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 Alternative ways of conducting inference and mea-
 surement for long-horizon forecasting are
 explored with an application to dividend yields as
 predictors of stock returns. Monte Carlo analysis

 indicates that the Hansen and Hodrick (1980) pro-
 cedure is biased at long horizons, but the alter-
 natives perform better. These include an estimator

 derived under the null hypothesis as in Richard-

 son and Smith (1991), a reformulation of the
 regression as in Jegadeesh (1990), and a vector
 autoregression (VAR) as in Campbell and Shiller
 (1988), Kandel and Stambaugh (1988), and Camp-
 bell (1991). The statisticalproperties of long-hori-
 zon statistics generated from the VAR indicate

 interesting patterns in expected stock returns.

 In this article, I examine the statistical properties of
 three alternative methods for conducting inference
 and making measurements in long-horizon forecast-

 ing experiments with an application to dividend yields

 as predictors of stock returns. Recent evidence on the
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 The Review of Financial Studies/ v 5 n 3 1992

 predictability of stock returns at horizons of one year or longer has

 generated considerable controversy, and this analysis helps to resolve

 some of the outstanding disagreement.,

 There are two aspects to this debate. First, some researchers ques-

 tion whether there is solid evidence that expected returns vary. The
 poor small sample properties of some statistical methods and the low

 power of tests contribute to this problem. By examining the statistical
 properties of the three methodologies in Monte Carlo experiments,

 I provide evidence on the bias of the various approaches and on their
 power to reject the null of no expected return variability. Second,
 there is substantial debate about why expected returns might vary.

 While there are sound rational economic theories that predict move-

 ments in expected returns, some economists argue that such move-
 ments reflect irrational transitory components in stock prices. Although
 I cannot resolve the debate on the efficiency of the market, I examine

 the link between short-run and long-run predictability of returns and

 demonstrate that a relatively large amount of long-run predictability

 is consistent with only a small amount of short-run predictability.

 Many forecasting studies use ordinary least squares (OLS) regres-
 sion. Consequently, it is my first methodology, and I use the Fama
 and French (1988b) regression as my canonical example. They inves-
 tigate the ability of dividend yields to predict compound returns on
 the value-weighted and equal-weighted NYSE portfolios for intervals
 between one month and four years. In the first section of the article,
 I reexamine the asymptotic distribution theory of the OLS estimator
 in long-horizon forecasting situations. I demonstrate how to formu-
 late an alternative estimator of the standard errors that imposes the
 null hypothesis of no serial correlation in returns but does not impose
 an assumption of conditional homoskedasticity. This approach builds
 on Richardson and Smith (1991).

 The second methodology builds on Jegadeesh (1990), who advo-
 cates a reformulation of the regression in the first methodology in
 order to assess statistical significance of the forecasts. If the slope

 coefficient in an OLS regression is different from zero, the covariance
 of the regressand and the regressor must be nonzero. In the first

 methodology, the regressand is the compound return between time
 t + 1 and time t + k, while the regressor is the dividend yield at time

 t. An alternative way to examine the statistical significance of the

 Many authors have used dividend yields and other variables to examine the predictability of returns.
 Campbell (1991) and Cochrane (1992) attribute a large fraction of the variance of the price-dividend
 ratio to variation in expected returns. Nevertheless, the controversy in this literature is typified by
 the arguments of Jegadeesh (1990); Kim, Nelson, and Startz (1989); Mankiw, Romer, and Shapiro
 (1989); Nelson and Kim (1990); Richardson (1990); and Richardson and Stock (1989). These
 authors argue that the case for predictability of stock returns is weak when one corrects for small
 sample biases in test statistics.
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 Dividend Yields and Expected Stock Returns

 long-horizon forecasts is to estimate the same numerator covariance

 in the slope coefficient but by measuring the regressand as the return

 at time t + 1, while summing the regressor into the past from time t

 to time t - k + 1.

 The third methodology recognizes that long-horizon linear pre-

 dictions can be generated by iterating one-step-ahead linear predic-

 tions from a vector autoregression (VAR) as in Campbell and Shiller

 (1988), Kandel and Stambaugh (1988), and Campbell (1991). The

 VAR completely characterizes the autocovariances of the time series,

 and I explore how it can be used to generate implicit long-horizon

 statistics without actually measuring data over a long horizon.
 Much of the literature on the predictability of stock returns only

 addresses questions of inference. Researchers ask whether a test rejects

 the null hypothesis of constant expected returns using the .05 or .01

 critical values derived from a asymptotic distribution theory. There
 are two problems with this approach. First, proper inference requires
 knowledge of the small sample distribution of the test statistic when

 the null hypothesis is true. If the small sample distribution of the
 test statistic coincides with that predicted by asymptotic distribution
 theory, the asymptotic critical value provides the correct type I error.
 If the statistic is poorly behaved in small samples, correct inference

 requires that an alternative critical value be determined, possibly from

 a Monte Carlo experiment. There is now ample evidence that some

 of the techniques used in the literature do not have good small sample
 properties, especially if the forecast horizon is large relative to the

 sample size. The second point is that examination of the null hypoth-
 esis using the .05 or .01 critical values from the asymptotic distribution
 ignores the trade-off between type I and type II errors. Unfortunately,

 without a well-specified alternative hypothesis we cannot determine
 the power of various tests.

 To address these issues, I examine each of the methodologies in

 Monte Carlo experiments using artificial data generated from a first-
 order VAR of returns, dividend yields, and the Treasury-bill rate rel-

 ative to its recent average, as in Campbell (1991). Much of the article
 is devoted to the issue of inference under the restrictive null hypoth-

 esis that expected returns are a constant. However, since the statistical
 properties of the VAR approach are found to be quite good, I also

 perform a number of different measurements of long-horizon statistics
 as well. The validity of the asymptotic distributions of these test
 statistics is also evaluated with Monte Carlo experiments.

 In Section 1, I examine the OLS methodology with long-horizon

 returns as the regressand. In Section 2, I examine the second meth-
 odology that reorganizes the regression to have only one-step-ahead
 forecasts. The VAR alternative is discussed in Section 3, where implicit
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 The Review of Financial Studies/ v 5 n 3 1992

 long-horizon statistics are derived. I present the estimation of the
 three methodologies, as well as the small sample properties of the
 estimators, in Section 4. In Section 5, I present the estimates and the
 small sample properties of the implicit long-horizon statistics from
 the VAR. The VAR is extended to include term premiums and default
 premiums in Section 6. Addition of these variables does not change
 any of the inference from the three variable VARs. A conclusion is

 provided in Section 7.

 1. Forecasting Long-Horizon Returns with OLS

 In this section, I examine OLS as a forecasting methodology as in the

 analysis of Fama and French (1988b). After describing their meth-
 odology, I examine the asymptotic distribution of the OLS estimator

 and demonstrate an alternative way to estimate the standard errors,
 one that imposes the null hypothesis that stock returns have a constant
 conditional mean.

 Fama and French (1988b) use CRSP monthly data, which begin in
 January 1926. Because dividends are highly seasonal, they construct
 annualized dividend yields by summing the previous 12 months of
 dividends. Consequently, their sample begins in January 1927 and
 ends in December 1986 for 720 observations. Define the one-period

 real return as Rt+1 (Pt+, + dt+1)/Pt, where Pt is end-of-month real
 stock price and dt is real dividends paid during month t. Define the
 annualized dividend yield as DIPt.

 A typical OLS specification of Fama and French (1988b) is the
 following:

 ln(Rt+ kk) = a,kj + 3kj (D/Pt) + Ut+kk, (1)

 where ln(Rt+kk) ln(Rt+1) + * + ln(Rt+k) is the continuously
 compounded k-period rate of return. The error term Ut+k,k is an ele-
 ment of the time t + k information set, and if the data are sampled
 more finely than the compound return interval, it is serially correlated,
 even under the null hypothesis, as discussed in Hansen and Hodrick

 (1980). If all of the monthly data are employed, Ut+kk is correlated
 with k - 1 previous error terms. Under alternative hypotheses in
 which returns have a variable conditional mean, Ut+kk can be arbi-
 trarily serially correlated if dividend yields do not capture all of the
 variation in the conditional mean.

 Since the regressor is only predetermined and not strictly exoge-
 nous, asymptotic distribution theory must be used to generate stan-

 dard errors. Traditional OLS standard errors are appropriate asymp-
 totically if there is no serial correlation of the error term and if it is
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 conditionally homoskedastic. The error term is serially uncorrelated
 when forecasting one month ahead under the null hypothesis, but
 the variability of conditional variances of returns, documented, for
 example, by French, Schwert, and Stambaugh (1987), makes an
 assumption of conditional homoskedasticity inappropriate. To avoid
 inducing serial correlation when forecasting quarterly and annual
 returns, Fama and French sample the data and use the traditional OLS

 standard errors. This gives 240 quarterly and 60 annual nonoverlap-
 ping observations. For the longer horizons of two, three, and four
 years, they use annual observations with overlapping data and modify
 the standard errors.

