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Abstract

We propose and test a simple model of the equity premium implied by stock index

options, assuming frictionless and complete markets for the index and index options.

The model’s forecasts are more accurate than forecasting benchmarks, especially when

arbitrage costs are low. They closely match real market behavior, with an average

equity premium of 7.9% and an implied Sharpe ratio of 0.36. Our model offers fresh

economic insights into why the premium varies, including its sustained increase after

the 2008 crisis, and provides a unified explanation of risk premiums for variance and

higher-order moments of market returns.
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The equity risk premium, the expected return of the stock market over a risk-free bond,

is a key determinant of financial wealth with significant implications for the real economy.

Accurate and timely estimates of the equity premium are crucial for understanding the

drivers of stock price movements (Cochrane 2011) and have far-reaching effects on firm

investment (Baker et al. (2003)), personal consumption (DiMaggio et al. (2020)), and

monetary policy (Cieslak and Vissing-Jorgensen (2021)). Despite extensive research on the

equity premium, economists’ estimates of its value differ widely,1 hindering intellectual and

economic progress.

This paper proposes a new method for estimating the equity premium that is based on

robust economic and econometric principles and makes accurate predictions of stock returns.

The main assumptions are that markets for the stock index and its options are frictionless

and complete,2 reasonable approximations for S&P 500 index and option markets. These

assumptions are necessary to ensure a coherent benchmark for the equity premium. If there

are arbitrage opportunities, large trading costs, or incomplete markets, multiple values of

the equity premium could be consistent with observed prices.

The model extracts maximal information from the prices of stocks and options. These

prices depend not only on the equity premium, but also on the risk premiums for stock

return variance, skewness, and higher-order moments. Just as investors can buy stocks to

earn the equity premium, they can construct portfolios of derivatives with payoffs based on

return variance and higher-order moments from portfolios of options to earn the variance

and higher-order premiums. Since the prices of these derivatives depend only on option

prices, they reveal market or option-implied values of stock return variance, skewness, and

higher-order moments. In complete and frictionless markets, one can infer the risk premiums

on these assets from allocations to these securities in a “growth-optimal” portfolio that

maximizes an investor’s expected long-run wealth.3

1In December 2021, the median one-year equity premium forecast is 6.0%, whereas the cross-sectional
standard deviation of forecasts is 6.2% (Livingston Survey of Professional Forecasters).

2The market is complete over all possible realizations of market returns if options with a continuum of
strike prices are available (Ross (1976)). Frictionless markets have no arbitrage, trading costs, or leverage
and short sale constraints.

3In frictionless markets, the unique pricing kernel for any set of securities is the reciprocal of the gross
return of the portfolio with growth-optimal weights on these securities (Long (1990)). This growth-optimal
portfolio maximizes expected long-run wealth, which is equivalent to maximizing expected log utility of
wealth. The first-order conditions of this maximization for each security show that the growth-optimal
portfolio return is the reciprocal of the pricing kernel.
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Our central theoretical finding is that each of these risk premiums is a weighted sum

of option-implied moments of returns, where weights are positions in the growth-optimal

portfolio. For instance, if the growth-optimal portfolio has positions of 130% in the stock

market and −50% in variance-based derivatives, the equity premium is 1.3 times option-

implied variance minus 0.5 times option-implied skewness. However, since the true weights

depend on unobservable rational expectations of market returns, computing risk premiums

requires additional assumptions or data. To address this issue, a seminal paper by Martin

(2017) imposes plausible constraints on investor preferences and wealth, equivalent to as-

suming growth-optimal portfolio weights of at least 100% on stocks and 0% on variance and

all higher-order derivatives, to obtain a useful lower bound on the equity premium.4

Instead of restricting growth-optimal weights, we estimate time-varying weights using

real-time data. These weights determine the equity premium as well as the variance pre-

mium, measurable as option-implied variance minus expected market return variance. High-

frequency stock prices allow precise estimation of expected variance (Andersen et al. (2001)).

