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XX.1 Introduction: Capturing Dynamics 

Hidden Markov models (HMMs) have been used to model how a sequence of 

observations is governed by transitions among a set of latent states. HMMs were first 

introduced by Baum and co-authors in late 1960s and early 1970 (Baum and Petrie 1966; 

Baum et al. 1970), but only started gaining momentum a couple decades later. HMMs 

have been applied in various domains such as speech or word recognition (Rabiner 1989), 

image recognition (Yamato, Ohya and Ishii 1992), economics (Hamilton 1989, 2008), 

finance (Mamon and Elliott 2007), genetics (Eddy 1998), earth studies (Hughes and 

Guttorp 1994), and organization studies (Wang and Chan 2011). Over the last decade the 

number of applications of HMMs in marketing has grown substantially (see section 

XX.4).  
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In the context of marketing HMMs are often used to model a time series of 

customer or firm behavior such as customer choices or firm sales. These observations 

evolve over time following a latent Markovian process. That is, the firm or customer 

transition over time (in a Markovian manner) among a set of latent states and given each 

one of the states the customer or firm (probabilistically) behaves in a particular fashion. 

The observations provide a noisy measure of the underlying state. The main objective in 

utilizing a HMM is often to capture the dynamics in customer behavior over time. For 

simplicity we will describe the HMM in this chapter in the context of capturing dynamics 

in customer behavior and how firm actions may influence these behaviors. We note that 

HMMs in marketing are not limited to modeling behavior of customers, and have been 

applied in B2B contexts where the unit of analysis is a firm (see details in Section XX.4). 

Markovian models (see e.g. Leeflang et al. 2015, section 7.2) have been used in 

marketing to capture dynamics in customer behavior since the mid-1960s (e.g., 

Ehrenberg 1965). In these models the customer’s choice at time 𝑡 is assumed to be a 

function of the customer’s choice at time 𝑡 − 1, and according to a typical Markov 

model, depends only on the customer’s choice at time 𝑡 − 1 and not the customer’s 

choice in earlier time periods. This type of Markovian relationship between current 

customer choices and previous choices has been often referred to in marketing and 

economics as state dependence (e.g., Keane 1997; Chintagunta 1998; Seetharaman 2004, 

Dubé, Hitsch and Rossi 2010). 

To illustrate the notion of state dependence, consider a customer choice between 

Brand A and Brand B. State dependence suggests that the customer may have a different 

utility for Brand A depending on whether brand A or brand B was previously chosen. For 
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example, positive state dependence suggests that the customer’s utility from choosing 

Brand A will be higher if the customer purchased Brand A (rather than Brand B) in the 

previous time period. A related construct called variety seeking would predict the 

opposite effect, such that following a purchase of Brand A the utility the customer 

obtains from choosing Brand A again will be lower than its utility had the customer 

purchased Brand B instead. For example, consider the Markov process of purchase 

probabilities of brands A and B in Figure XX.1. 

 

Figure XX.1: A Markov model of brand choice 

 

 

 

 

 

 

 

Based on Figure XX.1, the probability of buying Brand A given that Brand A was 

previously chosen is 0.7, i.e. 𝑃(𝐴𝑡|𝐴𝑡−1) = 0.7, and the probability of buying Brand B 

given that Brand A was previously chosen is 0.3, i.e. 𝑃(𝐵𝑡|𝐴𝑡−1) = 0.3. Similarly, the 

probability of buying Brand B given that Brand B was previously chosen is 0.8, i.e. 

𝑃(𝐵𝑡|𝐵𝑡−1) = 0.8, and the probability of buying Brand A given that Brand B was 

previously chosen is 0.2, i.e. 𝑃(𝐵𝑡|𝐵𝑡−1) = 0.2. Thus, this example demonstrates positive 

state dependence as staying with the same brand from one period to the next is 
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considerably more likely than switching to the other brand. The model of customer 

behavior as depicted in Figure XX.1 is fairly simplistic. This model assumes that the 

customer purchase in the current period dependent only on the customer’s purchase in the 

previous period. This is a result of two modeling assumptions: 1) that the state of the 

world is defined purely based on the customer’s observed purchase in the previous 

period, and 2) the Markovian assumption that only the last purchase and not the 

purchases before the last matter. The first assumption could be relaxed by adding 

observed variables that may affect the customer behavior such as advertising or price as 

covariates in the model. The second assumption could be relaxed by defining the state by 

a longer history of purchases such as a running average of past purchases or a weighted 

sum of past purchases (e.g., Guadagni and Little 1983).  

An additional limitation of the model depicted in Figure XX.1, or its extensions 

described above, is that these models assume that the customer state can be fully 

characterized by the observed behavior. However, the customer decision of which 

product to purchase is often governed by an underlying latent state of preference for 

different brands. While the customer may switch brands at times due to stock out or a 

visitor from out of town without changing her intrinsic preferences, the underlying 

preferences are likely to be stickier and better reflecting the long-term customer behavior. 

HMMs offer a solution to this difficulty by proposing a model of latent customer 

preference and the transitions among them. In the context of the example described in 

Figure XX.1, one could model the customer behavior using a HMM as shown in Figure 

XX.2.  
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Figure XX.2: A hidden Markov model of brand choice 

 

 

 

 

 

 

 

 

 

 

 

 

In the model described in Figure XX.2, the two states represent the customer 

latent preference states for brand A and brand B. Unlike Figure XX.1, the states in Figure 

XX.2 are unobserved. Given the customer’s latent preference state the customer 

probabilistically choses the brands (the observed purchases). For example, a customer 

who has a higher preference for Brand B does not choose Brand B with probability 1 but 

rather with probability 0.9, for example, because the customer may occasionally have a 

visitor from out of town that prefers Brand A. Similarly, when the customer is in the 

preference for Brand A state she has a probability of 0.8 to choose Brand A and a 

probability of 0.2 to choose Brand B. Thus, in a HMM the observed behavior (purchases) 
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serve as a noisy measure of the customer’s true state. Additionally, the customer may 

change her preference for the brands over time. Such preference evolution will follow a 

Markovian process. In the example in Figure XX.2, the customer has an 80% chance of 

staying in the preference for brand B state from one period to another and a 20% of 

transition to the Brand A preference state. We call these the transition probabilities. In the 

example in Figure XX.2, the transition probabilities for a customer in the preference for 

brand A state are [0.7 0.3] and in the preference for brand B state [0.2 0.8]. Because the 

states in Figure XX.2 are fairly sticky, once a customer transitions to a different 

preference state she is likely to stay there for a while.  

One may wonder how the latent preference states can be identified from a 

sequence of observed purchases. If the researcher observes a sequence of purchases that 

involves mainly purchases of Brand A (though the customer may occasionally purchase 

Brand B), the researcher will infer that the customer belongs to the Brand A preference 

state. If at some point the customer starts buying more frequently Brand B, the researcher 

may infer that the customer has transitioned to the Brand B preference state. If the 

researcher also observes some marketing actions along with the observed purchases, she 

can relate these to the transition probabilities for the underlying preference states in order 

to understand their effect on shifting consumers’ preferences.  

 Thus, the HMM in Figure XX.2, and HMMs in general, have two main 

components: 1) a stochastic state dependent distribution – given a state the observations 

are stochastically determined, and 2) a state Markovian evolution – the system can 

transition from one state to another according to a set of transition probabilities.  
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Note that if the customer choses Brand A (B) with probability 1 when she is in 

preference state A (B), the HMM in Figure XX.2 collapses to the observed Markov 

process in Figure XX.1. Thus, the distinction between a HMM and an observed Markov 

process model is that in a HMM the states are stochastically determined by the sequence 

of observations, whereas in a Markov model the observations deterministically determine 

the states.  

An alternative way of thinking about a HMM of customer purchase behavior, is to 

think about a HMM as an approach to incorporate time dynamics in customer preferences 

and responses to marketing actions. Consider for example a customer that has the 

following utility function, as is commonly described in marketing and economics choice 

models: 

𝑢𝑖𝑡𝑗 = 𝑋𝑖𝑡𝑗
′ 𝛽𝑖𝑡 + 𝜀𝑖𝑡𝑗 , (XX.1) 

for 𝑖 = 1,2, … , 𝑁, 𝐽 = 1,2, … , 𝐽, and 𝑡 = 1,2, … , 𝑇. In this model 𝑢𝑖𝑡𝑗 is customer 

𝑖’s utility for product 𝑗 at time 𝑡, 𝑋𝑖𝑗𝑡 is a 𝑃 × 1 vector of time-varying, customer-

specific, covariates relevant for product j and customer i, such as price and advertising, 

𝛽𝑖𝑡 is a 𝑃 × 1 vector of customer-specific and time varying response parameters, and 𝜖𝑖𝑡𝑗 

is an error term, capturing unobserved shocks. In the model described in Equation XX.1 

the vector 𝛽𝑖𝑡 varies across customers and time, thus capturing full heterogeneity and 

dynamics in customer preferences and customer responses to the covariates in 𝑋𝑖𝑗𝑡.  

Estimating such model without putting any structure on the heterogeneity 

distribution across customers or across time (or both), is largely impractical for most 

empirical applications in marketing, because we often observe at most one observation 

per customer per time period. Two main approaches have been suggested in the literature 
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to capture unobserved, cross-customer, heterogeneity in 𝛽𝑖𝑡, but without capturing 

dynamics (i.e. 𝛽𝑖1 = 𝛽𝑖2 = ⋯ =𝛽𝑖𝑇). The first approach is a latent class or finite mixture 

approach (see Chapter YY on Mixture Models) in which, instead of estimating a 

preference vector (𝛽𝑖) for each individual, the researcher estimates a smaller set of 

vectors  𝛽̃𝑠, where 𝑠 = 1,2 … , 𝑆, and 𝑆 ≪ 𝑁. Here, the 𝑆 latent classes are sometimes 

interpreted as segments (e.g. Wedel and Kamakura, 2000). Another approach is the 

random effects approach in which a multivariate distributional structure is assumed to 

describe the heterogeneity in 𝛽𝑖 in the population of customers (e.g., 𝛽𝑖~𝑁(𝜇𝛽 , Σ𝛽)) (see 

Chapter YY on Bayesian Models). Here, each customer is assumed to be unique in its 

preferences (i.e. form its own segment of size 1), but the preferences are drawn from a 

population distribution.  

In a similar manner one can define a distribution for how the vector of parameters 

𝛽𝑖𝑡  varies over time. On the one hand, HMMs can be thought of as the dynamic analogue 

to the latent class or finite mixture approach. On the other hand, dynamic linear models 

(DLMs) based on the Kalman filter approach (see Chapter YY on State Space Models) 

can be seen as the dynamic analogue to the random-effects approach.  

Now that we have introduced the basic intuition behind the HMM and its 

relationship to other models in marketing, we detail the components of the HMM, the 

modeling considerations that one needs to take into account when building a HMM, and 

we highlight the importance of accounting for cross-customer heterogeneity when 

estimating a HMM. 

 

XX.2 Building a HMM 
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A HMM describes the customer’s transition among a finite set of latent states over time 

and the stochastic process that converts the customer’s state of the world to the observed 

behavior. Figure XX.3 extends Figure XX.2 to a more general HMM of customer 

behavior.  

Figure XX.3: An illustration of a general hidden Markov model  

 

As can be seen in Figure XX.3, the customer can transition over time among the 

𝐾 hidden states. As discussed before, the states follow a Markovian process. However, 

because the researcher generally does not observe the customer’s latent state, we must 

convert the set of latent states at time 𝑡 to the set of observed behaviors using a state 

dependent distribution. Although not explicitly shown here, covariates can affect both the 

customer’s likelihood of transitioning among states as well as the customer observed 

behaviors given a state (e.g., Netzer, Lattin and Srinivasan 2008).  

It is important to note that in the context of modeling customer behavior we often 

assume that the customer observes all of the components in Figure XX.3. That is, the 

customer knows her latent state, knows the likely behavior given a state and of course 
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observes her actions given a state. The researcher on the other hand, observes only a 

sequence of observations. Hence, the hidden states, the transitions among them, the 

distribution of customer behavior given a state, and even the number of states (𝐾), are 

parameters to be inferred or estimated from the available data.  

   

XX.2.1 The Basic Components of a HMM1 

We consider typical marketing data where we observe a time series of observations (e.g. 

choices), say {𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇}, for a set of customers (𝑖 = 1, … , 𝑁). 𝑌𝑖𝑡 may be a discrete 

or continuous variable, and may be univariate or multivariate. In a HMM, we assume that 

the probability distribution of 𝑌𝑖𝑡 depends on the realization of an unobserved, i.e. latent 

or hidden, discrete stochastic process 𝑆𝑖𝑡, with a finite state space {1, … , 𝐾}. Hence, while 

we observe 𝑌𝑖𝑡 directly, we can only observe 𝑆𝑖𝑡 indirectly through its stochastic outcome 

or noisy measure 𝑌𝑖𝑡.  

In the HMM the state membership 𝑆𝑖𝑡 is assumed to satisfy the Markov property 

such that 𝑃(𝑆𝑖𝑡+1|𝑆𝑖𝑡 , 𝑆𝑖𝑡−1, … , 𝑆𝑖1) = 𝑃(𝑆𝑖𝑡+1|𝑆𝑖𝑡). That is, the state customer 𝑖 is at in 

time period 𝑡 + 1 only depends on what state she is at in time period 𝑡. While higher 

order HMMs are possible, i.e. where the conditioning extends beyond the most recent 

time period, the first order assumption is often made for convenience and is often 

sufficient to capture the dynamics in the data. It should be noted that even though the 

state transitions are assumed to follow a first-order Markov process, the sequence of 

                                                       
1 This and the following sections build on the excellent book of Zucchini and MacDonald (2009). We adapt 

and extend their framework to a context typical for marketing where we have panel data. Zucchini and 

MacDonald (2009) mostly consider applications of HMMs for a single time series. 
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observations can follow any order of autocorrelation, depending on the values of the state 

transition probabilities.   