 The asymptotic distribution of the OLS estimator of 6bky = (ak,X, 0k3)
 can be derived from Hansen's (1982) generalized method of moments
 (GMM) when the data are sampled more finely than the forecasting
 interval and when one allows for conditional heteroskedasticity of

 unknown form. It can be demonstrated that /T((k,l - kl) - N(0,
 Q), where Q = Z-IS0Zo-l', Z0 = E(xtxV) with xlt = (1, DI/P,), and S0 is
 the spectral density evaluated at frequency zero of Wt+k = Ut+k,kXt-
 Under the null hypothesis that returns are not predictable,

 k-1

 0= E(Wt+kW+4k-j), (2)
 j=-k+l

 which may be estimated with

 k-1

 ST CT(O) + z [CT(j) + CT(j)'], (3)
 j=l

 where CT(j) = (1/T) zt-j+l (Wt+kW't+kj) and the estimated residuals
 are used in wt. The estimator of Z0 is ZT= (1/T) 24T lxtx'. The resulting
 standard errors for the coefficients in Equation (1) are the condition-
 ally heteroskedastic counterparts to the standard errors of Hansen
 and Hodrick (1980) and are henceforth labeled standard errors (1A).

 An alternative standard error for specification (1)
 In this section, I develop an alternative estimator of S0 that is valid
 only under the null hypothesis. The new estimator utilizes the fact
 that the values of unconditional expectations of stationary time series
 depend only on the intervals between the observations.2

 Notice that under the null hypothesis, Ut+k,k = (et+, + * + et+ k)
 where et+, is the serially uncorrelated one-step-ahead forecast error.
 Estimates of et+, can be obtained from the residuals of a regression

 2 Lars Hansen suggested this estimator, which is a heteroskedastic counterpart to the covariance
 matrix in Richardson and Smith (1991).
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 of ln(Rt+1) on a constant. To derive the new estimator, examine a
 typical term in Equation (2), E(wt+kwt+ k-), for j > 0, and substitute
 (et+, + * + et+k) for Ut+k,k. The result is

 = E[(: e2+i)xtx+,1. (4)

 With stationary time series, the unconditional expectation on the

 right-hand side of Equation (4) is the sum of k - j unconditional
 expectations, each depending only upon the distance between the

 terms. Hence, rather than summing et+i into the future, one can sum
 xtx't_j into the past:

 E[(~ e+te)xtx =E E[et+l( t-- (5)

 Applying the same logic to all of the terms in Equation (2) implies
 that

 So = E[e2+ (z xt) xt-) (6)

 By estimating the residual series et+1 and forming

 k-1\

 wkt = et+,I( xt-i ) (7)

 the alternative estimator of SO from Equation (6) is

 = T
 -b = wktwk't. (8)

 t=k

 The new standard errors for the coefficients in Equation (1) are hence-
 forth labeled standard errors (1B).

 Two aspects of the estimator Sbtare important, and both are induced
 by the fact that it avoids the summation of autocovariance matrices
 as in Equation (3). First, the estimator is positive definite since it
 estimates the variance of wkt, in contrast to SaT, which is not guaranteed
 to be positive definite. Second, if summation of autocovariance matri-
 ces in finite samples causes poor small sample properties of test
 statistics, the small sample properties of test statistics constructed
 with ST ought to be better.
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 2. A Reorganization of the Long-Horizon Regression

 In this section, I demonstrate how inference about the statistical
 significance of dividend yields as predictors of long-horizon returns
 can be conducted by considering the regression of one-period returns
 on the sum of the dividend yields.3 This specification also avoids the
 summation of autocovariance matrices and may have better small
 sample properties under the null hypothesis than specification (1A).

 Notice that because the compound k-period return is the sum of k

 one-period returns, the numerator of the regression coefficient 3k,1 in
 specification (1) is an estimate of

 cov[ln(Rt+1) + ... + ln(Rt+k); (Dt/Pt)]. (9)

 This covariance is the sum of k covariances of returns and dividend

 yields separated by between one and k periods. With stationary time
 series the covariance (9) is identical to

 cov[ln(Rt+D); (D/Pt) + ... + (Dt-k+l/Pt-k+l)] (10)

 which is the numerator of the slope coefficient in the following regres-
 sion:

 ln(Rt+1) = al,k + 0l,k[(Dt/Pt) + + (Dt-k+l/Pt-k+l)]
 + Ut+ (11)

 The first subscript on the coefficients of specifications (1) and (11)
 indicates how many periods ahead is the realization of the dependent
 variable, and the second subscript indicates how many terms are
 included in the summation on the right-hand side. Under the null

 hypothesis, there is no serial correlation of the error term in Equation
 (11). Therefore, the asymptotic distribution of 61,k = (al,k, 131k) can
 be derived as in Section 1, but only one term (j = 0) is not zero in
 Equation (2). While both specification (1) with standard errors (1A)
 or (1B) and specification (11) are correct asymptotically, specifica-
 tions (1B) and (11) should have better size in small samples if the
 null hypothesis is true because both avoid the summing of autocor-
 relations necessary under specification (1A).

 If the null hypothesis is false, the power of the different specifi-
 cations becomes important. Unfortunately, without specifying a pre-
 cise alternative hypothesis, little can be said about type II errors.
 Fama and French (1988a, 1988b) and Poterba and Summers (1988)

 3Jegadeesh (1990) uses similar logic and the explicit alternative hypothesis that stock prices have
 a first-order autocorrelated transitory component, as proposed by Fama and French (1988a) and
 Poterba and Summers (1988), to derive the test with the best asymptotic slope for investigating
 long-horizon predictability of returns using only lagged returns. He demonstrates that using the
 one-period return as the dependent variable and the sum of k lagged returns as the regressor is a
 superior way to conduct inference. The choice of k depends on the share of the variance of returns
 thought to be due to the transitory components in prices.
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 argue that an interesting alternative hypothesis is that stock prices
 have highly serially correlated temporary components that induce
 negative serial correlation in returns. Fama and French note that
 forecasting increasingly longer compound returns as in specification
 (1) allows these temporary components to manifest themselves

 because the variance of the compound returns grows less rapidly than
 if returns were serially uncorrelated. This makes forecasting ability

 easier to detect at long horizons if the small sample distributions of

 the statistics are well behaved. While estimation of specification (1)
 thus allows certain aspects of alternative hypotheses to arise naturally,
 which could improve power, standard errors (1A) and (1B) are only
 correct under the restrictive null hypothesis of this article because
 they do not allow for possible additional residual serial correlation
 that would be present under alternative hypotheses in which the

 dividend yield does not capture all of the predictable variation in
 stock returns.

 Since returns have predictable components under plausible alter-
 native hypotheses, there is also no reason to expect that the error
 term in Equation (11) will be serially uncorrelated. Because the order
 of the serial correlation under the alternative is unknown, I also
 construct an alternative covariance matrix for specification (11) by
 summing 12 autocovariance matrices with declining weights as in
 Newey and West (1987). Hence, tests of the statistical significance of
 dividend yields as predictors of returns can be conducted under the

 weaker null hypothesis that returns have predictable components.

 3. A Vector-Autoregressive Alternative

 A third way to conduct inference about the ability of dividend yields
 to predict returns at various horizons, and to measure these effects
 in the presence of alternative hypotheses that allow expected returns
 to vary, is to examine the incremental power of dividend yields with
 lagged returns and possibly other information present in the fore-
 casting equation. This vector-autoregressive approach has been used
 by Campbell and Shiller (1988), Kandel and Stambaugh (1988), and
 Campbell (1991), for example.

 Inference about one-step-ahead predictability of returns is con-
 ducted by testing the forecasting ability of the variables in the lagged
 information set. Measurement of long-horizon statistics relies on the
 fact that these statistics, such as the slope coefficient of the long-
 horizon return regression (1) or the variance ratios of Poterba and
 Summers (1988), are functions of the unconditional covariances of
 the data. These covariances are characterized by the parameter esti-
 mates of the VAR.
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 In this section, I demonstrate how to measure long-horizon statis-

 tics by estimating the parameters of the VAR and constructing the

 appropriate statistic that is a nonlinear function of these parameters.

 Standard errors are derived from the asymptotic distribution of the

 coefficients of the VAR.

 Consider a first-order VAR in three variables: the continuously com-

 pounded real return on the CRSP value-weighted portfolio, the div-

 idend yield, and the one-month Treasury-bill return relative to its

 previous 12-month moving average, which is denoted rbt. This spec-
 ification is used by Campbell (1991). Let

 Zt [ln(Rt) - E(ln(Rt)), Dt/Pt - E(DtIP), rbt - E(rbt)]'.

 Since Zt follows a first-order VAR,

 Zt+I = AZt + ut+ , (12)

 where A is a 3 x 3 matrix.4 Although long-horizon statistics require
 long-horizon forecasts, the forecasting problem is simple since the

 error process ut+, is unpredictable. If bt is the information set con-
 sisting of current and past observations on Zt, forecasts at horizon i
 are E(Zt+ i I t) = AiZt.

