1 −

Ψ(Ωt+2)

Pt+1
+ rt+1kt+1 +

1

1 + rt+1
V̄ (Ωt+2)] (44)

The share of economic value which comes from bartered data goods at time-t is the present discounted value,
pdv(∆Ωt)/GDPt, because this is the value of the data asset transferred from customers to firms.

B.1 Cost of Capital

Over-identifying moment In our calibration exercise, we do not match rt to any sequence of rental rate
or cost of capital. Instead we compare the estimated sequence of r to the 2003-2018 U.S. cost of capital, estimated
by Aswath Damodaran.16 The comparison between model-implied rental rates and measured firm cost of capital is
shown in Figure 9.

Figure 8: Model-implied compared to empirical estimates of real cost of capital.

The results suggest that our simple approach to calibrating capital is not perfect, but is unlikely to grossly
mis-estimate aggregate values.

Model predicted versus empirical growth of stock of knowledge Our calibration strategy is
designed to measure and value data, not to predict it. As such, we set the stock of knowledge for the representative
firm to match the measured forecast errors or an average firm, to value a measured amount of data. However, the
model also predicts the amount of data that a firm should have.

Instead of feeding in an exogenous (empirically observed) data series as we have done in the calibration exercise,
one can start the model off with the same initial conditions and predict the amount of data. Figure 3 in the main
text reports the results of this exercise. In the endogenous data model, the stock of data, which is the precision of
the forecast, rises from 4 to 11, representing a 2-3 fold increase. In the data series used for calibration, the squared
forecast error in Figure B fall from about 9% to 4% in the first 10 periods (2003-2013), representing a doubling of
precision. The similarity between the predicted and measured changes in firm forecast accuracy are one more piece
of evidence that the model is a useful measurement tool.

B.2 The Importance of the Depreciation Rate

One of the contributions of the paper was to derive a depreciation rate that is not constant over time, but varies with
the stock of data. Our last exercise uses the qualitative model to show the importance of this depreciation measure.
According to GAAP accounting rules, intangible assets like data and software should be amortized over 15 years.
That is a 6.6% rate of depreciation per year. Figure 4 shows that using the constant 6.6% depreciation rate, instead
of the model-implied rate results in a valuation for data that is about 50% too high.

16See https://pages.stern.nyu.edu/ adamodar/New Home Page/datafile/wacc.html for detail of data construction.
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Figure 9: Model-implied versus constant annual data depreciation rate.

B.3 Robustness

Constant data adjustment cost Since the estimated adjustment costs vary greatly over this time period,
one might be concerned that these fluctuations drive the results. Therefore, we fix the adjustment cost at the constant
level reported by Brynjolfsson et al. (2021) that best fits the data in a pooled regression of firm market value on
its R&D expenses. This value is ψ = 2.73. Then, we follow the same procedure described above to re-calibrate the
model. Three additional parameters change: P̄ , which governs the price level of goods is 3.77; Ā and sΩ, which
represent the quality function intercept and slope are now 1.23 and −2.52.

Both the one-period and present value of the data are between 50-100% higher in this calibration. The trajectories
are similar. The estimates in the main text are therefore conservative estimates of GDP mis-measurement.

Interest rate (rental rate of capital) Understanding the sensitivity of results to the interest rate is
of particular importance because most of the analysis holds the interest rate fixed. The exercises below allow us to
understand: If we model capital markets and allow r to be determined endogenously, how much might this matter
for the value of data? To answer this, we explore halving the interest rate, doubling the interest rate, and shocking
the interest rate halfway through the simulation. We find that our results are surprisingly insensitive to the interest
rate. This gives us confidence that endogenizing the interest rate would have little impact on our results.

Figure 10: Interest rate insensitivity. Estimated GDP mis-measurement that comes from bartered
data, with a lower (left), higher (middle) and shocked (right) interest rate. All panels report the present
value of data generated each year, pdv(∆Ωt/GDPt). Left panel is half of calibrated rt series, reported in Figure 9.
Middle panel uses 2 rt. The right panel uses rt until 2010, where we double the interest rate and use 2rt thereafter.

Figure 10 shows that the results are not very sensitive to the interest rate. While the value of data in the low
interest rate regime is lower at the start when data is scarce, by 2006, the results are nearly identical. The reason
interest rate sensitivity is high at the start is that most of the value of scarce data is in its ability to generate
future value and future data. This future value is interest-rate sensitive. When current-period data revenue is more
abundant, the interest rate hardly matters. The right panel of Figure 10 shows that even doubling the interest rate
in the middle of the simulation affects data value by less than 1% of GDP.
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One-period data value One of the trickier moments to match to the model is the estimate of the one period
value of data. It is surely mismeasured in some way. That might seem problematic because changing the initial value
of data might shift the present discounted value of data up or down for the entire simulation. However, if we change
the one-period data value and, at the same time, allow the other parameters to be jointly re-estimated, the effect is
modest and fades away after a few years.

To show this, we ran a series of experiments. Initially, a halving of the one-period data value raises the 2003
present value of data by only one-half of one percent. When we calibrate to opv2003 = 0.125%, instead of 0.25%,
we obtain parameter estimates of Ā = 1.24, sΩ = −2.41 and P̄ = 7.34. All three parameters become greater in
magnitude. However, the largest change is in the price of physical goods parameter P̄ . That makes physical goods
more valuable and brings down the one-period value of data, as a fraction of measured gdp. However, in the long
run, the greater value of good raises the value of data, which helps to produce those goods more efficiently, which
raises the value of data.

More importantly, from 2008 on, the present value of data is indistinguishable from the baseline results. The 2018
present value of data is 5.82%, which is within a tenth of a percentage point of the original finding. Exploring the
space of initial data value calibration targets shows that the invariance of longer-run data present value is generally
insensitive to the one-period value calibration target. When we take the initial data value all the way up to 1% of
GDP, the re-calibrated parameters become Ā = 1.31, sΩ = −4.02 and P̄ = 1.79. However, the 2018 pdv of data is
still just below 5%, falling within 1% of the initial estimate.

In short, while we need some initial data value to run the exercise, the importance of this initial value quickly
fades. The long-run present value of data is governed by the sensitivity of investment to data, not by the initial
one-period value.
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