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Abstract

How should an investor value financial data? The answer is complicated because

it depends on the characteristics of all investors. We develop a sufficient statistics

approach that uses equilibrium asset return moments to summarize all relevant infor-

mation about others’ characteristics. It can value data that is public or private, about

one or many assets, relevant for dividends or for sentiment. While different data types,

of course, have different valuations, heterogeneous investors also value the same data

very differently, which suggests a low price elasticity for data demand. Heterogeneous

investors’ data valuations are also affected very differentially by market illiquidity.
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Investment management firms are gradually transforming themselves from users of small

data and simple asset pricing models to users of big data and computer-generated statistical

models. Amidst this transformation, investors’ strategic focus is shifting from the choice

of pricing model to the choice of data they acquire. A key question for modern financial

firms is: How much should they be willing to pay for a stream of financial data? This paper

devises and puts to use a methodology to estimate this dollar value, based the investor’s own

characteristics, without needing to know the characteristics of others.

From information-based theories, we know many qualitative features of firms that make

data valuable – large stocks, growth stocks, stocks with risky payoffs, assets that are sensitive

to news, assets that others are uninformed about. After all, data is simply a stream of

digitized information. But investors differ. An investor with a large portfolio values data

more, while an investor who invests in a restricted set of assets values data less. Investors

with different investment styles value data differently. An investor with lots of other data

is less willing to pay for additional data, while an investor who trades more frequently

might value data more or less. The magnitudes of all these effects depend on the asset

market equilibrium, which in turn depends on the characteristics of every other investor. To

make matters more complex, we also know that illiquidity or price impact of a trade make

information less valuable (Kacperczyk, Nosal, and Sundaresan, 2021), but how this interacts

with investor heterogeneity, quantitatively, is less understood.

Our simple procedure to estimate the value of any data series, to an investor with specific

characteristics, reveals enormous dispersion in how different investors value the same data.

The dispersion in private valuations matters for our understanding of data markets because

when values are highly dispersed and the market price of data changes, few customers have

valuations between the old and new price. So, few customers change their data demand in

response to the price change. This is a low price elasticity of aggregate data demand.

It is important to point out that our procedure leads to an estimate of private value to

an investor, which could be different from a transaction price that one might observe when
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data is sold. Knowing the private values of market participants allows one to trace out a

demand curve for data. Some investors would have values greater than the equilibrium price,

some less. This is like a shopper determining how much they value a sweater. Knowing that

the sweater’s market price is $50 does not make that the shopper’s value of the sweater – it

might be the wrong color or size. Alternatively, the shopper might be willing to pay $100

for the sweater and still not buy it because they find a similar sweater for less. Understand-

ing how customers (investors) value a product (a data set) is different from calculating a

market clearing or equilibrium price. Valuations are important because they allow us to eval-

uate consumer surplus and welfare, teach us about demand elasticity, markups and market

competition, and allow one to ask if observed transactions prices are efficient.

Our measurement approach relies on sufficient statistics which are easily computable.

While our measure is based on a model, we do not need to estimate most model parameters

to arrive at a data value. In Section 1, we set up a noisy rational expectations model with

rich heterogeneity in investors, assets and data types and derive the expected utility of data

in dollar amounts. These investors use data to seek alpha. They control for risk factors,

forecast which assets have excess returns and invest in those assets. We show that a few

sufficient statistics—average conditional and unconditional returns, variances and forecast

errors—are all that is needed to value a stream of data.

The fact that these return-based statistics are sufficient is surprising. On the surface,

they seem to be missing the well-known result that private information is more valuable than

public information. Furthermore, they seem to miss the extent to which an investor’s data

is partially revealed to others through the price level. However, our statistics do account

for both forces and the results show why. Public information and the part of information

leaked through prices affect prices, but do not forecast returns. Looking at the reduction

in the conditional variance of returns correctly values data for its information content, over

and above what can be learned from prices, and accounting for what others will learn from

prices about our data as well. Our sufficient statistics are also a valid measure, regardless of
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how heterogeneous other investors’ preferences, data or investment styles are. They can be

used to value data about asset fundamentals or about sentiment. Finally and importantly,

a version of these statistics can be used in imperfectly competitive markets as well.

One could apply this tool to any finance-relevant data series, or any bundle of data series

– all it requires is knowledge of the purchasing investor’s characteristics and access to a

history of market prices and data realizations. We present a small number of examples that

highlight the importance of accounting for investor heterogeneity in data valuation.

In Section 3, we compute the dollar value of median analyst forecasts of earnings growth

for investors with different wealth levels, different investment styles and facing different

market conditions. These exercises highlight the flexibility of our approach and its ability

to accommodate various dimensions of heterogeneity. Our first exercise explores the role

of investor wealth and risk preferences. To do this, we consider two investors with the

same relative risk aversion and different initial wealth levels. This implies that the wealthier

investor has lower absolute risk aversion and as a result, values the same data by more. But,

the extent depends on market conditions, i.e. on whether their trades have price impact or

not. When markets are competitive, i.e. a trade has no impact on the market price, data

values increase sharply with wealth: an investor with $250 million in initial wealth values

data by almost 300 times compared to one with $0.5 million. Accounting for price impact,

in line with empirical estimates, dramatically reduces the value of data for all investors, but

has noticeably larger effects on the investor with higher wealth/lower absolute risk aversion.

This illustrates a general pattern we see – there is enormous heterogeneity in willingness to

pay for data, that is substantially tempered by a modest degree of market illiquidity.

The high sensitivity of data to price impact is interesting in its own right. It suggests

that market liquidity matters greatly for the value of financial data. Small changes in market

conditions can thus lead to large variation in data value and through that, in the valuation

of firms whose main asset is financial data. This suggests a new avenue of how liquidity

effects in asset markets. We typically think of market liquidity as something that affects
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only the value of financial assets, not directly affecting the real value of a firm. As data

becomes a more important asset for financial firms, the prices of financial firms may become

increasingly sensitive to market liquidity.

Incorporating price impact also uncovers a novel insight: Inelastic asset demand can

lead to more elastic data demand. This is because price impact causes investors to reduce

the sensitivity of their trading decisions to prices, implying a less elastic asset demand.

Price impact also makes data valuations less heterogeneous by lowering data value most

significantly for investors with the highest data valuations to begin with, flattening the data

demand curve and contributing to high price elasticity.

Our second exercise considers investors with different investment styles. Specifically, we

analyze the value of analyst forecast data for investors who trade only in a single portfolio,

such as the S&P 500 portfolio, or a portfolio consisting of only small stocks, only large stocks,

only growth stocks or only value stocks. Our benchmark is an investor who trades all five of

these portfolios. Because each of these types uses a piece of data differently, they value the

same piece of information differently. We find that investors in large and growth stocks (as

well as investors who trade all five portfolios) value analyst forecast data substantially more

than a value or small-stock investor.

Our third exercise quantifies how much the value of analyst forecast data depends on

what other data is in an investor’s database. We find considerable variation in data values

when we vary the other data variables used. In general, the more series we add to the

investor’s information set, the lower is the value gained by having access to analyst forecasts

and these effects are sizable. This result illustrates the importance of accounting for many

facets of investor heterogeneity. It also suggests that this dimension of heterogeneity can

induce sizable variation in data valuations.

Our fourth exercise considers the effect of trading horizon on the value of analyst forecast

data. Our toolkit can easily accommodate such differences with higher frequency observa-

tions on the data series and asset returns. We illustrate this by computing the value of data
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to an investor who trades over an annual horizon (our baseline calculations are for a quar-

terly horizon). We find that a longer horizon makes analyst forecast data somewhat more

valuable, i.e., the data turn out to be more useful in forecasting returns over shorter hori-

zons. It is worth highlighting that this exercise is about trading horizon, not frequency—it

is possible that an investor who trades or rebalances his portfolio more frequently ascribes a

higher value to the data compared to one who trades less often. In principle, our procedure

can be extended to this type of heterogeneity as well, but in part due to data limiations, we

do not explore it in this paper.

In Section 4, we explore how investors with different characteristics value macroeconomic

information. In contrast to the analyst forecast data, we find less variation across different

investment styles for this type of data. The estimated dollar values are sizeable, suggesting all

investors in general find macroeconomic information quite useful for portfolio choice. Again,

market illiquidity not only decreases value of data to all investors, but also significantly

compresses the heterogeneity in data valuations.

As such, these exercises not only highlight how our toolkit can be applied in practice but

also yield new insights about financial asset and data markets.

Relationship to the Literature. Data is information. Therefore, our approach to valuing

financial data draws primarily on the literature exploring information in financial markets.

A few papers have examined the value of information or skill, for a representative agent or in

an economy with one aggregate risk (Kadan and Manela, 2019; Savov, 2014; Dow, Goldstein,

and Guembel, 2017; Morris and Shin, 2002). Kacperczyk, Nosal, and Sundaresan (2021),

Kyle and Lee (2017), and Kyle (1989) add imperfect competition. What we add is a richer

asset structure, a richer information structure, but most importantly, heterogeneous investors

who value information differently. This last ingredient is essential to understand what the

aggregate data demand function looks like. The study of data demand complements work

examining the different ways in which data is supplied (Admati and Pfleiderer, 1986, 1987).

Enriching the information structure to allow for public, private or correlated signals is
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also important for real-world measurement. Such rich information structures are commonly

studied in settings with quadratic payoffs (Ozdenoren and Yuan, 2008; Albagli, Hellwig,

and Tsyvinski, 2014; Amador and Weill, 2010). But they have substantially complicated

previous asset market models to the point that most authors assume fully private (Barlevy

and Veronesi, 2000; He, 2009; Kondor, 2012) or fully common (Grossman and Stiglitz, 1980)

information.1 In addition, investors may choose between asset valuation-relevant data or

data about other investors’ order flow (Farboodi and Veldkamp, 2017). The idea that all

these types of information can be valued with one set of sufficient conditions is a new idea

that substantially broadens the empirical applicability of these tools.

The main point of the paper is to show that heterogeneity in investor characteristics

matters for data valuations. Some version of all these characteristics exist in some noisy

rational expectations model (Kacperczyk, Nosal, and Sundaresan, 2021; Peress, 2004; Mon-

dria, 2010), most of which look daunting to estimate.2 This project shows that, despite all

these degrees of heterogeneity among investors, data types and equilibrium effects, there is

a simple procedure to compute a value for data.

Campbell and Thompson (2008) propose a data valuation procedure that, like ours,

also makes use of conditional means and the variances of returns. Our work advances this

conversation, by accounting for the revelation of information through prices, showing how to

incorporate many, correlated assets and signals, exploring public and private data, accounting

for market elasticity or price impact, and allowing for wealth effects that are consistent with

common utility specifications. Our results discuss the quantitative significance of each of

these innovations.

Measures of the information content of prices, like those in Bai, Philippon, and Savov

(2016) and Davila and Parlatore (2021) are used to infer how much the average investor in

an asset knows. Such measures are related, in that they arise from a similar noisy rational

1Exceptions include Goldstein, Ozdenoren, and Yuan (2013) and Sockin (2015).
2Heterogeneity also arises in micro models like (Bergemann, Bonatti, and Smolin, 2016), who value

information in a bilateral trade, where sellers do not know buyers’ willingness to pay, but without the
equilibrium considerations about what others know.
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expectations framework. But they answer a question about the quantity of information, not

its value. Farboodi, Matray, Veldkamp, and Venkateswaran (2019)’s “initial value” of a unit

of precision is not the value an investor would pay and is not heterogeneous. Our sufficient

statistics approach is more relevant for demand estimation, much simpler to estimate and

more robust to heterogeneity.

1 A Framework for Valuing Data

Since data is information, we build on the standard workhorse model of information in

financial markets, the noisy rational expectations framework, in which investors use signals

and the information in asset prices to select high excess return portfolios, controlling for

risk. To the framework, we add long-lived assets, imperfect competition, wealth effects,

investment styles, public, private or partly public signals and arbitrary correlation between

assets and between various signals. We include these features because each one affects the

value of information. Model extensions consider data about sentiment or order flow.

Our contribution is not a new model per se, but rather to show how to estimate data

valuations using a rich and flexible theoretical framework. Of course, this is not the simplest

model to arrive at a sharp result on data valuations. If anything, it is the opposite: our

goal is to show how, despite all the richness and heterogeneity, the value of data can still

be reduced to a few sufficient statistics that are easy to compute. Later, we justify this

rich modeling of investor heterogeneity by showing that it has a significant impact on data

valuations.

Assets There are N distinct risky assets in the economy indexed by j, with net supply

given by x̄. Each of these assets are claims to stream of dividends {djt}∞t=0, where the vector

dt is assumed to follow the auto-regressive process

dt+1 = µ+G(dt − µ) + yt+1.
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Here, the exogenous dividend innovation shock yt+1 ∼ N (0,Σd) is assumed to be i.i.d. across

time.3 We use subscript t for variables that are known before the end of period t. Thus,

the dividend dt+1 and its innovation shock yt+1 both pertain to assets that are purchased in

period t; both these shocks are observed at the end of period t.