The basic HMM for customer 𝑖 transitioning among 𝐾 states over 𝑇 time periods 

can be written as (see section 2.2 for an intuitive derivation of the following equation for 

an example with three time periods and two states): 

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) = ∑ 𝑃(𝑆𝑖1 = 𝑠1)

𝑠1,𝑠2,…,𝑠𝑇

∏ 𝑃(𝑆𝑖𝜏 = 𝑠𝜏|𝑆𝑖𝜏−1 = 𝑠𝜏−1)

𝑇

𝜏=2

∏ 𝑃(𝑌𝑖𝜐|𝑆𝑖𝜐 = 𝑠𝜐)

𝑇

𝜐=1

 (XX.2) 

Hence, a standard HMM as presented in Equation (XX.2) consists of three main 

components, each of which we will discuss in more detail below: 

 The initial state distribution 𝑃(𝑆𝑖1 = 𝑠1), 𝑠1 = 1,2, … , 𝐾, which may be 

represented by a 1 × 𝐾 row vector 𝜋. 

 The transition probabilities 𝑃(𝑆𝑖𝑡+1 = 𝑠𝑡+1|𝑆𝑖𝑡 = 𝑠𝑡) for 𝑠𝑡+1, 𝑠𝑡  = 1,2, … , 𝐾, 

which may be represented by a 𝐾 × 𝐾 transition matrix 𝑄 . 

 The state-dependent distributions of observed activity 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡 = 𝑠𝑡), 𝑠𝑡 =

1,2, … , 𝐾, which may be represented by a 𝐾 × 𝐾  matrix 𝑀𝑖𝜏, that has the 

elements 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡 = 𝑠𝑡) on the diagonal and zeros on the off-diagonal. 

We refer the interested reader to Zucchini and MacDonald (2009) for further details of 

the modeling aspects of the HMM. Specification of these three components will be 

discussed next. 

The initial state distribution   

The initial state distribution describes the state membership at the beginning of the time 

series. Here, the researcher needs to choose how to specify the vector of initial state 

probabilities  𝜋 = {𝜋1, 𝜋2, … , 𝜋𝐾}, where  𝜋𝑘 is the probability of the customer being in 
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state k at the first time period (𝜋𝑘 = 𝑃(𝑆𝑖1 = 𝑠1), 𝑠1 = 1,2, … , 𝐾).  One possibility is to 

assume a-priori, based on theoretical grounds, that all customers start at one particular 

state. For example, in the context of a prescription of a new pharmaceutical drug, 

Montoya, Netzer, and Jedidi (2010) assume that all physicians, prior to the introduction 

of the drug, start at the lowest state of prescription behavior (i.e. 𝜋 = {1, 0, … , 0}).  

However, this requires strong prior knowledge regarding the initial process.  

Another option is to assume that the process started from its stationary 

distribution. In this case we would estimate π from solving the systems of equations π =

πQ, where Q is the K × K transition probabilities matrix. This constraint is reasonable if 

the customer has had a long history of transactions with the firm prior to the start of the 

observation period (Netzer et al. 2008). A necessary condition to be able to calculate such 

stationary distribution is that the transition matrix is ergodic or irreducible. That is, it is 

possible to eventually get from every state to every other state with positive probability. 

Finally, in the most general form, one could estimate 𝜋 directly using a vector of 

𝐾 − 1 parameters. While this approach is most flexible, its primary drawback is that it 

increases the risk of local maxima, particularly when estimating the HMM using a 

maximum likelihood or an expectation maximization (EM) approach (Zucchini and 

MacDonald 2009).   

 

The transition matrix 𝑄 

The conditional probabilities 𝑃(𝑆𝑖𝑡+1|𝑆𝑖𝑡) are called the transition probabilities and can 

be represented by a 𝐾 × 𝐾 transition matrix of conditional probabilities, 𝑄. Each row in 

𝑄 contains the conditional probabilities that the customer would be in any of the 𝐾 latent 
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states in the next time period, given the customer’s current state. Thus, each element of 

the matrix 𝑄 needs to be in between 0 and 1, and the row-sum of each row in 𝑄 needs to 

equal 1. One can represent the transition matrix Q as in Figure XX.4.  

 

Figure XX.4: A schematic representation of the transition probability matrix 𝑄 of a 

HMM 

 

1 2 … 𝐾
1 𝑞11 𝑞12 … 𝑞𝑞1𝐾

2 𝑞21 𝑞22 … 𝑞𝑞2𝐾

⋮ ⋮ ⋮ ⋱ ⋮
𝐾 𝑞𝐾1 𝑞𝐾2 … 𝑞𝐾𝐾

 

 

 

In the transition matrix Q depicted in Figure XX.4, q11 is the conditional 

probability 𝑃(𝑆𝑖𝑡+1 = 1|𝑆𝑖𝑡 = 1), Similarly, q12 is the conditional probability 

𝑃(𝑆𝑖𝑡+1 = 2|𝑆𝑖𝑡 = 1), and, in general, 𝑞𝑠𝑡𝑠𝑡+1
= 𝑃(𝑆𝑖𝑡+1 = 𝑠𝑡+1|𝑆𝑖𝑡 = 𝑠𝑡) for 𝑠𝑡+1, 𝑠𝑡 =

1,2, … , 𝐾. 

In most applications outside of marketing the states are considered to be “states of 

the world” and therefore the transition matrix is not dependent on time. In such as case 

the HMM is a homogenous HMM with 𝑄𝑡 = 𝑄 for 𝑡 = 1,2, … , 𝑇, and 𝑄 can be 

represented as in Figure XX.4. In marketing, however, the states are often states of 

customer behavior, which could be affected by firm’s actions. In such cases the transition 

matrix 𝑄 may depend on time and/or on time varying covariates, in which case we would 

write 𝑄𝑡 instead of 𝑄. The resulting HMM is referred to as a non-homogeneous HMM 
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(e.g., Netzer et al. 2008). Furthermore, if the transition matrix depends on how long the 

customer has been in the state, then the HMM is referred to as a semi-HMM (e.g., 

Montgomery et al. 2004). 

As the number of states increases, the number of transition parameters grows at a 

rate of approximately the square of the increase in the number states. Therefore, it is 

sometimes beneficial to impose restrictions on the transition matrix. For example, one 

could impose that transitions are allowed only among adjacent states. In such case, only 

𝑞𝑗𝑗, 𝑞𝑗𝑗−1, and 𝑞𝑗𝑗+1 (for 𝑗 = 2, 3, … 𝐾 − 1) along with 𝑞11, 𝑞12, 𝑞𝐾𝐾−1, and 𝑞𝐾𝐾 are 

estimated, and the other transition matrix elements are set to 0. Alternatively, restrictions 

on 𝑄 could arise from the desire to capture a particular customer behavior. For example, 

customer churn could be captured by an absorbing state. In order to create a HMM with 

an absorbing state, one would restrict in the transition matrix 𝑄 all probabilities in the 

row of the absorbing state to zero except the probability on the diagonal, which is set 

equal to one.  

 

The state dependent distributions of observed data 𝑌𝑖𝑡 in time period 𝑡 

In a HMM, given the customer’s state 𝑆𝑖𝑡, the observed behavior 𝑌𝑖𝑡 is a noisy measure 

and a probabilistic outcome of the state.  If the customer’s latent state 𝑆𝑖𝑡 is known, the 

probability distribution of 𝑌𝑖𝑡, 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡), only depends on the current state. Thus, the 

temporal dependencies across observations are only driven by the customer’s state 

membership over time and conditional on the customer’s state the conditional 

probabilities 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡) are independent over time.  
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The state dependent distribution is probably the most flexible component of the 

HMM as it can be fully adapted to capture the distribution of the observed outcome 𝑌𝑖𝑡. 

For example, if the observed behavior is a binary outcome one can use a binary logit or 

binary probit distribution (e.g., Netzer et al. 2008), for multinomial choice one can use a 

multinomial logit or multinomial probit (e.g., Schweidel, Bradlow and Fader 2011), for 

count data one can use a Poisson distribution (e.g., Ascarza and Hardie 2013), and for 

continuous 𝑌𝑖𝑡 one can use a normal distribution (e.g., Ebbes, Grewal and DeSarbo 2010). 

In cases in which multiple outcomes are observed given a state one can use any 

combination of the above (e.g., Ebbes et al. 2010; Zhang, Netzer and Ansari 2014, Ebbes 

and Netzer 2016). For example, Ebbes and Netzer (2016) consider a combination of 

different user behaviors on LinkedIn, consisting of activities that are discrete which are 

modeled as a binary logit model (e.g. the user updated her profile page or not), and 

activities that are continuous which they model as a tobit-regression model (e.g. how 

many pages did the user visit). 

 The state dependent distributions are often specified as a generalized linear 

model, with or without covariates, where the (regression) parameters are state dependent. 

For instance, if we have just one dependent variable which indicates a binary choice, and 

we have 𝑃 time-varying covariates given by the 𝑃 × 1 vector 𝑋𝑖𝑡 (including an intercept), 

then 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡 = 𝑠𝑡) could be modeled as a binary logit model, given by 

𝑚𝑖𝑡𝑠 = 𝑃(𝑌𝑖𝑡|𝑆𝑖𝑡 = 𝑠𝑡 , 𝑋𝑖𝑡) =
exp (𝑋𝑖𝑡 

′ 𝛽𝑠𝑡
)

1 + exp (𝑋𝑖𝑡 
′ 𝛽𝑠𝑡

)
 

(XX.3) 

The state dependent distributions differ across states according to 𝐾 vectors of 

regression coefficients 𝛽𝑠𝑡
, one vector for each state 𝑠𝑡 = 1,2, … , 𝐾.  We can define a 
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matrix 𝑀𝑖𝑡 that collects the state dependent probabilities of consumer 𝑖 in time 𝑡 as a 𝐾 ×

𝐾 diagonal matrix: 

𝑀𝑖𝑡 = [
𝑚𝑖𝑡1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑚𝑖𝑡𝐾

]. 

If the state dependent distributions differ across states not only in terms of the 

value of the distribution parameters but also in the distributional functional form, then the 

model is sometimes called a hidden Markov mixture of experts. For example, in the 

context of behavioral games, Ansari, Montoya and Netzer (2012) build a HMM in which 

one of states represents reinforcement learning and the other state represents belief 

learning. 

Hence, the state dependent distributions in the HMM are rather modular, and 

depending on the behavior modeled, one can consider almost any general distribution or a 

mix of distributions, to capture the nature of the observed dependent variable(s). 

 

XX.2.2 The HMM Likelihood Function 

In this section we put together the three components of the HMM, namely, the initial 

state distribution, the transition matrix, and the state dependent distribution to form the 

HMM likelihood function of observing the sequence of data. To build the intuition for the 

likelihood function (and Equation (XX.2)), we start with a simple example, where we 

have two states (𝐾 = 2) and three time periods (𝑇 = 3).  For customer 𝑖, we therefore 

observe 𝑌𝑖1, 𝑌𝑖2, and 𝑌𝑖3 and this customer is in (latent) states 𝑆𝑖1, 𝑆𝑖2, and 𝑆𝑖3, in periods 1, 
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2 and 3, respectively. The joint probability of data and latent states is given by 

𝑃(𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3, 𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3), and can be written as follows2: 

𝑃(𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3, 𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3) = 𝑃(𝑌𝑖3, 𝑆𝑖3, 𝑌𝑖2, 𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1)
= 𝑃(𝑌𝑖3|𝑆𝑖3, 𝑌𝑖2, 𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1) × 𝑃(𝑆𝑖3|𝑌𝑖2, 𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1) × 𝑃(𝑌𝑖2|𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1)
× 𝑃(𝑆𝑖2|𝑌𝑖1, 𝑆𝑖1) × 𝑃(𝑌𝑖1|𝑆𝑖1)𝑃(𝑆𝑖1) 

 
Here is where the Markov property together with the fact that the state dependent 

distributions are conditionally independent help simplifying the previous product of 

conditional probabilities: 

I. 𝑃(𝑌𝑖3|𝑆𝑖3, 𝑌𝑖2, 𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1) =  𝑃(𝑌𝑖3|𝑆𝑖3) – the distribution of 𝑌13 only depends on 

the current state 𝑆𝑖3 and not on pervious states nor previous observations; 

II. 𝑃(𝑆𝑖3|𝑌𝑖2, 𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1) = 𝑃(𝑆𝑖3|𝑆𝑖2) – the state membership in 𝑡 = 3 only depends 

on the customer’s previous state 𝑆𝑖2 (the Markov property).  