 Since the series are covariance stationary, Equation (12) implies

 Zt+ = (I - AL) -1 ut+ = A1ut+I_j, (13)
 j=0

 where the three-dimensional identity matrix is I and L is the lag

 operator. The unconditional variance of the Zt process is therefore

 C(O) = AiVAi, (14)
 j=0

 where V= E(ut+1u +t).5
 To allow for compounding of returns over k periods, consider the

 sum of k consecutive Zt's. The variance of this sum is

 k-I

 Vk= kC(O) + 2 (k - j)[C(j) + C(j)'], (15)
 j=l

 where CG() is the jth-order autocovariance of Zt, and CGj) =
 A'C(O). Then, the total variance of the sum of k returns is el'Vkel,
 where el is the indictor vector, el' = (1, 0, 0).

 The slope coefficient in Equation (1) is the covariance of the sum

 I Higher-order systems can be handled in exactly the same way by stacking the VAR into first-order
 companion form as in Campbell and Shiller (1988, 1989).

 5 In actual calculations, I truncate the infinite sum in C(O) at 127.
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 of returns from t + 1 to t + k and the dividend yield at t divided by
 the variance of the dividend yield. The alternative estimator of this
 slope coefficient implied by the VAR is

 [(k) = el[C(1) + + C(k)]e2 (16)
 e2'C(0) e2 ,(6

 where e2 is the indicator vector, e2' = (0, 1, 0).
 The R2 from this implied regression is the ratio of the explained

 variance of the dependent variable to its total variance. Hence,

 R2(k) = fl(k)2 ( el2VCe )' (17)

 where the subscript 1 is used to distinguish this from the R2 implied
 by the VAR. The explanatory power of the VAR at long horizons can
 be assessed by examining the ratio of the explained variance of the
 sum of k returns to the total variance of the sum of k returns. These
 long-horizon R2 coefficients can be calculated as one minus the ratio
 of the innovation variance in the sum of k returns to the total variance
 of the sum of k returns.

 The innovation variance of the sum of k returns is el'Wkel, where
 k

 W =: (-A)-' (I -Ai) V(I -Ai)-(I -A)-' (8
 j=1

 Hence, the implied long-horizon R2 from the VAR is

 R2(k) = 1- el'Wkel (19) 2 ~~el' Vkel

 Implied variance ratio statistics, which are parametric counterparts
 to the estimates in Cochrane (1988), Lo and MacKinlay (1988), and
 Poterba and Summers (1988), can be calculated as

 el'Vkel
 VR(k) = el' el (20)

 If returns were independently and identically distributed, the vari-
 ance of the sum of k returns would be equal to k times the variance
 of one return, and the variance ratio in Equation (20) would be 1. If
 the variance ratio falls below 1, this is evidence of negative serial
 correlation in returns, since the variance of the sum is growing less
 rapidly than an i.i.d. variable.

 Asymptotic distributions for the statistics
 Each of the long-horizon statistics derived above is a function of the
 slope coefficients A and the innovation covariance matrix V of the
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 VAR. Let m0 be the vector of these parameters, and let H(Qq) represent
 the true value of one of these functions. If fl is an estimate of the
 parameters from a sample of size T, the asymptotic distribution theory

 of GMM implies that \/NT(nT - r) N(O, 0). Numerical derivatives
 can be used to calculate the gradient of H evaluated at flT, which is
 denoted VH, and by a Taylor's series approximation, the asymptotic
 distribution of the function is

 V7T[H(GT) - H(o)] N(O, VHOVH'). (21)

 I estimate the nine slope coefficients of the VAR with OLS and the

 six parameters of Vwith the corresponding sample moments of the
 OLS residuals. The asymptotic distribution of XlT is derived by rec-
 ognizing that these estimates coincide with GMM estimation of a just-
 identified system of orthogonality conditions. The first nine orthogo-
 nality conditions are the usual OLS conditions that the residuals are

 orthogonal to the right-hand-side variables, E(u,+1 0 Zt) = 0. The
 last six orthogonality conditions are given by stacking the distinct

 elements of E(u+1u,+1' - V) = 0 into a vector. In constructing the
 GMM weighting matrix, I impose the restriction on the first nine

 orthogonality conditions that u,?1 is serially uncorrelated, but I allow
 a Newey-West (1987) lag of 6 for the orthogonality conditions asso-
 ciated with the parameters of V, since the deviations of the squared
 residuals from the elements of Vcan be arbitrarily serially correlated.

 4. Inference and Measurement with the Alternative Specifications

 In the previous sections, I developed three different approaches to
 conducting inference about the predictability of stock returns. The
 statistics provide measurements that characterize the serial correla-
 tion properties of the returns and their cross-correlations with other
 variables. In this section, I analyze the properties of these alternative

 estimators. In each case, I report estimates of the statistics and their
 asymptotic standard errors, and I provide evidence on the small sam-
 ple distributions of the statistics from Monte Carlo experiments.

 A data appendix (Appendix A) provides a discussion of the con-
 struction of the data series, the NYSE value-weighted real market
 returns, the corresponding annualized dividend yields, and the nom-
 inal Treasury-bill returns. All data are from CRSP.

 4.1. Estimation results for the VAR

 I first present the results of the VAR for two reasons. The test statistics

 allow assessment of the short-run predictability of returns, and the
 point estimates are used to generate artificial data for the Monte Carlo
 simulations. Table 1 shows results for three different sample periods:
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 Table 1
 First-order vector autoregression of returns, dividends yields, and relative Treasury-bill
 rates

 Coefficients on regressors

 Dependent Constant ln(R,) D,/P, rb, x2(3)
 variable (SE) (SE) (SE) (SE) conf. RJ2

 A: 1927:2 to 1987:11, 730 observations

 ln(R,+,) -12.432 0.110 3.941 -4.738 9.867
 (14.098) (0.063) (3.276) (2.360) .980 .020

 D,+,/Pt+l o0.164 -0.0006 0.964 0.023 1480.352
 (0.113) (0.0004) (0.027) (0.011) .999 .938

 rb,+, 0.188 0.0004 -0.041 0.673 156.227
 (0.082) (0.0004) (0.017) (0.063) .999 .456

 B: 1952:1 to 1987:11, 431 observations

 ln(R,+,) -14.654 0.056 5.243 -8.546 22.765
 (10.410) (0.061) (2.590) (2.356) .999 .057

 D,+IIP,,+l 0.073 -0.0002 0.981 0.039 8065.333
 (0.041) (0.0002) (0.011) (0.010) .999 .960

 rb,+l 0.421 0.0007 -0.103 0.748 236.820
 (0.201) (0.0010) (0.058) (0.054) .999 .565

 C: 1927:2 to 1951:12, 299 observations

 ln(R,+,) -23.753 0.139 5.515 11.967 5.314
 (27.647) (0.091) (5.466) (7.906) .850 .019

 D,+ IlPt+l 0.337 -0.001 0.937 -0.025 632.463
 (0.217) (0.0006) (0.044) (0.040) .999 .904

 rbt+ 1 0.079 0.0003 -0.020 0.295 4.948
 (0.154) (0.0005) (0.025) (0.158) .824 .083

 The variables are the continuously compounded real stock return, ln(R,), the corresponding an-
 nualized dividend yield, D/P,, and the one-month Treasury-bill return relative to its previous 12-
 month moving average. Coefficient estimates are OLS, and standard errors are heteroskedasticity
 consistent. The x2(3) tests the joint hypothesis that all three coefficients are zero.

 sample A from February 1927 to November 1987 has 730 observations;
 sample B from January 1952 to November 1987 has 431 observations;
 and sample C from February 1927 to December 1951 has 299 obser-
 vations. Sample A includes all of the available data. Sample B coin-

 cides approximately with one of Campbell's (1991) samples. In rec-
 ognition that the forecasting power of the Treasury-bill rate may
 depend on the monetary policy regime, it allows for the change in
 policy induced by the Treasury-Federal Reserve Accord of 1951. Sam-
 ple B also leaves out the depression years. Kim, Nelson, and Startz
 (1989) argue that the time-series properties of returns before World
 War II are quite different from those of the postwar years. Sample C
 contains the years prior to 1952.

 If returns are not predictable, each of the three coefficients on the
 lagged variables in the return equation must be zero. The test statistic
 of this joint hypothesis has a x2-distribution with three degrees of
 freedom. For Sample B its value is 22.765 with a confidence level
 larger than .999. The evidence for return predictability is less strong
 when the full sample is employed, since the confidence level falls to
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 .980. This decrease occurs because the confidence level for the test

 statistic from sample C is only .850.

 There is very strong evidence that the Treasury-bill return has pre-
 dictive power in sample B, since the confidence level of its test statistic
 is larger than .999. The evidence that dividend yields predict returns
 is slightly less strong since the confidence level of its test statistic is
 .980. These confidence levels are from asymptotic distributions, and

 reliable inference requires that the small sample properties of the

 estimators coincide with the asymptotic distributions. In the next
 section, I examine this issue.