Investors and Investment Styles In each period t, n overlapping generations investors,

i ∈ [0, 1], are born, observe data, and make portfolio choices. The number of investors may

be finite, which implies that markets are imperfectly competitive. We will also consider

the limiting economy as n becomes infinite. In the following period t + 1, investors sell

their assets, consume the dividends and the proceeds of their asset sale and exit the model.

Each investor i born at date t has initial endowment w̄it and utility over total, end-of-life

consumption cit+1.

Many investors describe their strategy as small-firm investing or value investing, which

limits the assets they hold. In order to account for the role of investment strategy in data

value, we allow an investor i to be subject to an investment style constraint, which limits the

set of risky assets they can purchase. For each investor i, we denote the set of all portfolios

over investable assets as Qi. The matrix θi is an mi × N matrix of zeros and ones, where

mi ≡ |Qi| is the number of investable assets for investor i. Each row of θi has a single 1

entry, with all other entries zero. Assume an arbitrary order on the N risky assets, if the

asset indexed j in the entire set of N assets is the k-th asset in investor i’s style class, then

that asset is investable and the k-th row of θi will have jth column entry equal to 1.4

At date t, investors choose their portfolio of risky assets, which is a vector qit ∈ Qi of

the number of shares held of each asset. They also choose holdings of one riskless asset with

3Normal payoffs and information, while standard in this literature, are not very realistic. Appendix D
shows how to approximate a solution to this model in a case where payoffs and signals are not normal, but
are skewed.

4Following, Koijen and Yogo (2019), we do not model the source of the constraint. Our formulation
implies that we consider sets Qi that either set the holdings of some assets to zero, or allow the entire real
line. For example, long-only portfolios would restrict Qi to the non-negative realm of ReN . Of course, it is
possible that an investor is unrestricted. If so, Qi = ReN .
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return r, subject to budget constraint. Investor maximization can be written as

max
qit

E [U(cit+1)]

cit+1 = r (wit − q′itθipt) + q′itθi (pt+1 + dt+1) . (1)

Data According to Bayes’ law, the information investors learn from prices, as well as their

private data, public data and any correlated information can be linearly combined into one

composite signal. Specifically, this combination of private, public and price information is

equivalent to getting an unbiased signal sit about the dividend innovation yt+1, with private

signal noise ξit and public signal noise zt+1.

sit = yt+1 + ζitzt+1 + ξit

The term zt+1 ∼ N (0,Σz) comes from the noise in public component of the any data. It is

iid across time, with precision Σ−1
z . This public signal noise zt+1 pertains to assets that are

purchased in period t and is observed at the end of period t. If investor i learned nothing

from any prices or public sources of information at date t, then ζit = 0 and this becomes a

standard private signal. Similarly, ξit ∼ N (0, K−1
it ) is the noise in the private component of

the signal (iid across individuals and time), which has the precision Kit, orthogonal to the

noise of the public component.5

External Demand Some source of noise in prices is necessary to explain why some in-

vestors know information that others do not. Noise could come from hedging motives,

estimation error, cognition errors or sentiment. Noise traders buy xt+1 shares of the asset,

where xt+1 ∼ N(0,Σx) is independent of other shocks in the model and independent over

5This is equivalent to a setting where investors learn from prices. We recognize that the precision K
will therefore depend on the equilibrium price coefficients. Previous versions of the paper also spelled out
the equivalence between this form and a setting where each investor has access to H distinct data sources.
Signals from each of these data sources (indexed by h) provides information about dividend innovations yt+1,
from a linear combination ψh of assets: ηiht = ψhyt+1 + Γheit.
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time. The noise can be arbitrarily small, as long as Σx > 0.

Equilibrium An equilibrium is a sequence of prices {pt}∞t=0 and portfolio choices {qit}∞t=0,

such that

1. At the beginning of each period t, all investors have the information set I−
t = {It−1, yt,

dt, xt, zt}, where It−1 is the information set of the average investor at time t− 1. The

dividend dt+1 its innovation shock yt+1 and the noise trader demand xt+1 are observed

at the end of period t and are included in I−
t+1.

2. Investors use Bayes’ Law to combine prior information I−
t with data and price infor-

mation pt to update beliefs. The information set at the time of portfolio choice is

equivalent to Iit = {I−
t , sit, pt}.

3. Investors choose their risky asset investment qit ∈ Qi to maximize E [U(cit+1)|Iit],

taking the actions of other investors as given, subject to the budget constraint (1).

4. At each date t, the price vector p equates demand plus noise xt+1 to x̄ units of supply:

∑
i

qit + xt+1 = x̄ ∀t. (2)

Equilibrium Solution To solve the model, we assume that investors have mean-variance

preferences over their end-of-period wealth.6 This allows us to write the conditional expected

utility at time t as

E [U(cit+1) | Iit] = ρiE [cit+1 | Iit]−
ρ2i
2
V [cit+1 | Iit] . (3)

Here, ρi denotes absolute risk aversion for investor i.

6In Appendix C, we use the small shock approximation introduced in Peress (2004) to interpret mean-
variance utility as a second-order approximation to a more general class of utility functions.
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For a perfectly competitive market (n → ∞), the equilibrium price schedule is linear in

current dividend dt, future dividend innovations yt+1, demand shocks xt+1 and the noise in

public data zt+1 (see Appendix A):

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1. (4)

Note that while our setting is dynamic (the assets are long-lived), the assumption of

2-period-lived investors leads to a simple Markov structure for the equilibrium price. The

equilibrium price only depends on the current innovations, i.e., there are no dynamic hedging

motives. This is motivated by the standard approach in the NREE literature, Veldkamp

(2011), to keep the model tractable.

Mapping Data Utility to Sufficient Statistics Our first result derives the uncondi-

tional expectation of (3), in terms of means and variances of the vector of asset profits.

Those profits, Πit, for investor i’s feasible investment set, are defined as

Πit := θi [pt+1 + dt+1 − rpt] . (5)

Then, we express utility as an indirect expected utility function Ũ which takes an information

set Iit (data) as its argument.

Lemma 1. In a competitive market (n → ∞), investor expected utility can be expressed as

Ũ(Iit) =
1

2
E [Πit]

′V [Πit | Iit]
−1 E [Πit] +

1

2
Tr
[
V [Πit]V [Πit | Iit]

−1 − I
]
+ rρiw̄it (6)

where Tr is the matrix trace and w̄it is investor i’s exogenous endowment.

Proof is in Appendix B. Equation (6) illustrates the basis for our measurement strategy.

We will estimate Ũ(Iit) with and without the piece of data to be valued and take a difference.

The first term is the expected profit on individual i’s portfolio. The role of more or better
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data is to reduce conditional variance V [Πit | Iit]. In other words, an investor’s utility rises

with data if she can use the data to make forecasts with smaller squared forecast errors.

Smaller forecast errors are valuable because they allow the investor to buy more of assets

that will ultimately have higher returns

In an imperfectly competitive market, expected utility uses price-impact-adjusted vari-

ances, as proven in Appendix B.

Lemma 2. Unconditional expected utility, for an investor with price impact dp/dqi is

Ũ(Iit) = E [Πit]
′ V̂ −1

i E [Πit] + Tr
[
(V [Πit]− V [Πit | Iit]) V̂

−1
i

]
+ rρiw̄it. (7)

where V̂ −1
i := Ṽ −1

i

(
1− 1

2
V [Πit | Iit] Ṽ

−1
i

)
and Ṽi := V [Πit | Iit] +

1
ρi

dp
dqi

.

Notice that if dp/dqi = 0, then V̂i

2
= Ṽi = V [Πit | Iit]. This becomes Lemma 1.

This formula explains another important features of our results. Multiplying dp/dqi is an

investor’s risk tolerance 1/ρi. Since this is absolute risk aversion and we know that absolute

risk aversion declines in wealth, one can interpret this as a proxy for investor wealth. In

equilibrium, an investor with lower absolute risk aversion will have larger trade sizes, and

their equilibrium trades will have more price impact.

The price impact of all investors’ trades would seem to matter for the value of data. It

does. But once again, it is captured by the variances. Of course, if the investor is large, it is

possible that knowledge of this data choice will change the behavior of other investors – we

abstract from this possibility, by positing a surprising, one-time deviation.

The two key assumptions behind both the competitive and market power results are

that price can be approximated as a linear function of innovations as in Equation (4), and

that individual i maximizes risk-adjusted return. In other words, this calculation is accurate

as long as investors use linear factor models and maximize risk-adjusted return, even with

potentially heterogeneous prices of risk.
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Why it Doesn’t Matter if Data is Public or Private. The expression for data value

is the same for public and private information – regardless of who else knows the data, it

is valuable only for its ability to change the conditional forecast errors. This might seem to

contradict what we know about information value, e.g., Glode, Green, and Lowery (2012).

The reconciliation comes from the fact that the publicity of the data does matter for the

conditional variance. Private information, which is less likely to be impounded into price,

is typically more valuable compared to information that the market already knows (and is

therefore uncorrelated with pt+1 + dt+1). Public information about pt+1 + dt+1 is already

impounded in rpt.

In short, knowing the forecast errors fully captures the way in which knowledge mat-

ters: conditional variances, or in other words, the properties of forecast errors, are sufficient

statistics. This is an incredibly helpful property because it relieves the econometrician of

having to figure out who knows what.

Similarly, the risk preferences and investment styles of all market participants matter

for the value of data. However, the expected profit E [Πit] captures the way in which risk

preferences and investment mandates matter.

Wealth Effects: Mapping Utility to a Dollar Value The dollar value of data is

the amount of risk-free return an investor would require to be indifferent between having

the data, or not having the data but getting the additional riskless wealth. Dividing the

difference in utility by the coefficient of absolute risk aversion delivers a certainty equivalent

amount:

$Value of Datai =
1

ρi

(
Ũ(Iit ∪ data)− Ũ(Iit)

)
(8)

This coefficient of absolute risk aversion is not constant (not CARA). It varies with

wealth. Every utility function has some absolute risk aversion at every point of the function.

It is this local, wealth-dependent risk aversion that we call ρi. One way to impute such a
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value is to assume the investor has constant relative risk aversion (CRRA, denoted σCRRA).
7

Then, compute the level of absolute risk aversion that equates the two utilities, for each

level of wealth: − exp(−ρicit) = c1–σCRRA
it /(1–σCRRA). For relative risk aversion of 2, we can

express ρi as a function of investor wealth cit as

ρi = ln(cit)/cit. (9)

Data About Order Flow or Sentiment Many new data sources teach us about sen-

timent – something unrelated to the fundamental asset value, that affects current demand.

Analyzing Twitter or StockTwits is one example. In our model, the variable that moves

current price in a way that is orthogonal to value is xt+1. So, we interpret sentiment as

something that shows up in x. Farboodi and Veldkamp (2020) shows that such data can be

used to remove the noise from price signals. Doing this is functionally equivalent to trading

against dumb money, a common practice for sophisticated traders. Our sufficient statistics

in Equations (6) and (8) can also value data series about sentiment, order flow, or aspects

of demand that are orthogonal to future cash flows (see Appendix F).

2 Data and Estimation Procedure

Next, we describe our estimation procedure and the various data series used for returns and

financial signals.

7An alternative approach to estimating ρ could be to use the market price of risk. Using the formulas
for the equilibrium price coefficients, one could map the value of ρ to an equity premium and choose the
value that matches a preferred estimate of the equity premium. We do not follow that approach for two
main reasons. First, this would give us an estimate of the market’s risk aversion and therefore, on how an
average investor in the market values data. We are interested in how an individual investor, with particular
characteristics should value data and in understanding how investor heterogeneity matters for data valuation.
Second, it requires estimating most of the structural parameters of the model. As such, the estimates becomes
much more sensitive. It negates the advantage of our sufficient statistics approach.
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2.1 Data Sources

Our toolkit can used to value any finance-relevant data stream or bundle of data streams.

In the rest of the paper, we show how it can be used to value two different data streams.

The first, discussed in the following section, values earnings forecast data put out by stock

analysts. We discuss how the value varies with investor heterogeneity along various dimen-

sions and market conditions. The second, in Section 4, estimates the value of a hypothetical

data source that allows investors to perfectly forecast GDP. Before turning to that analysis,

we describe the two data sources of interest in more detail.

The Financial Data Stream We Value: I/B/E/S Forecasts The data series of inter-

est in our first exercise is earnings forecasts provided by the Institutional Brokers’ Estimate

System (I/B/E/S). We use earnings forecasts for 12,501 unique firms from 1985–2019, with

2,597 firm observations per quarter on average.8

We use quarterly earnings forecasts from I/B/E/S. In our baseline model, investors have

a horizon of a quarter and use the latest available one-quarter-ahead earnings forecast at

each date. Later, we explore how different trading horizons affect the data value.