Applying the main theoretical result, the expected variance premium is a linear function of

observable option-implied moments of returns. We estimate this relationship to recover

growth-optimal portfolio weights and thus market risk premiums using real-time data on

stock returns and option prices. These regressions include a finite number of option-implied

moments, up to four, to approximate the growth-optimal portfolio and risk premiums.

Importantly, this new framework enables point estimates, not bounds, of option-implied

risk premiums with minimal assumptions about investor preferences and wealth and minimal

data requirements. These implied risk premiums are firmly grounded in asset pricing theory

and forecast empirical equity and variance risk premiums well, outperforming those from

Martin’s lower bound at horizons ranging from monthly to annual.5 The improvement in

realized equity premium predictability is substantial with a quarterly out-of-sample R2 of

3.17% for the implied equity premium as compared to 1.15% for Martin’s lower bound.

The model fits the expected variance risk premium even better, attaining an R2 of 71.8%

4Chabi-Yo and Loudis (2020) provide tighter bounds based on stricter assumptions on investor preferences
and wealth, incorporating information from higher order moments such as skewness and kurtosis, but use
static preference weights derived from the full sample. Bakshi et al. (2019) derive expected returns from
option prices alone, but assume a specific functional form where the log of the projected SDF is linear in
excess returns. We briefly compare them to our estimates in Section 3.

5We compute risk premium forecasts for the lower bound from the log utility pricing kernel implied by
the exact version of Martin’s lower bound, 1/Rm, where Rm is the gross market return.
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compared to 5.4% from forecasts of the quarterly premium based on the lower bound’s key

assumption.

Stock return predictability from the implied equity premium is economically large, too,

with monthly (annual) forecasts enabling an increase of 15% (11%) in a log utility investor’s

annualized expected returns. The economic magnitudes are statistically imprecise due to the

short sample period (1997-2021) and the high volatility of stock returns. However, consistent

with theory, excluding a 61-day period in 2008 in which the model’s assumption of costless

arbitrage is violated significantly strengthens return predictability from the implied equity

premium in statistical and economic terms.

The average implied equity premium is 7.9% per year with 4.4% volatility, whereas Mar-

tin’s lower bound averages 4.2% per year with 2.2% volatility. Our model also produces a

reasonable average Sharpe Ratio of 0.37, in line with the realized Sharpe ratio of the market.

Consistent with Martin’s preference and wealth restrictions, the implied equity premium

exceeds the lower bound on 99% of days and is greater than 0.5% below the lower bound

on all days.6 The largest deviations between the lower bound and implied equity premium

forecasts occur in the post-2008 period, when the average deviation increases from 2.1% to

5.0% per year, which is larger than the average lower bound. The implied equity premium

consistently falls within a narrow margin of Chabi-Yo and Loudis’ (2020) conditional bounds:

it is within 0.5% of the lower bound (averaging 6%) and the upper bound (averaging 10%) on

92% days. The premium tends to be closer to the lower bound before 2008, and it becomes

closer to the upper bound after 2008.7 Our estimates exhibit an 81% correlation with Bakshi

et al. (2019)’s expected excess returns, which average 7.7% during our sample period.8

One can interpret the growth-optimal portfolio and implied equity premium as arising

from a heterogeneous agent model like the classic behavioral models of Shiller (1984) and

Campbell and Kyle (1993). The estimated growth-optimal portfolio weights are the stock

and option positions chosen by an unconstrained rational log utility investor. The equity

6These minor bound violations could arise from estimation error, approximation error, or illiquidity in
the prices of long-horizon options.

7For the full sample, the difference between the implied equity premium and Martin’s lower bound
averages 3.7%, and the difference averages 2.0% from the conditional upper and lower bounds of Chabi-Yo
and Loudis.

8We replicate the conditional bounds in Chabi-Yo and Loudis (2020) and Bakshi et al. (2019) using our
estimates of risk-neutral moments to make these comparisons and to calculate bounds for each date in the
sample.
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premium reflects the compensation required by this investor for bearing stock and derivative

market risk that other investors, hereafter “behavioral” investors, do not hold in equilibrium.