 4.2 Small sample considerations
 Monte Carlo experiments require a data-generating process that pro-
 vides artificial stock returns, dividend yields, and Treasury-bill returns
 whose time-series properties are consistent with those of the actual
 data. I follow Campbell and Shiller (1989) and generate artificial data
 from simulations of the VAR.

 The VAR can be used to generate data that satisfy either the null
 hypothesis of no return predictability or an alternative hypothesis.
 When generating data under the null hypothesis, I simply set the
 coefficients on the lagged variables in the return equation equal to
 zero, and I set the constant in the return equation equal to the uncon-

 ditional mean of returns implied by the original VAR. When gener-
 ating data under the alternative, I set the coefficients at their point
 estimates from Sample B since it has the strongest evidence against
 the null.

 Because the actual data are conditionally heteroskedastic, I esti-
 mate a generalized autoregressive conditionally heteroskedastic
 (GARCH) model of the conditional covariance matrix of the residuals
 of the VAR to generate realistic data.6 Rather than consider several
 methods for different time periods, I work only with sample B to
 estimate the parameters. Estimation of the GARCH model and a com-
 plete description of the data-generating process are in Appendix B.

 One additional aspect of the VAR that may affect inference is the
 assumed stationarity of the regressors. From Table 1 it is clear that
 dividend yields are highly persistent, which might negate the validity
 of the usual asymptotic distribution theory used to generate standard
 errors and test statistics. In order to determine the severity of this
 issue, I also estimated the VAR subject to the constraints that returns
 were not predictable, that dividend yields contain a unit root, and
 that dividend yields do not predict the Treasury-bill return relative
 to its past average. This latter constraint makes sense because the

 6 The GARCH estimation was done with FORTRAN programs written by Tim Bollerslev, who also helped
 me with the estimation. I am very grateful to him for his advice and assistance.
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 Table 2
 Small sample properties of the VAR test statistics

 A: Quantiles of the x2(3) test statistic under the null

 Quantile 1% 2.5% 5% 50% 95% 97.5% 99% Mean SD

 x2(3) 0.115 0.216 0.352 2.366 7.815 9.348 11.34 3.000 2.449
 Emp. 1 0.186 0.283 0.417 2.404 8.160 9.691 11.68 3.088 2.548
 Emp. 2 0.241 0.416 0.626 3.646 10.43 12.17 15.18 4.385 3.215

 B: Percent of observations greater than nominal critical values under the null hypothesis

 Test 1 Test 2 Test 3 Test 4
 Nominal size Nominal size Nominal size Nominal size

 .100 .050 .010 .100 .050 .010 .100 .050 .010 .100 .050 .010

 Emp. 1 .103 .050 .008 .100 .051 .011 .124 .067 .011 .108 .058 .012
 Emp. 2 .097 .049 .005 .314 .200 .067 .119 .065 .012 .235 .134 .038

 C: Simulated type II error rates for tests of 5% size and new critical values

 Test 1 Test 2 Test 3 Test 4

 Err. Crit. Crit. Err. Crit. Crit. Err. Crit. Crit. Err. Crit. Crit.
 rate val. 1 val. 2 rate val. 1 val. 2 rate val. 1 val. 2 rate val. 1 val. 2

 .800 3.838 3.820 .481 3.842 7.815 .126 4.427 4.336 .025 8.160 10.43

 The results are for 2000 Monte Carlo experiments with 421 observations. Tests 1, 2, and 3 are Wald
 Tests of the respective null hypotheses that the lagged return, the dividend yield, or the Treasury-
 bill variable does not forecast returns. Test 4 is the joint test that the three variables do not forecast
 returns. Panel A reports the quantiles of a x2(3) and those of two empirical distributions of Test 4
 under the null hypothesis of no expected return variability. Emp. 1 is a stationary VAR, and Emp.
 2 imposes a unit root in the dividend yield. Each entry in Panel B describes the fraction of the
 experiments under the null in which the value of the test statistic is larger than the critical value
 from a x2-distribution corresponding to the nominal sizes of .10, .05, or .01 with either one degree
 of freedom for Tests 1, 2, and 3 or three degrees of freedom for Test 4. Panel C shows the new .05
 critical values of the empirical distributions and the fractions of the experiments that fail to exceed
 this value for Emp. 1, when the data are generated under the alternative hypothesis that returns
 are serially correlated as in the conditionally heteroskedastic, stationary VAR. The nominal critical
 value of a x2(1) is 3.841 and of a x2(3) is 7.815.

 Treasury-bill variable is stationary and would inherit the assumed unit

 root in the dividend yield if predictability were allowed.
 The small sample properties of the VAR tests of the null hypothesis

 of constant expected returns are presented in Table 2. Each experi-
 ment has 431 observations as in sample B, and 2000 experiments are

 conducted. With Tests 1, 2, and 3, I examine the null hypotheses that
 returns are not predicted by lagged returns, lagged dividend yields,

 and lagged Treasury-bill returns, respectively. With Test 4, I examine
 the joint hypothesis that all three variables do not predict returns.
 The empirical distributions of test statistics under the stationary VAR
 are referred to as Emp. 1 and the empirical distributions of the test
 statistics for the nonstationary VAR are referred to as Emp. 2.

 The small sample properties of the four tests for the stationary VAR
 are very good. The quantiles of the empirical distribution of Test 4
 in Panel A are quite close to those of the x2 (3). The empirical type
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 I error rates of the four tests are presented in Panel B. These are the
 percents of the 2000 experiments conducted under the null hypoth-
 esis in which the values of the test statistics are greater than the
 nominal .10, .05, and .01 critical values. The four tests seem quite
 reliable. For example, only 5.8 percent of the observations are greater
 than the .05 nominal critical value.7 Inclusion of a unit root in the
 dividend yield does cause a noticeable deterioration in the perfor-
 mance of Tests 2 and 4. Most importantly, the new .05 critical value
 for Test 4 rises from 8.16 to 10.43, and the new .01 critical value for
 Test 4 rises from 11.68 to 15.18. Since these are still substantially
 below the sample statistic of 22.77, there is no reason to reassess the
 asymptotic inference discussed in connection with Table 1 above.
 Consequently, I only investigate the small sample properties of the
 statistics under the stationarity assumption.8

 4.3 Results under the alternative hypothesis for VAR tests
 In Panel C in Table 2, I examine the power of the VAR tests using
 the .05 critical values of the empirical distributions from the stationary
 VAR, when the alternative hypothesis is that returns are serially cor-
 related as in the conditionally heteroskedastic VAR. Consistent with
 the findings of Poterba and Summers (1988), Test 1 has very low
 power since the type II error rate of a test with .05 size is 80 percent.
 This finding reflects the fact that returns generally have a large inno-
 vation variance, which makes it difficult to detect serial correlation
 in samples of this size. Tests 2 and 3 have better power since the
 corresponding type II error rates are 48.1 percent and 12.6 percent.
 Test 4, the joint test, is very powerful, with a type II error rate of 2.5
 percent. Before examining the empirical distributions of the long-
 horizon statistics implied by the VAR, I consider the properties of
 the other approaches to inference and measurement developed above.

 4.4 A comparison of specifications (1) and (11)
 The results from estimation of specifications (1) and (11) for five
 horizons between one month and four years are presented in Table
 3. In both cases, two standard errors are reported. Specification (1)
 has standard errors (1A) and (1B), and specification (11) has standard
 errors constructed either with no Newey-West lags or 12 lags. The

 7If p is the nominal size and N is the number of experiments, the large sample standard error for
 the respective significance levels is [p(1 - p)/N]5, which is .0067 for the .10 level, .0049 for the
 .05 level, and .0022 for the .01 level with 2000 experiments. Hence, although the percentages of
 the distributions of the test statistics that are greater than the nominal critical values are quite close
 to the nominal sizes, some of the estimated percentages are slightly more than two standard
 deviations from their nominal levels.