The Macro Data Stream We Value: Ex-post GDP Growth For realized GDP

growth, we use the second release estimates of quarterly GDP growth from BEA, as reported

by the Federal Reserve Bank of Philadelphia9.

Data Sources for Asset Prices and Cashflows All data are for the U.S. equity market,

over the period 1985–2019. Stock prices come from CRSP (Center for Research in Security

Prices). All accounting variables are from Compustat. For our quarterly calculations, we

use the market capitalization at the end of the calendar quarter and total dividends paid

8We use the Summary Statistics series from I/B/E/S, accessed through WRDS, https://wrds-www.
wharton.upenn.edu/pages/get-data/ibes-thomson-reuters/ibes-academic/summary-history/

summary-statistics/.
9https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/routput
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throughout the calendar quarter. For annual calculations, we use market capitalization at

the end of the calendar year and total dividends paid throughout the calendar year. In line

with common practice, we exclude firms in the finance industry (SIC code 6).

We make a couple of adjustments to the raw data. First, we adjust for stock splits,

buybacks and other events which affect shares outstanding for any stock, using the standard

CRSP adjustment factors. The second pertains to exiting firms. Our preferred solution is to

only consider periods during which a firm has non-missing information. Next, we winsorize

the nominal values for market capitalization and total dividends at 0.01% level.

The equity valuation measure, i.e., the empirical counterpart for the price pjt in the

model, is market capitalization over total shares outstanding. Our cash-flow variable, djt, is

total dividends paid over shares outstanding.

We use the holding period returns from CRSP to calculate the the excess returns using

the yield on Treasury bonds (constant maturity rate, hereafter CMT) as the risk-free rate.

For the quarterly estimates, we use CMT with three months maturity, while for annual

estimates, we use CMT with one year maturity.

Forming Asset Portfolios The procedure described above can be used for any number

and type of assets, including individual stocks. However, for expositional purposes, and

to show more clearly the patterns in data value, we group assets into a small number of

commonly-used portfolios, rather than work with a large number of individual stocks/assets.

This leaves us with a more manageable number of data values to compute and compare.

Our first two portfolios are based on size. We group firms into Large and Small, based on

whether their market capitalization is above or below the median value for all firms in our

sample, in a given period. Next, we construct Growth and Value portfolios, using the book-

to-market ratio (defined as the difference between total assets and long-term debt, divided

by the firm’s market capitalization). Firms above the median value of book-to-market in

a period are assigned to the Value portfolio, while those below the median are part of the

Growth portfolio. In addition to these four portfolios—Small, Large, Growth and Value—we
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also include a market index (specifically, the S&P500) as a portfolio. We use value-weighted

averages for excess returns for each portfolio as the return measure, where we weigh each

firm’s return by its market capitalization.

Measuring Price Impact Quantifying data value using (12) requires an estimate for

price impact dp
dqi

. In practice, an investor who wants to value data using this toolkit should

use a number appropriate to their context (i.e., how much the price of the asset typically

moves when they trade). Estimates in the literature span a wide range—see Gabaix and

Koijen (2021). In our baseline analysis, we will use one of those estimates, specifically the

one from Frazzini, Israel, and Moskowitz (2018) who find that trading 2.5% of the daily

volume of a stock has a price impact of 15 bp on the price.10.

To map this estimate to an elasticity dp
p
/dq

q
= 15, we follow Gabaix and Koijen (2021) and

assume an annual turnover of 100% and 250 trading days per year. The object (dp/dqi) ⊘

ptp
′
t in our model can then be obtained by simply dividing this elasticity by the market

capitalization pq. We use a reference market capitalization of USD 1 Billion for our exercises,

which leads to λ ≡ dp
dqi

⊘θiptp
′
tθ

′
i = 1.5×10−8. Data limitations force us to make the following

simplifying assumptions: (i) price impact is the same for all portfolios we analyze (all θi’s)

and (ii) there is no cross-asset price impact, i.e. trading in one asset only move the prices

of that asset. These assumptions can be relaxed, as per the appropriate market structure

being studied for valuing relevant financial information. Under these two assumptions, the

matrix (dp/dqi)⊘θiptp
′
t in Equation (12) takes the form λI, where λ = 1.5×10−8 is the price

impact and I is the identity matrix. While this value of λ might seem like a small number,

we will see that it has substantial impact on data valuations.

10In Appendix G.2, we also report our data values from our baseline exercise using the price impact
estimate of Gabaix and Koijen (2021).
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2.2 Estimation Procedure

Excess Returns To build a tighter connection with the asset pricing literature, we re-

formulate our data value expression in terms of returns. Excess return on assets in the

investment set is defined as:

Rit := θi [(pt+1 + dt+1)⊘ pt − r] = Πit ⊘ θipt, (10)

where ⊘ represents the Hadamard (element-by-element) division of two matrices. The binary

θi matrix pre-multiplying returns selects out only the subset of returns that are for assets

the investor can hold, given their investment style constraint. This ensures that investors do

not get expected utility from assets they cannot hold, and drops out (θi = I) for investors

who trade all assets.

The investor unconditional expected utility in Lemma 1 and Lemma 2 are expressed in

terms of Πit. In Appendix E, we derive expressions for ex-ante expected utility expressions in

Lemma 1 and Lemma 2 in terms of moments of returns.11 In the case of perfect competition

(n → ∞), expected utility is

Ũ(Iit) ≈
1

2

{
E [Rit]

′ E
[
V [Rit | Iit]

−1]E [Rit]
}
+

1

2
Tr
[
V [Rit]V [Rit | Iit]

−1 − I
]
+ rwitρi.

(11)

If investors have price impact, expected utility is

Ũ(Iit) ≈ E [Rit]
′ ˆ̂V −1

it E [Rit] + Tr
[
(V [Rit]− V [Rit | Iit])

ˆ̂V −1
it

]
+ rρiw̄it, (12)

where ˆ̂Vit := ˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V

−1
it

)−1

and ˜̃Vit :=
(
V [Rit | Iit] +

1
ρi

dp
dqi

⊘ θiptp
′
tθ

′
i

)
.

11This requires an assumption about the ex-ante variability of pt. The key patterns in data valuation
described in the following sections hold even when we work directly with profits using the expressions in
Lemma 1 and Lemma 2.
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Empirical Specification The first step is to construct a time series of the return vector

Rt by computing returns for each asset type, Rjt. The estimates for unconditional expected

return E [Rt] and variance V [Rt] are obtained from the corresponding time series moments,

i.e., Ê [Rt] =
1
T

∑T
t=1 Rt and V̂ [Rt] is the Newey-West estimator for the spectrum at fre-

quency zero of the series Rt − Ê [Rt], with the Andrews rule for HAR inference bandwidth

0.75T
1
3 (Andrews, 1991).

Our strategy requires a historical time series of the data-set they are interested in valuing.

The next step is to project Rt on the available time series of the data along with any other

data that the investor already has access to. In our baseline empirical implementation, we

will use a standard variable, namely the consumption-wealth ratio (cay) from Lettau and

Ludvigson (2001), as a proxy for such existing data. The procedure is a ordinary least

squares regression of returns Rt on all the variables, already owned and new, in the data set.

The estimated variance of the residuals is then our estimate for V [Rt | Iit].

Using these objects, we can compute E [U(cit+1)]. We then repeat this procedure exclud-

ing the data series of interest, i.e., with only the already-owned data. The difference between

these two expected utilities is the utility gain from having access to that data source.

Formally, given data, denoted Xt, and existing data, denoted Zt, we can estimate the

precisions V [Rt | Xt, Zt]
−1 and V [Rt | Zt]

−1 by estimating the following two regressions:

Rt = β1Xt + β2Zt + εXZ
t (13)

Rt = γ2Zt + εZt (14)

For a single-asset case, the two regression specifications in Equations (13) and (14) are

estimated through OLS. The data Xt indicates the data signal we are interested in valuing,

and Zt is the set controls which are already present in the investor’s information set. In

case Rt has more than one asset’s return (that is, the investor’s investable universe consists

of more than one asset), the regression equations form a seemingly unrelated regression

20



(SUR) system. For the purposes of our exposition, we assume that the data series being

valued Xt is the same for all assets, and the set of controls are also the same across all

assets in this SUR system. Thus, since the independent variables for each asset in this SUR

system are the same, equation-by-equation OLS can again be used to efficiently estimate the

system (Baltagi, 2021). From these two vector regressions, an estimate for V [Rt | Iit] would

be Ĉov(εXZ
t ). Similarly, the estimate for V [Rt] would be Ĉov(εZt ). We calculate both these

conditional variances using the Newey-West estimators of the spectrum at frequency zero

(similar to V̂ [Rt]) for the residuals ε
XZ
t and εZt , respectively. Substituting in the mean return

and the estimated variance-covariance matrices in Equation (6) yields the estimated value

of data, in utils. To get the standard errors for the estimated data value in each case, we

use a wild bootstrap with 500 samples using Equation (14) as the DGP, and the two-point

distribution of Mammen (1993).

One might question how a Bayesian theory corresponds to a procedure that uses OLS.

When variables are normal and relationships are linear, Bayesian estimates are the efficient,

unbiased estimates. Since OLS estimates are the unique efficient, unbiased linear estimates,

they must coincide with the Bayesian ones, in the specific case of normal variables in a linear

relationship. Thus, in this case, OLS estimators are Bayesian weights on information. In

cases where variables are not normal or the expected relationship between the data and Rt

is not linear, there are a few possible solutions: 1) Transform the data to make it normal or

linear; 2) use OLS or non-linear least squares as an approximation to the Bayesian forecast,

or 3) perform a Bayesian estimation.

Data Timing As discussed above, our return measure for year t for an asset j is the

cum-dividend excess return on that asset over the year t – using prices at the end of year t

and at the end of year t − 1, along with dividends paid out over year t. We are interested

in understanding the value of data available to an investor before year t, in predicting the

value of this return measure for year t.

The value of any control variable in Zt used for the purpose of this calculation is obtained
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for year t − 1, since these values will be in the investor’s information set while predicting

the profits for year t. Similarly, the data signal in Xt that we are valuing needs to be in

the information set of the investor before year t. To predict profits over year t, we use the

data signals which are produced before year t starts, which give information about growth

in earnings of firms between year t− 1 and year t.

3 Valuing Financial Data

In this section, we first estimate the utility gain that investors would assign to I/B/E/S

forecasts, given what they already know, and then convert this into a dollar amount. The

latter is the monetary value of I/B/E/S data, or equivalently investors’ willingness to pay for

this data. In most cases, these private valuations look nothing like a price that any investor

actually pays for an I/B/E/S subscription. Some valuations are orders of magnitude higher,

others much lower. Recall that these are not predicted transactions prices. They are private

valuations that trace out a demand curve. The qualitative patterns are mostly intuitive,

which suggests that our measurement strategy/toolkit is a sensible one.

When we value a stream of data, we need to take a stand on what else an investor

already knows, i.e. the publicly available information. Obviously, as econometricians, we

do not observe information sets directly, so in our implementation, cannot control for this

perfectly. Of course, this is not a problem for a practitioner or investor who wishes to

use our toolkit to value a stream of data (e.g. one that she is considering buying), since

she would know exactly what other data she already has access to. For the purposes of

illustrating the use of the tool, we endow our hypothetical investor with some commonly-

used and publicly-available data series. Specifically, we assume that they already observe

the consumption-wealth ratio (cay) from Lettau and Ludvigson (2001). In addition to this

control variable, we also assume that the investor observes the realized price pt for the asset

they are trading in, as an additional control variable. Since investors in our quantitative
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exercises trade in portfolios, we use the value-weighted mean price for the corresponding

portfolio. For the case of an investor trading in multiple portfolios, we provide the price

corresponding to the S&P500 portfolio as the additional price control.

In additional results, we also consider an investor who also has access to one or more of

the following pieces of data: the S&P500 dividend yield (D/P ratio)12, the yield on a 1-year

Treasury bill (constant maturity rate)13, and a sentiment index from Baker and Wurgler

(2006).

We use quarterly earnings forecasts from I/B/E/S as the first data stream that we value.

In our baseline model, investors have a horizon of a quarter and use the latest available

one-quarter-ahead earnings forecast at each date. We use annualized return moments for all

data value calculations, and report the dollar values in annualized thousands of USD.

For each firm, we use the median consensus analyst forecast for earnings per share (here-

after EPS). We discard all forecast values which have been calculated during or after the

period for which the forecast is being made. For example, any forecast we use for earnings

in 2015 Q1 has to be issued before 2015 Q1 starts. We then drop all but the latest consensus

forecasts for each firm–period observation, which gives us a single consensus forecast for

EPS over the next period. Using this forecast, we calculate a forecasted growth rate: the

forecasted EPS for the coming period, divided by the realized value of EPS from the last

period.