Behavioral investors include any individuals or institutions with different preferences from

log utility of wealth, biases in beliefs, or constraints on investments.

The portfolio weights of behavioral investors can be inferred from market clearing con-

ditions in the stock and option markets. For example, if the growth-optimal weight on the

stock market exceeds 100%, as it usually does empirically, behavioral investors must hold less

than 100% weight on stocks, indicating higher risk aversion than log utility. If the growth-

optimal weight on variance derivatives is negative, as it is empirically, behavioral investors

must hold a positive weight in these securities, consistent with a desire to hedge variance

risk. Interestingly, empirical estimates of the growth-optimal weight on skewness securities

suggest behavioral investors have exposure to market crashes, much like many popular hedge

fund strategies with negative skewness (Mitchell and Pulvino (2001) and Malliaris and Yan

(2021)).

This heterogeneous agent perspective could explain why the empirical equity premium is

so high on average and why it varies over time. The high average premium arises because

behavioral investors are averse to stock market as well as variance risk, relative to the

growth-optimal investor, who bears a disproportionate share of these risks. The premium

varies over time as behavioral investors’ beliefs, preferences, and constraints vary. If they

become pessimistic and demand fewer stocks, the premium increases to entice the growth-

optimal investor to buy stocks. Empirical estimates of the growth-optimal weight on stocks

suggest that this mechanism can explain the persistent post-2008 increase in the equity

premium. Although the model estimates these time-varying portfolio weights solely from

variance premium regressions on option-implied moments, they are remarkably consistent

with survey data on individual investors’ beliefs and stock market participation (Greenwood

and Shleifer (2014) and Gallup (2022)).

The implied risk premium model fundamentally links the stock market risk premium to

the variance and higher-order risk premiums in the option market. Consequently, these risk

premiums exhibit large common variation over time, which aligns with evidence on market

return predictability from the variance premium and tail risk (Bollerslev, Tauchen, and Zhou

(2009) and Bollerslev, Todorov, and Xu (2015)). The model also accounts for the average

magnitude of the expected variance premium and most of its variation over time with a
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median R2 of 71% across monthly to annual horizons.9

Furthermore, the model correctly predicts the existence and sign of the equity risk pre-

mium’s dependence on higher-order moments of stock returns. The reason is that the pricing

kernel is the reciprocal of the growth-optimal portfolio return, implying that it depends non-

linearly on stock returns with alternating signs on higher-order powers of returns, which we

show using a Taylor expansion in Section 1. As a result, expected stock returns depend on

higher-order return moments with alternating signs, consistent with the empirical pricing

of volatility, coskewness, and cokurtosis risks identified by Ang et al. (2006), Harvey and

Siddique (2000), and Christoffersen et al. (2021), respectively. Because of this nonlinearity

in the pricing kernel, the model also correctly predicts that the Capital Asset Pricing Model

(hereafter CAPM; Sharpe (1964) and Lintner (1965)) will fail to account for empirical risk

premiums since the CAPM pricing kernel is linear in market returns.

This paper’s main contribution is the implied risk premium model and estimation method-

ology. The model enables new estimates of all market-related risk premiums, including the

equity and variance premiums, as it yields the empirical projection of the pricing kernel

on to market returns. This paper differs from prior studies by exploiting the relationship

between the variance risk premium and risk-neutral moments of excess market returns to

obtain explicit estimates of the market pricing kernel. This kernel provides point estimates

of the equity premium and insights into the pricing of market risks throughout the economy.