 8 The deterioration of some of the test statistics under the unit root assumption causes me to think
 that the empirical distributions of other statistics reported in this article would probably also be
 affected. A full exploration of this issue is beyond the scope of this project.
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 Table 3
 Comparison of overlapping regressors, specification (1), and summed regressors,
 specification (11)

 Specification (1)

 Lead flk,l /kla z(A) 95% z(B) 95% R2 95%

 1 3.390 2.381 1.023 1.966 1.005 1.935 .005 .oo6
 12 4.501 3.651 2.395 2.275 1.607 1.991 .085 .066
 24 4.337 3.597 4.960 2.677 1.962 1.954 .168 .111
 36 3.844 3.165 4.723 3.247 2.276 1.938 .235 .139
 48 3.616 2.967 4.605 3.825 2.937 1.917 .354 .154

 x2(5) 26.696 18.015

 Specification (11)

 Lag fl,k / Ilk z(0) 95% Z(12) 95% R2 95%

 1 3.390 2.381 1.023 1.966 1.221 2.076 .005 .oo6
 12 5.429 4.365 1.697 2.003 2.034 2.097 .010 .oo6
 24 6.246 5.085 2.069 1.959 2.507 2.104 .011 .oo6
 36 6.355 5.037 2.335 1.981 2.611 2.074 .010 .oo6
 48 6.755 5.235 2.754 1.963 2.707 2.093 .011 .oo6

 x2(5) 10.545 11.497 8.326 13.143

 The fik,l are OLS estimates of Equation (1) with the dependent variable multiplied by (I/k); the
 fl,k are OLS estimates of Equation (11) with the regressor multiplied by (I/k). The adjusted coef-
 ficients fi and ai,l subtract the means of the Monte Carlo distributions from the OLS estimates.
 Z-statistics are unadjusted estimates divided by estimated asymptotic standard errors. The columns
 labeled 95% provide the 95th percentile of the empirical distributions from the Monte Carlo
 experiments conducted under the null hypothesis for the respective asymptotic statistics in the
 adjacent left column. The sample period for specification (1) depends upon the lead of the com-
 pound return. The first sample isJanuary 1929 to December 1987 for 708 observations. Each higher
 compound return loses one observation. For specification (11), the sample period is January 1929
 to December 1987 for 708 observations for k equal to 1 through 24. Twelve and 24 observations
 are lost from the beginning for k equal to 36 and 48. The x2(5) statistics test the joint hypothesis
 that all five slope coefficients are zero. The value for specification (1A) could not be computed.

 ratio of an estimated coefficient to its asymptotic standard error is

 reported as a z-statistic, which is asymptotically distributed as a stan-
 dard normal under the assumption that the specification of the model
 is correct.

 The basic sample period for forecasting one month ahead is from
 January 1929 to December 1987 for 708 observations since specifi-

 cations (1A) and (11) with no lags are the same.9 Then, for specifi-
 cation (1), one observation is lost for each higher-order compound
 return, with the result that the four-year compound return equation
 has 661 observations. For specification (11), the sample period is
 constant until 36 or 48 lags are required in the sum of the dividend
 yields. Then, 12 and 24 observations are lost from the beginning of

 the sample, which allows 696 or 684 observations with 36 or 48 lags
 in the regressor.

 To facilitate interpretation of the slope coefficients, the compound

 return in specification (1) at horizon k is multiplied by (i/k) and for

 9 The sample differs slightly from sample A to allow for lags of the predetermined variable.
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 specification (11) the sum of k dividend yields is multiplied by (1/
 k). The slope coefficients in specification (1) consequently measure
 the response of an annualized expected return over a given horizon
 to a change in the current dividend yield, while those in specification
 (11) measure the change in the annualized one-month return with a
 change in the average dividend yield. A coefficient of 3.6, for example,
 indicates that a 100 basis point increase in the dividend yield implies
 a 360 basis point increase in the expected annualized return.

 Because the regressors in specifications (1) and (11) are only pre-
 determined and not exogenous, estimates of the slope coefficients
 have small sample biases, as Stambaugh (1986) and Mankiw and
 Shapiro (1986) demonstrate. Consequently, I report adjusted esti-
 mates, fla's, which are obtained by subtracting the means of the slope
 coefficients of the Monte Carlo distributions from the OLS estimates.
 Table 3 also reports the R2 for each equation.

 For each statistic, I provide the critical value associated with the
 95th percentile of the empirical distribution of the test statistic from
 the Monte Carlo experiments conducted under the null hypothesis.
 The 2000 simulations were conducted exactly as in the actual esti-
 mation. Since the construction of standard errors (1A) does not guar-
 antee a positive definite covariance matrix, 23 experiments were dis-
 carded when this occurred. The problems arose primarily in summing
 48 lags.

 Comparing a z-statistic to the 95th percentile of its empirical dis-
 tribution provides a one-sided test of the null hypothesis that the
 slope coefficient is zero versus the alternative hypothesis that the
 coefficient is positive. A one-sided test is appropriate because both
 rational and irrational theories of time varying expected returns pre-
 dict that high dividend yields forecast high expected returns. To
 interpret the results, recall that the critical value of the 95th percentile
 of a standard normal is 1.645, and compare this to the critical values
 of the empirical distributions. In all cases, the z-statistics are posi-
 tively biased. Notice, though, that the results in Table 3 support the
 conjecture that the sizes of the test statistics are closer to the desired
 nominal sizes for specifications (1B) and (11) than for specification

 (1A).
 For example, for specification (1A), the .05 critical values of the

 empirical distributions increase from 1.966 at the one-month horizon
 to 3.825 at the 48-month horizon, while the new critical values for
 specification (1B) fall slightly from 1.935 to 1.917. The primary source
 of bias for specification (1A) is the summing of the covariance matri-
 ces.10

 10 Richardson and Stock (1989) explore an alternative asymptotic distribution theory in which the
 ratio of the forecasting interval k to the sample size T limits to a nonzero constant as T goes to
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 There are two sources of potential bias in specification (11): the
 use of lags in the Newey-West (1987) standard errors when there is
 no residual serial correlation and the additional serial correlation in
 the regressor induced by summing the lagged dependent variable.
 The test statistics are slightly more biased, using 12 lags in the Newey-
 West technique; however, since the regressor is already highly serially
 correlated, summing the regressor does not cause a pronounced dete-
 rioration in the test statistics as it might if the regressor were not
 initially very serially correlated.

 Do the results of Table 3 indicate that dividend yields predict stock
 returns? The overall picture suggests the answer is yes. Although the
 results at the one-month horizon do not provide strong evidence
 against the null hypothesis, the overall evidence appears strong. At
 the annual horizon, for specification (1A) the z-statistic of 2.395 is
 above the empirical critical value of 2.275. Similarly, the test statistic
 for specification (11) with 12 lags is 2.034, compared to the empirical
 critical value of 2.097. The values of the R2's for the annual and longer
 horizons are also greater than the 95th percentiles of the empirical
 distributions. At the two-, three-, and four-year horizons, the differ-
 ences in inference are less pronounced across the different specifi-
 cations. In all cases, the point estimates of the test statistics and the
 R2's are well above the respective critical values of the empirical
 distributions.

 Richardson (1990) argues correctly that interpretation of the above
 analysis must take account of the correlation of the different test

 statistics, which requires simultaneous estimation of the five fore-

 casting equations. The test statistic of the joint hypothesis that the
 five slope coefficients are simultaneously zero has a x2-distribution
 with five degrees of freedom. For specification (1B), its value is 26.696,
 which substantially exceeds the .05 critical value of the empirical
 distribution of the test statistic, 18.015. Since the nominal .05 critical
 value for a x2(5) is 11.071, there is a substantial bias in the joint test
 statistic. Simultaneous estimation of the five equations for specifica-
 tion (1A) results in failure of the GMM weighting matrix to be positive
 definite. For specification (11), the values of the test statistics are
 10.545 (0 lags), and 8.326 (12 lags), but there is less bias in these
 joint tests as the .05 empirical values are 11.497 and 13.143, respec-
 tively. Although these latter findings support Richardson's (1990)
 conclusion that evidence for long-horizon predictability of returns is

 infinity. In the context of the Fama and French (1988a) analysis using only return data, Richardson
 and Stock demonstrate that the small sample distributions are closer to this alternative asymptotic
 theory than to the traditional one. When data other than returns are present, derivation of the
 alternative asymptotic distribution depends upon nuisance parameters that characterize the serial
 correlation properties of the other series. I thank Lars Hansen for this insight.
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 not as strong as the individual test statistics indicate, the overall

 picture still appears to be one of return predictability.

 4.5 The power of specifications (1) and (11)

 I next examine how the two specifications perform when the null

 hypothesis is false. The alternative hypothesis allows returns to be

 serially correlated as in the data from the conditionally heteroske-
 dastic VAR for sample B, and I again examined 2000 experiments.

 The probability of a type II error is calculated as the percent of the

 observations in which the test statistics are not larger than the .05
 critical values associated with the empirical distributions calibrated
 under the null hypothesis. After correcting for small sample biases,
 the type II error rates are remarkably similar. For specifications (1A)
 and (1B), the type II error rates are, respectively, 5.1 percent and 5.0
 percent when k = 1, 2.6 percent and 1.4 percent when k = 12, 3.9
 percent and 3.1 percent when k = 24, 9.2 percent and 8.4 percent
 when k = 36, 14.7 percent and 13.9 percent when k = 48, and 2.2
 percent for the x2(5) for specification (1B). For specification (11)
 with no lags or 12 lags, the corresponding type II error rates are 5.1

 percent and 12.3 percent when k = 1, 1.3 percent and 2.1 percent
 when k = 12, 2.9 percent and 3.9 percent when k = 24, 7.7 percent

 and 10.2 percent when k = 36, 14.2 percent and 18.4 percent when
 k = 48, and 14.7 percent and 19.8 percent for the x2(5). Hence,
 although specification (1A) and specification (11) with additional
 Newey-West lags allow aspects of the alternative hypothesis to man-

 ifest themselves in the estimation, the approaches are not more pow-

 erful than the approaches that impose the null hypothesis because
 the statistics are more biased under the null.