Our goal is to explore data valuation patterns, to get a sense of how large this amount

is and to gain some intuition about what makes it vary. In order to keep the analysis

manageable, we collapse the large number of assets into a few portfolios. Specifically, we

analyze five portfolios: Small, Large, Growth, and Value firms, as well as the S&P500 index.

We find that most of the value of the I/B/E/S data comes from earnings forecasts of

growth firms and those in the S&P500 index. Therefore, the data value numbers we report

12Obtained from NASDAQ Quandl https://data.nasdaq.com/data/MULTPL/SP500_DIV_YIELD_

MONTH-sp-500-dividend-yield-by-month.
13Obtained from FRED series DGS1.
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in this section for two quarterly signals, one about earnings of all firms in the Growth

portfolio and one about the earnings of all firms in the S&P500 index. Specifically, these are

the portfolio value-weighted average values of median forecasted growth rates for earnings

per share—for the Growth and S&P500 portfolios. Note that we are valuing a forecast of a

payoff of a particular portfolio of assets. 14

3.1 Wealth and Risk Tolerances

One obvious dimension along which investors differ is the size of their portfolios. We consider

investors with two wealth levels—$500, 000 and $250 million, each with the same relative

risk aversion of σ = 2. In terms of the wealth level, the former group is similar in magnitude

to the wealth level of the mean US household (Badarinza, Campbell, and Ramadorai, 2016),

while the latter investor group has comparable wealth level to the size of the mean US hedge

fund (Yin, 2016). The resulting difference in absolute risk aversion give rise to different

willingness to pay for the same data.

To value data for a particular investor, we need to know what else they already know and

what they can invest in. Our investor are assumed to know the consumption-wealth ratio

(cay) and the value-weighted mean price for the S&P500 portfolio at the end of the previous

period. They can invest in any combination of the following five portfolios: S&P500, Small,

Large, Growth, and Value. However, we make no assumption about what any other investors

know or trade.

Table 1 reports the dollar value of the I/B/E/S forecasts for two investors with different

wealth levels, with and without price impact, who can invest in five portfolios: {Small,

Large, Growth, Value, S&P500}. The results illustrate that wealthier investors attach a

14We could have performed this calculation under many alternative assumptions. For example, one could
value growth firms’ data from the perspective of an investor who invests only in growth firms. In that
case, one would regress the growth firm asset payoffs on the relevant data and use means variances and
forecast errors of growth asset payoffs. We did not take that approach because if we vary the investment
set and the data together, we would not know whether data was more/less valuable because of the data or
the investment restriction. But, it is certainly another dimension of investor heterogeneity that might be
interesting to explore.
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Table 1: Risk Tolerance, Liquidity and Data Value. The table reports the valuation of
the quarterly value-weighted means of I/B/E/S median forecast earnings growth for Growth
and S&P500 portfolios. Quarterly data between 1985–2019. The dependent variables in
(13) and (14) are the vector of returns, in excess of a three-month treasury (CMT), for five
portfolios: {Small, Large, Growth, Value, S&P500}. The specification includes a constant
and control variables (cay and value-weighted mean price of the S&P500 portfolio). The
case with price impact assumes Kyle Lambda λ = 1.5× 10−8. Absolute risk aversion is from
(9). All values are annualized, and dollar values are reported in thousands of USD. Standard
errors are calculated using a wild bootstrap.

Perfect Competition With Price Impact

Panel A: Investor with $500,000 Wealth.
Utility Gain 0.082 0.053

(0.02) (0.02)

Expected Profit 0.008 0.007
(0.01) (0.01)

Variance Reduction 0.075 0.046
(0.013) (0.013)

Dollar Value (in $000) 3.13 2.03
(0.75) (0.75)

Panel B: Investor with $250m Wealth.
Utility Gain 0.082 0.01

(0.02) (0.005)

Expected Profit 0.008 0.001
(0.01) (0.001)

Variance Reduction 0.075 0.009
(0.013) (0.005)

Dollar Value (in $000) 1062.69 128.96
(254.07) (66.08)

Time Periods 140 140

higher dollar value to the same data. In our setting, this occurs through the dependence of

the curvature parameter ρ on wealth. Under our calibration, an investor with $250 million

in wealth operating in a competitive setting would be willing pay almost 340 times more for

this data compared to an investor with half a million dollars of wealth. Also note that while

investors with different wealth levels experience the same utility gain with the data stream

under the perfectly competitive case, they still assign different dollar values owing to the

wealth effects affecting their local risk aversion. However, when we add a plausible realistic
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degree of price impact, wealth effects show up directly in utility gains as well, not just in

dollar values.

Next, as one would expect, price impact attenuates the value of data. This is intuitive:

investors use the data that they acquire to trade more profitably. When they face price

impact, they cannot incorporate the data in their trading strategy as effectively as they

move the prices against themselves, which in turn implies a decline in their data valuation.

The table shows that this effect is quite significant and increases with wealth. To see why,

recall that in Lemma 2, price impact (dp/dq) gets scaled by 1/ρi. Since wealthier investors

are assumed to have a lower degree of absolute risk aversion (a lower ρi), price impact has

a disproportionate effect on their payoffs and data valuations. For an investor with $250

million in wealth, taking price impact into account cuts the value of the I/B/E/S data by

90%.

To better understand the sources of data value, Table 1 also reports the expected return

and the variance reduction on the investor’s portfolio. The expected profit is the ex-ante

expected return on the optimal, diversified portfolio of the five assets the investor can hold.

The variance reduction is the difference between the raw variance of this return and the

conditional variance, which is the average squared residual of the predicted return, after

conditioning on the data. This is a measure of how much one learns from data. Notice that

price impact lowers both components of data value and has a more pronounced effect when

wealth is higher (or equivalently, absolute risk aversion is lower).

3.2 Investment Styles

Investors also differ in their investment style. To understand the implications of this type

of heterogeneity for data valuation, we value exactly the same data as before, the median

earnings growth forecasts from I/B/E/S, from the perspective of investors who only trade

in individual portfolios. We will refer to these investors by the portfolios they trade. For

example, the Value investor is one who only buys and sells the portfolio of Value stocks that
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Table 2: Investment Styles and Data Value. Value of I/B/E/S data (quarterly value-
weighted means of I/B/E/S median forecasted earnings growth for Growth and S&P500
portfolios). Quarterly data between 1985–2019. Dependent variables in (13) and (14) are re-
turns, in excess of a three-month treasury (CMT), for five portfolios: {Small, Large, Growth,
Value, S&P500}. All specifications include a constant and control variables (cay and value-
weighted mean price of the corresponding portfolio). In the last column, we control for a
constant, cay and the value-weighted mean price of the S&P500 portfolio. The price impact
panel assumes Kyle Lambda λ = 1.5× 10−8. All values are annualized, and dollar values are
reported in thousands of USD. Standard errors are calculated using a wild bootstrap.

Investment Style

Small Large Growth Value S&P500 Multi-Asset

Panel A: Perfect Competition.
Dollar Value (in $000) for
Investor with $500,000 Wealth

0.0 0.33 0.34 0.15 1.0 3.13
(·) (0.24) (0.28) (0.25) (0.46) (0.75)

Dollar Value (in $000) for
Investor with $250m Wealth

0.0 110.9 116.42 52.27 340.22 1062.69
(·) (81.11) (96.31) (86.14) (157.62) (254.07)

Panel B: With Price Impact.
Dollar Value (in $000) for
Investor with $500,000 Wealth

0.0 0.33 0.34 0.15 1.0 2.03
(·) (0.24) (0.28) (0.25) (0.46) (0.75)

Dollar Value (in $000) for
Investor with $250m Wealth

0.0 53.86 58.48 11.33 56.35 128.96
(·) (38.21) (46.18) (18.83) (30.15) (66.08)

Time Periods 140 140 140 140 140 140

we constructed. They each use the earnings forecast data to determine how much to trade

in their respective portfolios. We compare these data values to the value of the investor who

trades in all five portfolios (Small, Large, Growth, Value and S&P500), which corresponds

to the case analyzed in Table 1.

Table 2 shows that among the investors who invest in a single portfolio, I/B/E/S forecast

data is most valuable for investors in Growth, Large or the S&P500 portfolios. While the

investor wealth and price impact raise and lower the dollar value of the data, respectively,

this pattern of Growth, Large, and S&P500 investors valuing earnings forecast data by more

emerges consistently.15 This is because the I/B/E/S data lacks relevance for the Small

15We report the unconditional and conditional moments for the case with perfect competition in Ap-
pendix G.3.
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portfolio. More precisely, it does little to reduce return forecast errors and in that sense,

provide little guidance to an investor about when to buy and sell the Small portfolio. So,

despite the high unconditional expected returns of the Small portfolio, the value of this

particular data stream for such investors is quite low. The relevance of the I/B/E/S forecasts

is low for the Value portfolio as well. The Large and Growth portfolios on the other hand

have medium expected returns, but their returns are predicted to a larger degree by the

analyst forecast data. Therefore, this data is most valuable to those who invest in equity

portfolios consisting of growth and large firms.

As we saw in the previous set of results, price impact reduces the value of data, but

also reduces the dispersion in valuations. The investors who value data most are the same

investors who would like to trade aggressively on the data, but are prevented from doing so

when price impact is large.

It is worth re-iterating that our approach estimates the value of data in an equilibrium

setting, where prices are noisy signals of asset performance. Our regression specifications

explicitly control for the information contained in market prices (by including the price pt

in the investor’s information set). In Appendix G.1, we conduct a counterfactual exercise—

where investors are assumed to not learn from prices—to tease out the effect of equilibrium

learning on our data value estimates. We find that incorporating price information changes

data valuations meaningfully, demonstrating the importance of equilibrium forces. It is

possible for price information to increase the value of data in a setting when price noise and

signal noise are negatively correlated (see Appendix H).

Data and Diversification In this set of results, data is always most valuable to the multi-

asset investor. This investor can use data not only to decide whether to buy more or less at

a given moment in time, but also to decide what to buy. The multi-asset investor can use

data for asset allocation. However, it is possible for the multi-asset investor to value data
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less.16 The reason this arises in some cases is that the multi-asset investor can diversify. This

investor has two tools to reduce risk: information and diversification. Each is an imperfect

substitute for the other. But the ability to diversify depresses the value of data. In this case,

the increase in value from asset allocation greatly outweighs the decrease in value from the

ability to diversify.

3.3 Market Liquidity

A consistent theme throughout our results is the importance of price impact. For expositional

purposes, we have treated price impact as a single, time-invariant number. In reality, it

fluctuates with market liquidity. Our estimates suggest that such fluctuations will have a

dramatic impact on the value of data, especially for large investors.

Now consider a financial firm whose business model revolves around the use or sale of

data. That firm’s market value is based largely on the value of their data. Changes in market

liquidity will thus affect the real value of this firm’s data assets through this channel.

As firms’ data stocks grow larger, the effect of liquidity shocks on data values should

grow. The reason is that price impact enters additively with conditional variance. This

additive form comes from first order condition for the optimal portfolio choice of investor i:

qit = (ρiV [pt+1 + dt+1|Iit] + dp/dqi)
−1 (E [pt+1 + dt+1|Iit]− rpt). If the conditional variance

V[pt+1 + dt+1|Iit] is large (high uncertainty), then small changes in price impact dp/dqi have

little effect. Those changes are swamped by the variance term and the inverse of this large

number is small. However, if conditional variance is small, meaning that return forecasts

are relatively precise, then that first term, the inverse of a potentially small number, may be

large. In this case, the effects of price impact can be substantial. Over time, if firms have

more data and thus smaller forecast errors, their data valuations become more and more

16Consider a simple example to illustrate this point: an economy with two assets, and a simple factor
structure in their payoffs. Asset 1 pays f1 + f2, while Asset 2 pays f1 − f2. The factors f1 and f2 are
orthogonal. Suppose the equilibrium portfolio of a multi-asset investor has equal holdings of each asset.
Such an investor does not value information about the factor f2 at all, even though a single asset investor
in either asset would value such information non-trivially.
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susceptible to changes in the price impact of a trade.

Our estimation results illustrate that price impact significantly reduces the value of data

for all investors irrespective of their wealth, risk tolerance, and investment style. Further-

more, incorporating price impact uncovers a novel insight: inelastic asset demand can be

accompanied with more elastic data demand. On the one hand, price impact (illiquidity)

causes investors to reduce the sensitivity of their trading decisions to prices and leads to a

low price elasticity of asset demand. On the other hand, price impact makes data valuations

less heterogeneous by lowering data value most significantly for investors with the highest

data valuations to begin with, leading to a high price elasticity of data demand.