III. 𝑃(𝑌𝑖2|𝑆𝑖2, 𝑌𝑖1, 𝑆𝑖1) = 𝑃(𝑌𝑖2|𝑆𝑖2) – following the same rational as I; 

IV. And, 𝑃(𝑆𝑖2|𝑌𝑖1, 𝑆𝑖1) = 𝑃(𝑆𝑖2|𝑆𝑖1) – following the same rational as II. 

Hence, the likelihood of observing the set of observations and states can be more 

succinctly written as: 

𝑃(𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3, 𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3)

= 𝑃(𝑆𝑖1)𝑃(𝑌𝑖1|𝑆𝑖1)𝑃(𝑆𝑖2|𝑆𝑖1)𝑃(𝑌𝑖2|𝑆𝑖2)𝑃(𝑆𝑖3|𝑆𝑖2) 𝑃(𝑌𝑖3|𝑆𝑖3) 

(XX.4) 

However, in practice, we do not observe the customer states. That is, we observe the 

customer’s activity (𝑌𝑖1, 𝑌𝑖2, and 𝑌𝑖3) but not the customer’s state in each time period 

(𝑆𝑖1, 𝑆𝑖2, and 𝑆𝑖3). Thus, to obtain the likelihood for the observed data, we need to 

                                                       
2 Here we use a general product rule to calculate the probability of the joint distribution using conditional 

probabilities. Under the general product rule the joint distribution of four ‘events’ (𝐵1, 𝐵2, 𝐵3, 𝐵4) can be 

written as the product of conditional distributions as follows: 𝑃(𝐵1, 𝐵2, 𝐵3, 𝐵4) =
𝑃(𝐵1|𝐵2, 𝐵3, 𝐵4)𝑃(𝐵2|𝐵3, 𝐵4)𝑃(𝐵3|𝐵4)𝑃(𝐵4). 
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‘integrate out’ the latent states, across all state paths that the customer could take over 

time:  

𝑃(𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3) = ∑ ∑ ∑ 𝑃(𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3, 𝑆𝑖1 = 𝑠1, 𝑆𝑖2 = 𝑠2, 𝑆𝑖3 = 𝑠3)

2

𝑠3=1

2

𝑠2=1

2

𝑠1=1

= 

∑ 𝑃(𝑆𝑖1 = 𝑠1) × 𝑃(𝑌𝑖1|𝑆𝑖1 = 𝑠1) × 𝑃(𝑆𝑖2 = 𝑠2|𝑆𝑖1 = 𝑠1) × 𝑃(𝑌𝑖2|𝑆𝑖2 = 𝑠2) × 𝑃(𝑆𝑖3 = 𝑠3|𝑆𝑖2 = 𝑠2)

𝑠1,𝑠2,𝑠3

× 𝑃(𝑌𝑖3|𝑆𝑖3 = 𝑠3) = 

∑ 𝑃(𝑆𝑖1 = 𝑠1) × 𝑃(𝑆𝑖2 = 𝑠2|𝑆𝑖1 = 𝑠1) × 𝑃(𝑆𝑖3 = 𝑠3|𝑆𝑖2 = 𝑠2) × 𝑃(𝑌𝑖1|𝑆𝑖1 = 𝑠1) × 𝑃(𝑌𝑖2|𝑆𝑖2 = 𝑠2)

𝑠1,𝑠2,𝑠3

× 𝑃(𝑌𝑖3|𝑆𝑖3 = 𝑠3) = 

∑ 𝑃(𝑆𝑖1 = 𝑠1) ∏ 𝑃(𝑆𝑖𝜏 = 𝑠𝜏|𝑆𝑖𝜏−1 = 𝑠𝜏−1)3
𝜏=2 ∏ 𝑃(𝑌𝑖𝜐|𝑆𝑖𝜐 = 𝑠𝜐)3

𝜐=1𝑠1,𝑠2,𝑠3
,  

where 𝑠𝜏 = 1 or 2 for 𝜏 = 1,2,3. One limitation with the likelihood function as presented 

here, is that the summation over all possible states’ paths that the customer could take, 

involves 𝐾𝑇 terms in the summation, which can create computational burden when the 

number of time periods and state increase (see also Equation (XX.2)). Zucchini and 

Macdonald (2009, p. 37) show that the HMM likelihood function can be written in a 

more convenient matrix form instead. Extending the simple example to a more general 

case with 𝐾 states and 𝑇 time periods, and using matrix notation, we can write the HMM 

likelihood function for customer 𝑖 as:  

𝐿𝑖𝑇 = 𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) = 𝜋𝑀𝑖1𝑄𝑀𝑖2 … 𝑄𝑀𝑖𝑇𝜄 (XX.5) 

where 𝜋, 𝑀𝑖𝑡, and 𝑄 are defined as above and 𝜄 is a 𝐾 × 1 vector of ones. The likelihood 

function (XX.5) also provides the intuition for the HMM process. The process starts with 

customer 𝑖 belonging to a particular latent state 𝑘, which follows the initial state 

distribution 𝜋. Given her state in period 1 the customer behaves in particular manner, as 

described by the probabilities 𝑀𝑖1. Next, the customer may transition from her state at 
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time period 1 to her state at time period 2 (as described by the transition probabilities 𝑄). 

Subsequently, given the state the customer transitioned to in period 2 (which may be her 

current state), 𝑀𝑖2 captures customer behavior in period 2, followed by another state 

transition between period 2 and period 3 according to the probabilities in the transition 

matrix 𝑄. This process repeats itself until we reach the final behavior of customer 𝑖 in 

time period 𝑇.  

The likelihood for the complete sample of customers 𝑖 = 1,2, … , 𝑁 is given by the 

following product: 𝐿𝑇 = ∏ 𝐿𝑖𝑇
𝑁
𝑖=1 . In Section XX.3, we discuss several approaches to 

estimate the HMM parameters after observing the data. 

 

The forward and backward probabilities 

For the purpose of state recovery, prediction, and estimation, it is useful to split the 

likelihood function in (XX.5) into forward and backward components.  

Let the 1 × 𝐾 row vector 𝛼𝑖𝑡 be defined as follows:  𝛼𝑖𝑡 = 𝜋𝑀𝑖1 ∏ 𝑄𝑀𝑖𝑠
𝑡
𝑠=2 . 

Thus, we can rewrite the likelihood function up to time 𝑇 as 𝐿𝑖𝑇 = 𝛼𝑖𝑇𝜄, which can be 

obtained recursively as 𝛼𝑖𝑡 = 𝛼𝑖𝑡−1𝑄𝑀𝑖𝑡 (𝑡 ≥ 2) with, for 𝑡 = 1, 𝛼𝑖1 = 𝜋𝑀𝑖1.  The row 

vector 𝛼𝑖𝑡 is called the vector of forward probabilities. Furthermore, it can be shown (e.g. 

Zucchini and MacDonald, 2009, p. 60) that the 𝑗-th element of 𝛼𝑖𝑡, say 𝛼𝑖𝑡(𝑗), is the joint 

probability 𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡, 𝑆𝑖𝑡 = 𝑗). 

Similarly, one can define a 1 × 𝐾 vector of backward probabilities 𝛽𝑖𝑡. This 

vector captures the last 𝑇 − 𝑡 terms of the HMM likelihood recursion, that is 𝛽𝑖𝑡
′ =

(∏ 𝑄𝑀𝑖𝑠
𝑇
𝑠=𝑡+1 )𝜄, for 𝑡 = 1,2, … , 𝑇, with 𝛽𝑖𝑇

′ = 𝜄. It can be shown (e.g. Zucchini and 

MacDonald p. 61) that the 𝑗-th element of this vector, say 𝛽𝑖𝑡(𝑗), is the conditional 
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probability 𝑃(𝑌𝑖𝑡+1, 𝑌𝑖𝑡+2, … , 𝑌𝑖𝑇|𝑆𝑖𝑡 = 𝑗). This is, the probability of observing 

𝑌𝑖𝑡+1, 𝑌𝑖𝑡+2, … , 𝑌𝑖𝑇 given that customer 𝑖 is in state 𝑗 in time period 𝑡. 

In fact, the forward and backward probabilities can be combined to give the joint 

probability 𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇, 𝑆𝑖𝑡 = 𝑗) as the product of the two, i.e. 𝛼𝑖𝑡(𝑗)𝛽𝑖𝑡(𝑗). Then, 

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) = ∑ 𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇, 𝑆𝑖𝑡 = 𝑗)𝐾
𝑗=1 = ∑ 𝛼𝑖𝑡(𝑗)𝛽𝑖𝑡(𝑗)𝐾

𝑗=1 = 𝛼𝑖𝑡𝛽𝑖𝑡
′ .  

Hence, another way to compute the likelihood 𝐿𝑖𝑇 is through any of the 𝑡 = 1,2, … , 𝑇 

combinations 𝛼𝑖𝑡𝛽𝑖𝑡
′ .  The likelihood function given in (XX.5) is a special case of the 

product of the forward-backward probabilities for 𝑡 = 𝑇, where we only need the forward 

probabilities (as 𝛽𝑖𝑇
′ = 𝜄). 

When the time series is long the calculation of the forward and backward 

probabilities can suffer from underflow. Zucchini and MacDonald (2009, Section 3.2) 

discuss appropriate scaling of these probabilities to avoid underflow. 

 

XX.2.3 HMM State Recovery and Prediction 

In some cases HMMs are primarily used as a predictive model with the objective of 

predicting customer behavior (𝑌𝑖𝑡) in future time period 𝑡 = 𝑇 + ℎ, ℎ = 1,2, …., H. One 

advantage of using HMMs for that purpose is that it is easy to predict a few periods 

ahead. For example, Paas, Vermunt and Bijmolt (2007) present a HMM for household 

ownership of financial products and use the HMM to predict future acquisitions of such 

products. In other cases the primary objective of the HMM is to recover the customer’s 

state (𝑆𝑖𝑡) at each time period.  For example, Ebbes and Netzer (2016) use a HMM and 

observations on users’ activity on LinkedIn with the primary objective of inferring which 

users are in a state of a job search. State recovery can also be used to capture how the 
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firm’s customer base has evolved over time. Figure XX.5 depicts such an example from 

Montoya et al. (2010). Following the introduction of a new drug, and marketing efforts 

by the firm, the physicians’ base has transitioned from the inactive prescription state prior 

to the introduction of the drug to a majority of the physicians in an infrequent 

prescription state, and approximately 20% of the physicians in a frequent prescription 

state. Note that it took the physicians’ base approximately eight months post the 

introduction of the drug to stabilize on the prescription state membership.  

 

Figure XX.5: An example of customer state membership evolution from Montoya et al. 

(2010).  

 

 

 

 

 

 

 

 

 

Both predictions and state recovery are closely related to the HMM likelihood function 

and forward/backward probabilities described in Section XX.2.2.  

 

Recovering state membership 
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Two approaches have been suggested for recovering the state membership distribution: 

filtering and smoothing. Filtering utilizes only the information known up to time t to 

recover the individual’s state at time t, while smoothing utilizes the full information 

available in the data to predict the customer state at any point in time during the observed 

data period. The smoothing approach is quite common in fields such as speech 

recognition where one wants to infer the meaning of a particular word both by words that 

appeared prior to the focal word and words that appeared after the focal word. In most 

marketing applications, the researcher is more interested to infer a customer state only 

based on the history of the observed behavior and not based on future behavior and hence 

the filtering approach is more common. 

The smoothing state membership probabilities can be computed using the Bayes 

formula: 

𝑃(𝑆𝑖𝑡 = 𝑗|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) =
𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇, 𝑆𝑖𝑡 = 𝑗)

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇)
 , 

which can be further simplified using the forward and backward probabilities discussed 

in the previous section as follows:  

𝑃(𝑆𝑖𝑡 = 𝑗|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) =
𝛼𝑖𝑡(𝑗)𝛽𝑖𝑡(𝑗)

𝐿𝑖𝑇
. 

(XX.6) 

Similarly, the filtering probabilities can be written as: 

𝑃(𝑆𝑖𝑡 = 𝑗|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡) =
𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡 , 𝑆𝑖𝑡 = 𝑗)

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡)
,  

which can be computed using the forward probabilities as:  

𝑃(𝑆𝑖𝑡 = 𝑗|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡) =
𝛼𝑖𝑡(𝑗)

𝐿𝑖𝑡
. 

(XX.7) 
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 Another approach related to recovering state membership attempts to recover the 

most probable sequence of states given the full information in the data. Unlike 

smoothing, which predicts state membership at one point in time, this approach decodes 

the best hidden state path given a sequence of observations. In principle the most likely 

path could be discovered by running the forward algorithm for each possible sequence of 

states, and then find the path which corresponds to the highest probability. Clearly, this 

would easily become impossible given the potentially large number of state sequences. 

Instead, for this task one could use the Viterbi algorithm which is a recursive algorithm 

(leveraging the forward and backward probabilities algorithm) akin to dynamic 

programing algorithms (e.g. Viterbi 1967; Jurafsky and Martin 2008). If the main 

purpose of the analysis is to recover and interpret the sequence of state membership, it is 

recommended to test the accuracy of the Viterbi algorithm using simulation (see e.g., 

Zucchini and MacDonald (2009) pp. 84-86). For marketing applications, one could 

potentially compute one such sequence for each customer. For instance, in the context of 

the preference example for Brands A and B discussed above, the Viterbi algorithm would 

allow a manager to infer the most probably sequence of preference states that a customer 

took during the observation window. 

Predicting future activity 

In some applications of HMMs, the researcher is interested in predicting future values of 

the observed variable 𝑌𝑖𝑡. Hence, we want to compute the probability of observing 

customer 𝑖’s activity in the time period 𝑇 + ℎ, ℎ > 0, given the activity we have observed 

until time 𝑇. This probability is derived from Bayes theorem, i.e.  

𝑃(𝑌𝑖𝑇+ℎ|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) =
𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇, 𝑌𝑖𝑇+ℎ) 

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇)
. 
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The denominator of the above equation is simply 𝐿𝑖𝑇 given in (XX.5). The numerator can 

be computed by multiplying the customer’s forward probabilities by h transition matrices 

and by the customer’s state dependent distribution in period 𝑇 + ℎ (see also Zucchini and 

MacDonald, 2009, pp.33 and 37). That is,  

𝑃(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇, 𝑌𝑖𝑇+ℎ) = 𝜋𝑀𝑖1𝑄𝑀𝑖2 … 𝑄𝑀𝑖𝑇𝑄𝑄 … 𝑄𝑀𝑖𝑇+ℎ𝜄 = 𝛼𝑖𝑇𝑄ℎ𝑚𝑖𝑇+ℎ𝜄 

The predicted customer behavior in period 𝑇 + ℎ can be written as: 

𝑃(𝑌𝑖𝑇+ℎ|𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑇) =
𝜋𝑀𝑖1𝑄𝑀𝑖2 … 𝑄𝑀𝑖𝑇𝑄ℎ𝑀𝑖𝑇+ℎ𝜄 

𝜋𝑀𝑖1𝑄𝑀𝑖2 … 𝑄𝑀𝑖𝑇𝜄
=

𝛼𝑖𝑇𝑄ℎ𝑀𝑖𝑇+ℎ𝜄

𝛼𝑖𝑇𝜄
. (XX.8) 

This expression can be obtained as a by-product in likelihood estimation.  