 In terms of methodology, the message from this section is clear. If

 conducting inference without inducing a serially correlated depen-
 dent variable is possible, such an alternative procedure is preferred
 since its small sample properties under the null hypothesis are closer
 to the standard asymptotic distribution. However, even in this case,
 the potential for bias appears strong, and Monte Carlo analysis is
 appropriate.

 5. Implied Long-Horizon Statistics

 I next examine estimates of the implied long-horizon statistics, derived
 in Section 3. These are highly nonlinear in the underlying parameters

 of the VAR. I compare their asymptotic distributions to the empirical
 distributions under the null and alternative hypotheses. Given the
 good small sample properties of the coefficient estimates and basic
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 Table 4
 Implied long-horizon statistics and asymptotic standard errors from the first-order VAR
 of returns, dividend yields, and relative Treasury-bill rates

 A: Implied slope coefficients, long-horizon returns on dividend yields

 0(1) #(12) #(24) (3(6) ((48) $(oo)
 Sample (SE) (SE) (SE) (SE) (SE) (SE)

 A 3.375 47.448 77.320 95.058 105.587 120.966
 (2.575) (28.879) (37.226) (36.776) (33.997) (28.253)

 B 6.021 85.763 148.215 187.649 212.375 253.375
 (2.398) (28.117) (38.284) (37.358) (32.942) (30.393)

 C 3.429 48.667 70.835 80.279 84.302 87.287
 (3.869) (40.252) (46.868) (45.210) (42.943) (39.583)

 B: Implied R2(k) coefficients, long-horizon returns on dividend yields

 R2 ( 1 R2(12) R2(24) R2(36) R2(48) R 2(60)

 Sample (SE) (SE) (SE) (SE) (SE) (SE)

 A .005 .070 .107 .122 .127 .125
 (.005) (.056) (.076) (.082) (.085) (.087)

 B .011 .160 .272 .337 .373 .389
 (.005) (.054) (.076) (.081) (.082) (.085)

 C .004 .061 .077 .076 .070 .063
 (.007) (.077) (.088) (.083) (.075) (.069)

 C: Implied R2(k) coefficients, long-horizon returns on all three variables

 R2(1) R2( 12) R2(24) R2(36) R2(48) R 2(60)

 Sample (SE) (SE) (SE) (SE) (SE) (SE)

 A .024 .074 .108 .123 .127 .125
 (.016) (.056) (.075) (.081) (.084) (.086)

 B .062 .187 .278 .339 .373 .389
 (.028) (.056) (.075) (.079) (.081) (.085)

 C .029 .063 .078 .077 .070 .063
 (.029) (.077) (.088) (.083) (.075) (.069)

 D: Implied variance ratios

 VR(12) VR(24) VR(36) VR(48) VR(60)
 Sample (SE) (SE) (SE) (SE) (SE)

 A 1.085 0.904 0.826 0.739 0.673
 (.146) (.191) (.213) (.218) (.213)

 B 1.168 1.025 0.884 0.769 0.678
 (.193) (.215) (.216) (.210) (.200)

 C 1.026 0.855 0.746 0.674 0.625
 (.181) (.235) (.258) (.264) (.263)

 Sample A: 1927:2 to 1987:11, 730 observations; sample B: 1952:1 to 1987:11, 431 observations;
 sample C: 1927:2 to 1951:12, 299 observations. The implied slope coefficient $(k) in Panel A is
 derived in Equation (16), the R2(k) in Panel B is derived in Equation (17), the R2(k) in Panel C
 is derived in Equation (19), and the variance ratio VR(k) in Panel D is derived in Equation (20).

 test statistics of the VAR, the question is whether the nonlinearities
 in estimating the implied long-horizon statistics induce biases.

 In Table 4, I report estimates of the implied long-horizon statistics
 (with their associated asymptotic standard errors in parentheses) for
 the three sample periods. Estimates of A3(k), the implied slope coef-
 ficient in the regression of the sum of k future returns on the current
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 dividend yield, derived in Equation (16), for k equal to 1, 12, 24, 36,
 and 48 months ahead, and for the infinite horizon forecast are con-
 tained in Panel A. The R2(k) in Equation (17) associated with this
 implied regression is reported and the 60-month result is substituted
 for the infinite horizon in Panel B. Estimates of the R2(k) derived in
 Equation (19) are contained in Panel C, and the implied variance
 ratios of Equation (20) are reported in Panel D. The empirical dis-

 tributions of the four statistics are presented in the corresponding
 panels of Table 5 under the null hypothesis of no return predictability
 and in Table 6 under the alternative hypothesis.

 First, consider the point estimates relative to their asymptotic stan-.
 dard errors. Since only in sample B is there strong evidence of pre-
 dictability of returns in the linear VAR, it is not surprising that only

 for this sample are the standard errors of the long-horizon statistics
 small relative to their point estimates. To conserve space, I therefore
 focus only on the relation of the estimated results from sample B to
 the empirical distributions in Tables 5 and 6, which are generated
 from the sample B point estimates.

 The :(k) coefficients in Panel A are not divided by the horizon as
 in Table 1 to allow computation of the infinite horizon forecast. When

 they are divided by the horizon, the results are 7.147 (k = 12), 6.176

 (k = 24), 5.212 (k = 36), and 4.424 (k = 48). These coefficients

 indicate that an increase in the dividend yield of 1 percent implies
 a 7 percent per annum increase in the expected return on stocks over
 the next year and a 4 percent per annum increase over the next four

 years.

 The measures of the predictive power of dividend yields and the
 full VAR for long-horizon returns as estimated by the two R2's reported
 in Panels B and C are essentially the same. Although only 6 percent
 of the return is predictable over the next month, the dynamics of the
 VAR imply that the ratio of the explained variance of the compound
 return to its total variance rises to 19 percent at 12 months, 28 percent

 at 24 months, 34 percent at 36 months, and 39 percent at 48 months.
 The variance ratios in Panel D first rise above 1 before falling below
 1. This indicates that serial correlation in returns is initially positive,

 then negative.

 Now examine the empirical distributions of the implied statistics.
 The results for the first three sets of statistics are quite similar. Com-

 pare the implied :(k), the implied R2(k), and the implied R2(k) to
 the empirical distributions in the corresponding panels of Tables 5
 and 6. In all three cases, the point estimates from the data are larger
 than the 99th percentile of the empirical distributions calculated
 under the null hypothesis in Table 5, except when k = 1, in which
 case they are larger than the 95th percentile. The estimates are also
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 Table 5
 Quantiles of the empirical distributions of the implied long-horizon statistics, under the
 null hypothesis

 A: Implied slope coefficients, long-horizon returns on dividend yields

 Quantile d(1) #(12) #(24) 0(36) ((48) $(w0)

 1% -4.475 -50.004 -89.845 -121.137 -147.026 -250.658
 5% -3.293 -36.052 -63.082 -83.657 -98.373 -148.230
 10% -2.590 -29.005 - 50.068 -65.159 -75.913 -104.830
 50% 0.418 5.037 8.300 10.375 11.575 13.548
 90% 4.928 45.659 67.779 78.036 83.343 89.871
 95% 6.470 60.162 86.998 99.209 105.438 112.218
 99% 9.695 85.410 117.241 132.616 138.253 144.089
 Mean 0.859 7.281 9.101 8.658 7.529 0.589
 SD 3.082 29.533 45.918 55.724 62.615 81.417

 B: Implied R2(k) coefficients, long-horizon returns on dividend yields

 Quantile R2 ( 1 R 2(12) R 2(24) R2(36) R2(48) R2(6o)

 1% .000001 .000004 .000004 .000006 .000007 .000007
 5% .00001 .0001 .0002 .0002 .0002 .00001
 10% .00004 .0004 .0006 .ooo6 .ooo6 .0005
 50% .001 .009 .013 .013 .012 .013
 90% .oo6 .053 .072 .070 .067 .061
 95% .009 .075 .097 .100 .093 .087
 99% .014 .119 .147 .157 .153 .145
 Mean .002 .020 .026 .026 .025 .023
 SD .003 .027 .034 .035 .033 .031

 C: Implied R2(k) coefficients, long-horizon returns on all three variables

 Quantile R2 (1) R 2(12) R 2(24) R2 (36) R 2(48) R 2(60)

 1% .0004 .0003 .0002 .0002 .0001 .000007
 5% .0010 .0011 .0009 .0007 .ooo6 .0005
 10% .0014 .0021 .0018 .0016 .0013 .0011
 50% .oo6 .014 .015 .014 .013 .012
 90% .015 .059 .075 .072 .068 .064
 95% .019 .081 .101 .103 .096 .088
 99% .026 .129 .152 .160 .155 .148
 Mean .007 .024 .028 .028 .026 .024
 SD .oo6 .028 .035 .036 .034 .031

 D: Implied variance ratios

 Quantile VR(12) VR(24) VR(36) VR(48) VR(60)