The high and growing sensitivity of data value to market liquidity suggests a new channel

through which market liquidity matters. Since the value of a financial firm depends on its

ability to trade profitably, the value of data is an input into the valuation of a financial

firm. As financial firms become more data-centric, the firm’s value becomes more sensitive

to the value of its data. At the same time, growing data abundance makes the value of

data more sensitive to market liquidity. These two margins of increasing sensitivity amplify

each other. This suggests that changes in market liquidity may affect the real value and

the equity value of financial firms through a new channel, through the value of their data.

In a world in which data is becoming increasingly abundant, this new liquidity-data effect

could grow much stronger. These findings suggest that, because of the rising abundance and

importance of data for financial firms, market liquidity may become more important than

ever before.

3.4 Previously Purchased Data

A third dimension along which investors differ enormously is in the data they already own.

While large, institutional investors have access to enormous libraries of data, households

may know only a few summary statistics about each asset. Here, we present a few exercises

to explore the effect of this dimension of heterogeneity. In our baseline exercise, we valued
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Table 3: Previously Purchased Data. Values in each row represent the additional value
of I/B/E/S data (specifically, the quarterly value-weighted means of I/B/E/S median fore-
casted earnings growth for Growth and S&P500 portfolios) on top of the value-weighted
mean price of the S&P500 portfolio, and control variable(s) listed in the first column, with
price impact assuming Kyle Lambda λ = 1.5×10−8. Quarterly data between 1985–2019. De-
pendent variables in (13) and (14) are returns, in excess of a three-month treasury (CMT)
for five portfolios: {Small, Large, Growth, Value, S&P500}. All specifications include a
constant. All values are annualized, and dollar values are reported in thousands of USD.
Standard errors are calculated using a wild bootstrap.

Other Data
Dollar Value (in $000) for Investor with

Wealth: $500,000 Wealth: $250m

cay (Baseline)
2.03 128.96
(0.75) (66.08)

No Other Data
2.72 119.73
(0.72) (66.54)

Real CMT-1yr
2.09 142.26
(0.75) (66.47)

S&P500 D/P ratio
1.65 117.78
(0.7) (58.86)

BW Sentiment Index
3.74 234.61
(0.86) (75.97)

All
1.51 113.48
(0.8) (63.71)

Time Periods 140 140

the I/B/E/S data assuming that investors also access to a common variable used to predict

returns, namely the consumption-wealth ratio (cay) from Lettau and Ludvigson (2001). We

now ask: How valuable would the same I/B/E/S forecasts be if, instead of the cay series,

the investor had some other variable in his or her existing data set? Of course, this does not

nearly capture the extent of the difference between the knowledge of investors. But, it will

help shed light on the sensitivity of data values to other sources of information.

In Table 3, the first row reports our baseline estimates—from Table 1—for the value of

the I/B/E/S forecasts to investors with different wealth levels who trade all five portfolios

and have price impact. The second row ‘No Other Data’ shows the value if the investor

does not have access to the cay series. The remaining rows report the value of the same

31



data stream for investors who have access to other data series (instead of cay): specifically,

S&P500 D/P ratio, Real CMT-1yr and the investor sentiment index from Baker and Wurgler

(2006). Finally, the last row assumes that the investor has access to all of these data series

(as well as an additional macro variable, realized year-on-year inflation).

The analysis yields two insights. First, differences in other data available to the investor

can induce substantial variation in the valuation of a given data series. An investor who has

(only) the Baker-Wurgler sentiment index in his information set values the I/B/E/S data

more than twice as much as an investor with access to all the other data series. Second, the

I/B/E/S forecasts remain valuable even for a relatively sophisticated investor. For example,

our valuation estimate for an investor with $250 million in wealth who uses all the data series

mentioned in the table is $113,000, which is only 12% lower than the baseline case (where

the investor only used the cay series). This suggests that the information contained in the

I/B/E/S data cannot be easily substituted with other aggregate data.

3.5 Trading Horizon

Finally, investors differ in their trading horizons. Our data valuation tool can be applied to

various trading horizons. However, for the data we are exploring, this dimension of investor

heterogeneity seems to matter less than the others. Our calculations so far have assumed

that investors trade over a quarterly horizon. Next, we measure the value of the data series

with an annual horizon—the median I/B/E/S forecast for earnings over the next one year—

for an investor who trades the same portfolio but with an annual horizon. This does not

change the data value formula; it does change how we implement it. The procedure is to

compute residuals from (13) and (14) where Rt is annual return, the prior information Zt is

a constant and cay, and where Xt is the median forecast of the earnings growth for Growth

and S&P500 portfolios over the next year. The resulting regression residuals (εXZ
t and εZt )

are then used to construct the variance matrices and substitute these variances, along with

expected annual returns, into the expected utility formula (6). We convert expected utility
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Table 4: Trading Horizon. Data between 1985–2019. Dependent variables in (13) and
(14) are returns, in excess of a three-month treasury (CMT), for five portfolios: {Small,
Large, Growth, Value, S&P500}. All specifications include a constant, cay, and price of
S&P500 portfolio. Data variables being valued are the value-weighted means of I/B/E/S
median forecasted annual earnings growth, reported quarterly, for Growth and S&P500
portfolios. Data variables correspond to earnings forecasts with corresponding time horizon.
Values are calculated with price impact assuming Kyle Lambda λ = 1.5 × 10−8. All values
are annualized, and dollar values are reported in thousands of USD. Standard errors are
calculated using a wild bootstrap.

Quarterly Annual

Dollar Value (in $000) for
Investor with $500,000 Wealth

2.03 20.45
(0.75) (4.86)

Dollar Value (in $000) for
Investor with $250m Wealth

128.96 198.73
(66.08) (184.07)

Time Periods 140 35

to data value as before, using (8). Since we use annualized return moments to obtain the

data value throughout our quantification exercises, the data value estimates are directly

comparable for investors across both trading horizons.

Table 4 reports the value of the I/B/E/S forecasts for both annual and quarterly investors.

The first column is the same values reported in Table 1. The second column shows that

investors who trade less frequently, on an annual basis, would be more willing to pay for

similar data. The reason for the lower valuation for more frequent observations is that

quarterly returns are considerably more noisy. Earnings data is not very useful for quarterly

portfolio adjustment. Trading on this data only creates more noise.

The effect of trading horizon surely depends on the data source. For example, high-

frequency data is useful for high-frequency traders, but will likely be worthless after a year.

The more important take-away is that trading horizon can matter for how an investor values

their data. By adjusting the input data and the interpretation of the results, our data

valuation tool can be used to value data used by investors who trade at various frequencies.
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3.6 Supporting Evidence

Finding direct evidence in support of our estimates is tricky. However, indirect support for

our approach comes from evidence on investor data reflected in asset prices. If a certain kind

of data is very valuable, then many investors should acquire it, and this information should

be reflected in asset prices. If earnings data about a particular asset class (e.g. large firms) is

more valuable (say, relative to that of small firms), then investors in that asset class should

acquire more data and prices of large firm stocks should ultimately reflect more of this data

than those of smaller firms.

Bai, Philippon, and Savov (2016) show that prices of S&P 500 firms incorporate more

information over time, while other prices do not. This is consistent with column 5 of Table

2, showing that the value of data for an investor that holds the S&P 500 is about 3 times

more valuable than for an investor who holds any other single portfolio. S&P investors

should be acquiring more data. Farboodi, Matray, Veldkamp, and Venkateswaran (2019)

break out the information component of the BPS measure, from the growth and volatility

pieces, and show that large, growth firm data is becoming more abundant, while other types

of data are not. This is consistent with the estimates from Table 2, showing that among the

FF portfolios, large and growth investors value data more than small and value investors.

Davila and Parlatore (2021) show that asset turnover is a significant predictor of asset price

informativeness. To the extent that asset turnover is an indicator of market liquidity or

lower price impact, then this finding supports a third key prediction of the model. This

higher value of data about liquid assets shows up as more data acquired about such assets.

In this sense, all three studies on price informativeness are consistent with the variation in

data values that we estimate.

34



Table 5: Macroeconomic Information. Quarterly data between 1985–2019. Dependent
variables in (13) and (14) are returns, in excess of a three-month treasury (CMT), for five
portfolios: {Small, Large, Growth, Value, S&P500}. All specifications include a constant
and controls for cay, value-weighted mean price of the corresponding portfolio, the realized
real GDP growth in the previous quarter and the median forecasted quarterly growth rate in
real GDP from the Survey of Professional Forecasters. In the last column the price control
is for S&P500 portfolio. Data variables (Xt in (13)) are the second release estimates of real
quarterly GDP numbers as reported by by the BEA, expressed as growth rates over the
previous quarter. Numbers reported in each column represent the additional value of ex-post
real GDP growth data (8) on top of the control variables for an investor trading at the
quarterly horizon. The case with price impact assumes Kyle’s Lambda λ = 1.5× 10−8. All
values are annualized, and dollar values are reported in thousands of USD. Standard errors
are calculated using a wild bootstrap.

Investment Style

Small Large Growth Value S&P500 Multi-Asset

Panel A: Perfect Competition.
Dollar Value (in $000) for
Investor with $500,000 Wealth

2.45 3.29 3.29 1.74 3.84 4.05
(0.4) (0.42) (0.44) (0.4) (0.41) (0.99)

Dollar Value (in $000) for
Investor with $250m Wealth

830.01 1116.13 1117.42 589.57 1303.35 1374.21
(136.73) (142.78) (149.14) (134.55) (139.17) (334.93)

Panel B: With Price Impact.
Dollar Value (in $000) for
Investor with $500,000 Wealth

2.45 3.29 3.29 1.74 3.84 4.04
(0.4) (0.42) (0.44) (0.4) (0.41) (0.99)

Dollar Value (in $000) for
Investor with $250m Wealth

276.59 504.29 522.44 126.19 201.83 836.43
(50.51) (65.08) (63.84) (31.57) (26.15) (98.24)

Time Periods 140 140 140 140 140 140

4 Valuing Macroeconomic Information

How do different investors value information about macroeconomic variables (e.g. GDP)?

We now use our framework to provide an answer to this question. In Table 5, we compute

the value of a hypothetical data source which allows investors to perfectly forecast GDP.

Formally, we use the realized (i.e. ex-post) real GDP growth as our data series of inter-

est17 and calculate its value to investors with different trading styles, defined in Section 3.2.

We control for cay and the corresponding portfolio price, as before, as well as two addi-

17We use the second release revised estimates of realized real GDP growth for this calculation.
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tional controls—the realized real GDP growth rate in the previous quarter and the median

forecasted growth rate in real GDP for the current quarter by the Survey of Professional

Forecasters (SPF)18. Adding these two additional control variables allows us to find the value

of the new information in ex-post GDP growth.

The last column of Table 5 shows that a fund with assets of $250 million, trading all

five portfolios under perfect competition, would be willing to pay $1.4 million for the ability

to perfectly forecast quarterly GDP growth in advance. The other columns show values

for more restricted trading styles. They are all sizable, albeit with some variation. There

are some interesting cross-sectional differences relative to the value of earnings forecasts

analyzed in Table 2. For example, better information about GDP is quite valuable for

investors trading only the Small portfolio. This is because, unlike the earnings forecasts,

GDP growth turns out to be a valuable predictor of returns on the Small portfolio, i.e., this

data has high relevance for such an investor. In fact, macroeconomic information of this

form shows relatively high data relevance for all five assets—unlike the earnings forecasts

data, which showed high relevance mostly for Large and Growth portfolios.

The bottom panel shows the value of data with price impact. As with the earnings

forecast data, price impact significantly attenuates the value of macroeconomic information

as well and the effects are more pronounced for wealthier, less risk-averse investors. The value

of a perfect GDP forecast for the aforementioned $250 million fund trading all five portfolios

is cut more than half once price impact is taken into account. The drop in valuations is even

more significant for some of the individual portfolios, again underscoring the importance of

market liquidity for the value of data.

5 Conclusion

Data is one of the most valuable assets in the modern economy. Yet the tools we have to

quantify that value are scant. We offer a tool that an investor or financial firm can use to

18https://www.philadelphiafed.org/surveys-and-data/rgdp
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value its existing data, or a potential stream of data that it is considering to acquire. Along

with information about the distribution of investor characteristics, researchers can use this

tool to trace out the demand curve for data.

We uncover important investor wealth and trading style effects, the importance of an

investor’s existing data, and the role of trading horizon. Jointly, these effects point toward

enormous heterogeneity, spanning multiple orders of magnitude, in the value different in-

vestors assign to the same data. The dispersion in valuations suggests that marginal changes

in the price of data will have little effect on demand. With such dispersed valuations, few

data customers would be on the margin. This low price elasticity of demand is significant

because it points to one reason why data markets might not evolve to be very competitive.

We further uncover a new channel through which market liquidity matters for the real

value of data, which is an important new class of assets. As firms accumulate more data

and data technologies improve, more and more of the value of a financial firm will depends

on the value of the data it possess. The sensitivity of the value of data to price impact of a

trade could introduce a new source of financial fragility, brought on by data accumulation,

and exacerbated by data technologies that improve financial forecasting.