The implied risk premium model relates to recent studies that provide bounds on the

equity premium: Martin (2017), Schneider and Trojani (2019), Chabi-Yo and Loudis (2020),

and Kadan and Tang (2020). Our approach is most similar to the models by Martin, Chabi-

Yo and Loudis, and Bakshi et al. (2019), but it uniquely exploits the variance risk premium

for nearly exact recovery without restrictive assumptions on investor preferences and wealth

or the functional form of the SDF.10

Prior studies examine whether risk-neutral moments, like skewness and kurtosis contribute

to stock risk premiums. Bollerslev and Todorov (2011) relate tail risks in options to the

9For evidence that the expected variance premium is positive, see Coval and Shumway (2001), Bakshi
and Kapadia (2003), Carr and Wu (2009), and Christoffersen, Heston, and Jacobs (2013).

10Back, Crotty and Kazempour (2022) test the risk premium bounds obtained from option prices and find
them to be valid but quite loose, reducing their effectiveness for market return forecasts. Our study also is
related to studies by Schneider (2019) and Beason and Schreindorfer (2022) that use options to decompose
the equity premium and realized market returns.
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equity premium. Kraus and Litzenberger (1978) and Harvey and Siddique (2000) show that

coskewness carries a negative price of risk in the cross-section of stocks. Neuberger (2012)

and Kozhan et al. (2013) examine risk premiums related to skewness. The implied risk

premium framework provides a unified explanation for many of these findings, predicting a

strong common component among these risk premiums, consistent with evidence of a near-

perfect correlation between variance and skewness risk premiums in Kozhan et al. (2013).

1 Theory

We derive the equilibrium pricing kernel or stochastic discount factor with minimal as-

sumptions. In Section 1.2, we interpret this pricing kernel as arising from the interaction

between rational and behavioral investors.

1.1 Pricing Securities Based on the Stock Market

The model features risky securities those returns depend on the stock market’s return. In

each period t, investors can invest in an asset with return Rf,t, known at time t, or a risky

market portfolio, with an uncertain return Rm,T where T > t. The stock market’s excess

return is then R̃m,T = Rm,T −Rf,t. The model also includes markets for K−1 > 0 derivative

securities offering excess returns of R̃k
m,T − ck, where k = 2, 3, ..., K and ck is a constant

ensuring that the cost of derivative securities is zero as discussed below. We set c1 = 0 so

that the market’s excess return matches the form of the derivative excess returns for k = 1.

These securities resemble the market (k = 1) and swaps based on market variance, skew-

ness, and kurtosis (k = 2, 3, 4) and so on. The spanning result of Bakshi and Madan (2000),

as specialized in Carr and Madan (2001), shows that combinations of options with a contin-

uum of strike prices, maturing at time T , can achieve any payoff based on the market return,

Rm,T .
11 The availability of options with a continuum of strike prices effectively completes the

market, equivalent to assuming K → ∞ securities where all higher-order moments of mar-

ket excess returns are tradable. To simplify the theory, we initially assume that K → ∞ to

approximate the many strike prices of traded options on the stock market. For the empirical

implementation, we consider approximations of this economy with finite K ≤ 4.

11Martin (2017) applies this result to replicate the squared market return, R2
m,T .
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We assume that there are no risk-free arbitrage opportunities and no trading frictions,

such as transaction costs or restrictions on leverage or short sales. We also assume that

gross market returns are finite and strictly positive, meaning at least one stock in the market

retains positive value. Under these conditions, Long (1990) shows that there exists a strictly

positive pricing kernel given by the reciprocal of the return on the portfolio combining the

tradable securities with the maximum expected log return:

MT =

[
Rf,t +

∞∑
k=1

wk,t

(
R̃k

m,T − ck

)]−1

, (1)

where wk,t is the weight of security k in this portfolio.12 This portfolio is growth-optimal,

hereafter GO, since it maximizes the expected long-run growth of investor wealth. Under

these minimal assumptions, the GO portfolio prices all market-related tradable securities:

Et [MTRT ] = 1, (2)

where RT is the return of any of the K market-related securities or the risk-free rate. Apply-

ing this pricing kernel equation to risk-free rate, yields the familiar identity: EtMT = R−1
f,t .