 1% 0.754 o.640 0.561 0.508 0.473
 5% 0.810 0.709 0.638 0.591 0.564
 10% 0.844 0.757 0.702 0.658 0.629
 50% 0.994 0.982 0.972 0.961 0.959
 90% 1.169 1.273 1.365 1.444 1.510
 95% 1.224 1.375 1.501 1.615 1.719
 99% 1.338 1.548 1.748 1.937 2.088
 Mean 1.003 1.004 1.009 1.016 1.024
 SD 0.127 0.202 0.265 0.317 0.359

 Each experiment has 431 observations, and 2000 experiments were conducted. The row entries
 are the values of the test statistics associated with the quantiles of the empirical distributions. The
 last row reports the sample standard deviation of the empirical distribution. See also notes for
 Table 4.
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 Table 6
 Quantiles of the empirical distributions of the implied long-horizon statistics, under the
 alternative hypothesis

 A: Implied slope coefficients, long-horizon returns on dividend yields

 Quantile (1) 3(12) 3(24) (36) 3(48) (X00)

 1% 2.429 38.978 74.340 99.056 118.357 177.628
 5% 3.450 52.068 95.979 128.505 152.206 204.798
 10% 4.019 60.571 108.679 143.354 168.384 215.057
 50% 6.892 92.417 155.490 192.494 214.478 250.177
 90% 11.132 132.267 201.892 234.928 251.323 288.660
 95% 12.420 146.333 216.167 246.091 260.843 299.948
 99% 15.212 169.995 240.729 265.188 281.410 330.405
 Mean 7.290 94.653 155.311 190.399 211.404 251.053
 SD 2.825 28.569 36.521 35.776 33.292 30.622

 B: Implied R2(k) coefficients, long-horizon returns on dividend yields

 Quantile R2 ( 1 R 2(12) R 2(24) R 2(36) R 2(48) R 2(60)

 1% .003 .053 .097 .123 .136 .145
 5% .005 .083 .150 .191 .215 .226
 10% .007 .102 .177 .225 .248 .258
 50% .013 .173 .283 .340 .367 .375
 90% .023 .266 .396 .451 .475 .485
 95% .027 .291 .425 .480 .510 .522
 99% .034 .345 .481 .534 .568 .588
 Mean .014 .179 .285 .339 .364 .373
 SD .007 .064 .085 .089 .091 .091

 C: Implied R2(k) coefficients, long-horizon returns on all three variables

 Quantile R2 ( 1 R 2(12) R 2(24) R 2(36) R 2(48) R 2(60)

 1% .016 .068 .101 .126 .138 .146
 5% .024 .104 .157 .193 .215 .227
 10% .029 .123 .183 .227 .249 .259
 50% .055 .196 .288 .341 .367 .375
 90% .100 .284 .398 .452 .475 .485
 95% .125 .312 .427 .481 .510 .522
 99% .210 .377 .483 .536 .568 .587
 Mean .063 .201 .290 .340 .367 .364
 SD .042 .065 .084 .089 .090 .091

 D: Implied variance ratios

 Quantile VR(12) VR(24) VR(36) VR(48) VR(60)

 1% 0.829 0.629 0.498 0.408 0.357
 5% 0.897 0.715 0.575 0.480 0.416
 10% 0.949 0.770 0.627 0.526 0.456
 50% 1.100 0.949 0.820 0.710 0.625
 90% 1.340 1.191 1.051 0.937 0.850
 95% 1.441 1.308 1.156 1.029 0.931
 99% 1.777 1.654 1.438 1.307 1.191
 Mean 1.133 0.977 0.837 0.729 0.645
 SD 0.203 0.212 0.198 0.184 0.171

 Each experiment has 431 observations, and 2000 experiments were conducted. The row entries
 are the values of the test statistics associated with the quantiles of the empirical distribution. The
 last row reports the sample standard deviation of the empirical distribution. See also notes for
 Table 4.
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 Table 7
 First-order vector autoregression of returns, dividend yields, relative Treasury-bill rates,
 term premiums, and default premiums

 Coefficients on regressors

 Depen-

 dent ln(R,) DIP, rb, ytp, ydp, x2(5)
 variable (SE) (SE) (SE) (SE) (SE) conf. R2

 A: 1927:2 to 1987:11, 730 observations

 ln(R,+1) 0.109 3.880 -4.582 0.404 0.012 11.426
 (0.062) (2.434) (2.729) (2.403) (6.526) .956 .017

 D,+I/P,+l -0.001 0.972 0.022 0.007 -0.031 5183.405
 (0.001) (0.017) (0.012) (0.010) (0.043) .999 .938

 rb,+, 0.0003 -0.021 0.676 0.034 -0.083 220.871
 (0.001) (0.015) (0.071) (0.050) (0.042) .999 .456

 ytp,+i -0.0001 0.008 -0.504 0.639 0.109 1447.686
 (0.0003) (0.013) (0.049) (0.041) (0.031) .999 .803

 ydpl+l -0.001 0.008 -0.007 -0.005 0.969 4036.008
 (0.0002) (0.007) (0.009) (0.005) (0.024) .999 .960

 B: 1952:1 to 1987:11, 431 observations

 ln(R,+1) 0.058 6.180 -8.768 0.518 -4.022 24.786
 (0.061) (2.826) (3.176) (2.947) (5.889) .999 .054

 D,+I/P,+I -0.0002 0.972 0.043 0.009 o.oo6 8548.105
 (0.0002) (0.012) (0.012) (0.011) (0.024) .999 .960

 rb,+, 0.0007 -0.060 0.750 0.048 -0.174 311.224
 (0.001) (0.044) (0.065) (0.047) (0.133) .999 .568

 ytp,+1 -0.0005 -0.015 -0.503 0.607 -0.086 757.208
 (0.001) (0.028) (0.038) (0.037) (0.086) .999 .951

 ydp,+1 -0.0002 0.024 0.006 -0.006 0.963 4330.088
 (0.0001) (0.006) (0.009) (0.006) (0.018) .999 .951

 C: 1927:2 to 1951:12, 299 observations
 ln(R,+1) 0.138 4.697 12.431 -0.872 3.329 5.822

 (0.088) (4.355) (7.981) (5.153) (8.826) .676 .013
 D,+1/P,+l -0.001 0.950 -0.032 0.001 -0.001 1910.541

 (0.001) (0.032) (0.038) (0.023) (0.058) .999 .904
 rb,+, 0.0003 -0.002 0.285 0.052 -0.086 13.312

 (0.001) (0.025) (0.163) (0.097) (0.061) .979 .088
 ytp,+i 0.0002 -0.001 -0.724 0.685 0.110 1001.785

 (0.0003) (0.018) (0.113) (0.092) (0.053) .999 .783
 ydpl+l -0.001 -0.006 -0.039 -0.002 0.967 4426.364

 (0.0003) (0.013) (0.022) (0.013) (0.032) .999 .958

 Exclusion tests

 Equation Test Sample A Sample B Sample C

 ln(R,+1) x2(2) 0.030 0.556 0.143
 conf. .015 .243 .069

 D,+l/Pt+I x2(2) 0.744 0.606 1.008
 conf. .311 .261 .396

 rb,+1 x2(2) 4.324 2.301 3.521
 conf. .885 .684 .828

 ytp+ I x2(3) 107.462 185.729 41.401
 conf. .999 .999 .999

 ydpt+l x2(3) 22.117 21.256 28.392
 conf. .999 .999 .999

 See Table 1 for definitions of ln(R,), D,P,, and rb,. The term premium, ytp,, is the difference
 between the yield on long-term government bonds and the one-month Treasury bills. The default
 premium, ydp,, is the yield differential between BAA and AAA corporate bonds. Exclusion tests
 examine the restrictions that ytp, and ydp, do not forecast ln(R,+1), D,+1/P,+I, and rb,+1, and that
 the latter three variables at time t do not forecast the former two at time t + 1.
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 very close to the means of the empirical distributions calculated under
 the alternative hypothesis in Table 6. The sample standard deviations
 of the empirical distributions calculated under the alternative hypoth-
 esis are also very close to the asymptotic standard errors reported in
 Table 4. The conclusion is that the asymptotic distributions of these

 long-horizon statistics accord very well with the distributions cal-
 culated under the alternative hypothesis demonstrating that the non-
 linearities do not induce bad small sample biases.

 The point estimates of the implied variance ratios are not as far
 into the tails of the empirical distributions calculated under the null
 hypothesis, but they are relatively close to the means of the distri-

 butions calculated under the alternative hypothesis. These results
 suggest that implied variance ratios are not a powerful way of testing
 the null hypothesis.