 

XX.2.4 Accounting for Cross-customer Heterogeneity  

One of the aspects that differentiates HMMs in marketing from HMMs in other fields is 

that in other fields there is usually one single long sequence of observations (e.g. pixels in 

an image or the GDP in the united states over the past few decades) and the HMM is 

estimated for a single time series using the entire sequence of observations. In marketing, 

on the other hand, we often have a panel data structure in which we observe multiple 

sequences of observations, one for each customer, allowing for different customers to 

possibly have heterogeneous preferences and behaviors. 

 The idea that customers are different in terms of preferences and behavior has a 

long history in marketing. Modeling consumer heterogeneity has been the central focus 

of many econometric marketing applications (see chapter XX). Voluminous research has 

demonstrated the bias that may arise from not accounting for heterogeneity across 

customers. Moreover, in many marketing applications the researcher is interested in 
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targeting individual consumers based on their individual preferences, which would 

require a detailed understanding of customer heterogeneity.  

  Accounting for cross-customer heterogeneity is even more important in the 

context of dynamic models, such as the HMM. Heckman (1981) demonstrates that 

estimating a random utility homogenous choice model based on a heterogeneous sample 

may lead to a strong spurious state dependence, even when the actual choices were 

independent over time. Similarly, a model that accounts for heterogeneity but ignores 

state dependence may overestimate the degree of heterogeneity (Keane 1997). In the 

context of HMMs, not accounting for cross-customer heterogeneity forces the states to 

capture both heterogeneity (similar to latent class model) and dynamics. To see this, 

imagine a group of customers who are static in their preferences (a HMM estimated for 

these customers should lead to an identity transition matrix as customers do not switch 

states over time) and a second group of customers who have a 60% chance of staying in 

their previous preference state and 40% likelihood of transitioning to another preference 

state at each time period. A homogenous HMM estimated using data from both groups of 

customers would lead to a single transition matrix, that is an “average” of an identity 

matrix and a matrix reflecting the switching behavior of the second group. Consequently, 

the estimated transition matrix would suggest that all customers are dynamic in their 

preferences (including the first group with static preferences), whereas at the same time, 

the estimate transition matrix overstates the stickiness of the states (i.e. the likelihood of 

staying in the same state from one period to another) for the second, dynamic group of 

customers. 
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With long enough time series per customer, in principle, one could estimate a 

separate HMM for each customer. This would give a unique set of estimated parameters 

for each customer. That is, each customer would have its own estimated initial state 

probabilities (𝜋𝑖), transition probability matrix (𝑄𝑖), and parameters of the state-

dependent activity distribution (𝑀𝑖𝑡). Because typically the number of observations per 

customer are insufficient to estimate a unique HMM for each customer, data can be 

pooled across customers by including customer-level heterogeneity in the HMM. For 

instance, random-effect parameters can be included in a HMM and estimated using either 

a hierarchal Bayes MCMC estimation or a simulated maximum likelihood approach 

(Train 2009). Alternatively, the heterogeneity across customers can be captured using a 

latent class approach (Kamakura and Russell 1989). One could also account for observed 

heterogeneity by including covariates, such as demographics in the model. However, 

because observed heterogeneity covariates often capture only limited degree of 

heterogeneity, we recommend controlling for unobserved heterogeneity as well.   

In the most general case one could allow of cross-customer heterogeneity in each 

of the three HMM components: initial state distributions (𝜋𝑖), transition matrix (𝑄𝑖), and 

state-dependent distribution (𝑀𝑖𝑡). Capturing heterogeneity in 𝜋𝑖 and 𝑄𝑖 but not in 𝑀𝑖𝑡 

allows different customers to have different level of stickiness to the states but assume 

that, given a state, all customers have the same preference structure, exhibit similar 

behavior, or respond in a similar manner to marketing actions. The attractiveness of such 

an approach is that the interpretation of the states becomes easier, because the states now 

mean the same thing for all customers. On the other hand, allowing for heterogeneity in 

the state-dependent distribution (𝑀𝑖𝑡), implies that what a “high state” is for one 
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customer may be very different from what a “high state” is for another customer. 

However, a limitation of not accounting for heterogeneity in the state-dependent 

distribution is that if the behavior given a state is highly heterogeneous and has a wide 

support (e.g., food expenditure which can vary substantially among customers given their 

household size and income), not accounting for heterogeneity in the state-dependent 

distribution could lead to confusion between heterogeneity and dynamics, as some states 

will capture heterogeneity in addition to dynamics.  

Finally, to the best of our knowledge, all HMMs in marketing (and in other fields) 

assumed the same number states for all customers (even if heterogeneity in the model 

parameters is allowed). Failure to account for heterogeneity in the number of states leads 

to a mis-specified model for customers for whom the number of states does not match 

their dynamic behavior. Recent work by Padilla, Montoya and Netzer (2016) attempts to 

relax this assumption and allows for heterogeneity in the number of states across 

customers.   

In sum, when one estimates a HMM for a heterogeneous set of consumers, we 

encourage researchers to carefully account for unobserved heterogeneity in order to 

disentangle heterogeneity from dynamics. It is almost always advisable to allow for 

heterogeneity in the transition matrix (𝑄𝑖) and the initial state distribution  (𝜋𝑖) and 

wherever possible or needed also in the state-dependent distributions (𝑀𝑖𝑡). 

 

XX.2.5 Non-homogenous HMMs3:  Time-varying Covariates in the Transition 

Matrix  

                                                       
3 In the context of HMMs the convention is to call a non-homogenous HMM a HMM with a time variant 

transition matrix (Qt). This is not be confused with a heterogeneous HMM, in which the transition matrix, 
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In most non-marketing applications the states of the HMM are exogenous states of the 

world. Accordingly, the transition matrix in these applications is rarely a function of 

covariates. However, in marketing, because the states of the HMM are often customer 

behavior states, the firm may believe that it can affect customers’ transitions among 

states. Therefore, marketing applications of HMMs often allow the transition matrix to be 

a function of covariates such as marketing actions. Indeed, until the diffusion of HMMs 

to marketing, HMMs rarely incorporated time-varying covariates in the transition matrix 

(see Hughes and Guttorp 1994 for an exception). Early work on HMMs in marketing 

(e.g., Paas et al. 2007; Netzer et al. 2008; Montoya et al 2010) proposed non-homogenous 

HMMs in which the transitions among the state were a function of customer activities or 

marketing actions. In these cases the transition probabilities in 𝑄𝑖 are both customer and 

time specific, which can be modeled by standard (or ordered) logit models. For instance,  

𝑃(𝑆𝑖𝑡 = 𝑠𝑡|𝑆𝑖𝑡−1 = 𝑠𝑡−1) = 𝑓(𝑍𝑖𝑡) where 𝑓(. ) is the logit function and 𝑍𝑖𝑡 is a vector of 

covariates that are specific to customer 𝑖 and time period 𝑡, and 𝑠𝑡 , 𝑠𝑡−1 = 1,2, … , 𝐾. 

Now, the elements of the transition matrix are a function of time and customer, and we 

write 𝑄𝑖𝑡. 

 As discussed earlier, one could also add covariates in state dependent 

distributions. These covariates would affect the customer behavior, conditional on the 

customer’s state. The choice of which covariates should go in the transition matrix and 

which should go in the state-dependent distribution is a researcher decision. In general, 

covariates that are included in the transition matrix should be covariates that are 

postulated to have a long-term effect on the customer’s behavior. The rational is that 

                                                       
and possibly other model parameters can vary across consumers (Qi) and from a non-stationary HMM in 

which the state transition are a function of time itself.  
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these covariates create a regime shift in the customer behavior by transitioning the 

customer to a different and often sticky state of customer behavior. Covariates that are 

included in the state-dependent distribution, by definition affect the customer behavior 

only in the current time period, conditional on the customer state, and therefore have a 

short-term effect. In the context of pharmaceutical drugs prescriptions by physicians, 

Montoya et al. (2010) demonstrate that including detailing and sampling to physicians 

covariates in both in the transition probabilities and the state dependent distribution can 

capture both the short- and long-term effects of these marketing activities. 

  

XX.2.6 Selecting the Number of States and Model Selection  

The first order of business in estimating a HMM is to select the number of hidden states 

(𝐾). The number of states could either be estimated from the data or defined based on 

theoretical grounds. If the researcher has a strong theoretical basis with respect to the 

number and the interpretation of each of the states, then the researchers could determine 

the number of states a-priori. For example, Ansari et al. (2012) choose a-priori two states 

which correspond to reinforcement and belief learning over repeated rounds of behavioral 

games.  

A more common approach is to use model selection procedures to choose the 

number of states based on the fit of the model to the data. The approach involves 

estimating a range of models with increasing number of states 𝐾 until the point at which 

adding an additional state does not further improve or leads to a worse model selection 

criterion value. Increasing the number of hidden states adds flexibility and parameters to 

the model and, hence, will always improve model fit as measured by the likelihood. 
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However, as the number of model parameters increases, the key issue is whether the 

improvement in model fit is large enough relative to the increase in the number of 

parameters. Accordingly, one often uses panelized model selection fit measures, such as 

information criteria, which balance model fit and model parsimony. 

Information criteria add a penalty to the model fit (-2×loglikelihood) on the basis 

of the number of parameters g. A typical and fully specified HMM with no covariates has 

𝐾 − 1 parameters in 𝜋, 𝐾 × (𝐾 − 1) parameters in 𝑄, and 𝐾 parameters in 𝑀, leading to 

𝑔 = 𝐾 × (𝐾 + 1) parameters. The Akaike Information criterion (AIC) equals: −2 ×

𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  2 × 𝑔, the Bayesian Information Criterion (BIC) equals −2 ×

𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  𝑔 × 𝑙𝑛(𝑛), and the Consistent Akaike Information criterion (CAIC) 

equals: −2 × 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  𝑔 × (𝑙𝑛(𝑛) + 1), where 𝑛 denotes the sample size 

(which for the case of panel data equals to 𝑁 × 𝑇, where 𝑖 = 1,2, … , 𝑁 is the number of 

customers and 𝑡 = 1,2, … , 𝑇 is the number of time periods per customer). The choice 

among alternative model specifications can be made by selecting the model with the 

minimum value of a specific information criterion.  

For reasonable sample sizes, the penalty per additional parameter is typically 

much larger for BIC and CAIC than for AIC. Accordingly, the AIC tends to favor models 

with many, oftentimes too many, states. Accordingly, the BIC is commonly the preferred 

criterion to determine the number of states (Bartolucci, Farcomeni and Pennoni, 2014). 

 When one estimates the model based on Bayesian estimation procedures, typical 

Bayesian model selection criteria such as the Log Marginal Density and the Bayes Factor 

are often used. These criteria could be calculated from the output of the MCMC 

procedure (see Chib, 1995, 2001 for details). It has been shown that the BIC measure in 
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classical estimation asymptotically approximates the Log Marginal Density (Congdon 

2002 p. 473). Alternatively, because the Log Marginal Density and the Bayes Factor, 

sometimes recommend non-parsimonious models, researchers have used a modified 

Deviance Information Criterion (Celeux et al. 2006), cross validation approaches, and 

posterior predictive checks for model selection. Another advantage of these model 

selection criteria is that they do not require the calculation of 𝑔 (the number of 

parameters), as for e.g. AIC or BIC, which is often cumbersome in particular if the 

researcher accounts for cross-customer heterogeneity through random coefficients.  

Several studies have proposed model selection criteria that are specific for HMM 

estimation. Bacci, Pandolfi, and Pennoni (2014) propose a classification-based or 

entropy-based criterion, which examines the posterior probabilities of state membership 

of each of the customers. The idea behind these measures is that if the states of the HMM 

are well-separated, the posterior probabilities of state membership are close to one, 

resulting in an entropy that is close to zero. They find that most decision criteria tend to 

work reasonably well, and their performance improves if the sample size or the number 

of time periods increases. They find that when the number of states is large, BIC, and the 

classification-based criteria tend to underestimate the correct number of states.  

Smith, Naik and Tsai (2006) build on the Kullback–Leibler (KL) 

divergence criterion and propose a Markov Switching Criterion (MSC), which is 

specifically suited for states selection in Markov and latent Markov models. Using 

simulations, they find that the MSC preforms well in term of retaining the correct number 

of states and unlike measures such as the AIC avoids overstating the true number of 

states. We encourage future research to explore the use of the reversible jump algorithm 
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(e.g., Green, 1995, Ebbes, Liechty and Grewal, 2015) to simultaneously estimate the 

HMM with varying number of states and select the best fitting model.   

Similar model selection criteria to the ones described in this section can be used to 

select among different model specifications other than selecting the number of latent 

states 𝐾, such as whether and which covariates to include in the transition probabilities or 

in initial state distribution. 