The advantage of our measurement tool is its simplicity. While our measure of the value of

data is derived from a structural model, computing it does not require estimating structural

parameters. Instead, the relevant sufficient statistics are simple means and variances of

linear regression residuals. No matter whether the data is public, private, or known only

to a fraction of investors, these methods are valid. Even if the data is about sentiments or

order flows, as long as it is measured along with the market prices in the observable data

set, our data value measure offers a meaningful assessment of its value to an investor.

In order to make the paper most transparent, we used mean-variance preferences and

a model without true dynamics. Appendix C offers an argument for using mean-variance

preferences as a second order approximation for more general utility functions. One area of

future work is to extend this analysis and provide bounds for our approximation errors.
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Code Availability: The replication code is available in the Harvard Dataverse at https:

//dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BDYCZ3
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Appendix

A Model Solution

Portfolio Choice We conjecture an equilibrium price which is linear in the aggregate shocks,

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1 (15)

Assuming price of the form given in Equation (15), the investor derives an unbiased signal ηpt of

yt+1 from the price as,

ηpt ≡ C−1
t (pt −At −B(dt − µ)) = yt+1 + C−1

t Dtxt+1 + C−1
t Ftzt+1

This price signal has the conditional variance,

V (ηpt | Iit) ≡ Σpt = C−1
t DtΣxD

′
tC

−1′
t + C−1

t FtΣzF
′
tC

−1′
t

Note that the variance of this price signal is a fixed quantity (since the coefficients are artifacts

of the model, known ex ante to all investors). Given the information set Iit, the investors update

their beliefs of the dividend innovation yt+1 as per Bayesian updating to get,

E [yt+1 | Iit] ≡ µit = Σit

(
Σ−1
d × 0 + Σ−1

pt ηpt + (ζ2itΣz +K−1
it )−1sit

)
= Σit

(
Σ−1
pt ηpt +

(
ζ2itΣz +K−1

it

)−1
sit

)
V [yt+1 | Iit] ≡ Σit =

{
Σ−1
d +Σ−1

pt + (ζ2itΣz +K−1
it )−1

}−1

Further, we can express the gross payout at the end of period t+ 1 as,

pt+1 + dt+1 = At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + dt+1

= At+1 + µ+ (B + I) (dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2

= At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2

Hence, the conditional moments of the gross payout can be expressed as,

E [pt+1 + dt+1 | Iit] = At+1 + µ+ (B + I)G(dt − µ) + (B + I)µit

V [pt+1 + dt+1 | Iit] = (B + I)Σit(B + I)′ + Ct+1ΣdC
′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

We first note that the shocks yt+2, xt+2 and zt+2 do not contribute towards the conditional expec-

tation, but are driving the conditional variance of the gross payout. On the other hand, investors

form imprecise estimate for the end-of-period shock yt+1, resulting in a contribution in both the
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conditional moments.

In the perfect competition equilibrium (as per Lemma 1), investor i selects the optimal portfolio

qit given by the first order condition

qit =
1

ρi
V [pt+1 + dt+1 | Iit]−1 {E [pt+1 + dt+1 | Iit]− rpt} .

Hence, the optimal portfolio is given as,

qit =
1

ρi

{
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

}−1×At+1 + µ+ (B + I)G(dt − µ)− rpt︸ ︷︷ ︸
⋆

+(B + I)µit︸ ︷︷ ︸
†

 (16)

Market Clearing We now impose market clearing,
∫
i qitdi = x̄ + xt+1. First, note that the

terms marked by ⋆ in Equation (16) are constants for the integration. Hence, we define the factor

multiplying these terms – the risk tolerance weighted average precision of the gross payout,

Ωt ≡
∫
i
ρ−1
i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

We next simplify the remaining term marked by † in the integration in Equation (16) as,∫
i
ρ−1
i V (pt+1 + dt+1 | Iit)−1 (B + I)µitdi

=

∫
i
ρ−1
i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
Σ−1
pt ηpt +

(
ζ2itΣz +K−1

it

)−1
sit

)
di

=

{∫
i
ρ−1
i V (pt+1 + dt+1 | Iit)−1 (B + I)Σitdi

}
Σ−1
pt ηpt

+

∫
i
ρ−1
i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
ζ2itΣz +K−1

it

)−1
(yt+1 + ζitzt+1 + ξit)di

= ΓtΣ
−1
pt ηpt +Φtyt+1 +Ψtzt+1
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Here, we used the fact that ξit is distributed independently of all other variables with mean zero,

and defined the additional covariance terms Γt, Φt and Ψt (with Ωt duplicated for reference) as,

Ωt ≡
∫
i
ρ−1
i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt ≡
∫
i
ρ−1
i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σit︸ ︷︷ ︸ di

Φt ≡
∫
i
ρ−1
i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1

× (B + I)Σit

(
ζ2itΣz +K−1

it

)−1︸ ︷︷ ︸ di
Ψt ≡

∫
i
ρ−1
i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1

× (B + I)Σit

(
ζ2itΣz +K−1

it

)−1
ζit︸︷︷︸ di

As noted before, Ωt is the risk tolerance weighted average precision of the gross payout. The terms

highlighted with ︸︷︷︸ indicate the additional terms in each subsequent covariance term. First, Γt

is the covariance of the gross payout precision with the posterior variance of the dividend shock

yt+1. Similarly, Φt is the covariance of the gross payout precision with the posterior variance of the

dividend shock yt+1 and the signal precision
(
ζ2itΣz +K−1

it

)−1
. Lastly, Ψt is the covariance of the

gross payout precision with the posterior variance of the dividend shock yt+1, the signal precision

and the exposure to the public signal ζit.

We can now substitute the covariance terms Ωt, Γt, Φt, Ψt and the price signal ηpt = C−1
t (pt −

At −B(dt − µ)) in the market clearing equation to get,

x̄+ xt+1 = ΓtΣ
−1
pt C

−1
t (pt −At −B (dt − µ)) + Φtyt+1 +Ψtzt+1

+Ωt [At+1 + µ+ (B + I)G(dt − µ)− rpt]

=⇒
(
ΓtΣ

−1
pt C

−1
t − rΩt

)
pt = ΓtΣ

−1
pt C

−1
t At + ΓtΣ

−1
pt C

−1
t B (dt − µ)

− ΩtAt+1 − Ωtµ− Ωt(B + I)G(dt − µ)

− Φtyt+1 −Ψtzt+1 + x̄+ xt+1

Let Mt = ΓtΣ
−1
pt C

−1
t − rΩt. Using the linear conjecture for the price pt, we match coefficients as

follows:

� At to all the constant terms: At =M−1
t

[
ΓtΣ

−1
pt C

−1
t At − ΩtAt+1 − Ωtµ+ x̄

]
� B to all terms with dt − µ: B =M−1

t

[
ΓtΣ

−1
pt C

−1
t B − Ωt(B + I)G

]
� Ct to all terms with yt+1: Ct = −M−1

t Φt

� Dt to all terms with xt+1: Dt =M−1
t

� Ft to all terms with zt+1: Ft = −M−1
t Ψt
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Solving this yields, 

At =
1
r

{
At+1 + µ− Ω−1

t x̄
}

B = (r −G)−1G

Ct = −M−1
t Φt

Dt =M−1
t

Ft = −M−1
t Ψt

(17)

B Proofs

In order to prove Lemma 1, we first state and prove an interim utility result.

Lemma 3. In a perfectly competitive market (n → ∞), investor expected utility at date t, condi-

tional on all date-t data is

E [U(cit+1) | Iit] = rwitρi +
1

2
E [Πit | Iit]′V [Πit | Iit]−1 E [Πit | Iit] (18)

Proof of Lemma 3.

From Equation (1) and Equation (10), end-of-period consumption for an investor can be rep-

resented as

cit+1 = r(wit − q′itθipt) + q′itθi(pt+1 + dt+1) = rwit + q′itΠit.

The ex ante utility of the investor is,

E
[
U(cit+1) | I−

t

]
= E

[
E [U(cit+1) | Iit] | I−

t

]
That is, we calculate the ex ante utility from the interim utility using the law of iterated expecta-

tions. From Equation (3), the interim utility is given as

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠit | Iit

]
− ρ2i

2
V
[
rwit + q′itΠit | Iit

]
.

The first order condition for optimal portfolio choice implies qit = ρ−1
i V [Πit | Iit]−1 E [Πit | Iit].

The first term of the interim utility is

ρiE [cit+1 | Iit] = rwitρi + E [Πit | Iit]′V [Πit | Iit]−1 E [Πit | Iit] . (19)
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The second term of the interim utility can be written as

ρ2i
2
V [cit+1 | Iit] =

1

2
E [Πit | Iit]′ V (Πit | Iit)−1 E [Πit | Iit] . (20)

Taking the difference of the first term and the second term yields the result in Lemma 3

E [U(cit+1) | Iit] = rwitρi +
1

2
E [Πit | Iit]′ V (Πit | Iit)−1 E [Πit | Iit] . (21)

Proof of Lemma 1. Expand the expression for profit Πit as,

Πit = θi [pt+1 + dt+1 − rpt]

= θi [At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + (dt+1 − µ) + µ− rpt]

= θi [At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt]

= θi [At+1 + µ+ (B + I)G(dt − µ) + (B + I)yt+1 + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt]

The interim variance of the profit is given as,

V [Πit | Iit] = θi
[
(B + I)Σt(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

]
θ′i (22)

Here, we use the posterior variance of the dividend innovation Σt = V [yt+1 | Iit]. Further, it is

clear from Equation (22) that the interim variance of consumption V [Πit | Iit] is a known quantity

– it is only a function of ζit and Kit (in our case, ζ and K), and not a function of information

revealed at the interim stage pt or sit. That is, it is a function only of the model primitives and

the information set I0.
Next, in the expression for the conditional expected utility from Lemma 3, we decompose the

conditional expected profit (3) into an expected E [Πit] and a surprise component E [Πit | Iit] −
E [Πit],

E [U(cit+1)] = E [E [U(cit+1 | Iit)]]

=
1

2
E
[{

E [Πit]
′ +
(
E [Πit | Iit]′ − E [Πit]

′)}V [Πit | Iit]−1 {E [Πit] + (E [Πit | Iit]− E [Πit])}
]

+ rwitρi

=
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] + E
[
E [Πit]

′V [Πit | Iit]−1 (E [Πit | Iit]− E [Πit])
]

︸ ︷︷ ︸
=0

+
1

2
E
[
(E [Πit | Iit]− E [Πit])

′V [Πit | Iit]−1 (E [Πit | Iit]− E [Πit])
]
+ rwitρi (23)

We are interested in the second term of the ex ante expected utility in Equation (23). We will

use the fact that the mean of a random variable with the central chi-square distribution is the trace
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of the covariance matrix of the underlying normal variable,

E [U(cit+1)] =
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] +
1

2
Tr [V [Υit]] + rwitρi (24)

where, Υit = (E [Πit | Iit]− E [Πit])
′V [Πit | Iit]−

1
2 (25)

We can express V [Υit] as,

V [Υit] = V
[
{E [Πit | Iit]− E [Πit]}′V [Πit | Iit]−

1
2

]
= V [E [Πit | Iit]− E [Πit]]V [Πit | Iit]−1

Hence, the term of interest is the prior variance of the ex ante stochastic quantity E [Πit | Iit], since
the prior expectation of this quantity E [Πit] is a known variable ex ante. Hence, we can use the

law of total variance, which says that the prior variance of the posterior expectation E [Πit | Iit] is
equal to the prior variance minus the posterior variance for Πit,

V [Υit] = {V [Πit]− E [V [Πit | Iit]]}V [Πit | Iit]−1

= V [Πit]V [Πit | Iit]−1 − I

Hence, we can express the ex ante expected utility as,

E [U(cit+1)] =
1

2
E [Πit]

′V [Πit | Iit]−1 E [Πit] +
1

2
Tr
[
V [Πit]V [Πit | Iit]−1 − I

]
+ rwitρi

Proof of Lemma 2. Differentiating expected interim utility, when price pt depends on investor i’s

demand yields a first order condition,

qit =

[
ρiV [pt+1 + dt+1 | Iit] +

dp

dqi

]−1

{E [pt+1 + dt+1 | Iit]− rpt}

=

(
ρiV [Πit | Iit] +

dp

dqi

)−1

E [Πit | Iit] . (26)

The term dp/dqi, often referred to as “Kyle Lambda” is the measure of how much effect investor

i’s demand has on the market price of an asset.

Interim utility still takes the form

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠit | Iit

]
− ρ2i

2
V
[
rwit + q′itΠit | Iit

]
.