 6. Adding Term Premiums and Default Premiums to the VAR

 Fama and French (1989) conduct additional forecasting analyses sim-
 ilar to their earlier paper for several portfolios of stock and bond
 returns. As in Keim and Stambaugh (1986), they use the slope of the
 yield curve and the default premium on low-grade bonds relative to
 high-grade bonds as well as dividend yields. In Table 7, I report the
 results of adding a term premium and a default premium to the VAR

 of this article. The term premium ytp, is the difference between the
 yield on long-term government bonds and the one-month Treasury-

 bill rate, and the default premium ydpt is the difference between the
 yield on BAA corporate bonds and AAA corporate bonds."1

 The exclusion tests in Table 7 very strongly indicate that the two
 premiums provide no additional explanatory power for the market
 return, the dividend yield, and the relative Treasury-bill rate com-
 pared to forecasts made with lags of these variables. The tests also
 very strongly indicate that the term premium and the default premium
 can be predicted by the first three variables. Consequently, in regres-
 sions of stock returns on the two premiums, such as those reported
 in Table 3 of Fama and French (1989), the two variables do have
 explanatory power at long horizons if other variables are excluded.
 Given these findings, there is little reason to recompute the long-
 horizon statistics with an expanded VAR.

 7. Conclusions

 In this article, I explore three alternative techniques for conducting
 inference and measurement in long-horizon forecasting environ-

 II thank Rob Stambaugh for supplying me with data on yields. I updated his series using the Federal
 Reserve Bulletin, the original source.
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 ments. Procedures for constructing standard errors under the null
 hypothesis that do not involve summing large numbers of autoco-
 variances have better size than ones constructed under the alternative.
 Monte Carlo experiments indicate that substantial bias can arise in
 test statistics in long-horizon forecasting. After correcting for such
 biases, inference across the different procedures is quite similar. Such
 procedures are also quite powerful. Since the vector autoregressive
 alternative has correct size and supplies long-horizon statistics that
 appear to be unbiased measurements, it emerges as the preferred
 technique. One caveat to this statement is that the order of the VAR
 is taken as known in the Monte Carlo analysis.

 The application investigates the predictability of stock returns at
 five horizons, from one month to four years. The VAR tests provide
 strong evidence of the predictive power of one-month-ahead returns
 at least for the sample from 1952 to 1987. The VAR analysis provides
 an alternative way to calculate various long-horizon statistics, includ-
 ing implied slope coefficients, implied R2's, and variance ratios. These
 implied long-horizon statistics indicate very interesting dynamic pat-
 terns in the data. The estimates and Monte Carlo results support the
 conclusion that changes in dividend yields forecast significant per-
 sistent changes in expected stock returns.

 Finding the economic explanation that is consistent with the rejec-
 tion of the null hypothesis of no expected return variability and the
 long-horizon predictability of returns is a challenging area for future
 research. Kandel and Stambaugh (1990) and Cecchetti, Lam, and Mark
 (1990) explore whether representative agent rational expectations
 models can be calibrated to produce long-horizon variance ratios and
 R2's analogous to those reported in Fama and French (1988a) and
 Poterba and Summers (1988). While their success demonstrates that
 such models cannot be dismissed out of hand, the arguments of
 Shleifer and Summers (1990) suggest that models with differential
 information may be required to reconcile the patterns in the data that
 are reported here.

 Appendix A: Data

 The data are from the Center for Research in Security Prices (CRSP)
 of the University of Chicago's Graduate School of Business. The four
 basic monthly series are the NYSE value-weighted with-dividend
 nominal return, RNt, the value-weighted without-dividend nominal
 return, RXt, the one-month Treasury-bill return, it, and the CPI infla-
 tion rate, 7t. The sample period is January 1926 to December 1987
 for 744 observations.
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 Since RXt= (P, - P,,)Pt-,, a normalized nominal value-weighted
 price series is produced by setting the price in December 1925 equal

 to 1 and recursively setting Pt = (1 + RX))Pt-,. A normalized nominal
 divided series, dt, is obtained by recognizing that dt== (RNt - RX))Pt-,.

 The annualized dividend for month t is Dt = 21j._ dt_jIjk=j (1 +
 it-k+I), which sums the future values of the previous 11 months of
 dividends using the nominal interest rate factors obtained from the

 one-month Treasury-bill returns with the current dividend. The first
 observation is therefore December 1926, and the last observation is
 December 1987, for 733 observations.

 A nominal goods price level, Pgt, is constructed from the monthly

 CPI inflation rates. Since rt= (Pgt - Pgt-)/Pgt-i, a normalized nominal
 goods price level series is produced by setting the price in December

 1925 equal to 1 and recursively setting Pgt = (1 + -xt)Pgti,.
 Real returns are constructed by dividing the nominal value-weighted

 price and divided for month t by the price level for that month and

 forming the return as real price plus real dividend divided by the

 previous month's real price.

 Appendix B: The GARCH Model

 In this appendix, I describe estimation of the GARCH model and its
 use as the data-generating process for the Monte Carlo simulations.
 Since there are six distinct elements in the conditional covariance
 matrix of the VAR, many GARCH models are possible. To avoid highly
 parameterized systems, the only model I explored is the constant
 conditional correlation model discussed in Bollerslev (1990). Let Ht
 - E,(ut+l u' 1) be the conditional covariance matrix of the VAR in
 Equation (11) with typical element hijt. Model each of the three
 conditional variances as a first-order ARMA process:

 h,i =oAi,+ f3ibit_j + ai i = 1,2,3. (B1)

 To model the covariances of Ht, estimate the nine parameters of
 Equation (B1) simultaneously with three constant correlation coef-

 ficients, P12, P13, and P23, using maximum likelihood.
 One problem with the estimation is induced by the large increase

 in the variance of the Treasury-bill return during the period from
 October 1979 to October 1982. Attempts to estimate a GARCH model
 that do not allow for an increase in the unconditional variance of the
 process during this period result in parameter estimates for which
 the conditional variance is an integrated process. I therefore first
 normalized the data for the Treasury-bill rate by dividing the error
 terms from this subperiod by their standard deviation estimated for
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 Table 8
 Constant correlation GARCH model of the conditional variance matrix for the VAR of
 returns, dividend yields, and relative Treasury-bill rates

 h,,, = w, + flh,,,tl + a,u2,_, i= 1,2,3

 Condi- Diagnostic tests
 tional a, ,, ,
 variance (SE) (SE) (SE) Type Q(10) Q(15) Q(20)

 hll,t 117.714 0.908 0.046 A 9.513 12.563 17.155
 (54.563) (0.031) (0.016) B 5.580 8.657 9.663

 h22t .0.001 0.923 0.062 A 11.069 17.477 25.760
 (0.0002) (0.013) (0.011) B 10.997 12.830 16.363

 h33, 0.027 0.784 0.197 A 75.162 88.591 97.833
 (0.014) (0.049) (0.049) B 7.969 12.420 15.084

 P12 P13 P23 C 7.099 9.490 11.161
 (SE) (SE) (SE) D 7.969 12.420 15.087
 -0.946 -0.072 0.052 E 14.888 16.815 19.399
 (0.005) (0.048) (0.047)

 Sample: 1952:1 to 1987:11, 431 observations. The conditional variance models are estimated si-
 multaneously with the constant correlation coefficients. Conditional variances 1, 2, and 3 are in-
 novation variances in the market return, the dividend yield, and the relative Treasury-bill return.
 Diagnostic test A refers to the level of the residual divided by the conditional standard deviation;
 B refers to the squared residual divided by the conditional variance; while C, D, and E refer to the
 product of two residuals divided by the product of their conditional standard deviations for (1, 2),
 (1, 3), and (2, 3), respectively. The .05 critical values of the X2-statistics with 10, 15, and 20 degrees
 of freedom are 18.307, 24.996, and 31.410, respectively.

 this period, by dividing the remaining data by their standard deviation

 estimated exclusive of this period, and by multiplying the entire series
 by the standard deviation for the whole sample period.

 The parameter estimates are reported in Table 8. Most of the esti-

 mates are quite significantly different from zero. All three a, coeffi-
 cients have confidence levels above .997, and the three fi coefficients
 have confidence levels above .999. The contemporaneous correlation
 coefficient between the dividend yield and the equity return is highly
 significant as it should be, but the contemporaneous correlation

 between the relative Treasury-bill return and the equity return is not
 highly significant.

 Also contained in Table 8 are diagnostic tests for serial correlation

 that examine either the residuals divided by their conditional stan-

 dard deviations, the squared residuals divided by their conditional
 variances, or the cross-products of residuals divided by the cross-
 products of the respective standard deviations. In all cases except the

 normalized Treasury-bill rate, there is no evidence of additional serial
 correlation. The large values of the test statistics for the latter series
 indicate that the VAR may be misspecified.

 To generate artificial data at each step in the Monte Carlo experi-

 ments, three standardized normal random variables, et+i, are gener-
 ated using the Gauss command RNDNS. The conditionally heteroske-
 dastic innovations of the VAR are formed by taking the Cholesky
 decomposition of the conditional variance matrix, C'tCt = Ht, and
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 setting ut+1 = CtEt+1. These residuals are fed into the VAR to generate
 the data, and they are used to update the conditional variance for the
 next step using Equation (Bi). The initial residuals are generated
 from a normal distribution with an unconditional variance implied

 by the GARCH coefficients. In all simulations, the first 100 observa-
 tions are discarded to reduce the influence of starting values.
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