 

XX.3 Estimating a HMM 

As discussed above, a HMM has three main components leading to three sets of 

parameters to be estimated: (1) the initial state probabilities 𝜋𝑖, (2) the transition 

probability matrix 𝑄𝑖, and (3) parameters of the state dependent distributions 𝑀𝑖𝑡. In this 

section we retain the subscript 𝑖 for 𝜋 and 𝑄 implicitly assuming that we would like to 

control for customer-specific heterogeneity, either by estimating a separate HMM for 

each customer, or by estimating one HMM by pooling across customers while including 

customer-specific unobserved and/or observed heterogeneity through covariates.  

Three main approaches have been proposed to estimate the model parameters of a 

HMM: (1) maximum likelihood estimation by the Expectations Maximization (EM) 

algorithm, (2) Maximum likelihood estimation by directly optimizing the likelihood 

function, and (3) Bayesian estimation. We will briefly discuss each approach in turn, 

focusing on the essentials, and provide references for further details of the 

implementations. We note that several software packages are available to estimate basic 

HMMs (e.g., R-HMM in CRAN, Latent GOLD),  
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XX.3.1 The Expectation Maximization (EM) Algorithm 

 A popular way to estimate a HMM is through the EM algorithm, also known as the 

Baum-Welch forward-backward algorithm (Baum et al. 1970; Baum 1972; Dempster et 

al. 1977; Welch 2003). The main idea behind the EM algorithm is to treat the state 

memberships, which are unobserved, as missing data. The algorithm then iteratively finds 

the parameters that maximize the likelihood function by an E step and an M step. The E 

step is designed to obtain the conditional expectations of the missing data (here, the state 

memberships). Then, in the M step, the complete data log likelihood is maximized. The 

complete data now comprises the observed data and the conditional expectations of the 

missing data. Generally, the complete data log-likelihood function can be easily 

maximized, often much more straightforwardly then the (log) likelihood function of only 

the observed data.  

 To derive the EM algorithm for HMMs, we start with the complete data 

likelihood function. Extending the three-time periods and two states example used in 

Section XX.2.2 to motivate the construction of the likelihood function, we can write the 

complete data log-likelihood function of observing the customer states and the customer 

behavior at each time period 𝑡, 𝑡 = 1,2, … , 𝑇, as:4 

log 𝑃(𝑦1, 𝑦2, … , 𝑦𝑇 , 𝑠1, 𝑠2, … , 𝑠𝑇)

= log(𝜋𝑠1
) + ∑ log(𝑞𝑠𝑡−1𝑠𝑡

)

𝑇

𝑡=2

+ ∑ log(𝑚𝑡𝑠𝑡
)

𝑇

𝑡=1

,  
(XX.9) 

                                                       
4 For ease of exposition we drop in the description of the EM algorithm the subscript 𝑖 for customer. 

Estimating a HMM with heterogeneous parameters across customers using the EM algorithm is 

challenging, as it would involve integrating out (in the M step) the unobserved heterogeneity. 
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where, 𝑦1, 𝑦2, … , 𝑦𝑇, 𝑠1, 𝑠2, … , 𝑠𝑇 are the realizations of the customer’s state and activities 

at each time period. 𝜋𝑠1
 is the 𝑠1-th element of the initial state distribution vector 𝜋, 

which corresponds to the state the customer is at in time period 1. Similarly, 𝑞𝑠𝑡−1𝑠𝑡
 is the 

element from the transition matrix 𝑄 that corresponds to the customer probability of 

transitioning from her state at time 𝑡 − 1 to her state at time 𝑡, and 𝑚𝑡𝑠𝑡
 is the 𝑠𝑡-diagonal 

element from the matrix 𝑀𝑡 that corresponds to the customer’s state dependent 

distribution given the customer state at time 𝑡 (𝑠𝑡).   

To implement the EM algorithm, it would be more convenient to represent the 

state assignments by the 𝐾 × 1 dummy vector 𝑣𝑡 = (𝑣𝑡1, 𝑣𝑡2, … , 𝑣𝑡𝐾) where 𝑣𝑡𝑗 = 1 if 

𝑠𝑡 = 𝑗, and 0 otherwise, and the 𝐾 × 𝐾 dummy matrix 𝑊𝑡, with elements 𝑤𝑡𝑖𝑗 = 1 if 

𝑠𝑡−1 = 𝑖 and 𝑠𝑡 = 𝑗, and 0 otherwise. We can now rewrite the complete data log 

likelihood in (XX.9) as:  

log 𝑃(𝑦1, 𝑦2, … 𝑦𝑇 , 𝑠1, 𝑠2, … , 𝑠𝑇) = 𝑣1
′ 𝜋̃ + ∑ 𝜄′(𝑊𝑡 ∘ 𝑄̃)𝜄

𝑇

𝑡=2

+ ∑ 𝑣𝑡
′𝑚̃𝑡

𝑇

𝑡=1

, (XX.10) 

where, 𝜋̃ is a 𝐾 × 1 vector such that, 𝜋̃ = log(𝜋), 𝑄̃ is a 𝐾 × 𝐾 matrix defined by log 𝑄, ∘ 

denotes the Hadamard matrix product, and 𝑚̃𝑡 is a 𝐾 × 1 vector with the log of the 

diagonal elements of  𝑀𝑡.  

 If one observes panel data structure with multiple observations per person, the 

total sample complete data log likelihood (SCDLL), ignoring unobserved heterogeneity 

across customers, would be the sum of (XX.10) across all customers 𝑖 = 1,2, … , 𝑁, i.e.  

𝑆𝐶𝐷𝐿𝐿 = ∑ log 𝑃(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑇, 𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑇)

𝑁

𝑖=1

. 
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From the previous expression in Equation (XX.10) it can be seen that the 

complete data log likelihood has three additive terms: a term involving the initial states, a 

term involving the transitions, and a term involving the state dependent distributions. 

Therefore, maximizing this function boils down to maximizing each of these terms 

separately. For the first two terms involving the initial state and transition probabilities, it 

is possible to obtain closed-form expressions. For the last term, closed-form expressions 

exist for many common specifications of the state-dependent distribution (e.g., a normal 

distribution), otherwise numerical maximization will be necessary.  

In the E step, the quantities 𝑣𝑡 and 𝑊𝑡 are ‘estimated’ by their conditional 

expectations, given the observed data and the current parameter estimates, using the 

forward and backward probabilities, see e.g. Zucchini and MacDonald (2009; p. 65):  

𝑣̂𝑡(𝑗) = 𝑃(𝑆𝑡 = 𝑗|𝑦1, 𝑦2, … , 𝑦𝑇) = 𝛼𝑡(𝑗)𝛽𝑡(𝑗)/𝐿𝑇 

and  

𝑊̂𝑡(𝑗, 𝑘) = 𝑃(𝑆𝑡−1 = 𝑗, 𝑆𝑡 = 𝑘|𝑦1, 𝑦2, … , 𝑦𝑇) = 𝛼𝑡−1(𝑗)𝑄𝑖(𝑗, 𝑘)𝑃(𝑦𝑡|𝑘)𝛽𝑡(𝑘)/𝐿𝑇 

for 𝑗, 𝑘 = 1, … , 𝐾.  

The intuition behind the estimates of 𝑣̂𝑡(𝑗) and 𝑊̂𝑡(𝑗, 𝑘) is that 𝑣̂𝑡 is the likelihood 

that the customer visits each state and 𝑊̂𝑡(𝑗, 𝑘) is the customer’s likelihood of 

transitioning from state 𝑗 to state 𝑘.  

Then, in the M step of the EM algorithm the complete data log likelihood is 

maximized after replacing 𝑣𝑡 and 𝑊𝑡 by their updated quantities 𝑣̂𝑡 and 𝑊̂𝑡, which gives a 

set of updated parameter estimates. The E and M steps are repeated sequentially until the 

change in the estimated parameter values or the likelihood function does not further 

improve beyond some threshold value.  
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The EM algorithm can suffer from local maxima. Additionally, the calculation of 

the forward and backward probabilities can suffer from under flow. We briefly discuss 

these challenges in the next subsection (further details are provided in Section 3.2 in 

Zucchini and MacDonald, 2009). 

 

XX.3.2 Directly Maximizing the Likelihood Function 

In Section XX.2 we derived the likelihood function for the general HMM for a sample of 

𝑁 customers and 𝑇 time periods. The sample likelihood is given by 𝐿𝑇 = ∏ 𝐿𝑖𝑇
𝑁
𝑖=1  and 

can be computed recursively using the forward probabilities 𝛼𝑖𝑡. Rather than using the 

EM algorithm discussed in the previous section, the likelihood function can be 

maximized directly using numerical optimization routines in order to estimate the HMM 

parameters. The main obstacles are under and overflow challenges in computing the 

likelihood, constraining the probabilities such that they sum up to one and are all non-

negative, and the risk of local maxima. Similar to the forward and backward probabilities 

discussed earlier, the customer log likelihood (e.g. Equation (XX.5)) is comprised of 

multiplications of probabilities over time and states, leading to a risk of underflow. For 

details of the likelihood scaling, we refer the reader to Zucchini and MacDonald (2009, 

Section 3.2).  

Both the initial state probabilities and the transition matrix parameters are 

probabilities. Thus, each one of these parameters needs to be between 0 and 1, and the 

vector of initial probabilities and each row of the transition matrix needs to sum to one. 

This can be achieved by running a constraint optimization, or by optimizing the 

likelihood not in the actual parameters (e.g. 𝜋1, 𝜋2, … , 𝜋𝐾) but in transformed parameters 
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(say) 𝜆1, 𝜆2, … , 𝜆𝐾−1. We need one parameter less than the number of states 𝐾, as the sum 

of the probabilities is 1. Now, the actual parameters are parameterized as:  

𝜋𝑗 =
exp (𝜆𝑗)

1+∑ exp (𝜆𝑗)𝐾−1
𝑗=1

, 

for 𝑗 = 1,2, … , 𝐾 − 1 and  𝜋𝐾 = 1 − ∑ 𝜋𝑗
𝐾−1
𝑗=1  (implicitly we set 𝜆𝐾 = 0). Similarly, this 

reparametrization may be done for each row in the transition probability matrix 𝑄.  

As with many numerical optimization problems, the likelihood function of the 

HMM is often multimodal and therefore the optimization procedure can get stuck in a 

local maxima instead of the desirable global maximum point. The problem of a 

multimodal likelihood function and the risk of local maxima is higher when one estimates 

the initial state probabilities rather than fixing these a-priori, or assuming these to be at 

the stationary distribution (see Section XX.2.1). Unfortunately, there is no simple 

approach to guarantee a global maximum, when applying numerical optimization for 

multimodal distributions. We advise researchers to use theory and judgment in selecting 

the initial starting values and explore a wide range of starting values, and if different 

starting value result in different maxima, select the maximum likelihood solution that 

leads to the highest value of log-likelihood.   

One of the limitations of classical likelihood optimization (either through the EM 

algorithm or by directly optimizing the likelihood function) is that it is not obvious how 

to incorporate in these methods random-effect parameters to capture cross-customer 

unobserved heterogeneity. One could still use these methods to capture unobserved 

heterogeneity using the latent class approach and/or include covariates to control for 

observed heterogeneity. The two Bayesian estimation approaches we discuss next allow 
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for a more natural incorporation and estimation of cross-customer unobserved 

heterogeneity. 

 

XX.3.3 Bayesian Estimation 

HMMs may also be estimated in a Bayesian framework. For details on Bayesian statistics 

we refer the reader to chapter XXX in this handbook. We take a pragmatic point of view 

whether one should consider estimating a HMM in a Bayesian framework or in a 

classical statistics framework using the EM algorithm or a direct maximum likelihood 

approach. While the EM algorithm and the maximum likelihood approach are often 

easier to implement and require considerable less computational time, the Bayesian 

approach is less susceptible to a local maxima problem. More importantly, if one wishes 

to estimate cross-customer heterogeneity, which we highly recommend when estimating 

HMMs across multiple customers (see Section XX.2.4), the Bayesian approach seems the 

natural way to estimate the model parameters.  

We discuss two Bayesian approaches to estimate a HMM in a Bayesian 

framework, both of which are based on Markov Chain Monte Carlo (MCMC) estimation: 

(1) a direct approach using the complete likelihood through a Metropolis-Hastings step, 

and (2) a data-augmentation approach by treating the unobserved states as missing data. 

In both approaches one needs to address label switching, which we briefly discuss at the 

end of this section. 

 

XX.3.3.1 Sampling the posterior distribution using the Metropolis-Hastings (MH) 

algorithm 
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This approach uses a standard hierarchical Bayes estimation procedure, where we 

distinguish between two main sets of parameters: random effect parameters (say 𝜃𝑖) that 

are particular to each customer 𝑖 (Section XX.2.4) and parameters (say 𝜓) that are 

common to all customers. Heterogeneity is introduced in the model by assuming a priori 

a distribution for the random effects parameters (e.g. 𝜃𝑖~𝑀𝑉𝑁(𝜃̅, Ω)). As is common in 

most marketing applications, the Bayesian model specification is completed by assuming 

standard diffuse conjugate priors for all model parameters. Then, the MCMC algorithm is 

operationalized by sequentially drawing from a set of full conditional posterior 

distributions. Because the full conditional distribution constructed from the HMM 

likelihood function (e.g. Equation (XX.5) with cross-customer heterogeneity) combined 

with the priors does not have a closed form, an acceptance-rejection MH step is needed to 

estimate the parameters 𝜓 and possibly 𝜃𝑖. At each iteration of the MCMC algorithm, we 

would draw a candidate value for the parameters from a proposal distribution, which then 

is accepted with a certain probability. If it is accepted, then the likelihood function is 

updated with new parameters. If it is not accepted, then the current value for the 

parameters is retained. After running the algorithm for a long time, we end up with a 

sequential sample from the posterior distribution of the parameters of the HMM. Because 

the sequentially generated draws from the posterior distribution can be highly correlated, 

we found the adaptive MH algorithm as described in Atchadé and Rosenthal (2005) to be 

quite useful in reducing the autocorrelation and achieving convergence faster. The 

Atchadé and Rosenthal (2005) algorithm automatically adjusts the tuning parameter (the 

variance of the proposal density) of the MH algorithm. We refer to reader to chapter 

XXX of this handbook for more general information about the MH algorithm. Further 
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details on the estimation of HMMs using the MH approach can also be found in 

Appendix A of Netzer et al. (2008).  