However, substituting in the new expression for qit from Equation (26), the first term of the interim
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utility is now

ρiE [cit+1 | Iit] = rwitρi + E [Πt | Iit]′
(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1

E [Πt | Iit]

The second term of the interim utility can be written as

ρ2i
2
V [cit+1 | Iit] =

ρ2i
2
q′itV [Πit | Iit] qit

=
1

2
E [Πit | Iit]′

(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1

V [Πit | Iit]
(
V [Πit | Iit] +

1

ρi

dp

dqi

)−1

E [Πit | Iit]

Let Ṽi := V [Πit | Iit] + 1
ρi

dp
dqi

. Note that all terms in Ṽi are known ex ante to investor i. Taking the

difference of the first term and the second term yields interim expected utility

E [U(cit+1) | Iit] = rwitρi + E [Πit | Iit]′ Ṽ −1
i

(
I − 1

2
V [Πit | Iit] Ṽ −1

i

)
E [Πit | Iit] (27)

To compute ex-ante utility, we follow the same steps as in the proof for Lemma 1. The solu-

tion is also similar, except that we replace V [Πit | Iit] with V̂i := Ṽi

(
I − 1

2V [Πit | Iit] Ṽ −1
i

)−1
in

Equation (24) and in Equation (25). Similar to Ṽi, all terms in V̂i are known to investor i ex ante.

In this case,

V [Υit] = V
[
{E [Πit | Iit]− E [Πit]}′ V̂

− 1
2

i

]
= V [E [Πit | Iit]− E [Πit]] V̂

−1
i

Applying the law of total variance,

V [Υit] = (V [Πit]− V [Πit | Iit]) V̂ −1
i .

Substituting V̂i for
1
2V [Πit | Iit] in Equation (24) and using the new expression for V [Υit] yields

Ũ(Iit) = E [Πit]
′ V̂ −1

i E [Πit] + Tr
[
(V [Πit]− V [Πit | Iit]) V̂ −1

i

]
+ rρiw̄it. (28)

C Approximating a General Concave Utility Function

In our baseline setting, we assume that investors have mean-variance preferences over their end-of-

period wealth, which itself is a function of an optimal share allocation to a risky asset.

We now show the conditions under which these mean-variance preferences represent the local

approximation to a general concave utility function. The framework is that of Samuelson (1970),
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which starts with a risky asset with gross payoff X , with the pdf f(·). Investors in this framework

have a general concave utility function U(·) and solve an optimal wealth share allocation problem.

They assign a fraction α of their wealth to the risky asset, with the remaining being allocated to

the risk-free asset. Specifically, for the situation where the first-order approximation for the mean

of the risky payoff is E(X ) ≈ m+ az for some scaling parameter z, define the standardized return

Z = X −m. Then, X is called compact if

lim
z→0

E(Z)

E(Z2)
=

A
B
, (29)

where A and B are independent of z; and

lim
z→0

E(Zr)

E(Z2)
=

√
z
r−2Cr, r = 3, 4, . . . (30)

where Cr is independent of z.

Further, in the Samuelson (1970) framework, if the payoff X is compact, then the optimal

share α(z) which is the solution in the exact economy converges (as z → 0) to the solution of the

quadratic problem

max
α

∫ ∞

0

[
U(m) + U ′(m)(αX −m+ 1− α) +

1

2
U ′′(m)(αX −m+ 1− α)2

]
f(X )dX . (31)

Thus, to show that the mean-variance preferences in our baseline setting (which are equivalent to

solving the quadratic problem in (31)) are a valid (local) approximation to more general concave

preferences, we need to define the payoff X and show that it is compact.

We borrow the small shock approximation of Peress (2004) to establish the conditions undre

which the payoffs in our baseline model are compact.

Our environment consists the profit Π ∼ N (E [Π] ,V [Π]). For brevity, we ignore the index i

denoting individual investor and t for time. Given the price vector p, define the inverse price matrix

as

P−1 := diag(θp)−1. (32)

Define the quantity X in this economy such that the (log) return accrued to the investors when

perturbed by the small deviation z (for both the first and second moments) is given as

logX ∼ N (P−1E [Π] z, P−1V [Π]P−1z). (33)

Theorem 1. The return X is compact.

The return X has the same distribution as in Peress (2004) and Appendix E therein proves that

this return indeed satisfies the two compactness conditions (29) and (30). Since X is compact in our

envirionment, for small values of shocks z, the investors’ general preferences can be approximated
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by mean–variance preferences. Within this approximation, the absolute risk aversion coefficient ρ

represents the local curvature of their utility function, which can be arbitrarily dependent on their

mean wealth, and the mean value of risky asset shocks.

Next, we adapt the proof of Peress (2004) Theorem (1) to our setting. We first have the

expectation of X ,

E [X ] = exp

(
P−1E [Π] z +

1

2
P−1V [Π]P−1z

)
, (34)

and

lim
z→0

E [X ] = 1. (35)

The standardized payoff in this economy is then given as

Z = X − 1. (36)

For brevity, we write µ ≡ P−1E [Π] and σ2 ≡ P−1V [Π]P−1 so that E [X] = exp
(
(µ+ 1

2σ
2)z
)
. We

now use the Taylor expansion for small values z to get

E
[
X j
]
= exp

(
jµz +

1

2
σ2zj2

)
=

∞∑
i=0

1

i!

(
µj +

1

2
σ2j2

)i

zi. (37)

Similarly, we use the Binomial Thereom to see,

E [Zr] = E [(X − 1)r]

=
r∑

j=0

Cj
r (−1)r−jE

[
X j
]

=
r∑

j=0

Cj
r (−1)r−j

∞∑
i=0

1

i!

(
µj +

1

2
σ2j2

)i

zi

=

∞∑
i=0

zi
1

i!

r∑
j=0

Cj
r (−1)r−j

(
µj +

1

2
σ2j2

)i

︸ ︷︷ ︸
≡M(r,i)

. (38)

Lemma 4. The dominant term in z for the expansion (38) for r = 1 and r = 2 are in the same

order.

Proof. Note that M(r, 0) =
∑r

j=0(−1)r−jCj
r = (1 − 1)r = 0. Thus, the constant in the expansion

always vanishes, for any value of r ≥ 1.

Next, note that for r = 1, we have M(1, 1) =
(
µ+ 1

2σ
2
)
. As long as µ ̸= −1

2σ
2 we will have

M(1, 1) ̸= 0, and the dominant term in z in E [Z] is in order of z.
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Similarly,

M(2, 1) =
2∑

j=1

Cj
2(−1)2−j

(
µj +

1

2
σ2j2

)

= −2

(
µ+

1

2
σ2
)
+

(
2µ+

4

2
σ2
)

(39)

= σ2. (40)

As long as σ ̸= 0 we will have M(2, 1) ̸= 0, and the dominant term in E [Z] is in order of z.

Lemma 5. The dominant term in z for the expansion (38) for r ≥ 3 is r
2 − 1 order greater than

the dominant term in r = 2.

Proof. From Lemma (4), we know that the dominant term for r = 2 is of the order of z. For r ≥ 3,

we first use the Binomial Theorem to write

M(r, i) =
r∑

j=0

Cj
r (−1)r−j

(
µj +

1

2
σ2j2

)i

=
r∑

j=0

Cj
r (−1)r−j

i∑
k=0

Ci
kµ

k

(
1

2
σ2
)i−k

j2i−k

=

i∑
k=0

Ci
kµ

k

(
1

2
σ2
)i−k r∑

j=0

Cr
j (−1)r−jj2i−k. (41)

Defining

N(r, j, l) ≡
r∑

j=0

Cr
j (−1)r−jjl, (42)

for any integer l, we can establish that N(r, j, l) = 0 for all l ≤ r − 1. To see this, consider the

expression

(a− 1)r =
r∑

j=0

Cr
s (−1)r−jaj , (43)

and differentiate it l ≤ r − 1 times to get

r−l∑
j=0

Cr
j (−1)r−jaj−l j!

(j − l)!
. (44)

Setting a = 1, we get
r−l∑
j=0

Cr
j (−1)r−j j!

(j − l)!
= 0. (45)
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We now prove by induction over l that N(r, j, l) = 0. First, notice that l = 1 results in

N(r, j, 1) =

r∑
j=0

Cr
j (−1)r−jj, (46)

which is the same as the expression in Equation (45) with l = 1. Next, assuming we have shown

N(r, j, s) = 0 for all s < l, we write the expression in Equation (45) for l as

r∑
j=0

Cr
j (−1)r−j

(
jl +

∑
s<l

asj
s

)
, (47)

for some coefficients as. Since N(r, j, s) = 0∀s < l, we get N(r, j, l) = 0. Thus, N(r, j, l) = 0 for all

l ≤ r − 1.

Hence, the first non-zero term in the expansionM(r, i) will arise from i such that 2i−k > r−1,

or i > r−1
2 (since k ∈ {0, . . . , i}). For odd r this will be r+1

2 , and for even r this will be r
2 . Thus,

the dominant term in E [Zr] for r ≥ 3 is in order r
2 , which is r

2 − 1 the order of the dominant term

for r = 2.

By Lemmata (4) and (5), we see that X is compact, thus proving Theorem (1).

D Skewed Payoffs

Let g be a function that maps consumption cn under a model with normal variables into the

consumption cs under the skewed variables. As long as the new distribution of skewed model cs is

absolutely continuous with respect to normal variable model cn, there exists a change of measure

function like this. This is not saying that cn is normal. But it is the stochastic consumption that

arises out of our model with normal shocks.

Then, we can write utility under skewed distributed cs as U(cs), which by definition of g is

the same as U(g(cn)). Now, define U s := U(g(·)). Derive mean-variance expected utility, as in

Appendix C.

The second derivative divided by the first derivative of U s, which we will call skew-adjusted

risk aversion ρ̂ := U s′′/U s′, is not absolute risk aversion because U s is not really preference. It is

preference, convoluted with a change of measure function. So, use the chain rule to determine how

adjusted risk aversion and actual risk aversion relate: U s′ = U ′g′. Applying the chain rule a second

time: U s′′ = U ′′(g′)2 + u′g′′. Now, we can write adjusted risk aversion as

ρ̂ =
U s′′

U s′ =
U ′′(g′)2 + u′g′′

U ′g′
= ρg′ +

g′′

g′

If we use this adjusted risk aversion, we can compute expected utility with the same approximation

as before, as if payoffs are normally distributed.
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E Unconditional Utility in terms of Excess Returns

In this Appendix, we impose a key approximation which allows us to express the unconditional

utility of the investor in terms of moments of excess, as defined in Equation (10), as opposed to

profits. Recall from Equation (10)

Rit = Πit ⊘ θipt. (48)

Noting that pt is known at the interim stage (in the information set Iit), we start by writing the

expressions for the conditional moments of Rit

E [Rit | Iit] = E [Πit | Iit]⊘ θipt, and (49)

V [Rit | Iit] = V [Πit | Iit]⊘ θiptp
′
tθ

′
i. (50)

We assume that the ex-ante variation in θipt is small relative to the other terms in the expected

utility expression. Formally, this amounts to assuming that θipt is a constant from an ex-ante per-

spective. This allows us to use the law of iterated expectations and express the ex ante expectation

of excess return Rit as

E [Rit]j = E [E [Rit | Iit]]j = E [E [Πit | Iit]⊘ θipt]j = E
[
E [Πit | Iit]j / (θipt)j

]
≈

E [Πit]j
(θipt)j

. (51)

Or equivalently,

E [Rit] = E [Πit]⊙ (θipt)
◦(−1), (52)

where ⊙ is the Hadamard (element-wise) product of two matrices and W ◦(−1) represents the

Hadamard (element-wise) inverse of a matrix W . Further, we use the law of total variance to

express the unconditional variance of Rit as

V [Rit] = V [E [Rit | Iit]] + E [V [Rit | Iit]]

= V [E [Πit | Iit]⊘ θipt] + E
[
V [Πit | Iit]⊘ θiptp

′
tθ

′
i

]
≈ V [E [Πit | Iit]]⊘ θiptp

′
tθ

′
i + E [V [Πit | Iit]]⊘ θiptp

′
tθ

′
i

= V [Πit]⊘ θiptp
′
tθ

′
i (53)

Perfectly Competitive Markets We can now use Equations (50), (52) and (53) to express

the unconditional expected utility from Lemma 1 in terms of Rit. We get the expression for the ex
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ante expected utility in terms of excess returns as

Ũ(Iit) =
1

2

{
E [Πit]

′ E
[
V [Πit | Iit]−1

]
E [Πit]

}
+

1

2
Tr
[
V [Πit]V [Πit | Iit]−1 − I

]
+ rwitρi

≈ 1

2

{
E [Rit]

′ E
[
V [Rit | Iit]−1

]
E [Rit]

}
+

1

2
Tr
[
V [Rit]V [Rit | Iit]−1 − I

]
+ rwitρi (54)

Imperfectly Competitive Markets Using Equation (50), we can express the modified vari-

ance Ṽi as

Ṽi = V [Rit | Iit]⊙ θiptp
′
tθ

′
i +

1

ρi

dp

dqi

=

(
V [Rit | Iit] +

1

ρi

dp

dqi
⊘ θiptp

′
tθ

′
i

)
⊙ θiptp

′
tθ

′
i

= ˜̃Vit ⊙ θiptp
′
tθ

′
i, (55)

where
˜̃Vit :=

(
V [Rit | Iit] +

1

ρi

dp

dqi
⊘ θiptp

′
tθ

′
i

)
. (56)

Similarly, we restate V̂i as

V̂i =
˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V −1

it

)−1

⊙ θiptp
′
tθ

′
i =

ˆ̂Vit ⊙ θiptp
′
tθ

′
i, (57)

where

ˆ̂Vit :=
˜̃Vit

(
I − 1

2
V [Rit | Iit] ˜̃V −1

it

)−1

. (58)

We can now use Equations (50), (52), (53), (56) and (58) to express the unconditional expected

utility from Lemma 2 in terms of Rit. We get the expression for the ex ante expected utility in

terms of excess returns as

Ũ(Iit) ≈ E [Rit]
′ ˆ̂V −1

it E [Rit] + Tr
[
(V [Rit]− V [Rit | Iit]) ˆ̂V −1

it

]
+ rρiw̄it. (59)

F Valuing Order Flow Data

Consider an extension of the model where investors can observe data on sentiment shocks from H

different data sources. Investors have the same preference and choose their risky asset investment

qit to maximize E [U(cit+1)|Iit], taking the asset price and the actions of other investors as given,

subject to the budget constraint (1). A given piece of data m from data source h is now a signal

about xt+1: ηmx
iht = ψx

hxt+1 + Γx
he

x
it, with e

x
it

iid∼ N (0, I).