 

XX.3.3.2 Sampling the posterior distribution using Gibbs sampling and data 

augmentation 

Similar to the EM algorithm to maximize the likelihood function (Subsection XX.3.1), 

this second Bayesian approach uses data augmentation by treating the unobserved states 

as missing data. In each step of the MCMC algorithm, one draws the state the customer is 

at, at each time period, given the current set of parameters estimates and observed data. 

Then, by principle of MCMC estimation, conditional on the customer’s state, we need 

only to sample the parameters of the distribution of the state-dependent behavior, which 

is often rather straightforward to do using standard Gibbs sampling. This approach was 

proposed by Scott (2002) and was implemented in marketing by several papers (e.g. 

Ebbes et al., 2010, Ascarza and Hardie, 2013).   

One of the limitations of the data augmentation approach is that the sampler can 

“get stuck” in a sticky state, where the customer is continuously being drawn to be in the 

same state. Früthwirth-Schnatter (2006; Sec. 11.5) provides a very useful summary of 

various algorithms to mitigate such issues. While these algorithms are more challenging 

to implement than the MH approach discussed in the previous subsection, it is found that 

they mix more rapidly, generally implying faster convergence (Scott 2002). Further 

details on the estimation of HMMs using the Gibbs sampling approach can be found in 

Scott (2002).  
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 Lastly, similar to classical likelihood optimization for HMMs, Bayesian 

approaches for HMMs are also susceptible to under/over flow in computing the 

likelihood function. Fortunately, the same scaling solution referred to above for 

likelihood estimation can be applied to Bayesian estimation. Furthermore, while less 

problematic than for numerical likelihood estimation, starting values can also play a role 

in MCMC estimation, particularly with respect to time to convergence. One option is to 

run several MCMC chains starting from different randomly chosen starting values. 

Another approach is to choose “smart” starting values by starting the MCMC algorithm 

around the robust maximum likelihood estimate obtained for the simpler HMM model 

ignoring cross-customer heterogeneity. 

XX.3.3.3 Label switching 

Label switching refers to the invariance of the likelihood function of the HMM to a 

relabeling of the components of the model. This is also an important concern for finite 

mixture models. While for maximum likelihood estimation or EM algorithm label 

switching only means that the interpretation of the state ordering may vary from one run 

to another, it is very important to properly address this issue in Bayesian MCMC 

estimation of HMMs. The reason is that over the course of the sampling in the MCMC 

draws, the labeling of the unobserved states can shift leading to mixing posterior 

parameter draws from multiple states. Label switching is particularly problematic when 

the HMM states are not well separated, as in such situations the sampler is more likely to 

jump between states. We refer the reader to Frühwirth-Schnatter (2006; Section 3.5.5) for 

a detailed discussion and an illustration.  
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Label switching can often be detected by investigating the iteration plots of the 

MCMC sampler. If label switching occurs at some point in the iteration sequence, two 

sets of parameters will switch their value. One approach to deal with label switching 

when running an MCMC algorithm is to force a unique labeling by imposing constraints 

on the parameter space. For instance, the means of a normally distributed variable across 

the 𝐾 states may be ordered such that 𝜇1 < 𝜇2 < ⋯ < 𝜇𝐾.  This could be implemented in 

the likelihood function by the re-parametrization 𝜇𝑘 = 𝜑1 + ∑ exp (𝜑𝑘′)𝑘
𝑘′=2  for 𝑘 =

2, … , 𝐾, and 𝜇1 = 𝜑1. Several researchers have criticized this approach (e.g. Celeux 

1998), because the choice of the constraints can shape the posterior distribution of the 

parameters. A second approach is to run an unconstrained MCMC algorithm and apply 

post-processing where the unique labels are recovered through choosing an ordering of 

state-specific parameters or through clustering (Celeux 1998; Frühwirth-Schnatter 2001; 

Richardson and Green 1997). It is advisable to post-process the MCMC run according to 

different choices of the labels to investigate the consequences on the final solution and 

interpretation of the state-specific parameters. 

 

XX.4. Applications of HMMs in Marketing 

Probably the first HMM-like model in marketing was the model of Poulson (1990), in 

which customers were allowed to change their membership in latent classes over time. 

HMMs in marketing have been primarily used to model how customers (and sometimes 

firms) transition among a set of latent states over time.  However, it is only in the mid and 

late 2000s that these model started to diffuse to the marketing literature (see Table XX.1  

for a non-comprehensive summary of HMMs in marketing).  In the context of customers, 
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the latent states could represent attention (Liechty et al. 2003, Wedel et al. 2008, van der 

Lans, Pieters and Wedel 2008ab; Shi, Wedel and Pieters 2013), the relationship between 

the customer and the firm (Netzer et al. 2008; Ascarza and Hardie 2013; Romero, van der 

Lans and Wierenga 2013; Ma, Sun and Kekre 2015), customers’ value system (Brangule-

Vlagsma, Pieters and Wedel 2002), channel migration (Mark, Lemon and Vandenbosch 

2014), internet browsing behavior and search (Montgomery et al. 2004; Stuttgen, 

Boatwright and Monroe 2012), consumers’ choice among portfolio of products (Paas, 

Vermunt and Bijmolt 2007; Schweidel et al. 2011), customer satisfaction (Ho, Park and 

Zhou 2006), store loyalty and promotion sensitivity (Shi and Zhang 2014), purchase 

cycles states (Park and Gupta 2011), latent behavioral learning strategies (Ansari, 

Montoya and Netzer 2012), bidding strategies (Shachat and Wei 2012), and households 

lifecycle stages (Du and Kamakura, 2006). HMMs have also been used to capture how 

marketing actions could affect the transition among states (Netzer et al. 2008; Montoya et 

al. 2010; Li, Sun and Montgomery 2011; Kumar et al. 2011; Luo and Kumar 2013; 

Zhang et al. 2014).  

In the most general sense the latent attrition models (e.g., Fader, Hardie and 

Shang 2010; Schweidel and Knox 2013) can thought of as a special case of a HMM with 

two states, where attrition is an absorbing state. This model has been extended to allow 

for an always share model (Ma and Buschken 2011). Schwartz, Bradlow and Fader 

(2014) explore the relationship between the HMM and several of its constraint versions 

such as the latent attrition model.  
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Article 

Capturing 

Unobserved 

Heterogeneity  

Estimation 

Non 

Homogenous 

HMM 

(Covariates in 

Q) 

# of 

states* 
State dependent distribution 

Poulsen (1990) No EM algorithm No 2 Multinomial choice 

Brangule-Vlagsma, Pieters and Wedel (2002) No Maximum likelihood Yes 6 Rank-order logit 

Liechty, Pieters and Wedel  (2003) 
No 

Reversible Jump MCMC No 2 (theory) 

First-order continuous time Markov 

chain 

Montgomery et al. (2004) Yes, Q, M and 𝜋 Reversible Jump MCMC No 2 Multinomial Probit 

Du and Kamakura, (2006) No EM algorithm No 13 Multivariate (Bernoulli/Normal) 

Paas, Vermunt and Bijmolt (2007) No EM algorithm Yes 9 Multivariate (Bernoullis) 

Moon, Kamakura and Ledolter (2007) Yes, only in M MCMC State Augmentation No 2 (theory) Linear regression (Normals) 

Netzer, Lattin and Srinivasan (2008) Yes, in Q and 𝜋 MCMC Direct Likelihood Yes 3 Binary logit 

Wedel, Pieters and Liechty (2008) 
No 

Reversible Jump MCMC No 2 (theory) 

First-order continuous time Markov 

chain 

van der Lans, Pieters and Wedel (2008a) Yes, only in Q MCMC State Augmentation No 2 (theory) Categorical - Square-root link function 

van der Lans, Pieters and Wedel (2008b) Yes, only in M MCMC State Augmentation No 2 (theory) Spatial point process 

Montoya, Netzer and Jedidi (2010) Yes, in Q and M MCMC Direct Likelihood Yes 3 Binomial 

Ebbes, Grewal and Desarbo  (2010) No MCMC State Augmentation No 3 Multivariate Normal 

Schweidel, Bradlow and Fader (2011) 
Yes, in Q and 𝜋 

MCMC Direct Likelihood Yes 4 

Multivariate (Markov chain / 

Multinomial Logit) 

Park and Gupta (2011) 
Yes, only in M 

Simulated Maximum 

likelihood Yes 2 (theory) Multinomial Logit 

Li, Sun and Montgomery (2011) Yes, Q, M and 𝜋 MCMC Yes 3 Multivariate Probit 

Kumar et al. (2011) Yes, only in M Maximum likelihood Yes 3 Multivariate To 

Lemmens, Croux and Stremersch (2012) Yes, only in M EM algorithm Yes 3 Linear regression (Normal) 

Stuttgen, Boatwright and Monroe (2012) 
Yes, in Q and M 

MCMC State Augmentation Yes 2 (theory) 

Multivariate (Markov chain / 

Multinomial) 

Ansari, Montoya and Netzer (2012) Yes, Q, M and 𝜋 MCMC Direct Likelihood Yes 2 (theory) Multinomial Logit 

Shachat and Wei (2012) No EM algorithm No 3 (theory) Normal 

Ascarza and Hardie (2013) Yes, in Q and M MCMC State Augmentation No 3 Poisson 

Romero, van der Lans and Wierenga (2013) 
Yes, in M and 𝜋 

EM algorithm No 7 and 9 

Multivariate (Truncated NBD / Gamma-

Gamma) 

Shi, Wedel and Pieters (2013) No MCMC State Augmentation No 3 2 Layers of Hidden States 

Luo and Kumar (2013) Yes, in Q and M MCMC State Augmentation Yes 3 Multivariate Tobit model 

Mark et al. (2013) No EM algorithm No 4 Hurdle Poisson 

Mark, Lemon and Vandenbosch (2014) No Maximum likelihood No 3 Poisson 

Shi and Zhang (2014) Yes, only in Q MCMC Direct Likelihood Yes 3 Type-II Tobit model 

Zhang et, Netzer and Ansari (2014) 
Yes, Q, M and 𝜋 

MCMC Direct Likelihood Yes 2 

Multivariate (Log-logistic / Log-normal / 

Binary logit) 

Schwartz, Bradlow and Fader (2014) Yes, Q, M and 𝜋 MCMC State Augmentation No 2 (theory) Bernoulli 

Ma, Sun and Kekre (2015) Yes, Q, M and 𝜋 MCMC State Augmentation Yes 3 Multinomial Logit 

Zhang, Watson and Palmatier (2016) Yes, only in 𝜋 MCMC Direct Likelihood Yes 4 Normal  

Table XX.1 Non-comprehensive list of marketing papers using HMMs  

* “theory” means the number of states were selected based on theoretical grounds 

rather than based on model fit.  
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One common theme across all of the above applications of HMMs in marketing is 

that in all cases the customer behavior was governed by an underlying state that is 

unobserved to the researcher, while it is possibly for the customer to change to a different 

state over time. Such states were often the state of customer attention to marketing 

information, the customer’s strategy of making choices, her lifecycle stage, or her loyalty, 

trust, satisfaction level, or, more generally, her relationship status with the firm. Research 

has often investigated the customers’ transitions among these states and how the context 

of the decision and the firm’s action affects customer’s transitions to states that are more 

favorable to the firm or lead to higher welfare.  

In some marketing applications the unit of analysis was not the consumer. Luo 

and Kumar (2013), Zhang et al. (2014) and Zhang, Watson and Palmatier (2016) have all 

used HMMs to investigate the relationship between buyers and sellers in the context of 

B2B relationships. Ebbes et al. (2010) looked at how firms’ (banks’) competitive 

landscape changed over time. Moon, Kamakura and Ledolter (2007) used a HMM to 

uncover firms’ latent competitive promotions. Lemmens, Croux and Stremersch (2012) 

looked at evolving segments of countries in the context of new product growth. 

Several aspects make the application of HMMs in marketing different from 

applications in other fields. First, HMMs in marketing often leverage the latent structure 

as a means to capture the data generating process of the customer’s behavior, and use this 

in order to understand and predict the outcome of the customer behavior, whereas in 

many of the HMM applications outside of marketing the objective is mostly to recover 

the underlying state (e.g., words in speech recognition). An exception in marketing is 
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Ebbes and Netzer (2016) who use HMMs to identify the latent job seeking state using 

social media data. 

Second, as discussed in Section XX.2.4, because most HMM applications in 

marketing involve multiple time series for different consumers, capturing heterogeneity is 

very important. Indeed, as can be seen in Table XX.1, most marketing applications have 

captured unobserved heterogeneity using a random-effect or latent class approach. 

Finally, one of the main reasons to apply a HMM in marketing is to investigate what 

customer or firm behavior can create a regime shift (i.e. a transition among states) in the 

customer behavior. Accordingly, many non-homogeneous HMMs that incorporate time-

varying covariates in the transition matrix are much more common in marketing relative 

to other fields. For example, Montoya et al. (2010), have looked at how detailing and 

sampling can affect physicians’ drug prescription and found that detailing can help 

transition physicians from a low prescription state to a higher one and sampling was 

mainly useful in keeping physicians in the prescription state. In the context of B2B 

buyer-seller relationships Luo and Kumar (2013) find that direct mail and phone calls can 

help transitioning a buyer from a lower to a higher state of purchase behavior. One of the 

main benefits of using HMMs in marketing is to disentangle the short-term and long-term 

effects of marketing activities through the incorporation of these variable in the transition 

probabilities and in the state-dependent distributions of observed data.   

From the above discussion it is clear that the body of literature that utilizes 

HMMs to capture marketing dynamics is sizeable and growing. We expect to see many 

more application of these useful models, to model latent and dynamic customer behavior. 

For example, as behavioral researchers in marketing increase their use of repeated 
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observational experiments and secondary data, HMMs can be used to capture the 

dynamics of customer behavior in areas such arousal, fatigue, or goal pursuit.  

 

XX.5. An Illustrative Application of HMM 

To illustrate several of the considerations involved in building and estimating a HMM in 

marketing, we describe a typical marketing application of HMMs involving the customer 

relationship management (CRM) between a business-to-business (B2B) company and its 

industrial clients. For this illustration we use simulated data. 

XX.5.1 Description of the Data  

We consider a B2B firm that has CRM data for 𝑁 = 1,080 customers. Based on the sales 

to these customers and their total category expenditures, the firm computed Share-Of-

Wallet (SOW) at the customer-level for 20 consecutive months (time periods), i.e. 𝑇 =

20. In addition, the customer database contains time-varying marketing mix variables 

such as price, sales representative visits, and a direct mail. Table XX.2 shows the 

structure of the database (the first 22 observations). Such panel data structures are 

commonly used in HMM applications in marketing. The variable CustomerID is used to 

identify all observations that belong to the same customer (index 𝑖), and the variable 

Period will be used to identify the consecutive time periods (index 𝑡 in Section XX.2). 

 

Observation CustomerID  Period SOW Price SalesVisit DirectMail 

1 1 1 63.60 4.00 1 0 

2 1 2 45.10 4.48 1 1 

3 1 3 43.56 4.36 1 0 

4 1 4 36.93 4.34 0 0 

5 1 5 19.37 5.50 1 0 

6 1 6 60.62 4.29 0 0 
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7 1 7 71.45 3.86 0 0 

8 1 8 53.95 5.87 1 0 

9 1 9 42.99 4.55 1 1 

10 1 10 41.71 5.82 1 1 

11 1 11 28.77 2.17 0 0 

12 1 12 18.30 4.91 1 0 

13 1 13 23.06 4.56 0 0 

14 1 14 22.77 5.76 1 0 

15 1 15 15.11 5.06 1 0 

16 1 16 24.96 2.53 1 0 

17 1 17 30.17 4.66 1 1 

18 1 18 14.43 3.76 1 0 

19 1 19 28.46 5.55 1 1 

20 1 20 18.48 5.65 1 0 

21 2 1 34.39 5.99 0 1 

22 2 2 37.49 6.48 0 1 

Table XX.2. Data of the first 22 observations 

XX.5.2 The basic model setup 

The firm is interested in inferring the states of loyalty (SOW) between the firm and its 

clients. Importantly, the firm would like to know to which loyalty state each customer 

belongs to during each time period, and how the firm could potentially increase the SOW 

using its marketing mix. In this example, we will use a HMM for that purpose.  

In the HMM, SOW is the observed variable 𝑌𝑖𝑡. The last three columns in Table 

XX.2 present the covariates 𝑋𝑖𝑡 that can affect the SOW of each client at each time 

period. In other words, the covariates 𝑋𝑖𝑡 have a short-term effect on customer behavior. 

Thus, the SOW of a customer in a specific time period depends on the price level, 

whether or not the customer was visited by a sales representative, and whether or not the 

customer received a direct mailing:  

𝑆𝑂𝑊𝑖𝑡 = 𝛽0𝑠 + 𝛽1𝑠𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽2𝑠𝑆𝑎𝑙𝑒𝑠𝑉𝑖𝑠𝑖𝑡𝑠𝑖𝑡 + 𝛽3𝑠𝐷𝑖𝑟𝑒𝑐𝑡𝑀𝑎𝑖𝑙𝑖𝑡 + 𝜖𝑖𝑡 .   (XX.11) 
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In the model in (XX.11), we allow for multiple states of SOW with different 

effects of marketing actions in each state. Therefore, the regression parameters 

(𝛽0𝑠, 𝛽1𝑠, 𝛽2𝑠, and 𝛽3𝑠) in (XX.11) are state-specific and have a subscript 𝑠. We simulated 

the customer data consisting of three hidden states (i.e. 𝐾 =  3 and 𝑠 = 1,2,3), with 

initial state probabilities (𝜋) of 0.43, 0.40, and 0.17, and the following values for the 

regression parameters for each of the three states: 

1. Low SOW (𝛽01 = 30), marketing effects (price: 𝛽11 = −2.5; sales visit: 𝛽21 = 0; 

DM: 𝛽31 = 2.5); 

2. Medium SOW (𝛽02 = 60), marketing effects (price: 𝛽12 = −1.5; sales visit: 𝛽22 = 0; 

DM: 𝛽32 = 1); 

3. High SOW (𝛽03 = 85), marketing effects (price: 𝛽13 = −0.5; sales visit: 𝛽23 = 0; 

DM: 𝛽33 = 0). 

We take 𝜖𝑖𝑡 to be i.i.d. following a normal distribution. Therefore, each diagonal 

element of the 3 × 3 state-dependent distribution matrix (𝑀𝑖𝑡) is a univariate normal 

distribution with mean 𝛽0𝑠 + 𝛽1𝑠𝑃𝑟𝑖𝑐𝑒𝑖𝑡 + 𝛽2𝑠𝑆𝑎𝑙𝑒𝑠𝑉𝑖𝑠𝑖𝑡𝑠𝑖𝑡 + 𝛽3𝑠𝐷𝑖𝑟𝑒𝑐𝑡𝑀𝑎𝑖𝑙𝑖𝑡 and 

standard deviation 𝜎𝑠, for 𝑠 = 1,2,3. Additionally, the model includes the transition 

matrix (𝑄), which we will further discuss below in the results section.  

 We estimate two versions of the HMM: 

1) A basic HMM with a homogeneous transition matrix (no covariate effects) but with 

effect of covariates on the state-dependent distribution of SOW; 

2) A non-homogenous (effects of a covariate (sales visits) in the transition matrix) and 

heterogeneous (cross-customer heterogeneity using a Latent Class approach) HMM. 
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XX.5.3 Estimation of HMMs using Latent Gold  

We use the software program Latent Gold 5.1 (Vermunt and Magidson, 2015), 

distributed by www.statisticalinnovations.com, to estimate the two HMMs. One of the 

advantages of Latent Gold 5.1 for HMM estimation is that it includes a module for 

estimating basic HMMs, which can be accessed either through the menu (model option 

Markov) or through the syntax. To set up a HMM in Latent Gold, the observed 

variable(s) 𝑌𝑖𝑡 (here: SOW) has to be selected as Indicator. Next, the state-dependent 

distribution that corresponds to this variable has to be selected. Latent Gold allows for the 

following options: continuous, count, ordinal and nominal, which indirectly specifies the 

underlying distribution of 𝑌𝑖𝑡 (see Section XX.2.1). In this application, SOW is a 

continuous variable, which will be modeled as a Normal distribution by Latent Gold. In 

addition, Latent Gold allows the user to include covariates 𝑋𝑖𝑡, which can have an impact 

on the initial state, the transition probabilities and/or the state-dependent distribution. As 

discussed in section XX.2.5, when covariates are included in the transition probabilities, 

they are postulated to create a regime shift in the customer behavior and have a long-term 

impact, whereas covariates that are included in the state-dependent distribution only 

affect the customer behavior in the current time period, and therefore have a short-term 

impact. As mentioned previously, in this application, we first include the marketing mix 

covariates in the state-dependent distribution of SOW only, assuming they only have a 

short-term impact on customer behavior. Later on we extend that model and include some 

of these variables in the transition probability matrix as well, to investigate their effect on 

long-term customer behavior. Several of the other model specifications described in this 

chapter can be estimated as well. For detailed information on how to specify various 

http://www.statisticalinnovations.com/
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HMMs in Latent Gold, we refer to the manual (Vermunt and Magidson, 2015). In Latent 

Gold, parameter estimates are obtained by means of the EM algorithm (see Section 

XX.3.1). For estimation of HMMs using Bayesian approaches, or for specific, more 

advanced, specification of HMMs, we recommend using other statistical programing 

tools such as R or Matlab. 

  

XX.5.4 Results of Alternative Specifications of the HMMs 

Results for a basic HMM. First, we estimate a basic HMM with a homogeneous transition 

matrix and covariates in the state dependent distribution. Model estimates are obtained 

for 1 to 6 hidden states, requiring the estimation of, respectively, 5 to 65 parameters 

(including estimates for the initial state probabilities, the transition probabilities matrix, 

the parameters of the Normal distribution of SOW for each state, given the covariates 

price, sales visits and direct mail). We compare various information criteria across these 

solutions to determine the most appropriate number of states 𝐾, see Table XX.3. 

Minimum values of BIC and CAIC are obtained for an HMM with 3 hidden states, which 

corresponds to the true number of states in this simulated data example. AIC is 

minimized for 6 hidden states, reflecting the common finding that AIC tends to 

overestimate the number of states (see Section XX.2.6).  Therefore, we choose the HMM 

with three hidden states and we present the detailed estimation results for this model in 

Table XX.4. 

 

Number of States Number of Parameters AIC BIC CAIC 

1   5 200151.28 200176.20 200181.20 
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2 13 188460.35 188525.15 188538.15 

3 23 179899.53 180014.18 180037.18 

4  35 179898.79 180073.25 180108.25 

5 49 179786.49 180030.74 180079.74 

6 65 179733.66 180057.67 180122.67 

Table XX.3. Information criteria for the HMMs with state-dependent covariate effects on 

SOW* 

*Figures in bold are the minimum values for AIC/BIC/CAIC 

 

Initial state distribution 

State (t=0) 1 2 3 

Probability 0.44 (.02) 0.40 (.02) 0.16 (.01) 

Transition probability matrix 

 State (t) 

State (t-1) 1 2 3 

1 0.80 (.01) 0.14 (.01) 0.06 (.01) 

2 0.09 (.01) 0.80 (.01) 0.11 (.01) 

3 0.07 (.01) 0.10 (.01) 0.83 (.01) 

State-dependent distribution parameters of the observed variable 

(SOW) 

 1 2 3 

Intercept (b0) 35.84 (.62) 59.17 (.61) 84.74 (.59) 

Price (b1) -2.65 (.12) -1.43 (.11) -0.55 (.11) 

Sales visit (b2) -0.25 (.23) 0.65 (.23) 0.49 (.24) 

Direct Mail (b3) 2.55 (.25) 1.36 (.25) -0.04 (.25) 

Table XX.4. Estimation results (parameter estimates and standard errors) of the HMM 

with state-dependent covariate effects on SOW, with three states (𝐾 = 3). 

 

Most estimated parameter values closely match their true values underlying the 

data generation procedure. The estimates for the intercept range from 35.84 for customers 

in State 1 to 84.74 for customers in State 3. The three states also differ substantially in 

terms of their response to marketing actions: customers in State 1 (the low SOW state as 



53 
 

indicated by the intercept) are the most sensitive to price and direct mail. Price has a 

negative effect on SOW in all states (all p-values < .01), with the largest effect in State 1. 

Furthermore, the effect of direct mail on SOW is significant and positive for States 1 and 

2 (p-values <.01) and not significant for State 3 (p=.88). 

Interestingly, the estimated effect of sales visits is relatively small, though 

significantly positive in States 2 and 3 (p<.01 and p=.04, respectively). We note that the 

true effect of sales visits on SOW is 0 in each state, i.e. there is no short-term effect of 

sales visits on SOW, and this bias in the estimated effect of sales visit on SOW is due to a 

model misspecification. As we will demonstrate below, sales visits have a significant 

positive effect on the transition among states, stimulating customers to switch to a state 

with higher SOW. In other words, sales visits have a long-term effect but no short-term 

effect on customer behavior. Hence, the long-term effect of sales visits on SOW is 

wrongfully captured by the short-term effect of sales visits on SOW in the state-

dependent distribution in this particular HMM, leading to a potentially misinterpretation 

by the manager of the usefulness of sales visits on short-term behavior.   

Examining the estimates for the initial state distribution and transition probability 

matrix, we see that customers are most likely to start in the low and medium SOW states 

(States 1 and 2). Subsequently, the customers have a fairly high probability of staying in 

the same state from one time period to the next, as the estimated diagonal elements of the 

transition probability matrix are fairly high (80% or higher), suggesting that the states are 

“quite sticky” across customers. While the estimated parameters for the initial state 

distribution are fairly close to their true values, we will demonstrate below that the 
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stickiness in the transition probabilities is overestimated by this simple HMM, because 

cross-customer heterogeneity is not appropriately accounted for.     

Results for a non-homogenous, heterogeneous HMM. We will now use the same 

simulated data to estimate a non-homogenous (covariates in the transition probability 

matrix) and heterogeneous (latent class approach to capture cross-customer 

heterogeneity) HMM with Latent Gold. This can be done in Latent Gold by specifying 

the number of latent classes in the Advanced Menu option, or by defining a latent 

variable “Class” and including it in the “equation”  lines in a Latent Gold syntax file. We 

allow for cross-customer heterogeneity in the model parameters only in the transition 

probability matrix. In addition, we include the sales visits covariate in the transition 

probabilities such that sales visits have a potential long-term effect on customer behavior. 

Including sales visits as a covariate to the transition probability matrix adds 𝐾 × (𝐾 − 1) 

additional parameters to the model, where 𝐾 is the number of states in the HMM. 