Information on sentiment shocks allows an investor i to extract a more precise signal about

dividends from prices spit = yt+1 + C−1
t Dt (xt+1 − E [xt+1 | sxit]). While investors probably do not

think about using order flow data to learn about fundamentals, they often trade against uniformed
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order flow (sentiment). This is mathematically equivalent to using sentiment to extract clearer

fundamental information from price and then trading on that fundamental information.

The solution of this model is a straightforward n-asset extension of the model with order flow

information in Farboodi and Veldkamp (2017). Given an N × 1 unbiased signal syit about the

dividend innovations yt+1 with precision matrix kyit and an N × 1 unbiased signal sxit about the

sentiment shocks yt+1 with precision matrix kxit, investors apply Bayes’ law. They combine their

prior, information in the sentiment-adjusted market price, and information on dividend innovation

obtained from the data to form a posterior view about the (t + 1)-period dividend dt+1. The

posterior precision is V [dt+1 | Iit]−1 = Σ−1
0 + C−1

t Dt

(
Σx + (kxit)

−1
)−1

D′
tC

−1′
t + kyit.

At each date t, the risky asset price equates demand with noise trades plus one unit of supply,

as described by Equation (2). The equilibrium price is still a linear combination of past dividends

dt, the t-period dividend innovation yt+1, and the sentiment shock xt+1, as in Equation (2).

Ex-ante utility is still given by the ex-ante expectation of Equation (3). The precision variables

kyit and k
x
it enter through the posterior variance V [dt+1 | Iit] and V [Πt | Iit]. In the second term,

kyit and k
x
it enter only through V [dt+1 | Iit]. Thus, V [dt+1 | Iit] is a sufficient statistic for expected

utility. The fact that the uncertainty about dividends is a sufficient statistic, and the formulation of

Bayes’ law for posterior precision (the inverse of uncertainty), implies that kyit and k
x
it affect utility

in the same way, except that kxit is multiplied by C−1
t DtD

′
tC

−1′
t . This ratio of price coefficients

represents the squared signal-to-noise ratio in prices, where C is the price coefficient on the signal

(future dividend) and D is the coefficient on noise (sentiment). The bottom line is that the value

of sentiment data is exactly the same as the value of fundamental data, after adjusting for the

signal-to-noise ratio in prices. That signal-to-noise adjustment is exactly what an OLS procedure

does.

G Additional Results

G.1 Equilibrium Learning from Prices

In our equilibrium framework, prices aggregate, with noise, the dispersed information of market

participants. Investors learn from both prices as well as their own data sources before making

investment decisions. In Table 6, we quantify the effect of this equilibrium force on data values.

Specifically, the table reports data valuations with and without price information from the perspec-

tive of an investor with $250 million of wealth under the same assumptions about investment styles

and price impact as in the baseline exercise. The row marked ‘With Price Information’ corresponds

exactly to the values reported in Panel B of Table 2. The table shows that learning from prices

exerts a quantitatively important effect (as high as 25% in some cases) on data valuations, pointing

to the importance of equilibrium forces.
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Table 6: Price Information and Data Value. Value of I/B/E/S earnings growth forecasts
of Growth and S&P 500 portfolios. Quarterly data between 1985–2019. Dependent variables
in (13) and (14) are returns, in excess of a three-month treasury (CMT), for five portfolios:
{Small, Large, Growth, Value, S&P500}. All specifications include a constant and control
variables (cay). In the first row, the value-weighted mean price of the corresponding portfolio
(value-weighted mean price of the S&P500 portfolio for the last column) is supplied as an
additional control variable, while this control variable is missing in the second row. Data
variables being valued are the quarterly value-weighted means of I/B/E/S median forecasted
earnings growth for Growth and S&P500 portfolios. Values are calculated with price impact
assuming Kyle Lambda λ = 1.5 × 10−8. All values are annualized, and dollar values are
reported in thousands of USD. Standard errors are calculated using a wild bootstrap.

Investment Style

(in $ 000) Small Large Growth Value S&P500 Multi-Asset

Value (Data | Controls + Price Info) 0.0 53.86 58.48 11.33 56.35 128.96
Value (Data | Controls) 0.0 49.63 54.4 8.98 47.67 102.5
Percent Change – 8.51% 7.49% 26.26% 18.22% 25.82%

Table 7: Price Impact and Data Value. Value of I/B/E/S earnings growth forecasts of
Growth and S&P 500 portfolios. Quarterly data between 1985–2019. Dependent variables
in (13) and (14) are returns, in excess of a three-month treasury (CMT), for five portfolios:
{Small, Large, Growth, Value, S&P500}. All specifications include a constant and control
variables (cay). In the first row, the value-weighted mean price of the corresponding portfolio
(value-weighted mean price of the S&P500 portfolio for the last column) is supplied as an
additional control variable, while this control variable is missing in the second row. Data
variables being valued are the quarterly value-weighted means of I/B/E/S median forecasted
earnings growth for Growth and S&P500 portfolios. All values are annualized, and dollar
values are reported in thousands of USD. Standard errors are calculated using a wild boot-
strap.

Investment Style

(in $ 000) Small Large Growth Value S&P500 Multi-Asset

Perfect Competition 0.0 110.9 116.42 52.27 340.22 1062.69
GK Price Impact 0.0 87.77 93.61 25.28 136.0 202.24
Baseline Price Impact 0.0 53.86 58.48 11.33 56.35 128.96

G.2 Price Impact

In Table 7, we explore the effect of using alternative estimates of price impact. It reports data

value for the rich investor from the baseline exercise in Table 2 using the value of Kyle’s Lambda as

estimated by Gabaix and Koijen (2021), λ = 5× 10−9, along with the corresponding values under

perfect competition as well as our baseline price impact calibration λ = 1.5× 10−8.
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Table 8: Return Moments. Quarterly data between 1985–2019. Dependent variables in
(13) and (14) are returns, in excess of a three-month treasury (CMT), for five portfolios:
{Small, Large, Growth, Value, S&P500}. All specifications include a constant and control
variables (cay and value-weighted mean price of the corresponding portfolio). In the last
column, we control for a constant, cay and the value-weighted mean price of the S&P500
portfolio. Data variables being valued are the quarterly value-weighted means of I/B/E/S
median forecasted earnings growth for Growth and S&P500 portfolios. The return moments
reported are annualized and scaled (as indicated).

Investment Style

Small Large Growth Value S&P500 Multi-Asset

E [R] ×100 11.72 9.75 9.93 6.1 9.49 –
V [R] ×10, 000 568.15 889.16 941.92 291.71 260.5 –
V [R|Controls] ×10, 000 558.9 870.92 921.61 288.48 256.37 –
V [R|Data + Controls] ×10, 000 560.66 857.9 907.14 286.45 246.87 –

Utility Gain 0.0 0.009 0.009 0.004 0.026 0.082

G.3 Return Moments

Table 8 reports the moments underlying the data value calculations in Panel A of Table 2: specif-

ically, the unconditional expected excess return, unconditional variance of returns, conditional

variance of returns under two regimes: conditioning on only controls, and conditioning on controls

and the data stream to be valued. These comprise the sufficient statistics to calculate the utility

gain reported at the bottom, which can then be translated to the data values reported in Table 2.

H Learning from Prices

The ex ante expected utility is given as

Ũ = rwitρi + E [Πit]
′ V̂ −1

i E [Πit] + Tr
[
(V [Πit]− V [Πit|Iit]) V̂ −1

i

]
(60)

where, V̂ −1
i = Ṽ −1

i − 1
2 Ṽ

−1
i V [Πi|Ii] Ṽ −1

i and Ṽi = V [Πit|Iit] + 1
ρi

dp
dqi

.

In the simpler case of perfect competition, dp
dqi

= 0 and we have,

Ũ = E [Πit]
′V [Πit|Iit]−1 E [Πit] + Tr

[
V [Πit]V [Πit|Iit]−1

]
+ constant (61)

= E [Πit]
′V [Πit|Iit]−1 E [Πit] + Tr

[
V [Πit]

1
2 V [Πit|Iit]−1V [Πit]

1
2

]
+ constant

For the single-asset case under perfect competition, we can see trivially that the ex ante expected
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utility is

Ũ =
(
E [Πit]

2 + V [Πit]
)
V [Πit|Iit]−1 + constant (62)

Consider a simple single-asset case under perfect competition, where returns are represented

as R, price information is represented as P and the data series to be valued is represented as D.

Assume that we have already residualized all the three variables with the control series Z. Further,

assume that the price signal has the structure

P = R+ ε, (63)

where ε ⊥ R and ε ∼ N (0, σ2P ). This is without loss of generality, since we can always linearly

transform the price series to take this form. Next, suppose we have

D = R+ η, (64)

where the mean-zero residual η ⊥ R has variance σ2D. Without loss of generality, we assume η to

be of the form

η = βε+ ξ, (65)

such that ξ ⊥ ε and ξ ∼ N (0, σ2ξ ). Note that this directly implies

σ2D = β2σ2P + σ2ξ . (66)

In this linear setting, we also have β = ρPD
σD
σP

, where ρPD = Corr(ε, η). Under this setting, we

can apply Bayes’ Law to see,

V [R|D]−1 = V [R]−1 + V [D|R]−1 . (67)

Note that V [D|R] = σ−1
D . The difference V [R|D]−1 −V [R]−1 is linearly proportional to the value

of the data series D, without using the information in prices P .

To get the value of data D while conditioning on P , we need to extract the unbiased signal for

R from D after conditioning on P . This signal can be obtained as

D

1− β
− β

1− β
P = R+

ξ

(1− β)
(68)

Thus, we again apply Bayes’ Law to see,

V [R|D,P ]−1 = V [R|P ]−1 + V [D|R,P ]−1 . (69)

Note that V [D|R,P ] = σ2
ξ

(1−β)2
. The difference V [R|D,P ]−1 − V [R,P ]−1 is linearly proportional

to the value of the data series D, while using the information in prices P .
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Thus, we have

Value(D) < Value(D|P )

⇔ ρ2PD

(
1−

σ2D
σ2P

)
− 2ρPD

σD
σP

≡ ∆ > 0

In particular, if σD < σP , for all values of the correlation ρPD which are sufficiently negative, the

value of data with price information is higher than the value of data without price information. On

the other hand, if σD ≥ σP , data value with price information is also higher than without price

information for some positive values of ρPD.

In Figure 1, we plot the results from a simulation with the iid DGP R ∼ N (0, 1) and parameter

values σD = 0.5 and σP = 1. We use 10, 000 sample points, and vary the value of ρPD between

[−0.8, 0.8]. We plot the difference in the conditional precisions, V [R|D, I]−1−V [R|I]−1, which we

use as the proxy for value of the data series Value(D|I). Even in this simple example, we see the

non-monotonic relationship between the value of D while conditioning on P , and the correlation

ρPD. More importantly and counterintuitively, the value of data with price information in the

conditioning set exceeds the value of data without conditioning on price information for a large

range of (negative) values of ρPD.
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Figure 1: Learning from Prices and Data Value: Value of a randomly generated data
series is plotted, with the price information and without. The solid line indicates the differ-
ence of the two data values.
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