Allowing for the transition probability matrix to be heterogeneous through (say) 𝑆 latent 

classes, multiplies the number of transition matrix parameters by 𝑆, because we now have 

one transition matrix for each of the 𝑆 latent class segments.   

In addition to determining the number of states, we now also need to determine 

the number of latent class segments. For brevity, we only estimate HMMs with 2 and 3 

latent classes and with 1 to 6 latent states, and compare the relative fit of these 12 model 

specifications.5 The minimum CAIC rule suggests the model with 3 hidden states and 2 

latent classes as most appropriate (Table XX.5), which corresponds to the true number of 

latent states and latent classes with which the data was generated. In addition, the CAIC 

                                                       
5 In general one may wish to vary the number of latent classes from 1 to a larger number than 3. 
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values are lower than those of the previous homogenous HMM with three latent states 

(see Table XX.3), which indicates that accommodating cross-customer heterogeneity in 

the transition matrix, by means of a latent class structure and by including the covariate 

sales visits in the transition probabilities, is warranted. Therefore, we present the detailed 

estimation results of the HMM with 2 latent classes and 3 hidden states in Table XX.6. 

 

Number of 

States 

Number of Latent Classes 

2 3 

1 200189.19 200197.17 

2 188363.87 188401.11 

3 179771.97 179860.98 

4 179957.21 180136.37 

5 180182.21 180448.84 

6 180488.81 180965.82 

Table XX.5 Information criterion CAIC for the HMMs  

with heterogeneity and covariates in the transition matrix* 

*Figure in bold is the minimum value for CAIC 

 

The estimates for the parameters of the state-dependent distributions of the HMM 

with heterogeneity and covariates in the transition matrix, are quite similar to those 

obtained from the simple homogenous HMM (Table XX.4 and XX.6). Importantly, all 

estimated parameter values now closely match the true values underlying the data 

generation procedure, including the null-effect of sales visits. More specifically, the 

estimated values for the intercepts are very close to the true values (35, 60 and 85), and 

similarly for the estimated price effects (all p-values < .01; true values -2.5, -1.5, and -
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0.5). The estimated effects of direct mail are significant and positive for States 1 and 2 (p-

values <.01; true values 2.5 and 1.0), and not significant for State 3 (p=.76; true value 

0.0). In other words, looking at short-term customer behavior, the customers in the low 

SOW state (state 1) are most sensitive to price and respond positively to direct mail. On 

the other hand, the customers in the high SOW state, are least sensitive to price, and 

direct mail is not an effective marketing instrument for these type of customers to 

increase their SOW.  

Lastly, considering the sales visits covariate, the estimated direct effects of sales 

visits on SOW are very small and not significant anymore for each of the three states 

(true values 0.0 for each state; p-values .09, .64 and .50, respectively). Hence, sales visits 

is not an effective marketing instrument to influence short-term customer behavior. This 

highlights the importance of specifying the correct heterogeneity in HMMs. Apparently, 

the sales visit covariate picked up spurious correlation in the basic homogenous HMM 

(Table XX.4). As such, the manager would incorrectly conclude that sales visits have a 

short-term, positive, effect on behavior. In fact, as we will see next, sales visits have a 

long-term effect on behavior by moving customers to a higher SOW state, i.e. inducing a 

(positive) regime shift among customers.  

Before we discuss the long-term effect of sales visits on behavior, we will first 

discuss the results for the latent class approach that was used to capture unobserved 

cross-customer heterogeneity. As mentioned before, the best model to capture cross-

customer heterogeneity (according to the model selection criteria) is a HMM with two 

latent classes. As indicated in Table XX.6, the two latent classes are estimated to 

represent 72 and 28 percent of the customers, respectively. As we only included 



57 
 

heterogeneity in the transition probability matrix, we would get two estimated transition 

probability matrices, one for each latent class. Because we also included the sales visit 

covariate in the transition probabilities, where sales visit is dummy variable, we get two 

estimated transition probability matrices, one for sales visit and one for no sales visit, for 

each latent class. These four matrices are also given in Table XX.6.  

Importantly, the four estimated transition probability matrices are quite different 

between the two classes and depending on whether a sales visit was made in a particular 

time period. Two points are worth noting about the estimated transition probability 

matrices. First, we see that, for customers in the first segment (latent class 1), sales visits 

have a substantial (and significant) impact on transitioning customers between the middle 

and the high SOW states (i.e. between States 2 and 3) and on keeping them in the high 

SOW state (State 3). For example, following a sales visit, an average Segment 1 customer 

in the highest SOW state (State 3) has a 90% chance of staying in that state in the next 

period, but only a 63% chance of staying in that state in the next period without a sales 

visit. Second, for customers in the second segment (latent class 2), sales visits are mostly 

effective as an acquisition tool, transitioning them from the low (State 1) to the middle 

(State 2) SOW state, whereas high SOW customers (state 3) are not much affected by 

sales visits in the long-run. 

The importance of accounting for cross-customer heterogeneity in a HMM, 

through an unobserved heterogeneity approach (e.g. latent classes), but also through 

observed covariates (e.g. sales visits), is clearly shown in this example. If we compare the 

estimation results for the transition probability matrix of the non-homogenous, 

heterogeneous HMM in Table XX.6 and the basic homogenous HMM in table XX.4, we 
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see that the stickiness of customers to their state is considerably overestimated by the 

basic homogenous HMM. A manager may now wrongfully conclude that little can be 

done to move customers up to a more favorable (i.e. higher) SOW state. In fact, the 

results of the non-homogenous, heterogeneous HMM show that sales visits can be an 

effective marketing tool, to either reduce the chance that customers move from a high 

SOW state  to a lower SOW state (latent class 1), or to move customers up from a low 

SOW state to a higher SOW state (latent class 2). In other words, sales visits have the 

potential to make customers more “sticky” in staying in a higher SOW state, and by using 

sales visits the firm has the chance to favorably (for the firm) influence customers’ long 

term behavior towards higher SOW. Such insights would not have been possible using 

the basic homogenous HMM that ignores cross-customer heterogeneity.  

 

 Initial state distribution  

State (t=0) 1 2 3      

Probability .44 (.02) .40 (.02) .16 (.01)      

  Transition probability matrix 

  Latent Class 1  Latent Class 2 

  size: .72  size .28 

   State (t) 

No Sales Visit State (t-1) 1 2 3  1 2 3 

 1 .80 (.01) .16 (.01) .04 (.01)  .74 (.01) .17 (.01) .09 (.01) 

 2 .16 (.01) .75 (.01) .09 (.01)  .08 (.02) .82 (.03) .10 (.02) 

 3 .15 (.02) .22 (.02) .63 (.03)  .04 (.01) .06 (.02) .90 (.03) 

Sales visit 1 .84 (.01) .11 (.01) .06 (.01)  .59 (.05) .25 (.04) .16 (.03) 

 2 .05 (.01) .82 (.01) .14 (.01)  .09 (.01) .80 (.02) .11 (.01) 

 3 .06 (.01) .04 (.01) .90 (.01)  .04 (.01) .09 (.01) .87 (.01) 

 State-dependent distribution parameters of the observed variable (SOW) 

State 1 2  3  

Intercept (b0) 36.00 (.62) 59.68 (.61)  85.06 (.59)  

Price (b1) -2.66 (.12)  -1.47 (.11)  -0.56 (.11)  

Sales visit (b2) -0.40 (.24) 0.16 (.23)  0.11 (.24)  
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Direct Mail (b3) 2.56 (.25) 1.33 (.25)  -0.08 (.25)  

Table XX.6. Estimation results (parameter estimates and standard errors) of the HMM 

with heterogeneity and covariates in the transition matrix, with three states and two latent 

classes. 

 

To sum, this section illustrates an application of HMMs to a typical marketing 

problem. It demonstrates the considerations involved in specifying the HMM and 

structuring the data. We also discuss how to estimate the model and how to choose the 

number of latent states. Importantly, we highlight the relevance of accounting for cross-

customer heterogeneity. Our illustration demonstrates the type of insights that can be 

generated from interpreting the model’s parameter estimates, and, in particular, the effect 

of marketing actions on the transitions among states and on the state dependent behavior. 

In this simulation example, the estimation procedure through Latent Gold was able to 

correctly recover the model parameters of an HMM with cross-customer heterogeneity.  

 

XX.6. Conclusions 

In this chapter we have provided an overview of HMMs with a particular focus on the 

unique aspects of HMMs applied to marketing problems. HMMs are a flexible class of 

models that can be used to model dynamics in a sequence of observations. While HMMs 

have been developed and applied in many fields other than marketing, their application 

and implementation in marketing requires further development. In particular, the 

availability of “panel data” in marketing implies that we have multiple time series (one 

for each customer), which requires special attention as the basic HMMs have traditionally 

been developed for applications where there is only one (often very long) time series (see 

e.g., Zucchini and MacDonald (2009) for such HMM applications in various fields).  
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Particularly, addressing customer-specific heterogeneity is a primary concern when 

applying HMMs to a marketing problem with possibly heterogeneous agents, as we know 

from extant literature in marketing (see also Chapter XXX). Not properly accounting for 

such heterogeneity can lead to misleading insights regarding the dynamics underlying the 

behavioral process. Indeed as we report in Table XX.1 almost all HMM applications in 

marketing have accounted for heterogeneity in one form or another.  

Another important difference in HMM applications in marketing relative to other 

fields is the notion that firms can (and would like to) nudge customers’ behavior in a way 

that would be profitable to the firm. In a HMM application context, this often means that 

the firm would like to move the customer from one state to another (e.g. from a low 

loyalty state to a high loyalty state). Or, in another application context, would the firm 

like to prevent the customer from drifting down from an active state to a passive or churn 

state. Such research questions can be addressed by extending the basic HMMs and 

including marketing activity into the model. Specifically, this can be done by developing 

non-homogenous HMMs that relate the probabilities in the transition matrix to marketing 

actions. Such HMMs can capture a long-term or a regime shift effect of marketing 

actions on customer behavior. Indeed, non-homogenous HMMs are quite common in 

marketing but are fairly rare outside of marketing. 

We have discussed in this chapter many recent papers and applications in 

marketing, as summarized in Table XX.1. From our discussion it becomes clear that most 

of the applications of HMMs in marketing are fairly recent (within the last decade) and 

the use of these models is growing rapidly (we are aware of many working papers 

applying HMMs that were not included in this chapter).  
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In our experience there are aspects of HMMs in marketing that are worthwhile 

further research. First, building on the notion of heterogeneity, it is possible that 

customers are different not only in terms of the way they transition among states or how 

they behave given a state, but also in the number of states they transition among. In other 

words, instead of developing a HMM with 𝐾 states, one could consider a HMM with 𝐾𝑖 

states, i.e. a different number of states for each customer. Such a model would greatly 

complicate the model selection problem, as we would now need to select the number of 

states at the customer level (see Padilla et al. 2016 for recent work in this area). 

Reversible jump algorithms (e.g. Ebbes et al. 2015) can be a useful avenue to address 

these issues. Similarly, a fruitful avenue of research could explore the topic of state 

generation. A customer could be moving among a set of states for a while and due to an 

exogenous to the customer event (e.g. introduction of a new product) or an endogenous to 

the customer event (e.g. getting married), she may start visiting a state she has never 

visited before. Modeling such state generation could help to better understand the 

evolution of customers over time. 

A second fruitful area of research in applying HMMs in marketing may be in the 

context of data fusion. Because HMMs model a latent state that evolves over time, one 

can use the latent state for data fusion by merging together different sets of information at 

different time intervals, using their common latent state. For instance, Ebbes and Netzer 

(2016) merge survey data collected at specific time intervals with continuously observed 

customer activity data.  

Third, in most HMM applications in marketing the interpretation of the states 

have been empirically inferred from the estimation results. However, psychological and 
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consumer behavior research in marketing often has a strong a-priori theory regarding 

what could in fact be the meaning of underlying states. Research in this area typically 

conducts experiments with a particular manipulation aimed at transitioning an individual 

from one behavioral state to another (e.g., affective states). Therefore, we encourage 

future researchers to use HMMs in the context of behavioral experiments with repeated 

observations to identify the latent behavioral states and the transitions among them, as a 

function of the experimental design.  

One natural question to ask is when to use a discrete version of dynamics such as 

HMMs and when to use a more continuous version of dynamics such as state-space 

dynamics as in Kalman filter-type approaches (See Chapter XX). There are several 

notable advantages of HMMs over their continuous counterparts. First, HMMs are 

particularly useful in capturing dynamics when the underlying dynamics are reflective of 

regime shift dynamics, as opposed to a gradual dynamics. On the other hand, when the 

underlying dynamic process is more gradual we recommend using the continuous state-

space approaches. Second, HMMs capture dynamics in a semi-parametric manner and are 

therefore more flexible than most of the continuous state-space approaches, which often 

rely on specific distributional and parametric assumptions (e.g., the change from one 

period to another is drawn from a normal distribution). Third, from an interpretation point 

of view, relative to continuous dynamic models, applications of HMMs in marketing are 

attractive because they are easily interpretable and often lead to easy to communicate 

managerial insights (similar to segmentation studies) such as “marketing action X shifts 

customers from a low state of activity to a high state of activity.” Finally, if one estimates 

a HMM on a truly continuous dynamics process, the HMM would approximate the 



63 
 

continuous dynamic process well by letting the number of states 𝐾 grow. This of course 

comes at a cost, as for such cases the HMM is less parsimonious than a continuous 

dynamics state-space model. Therefore, if the number of states recommend by the model 

selection criteria becomes large, we recommend the researcher to explore also continuous 

dynamics state-space models. Future research could investigate the similarities and 

differences between HMMs and other state-space models in marketing problems.     
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