13

One can express market prices in terms of “risk-neutral” expectations denoted by E∗
t

and defined by the change of measure MT/EtMT > 0. The risk-neutral expectation of any

tradable return is E∗
tRT = Rf,tEt [MTRT ] = Rf,t. By subtracting Rf,t from both sides, the

risk-neutral expectation of any tradable excess return becomes zero:

E∗
t R̃k,T = 0,∀k, (3)

where R̃k,T denotes the excess return of any market-related security. Solve for ck to obtain:

ck = E∗
t R̃

k
m,T ,∀k. (4)

12The robustness of our model allows for some of these conditions to be relaxed without undermining
the core theoretical framework. For example, the market may still function effectively with a sufficiently
dense but finite set of options and the assumption of no trading frictions can be moderated to consider
low but non-zero transaction costs or minor short selling and leverage restrictions reflecting more realistic
market conditions. This adaptability makes the model both theoretically rigorous and practically applicable
in various empirical settings where ideal conditions may not hold.

13We omit brackets in expectations that apply to a single term—i.e, E∗
t

[
R̃k,T

]
= E∗

t R̃k,T .
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For the market, c1 = 0 because E∗
t R̃m,T = 0. For the variance-based security, c2 = E∗

t R̃
2
m,T .

These constants are known at time t because they are based on observable market prices—

i.e., risk-neutral expectations. Empirically one can identify the constants from option prices,

as we will show in equation (20).

Now we relate rational expectations of returns to risk-neutral expectations based on stock

and option prices. The expected excess return of any market-related security is:

EtR̃T = Et

[
MT

EtMT

EtMT

MT

R̃T

]
= R−1

f,tE
∗
t

[
M−1

T R̃T

]
= R−1

f,tE
∗
t

[[
Rf,t +

∞∑
k=1

wk,t

(
R̃k

m,T − E∗
t R̃

k
m,T

)]
R̃T

]
, (5)

where the last equality substitutes for M−1
T and ck using equations (1) and (4), respectively.

We apply equation (5) to the excess returns of the stock market and traded derivatives

by setting R̃T = R̃n
m,T for n = 1, ..., K and simplifying:

EtR̃
n
m,T − E∗

t R̃
n
m,T = R−1

f,t

∞∑
k=1

wk,t

(
E∗

t R̃
k+n
m,T − E∗

t R̃
k
m,TE∗

t R̃
n
m,T

)
,∀n. (6)

The risk premium of any market-related security is linear in risk-neutral moments, where

the term in parentheses is the excess risk-neutral moment. The only unknowns are the GO

portfolio weights: wk,t. However, since these weights vary over time and market returns

are highly unpredictable, one cannot simply regress market securities’ excess returns on

risk-neutral moments to obtain accurate estimates of the weights.

The implied risk premium in (6) is simplest for the equity premium, n = 1:

EtR̃m,T = R−1
f,t

∞∑
k=1

wk,tE∗
t R̃

k+1
m,T . (7)

Martin’s (2017) expected equity premium formula corresponds to assuming that the stock

market is the GO portfolio—i.e., setting w1 = 1 and wk = 0 for k ≥ 2. In this special case,
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one obtains the exact version of Martin’s (2017) equation:

EtRm̃,T = R−1
f,tE

∗
t R̃

2
m,T , (8)

where the right-hand side is the stock market’s risk-neutral variance discounted by the risk-

free rate. This equity premium formula applies only if a log utility investor chooses to hold

a weight of 100% on stocks and 0% on all market derivatives, an unlikely special case.

The reasoning behind equation (5) offers a less restrictive alternative to assuming that

the stock market is the GO portfolio. If the GO investor exploits equity premium variation

by timing the market, the market weight would not be constant or equal to 1. To explore

this further, we analyze a Kth-order approximation of the GO portfolio in which wk,t = 0

for k > K, which implies that the inverse pricing kernel is a Kth-order polynomial:

MT ≈

[
Rf,t +

K∑
k=1

wk,t

(
R̃k

m,T − E∗
t R̃

k
m,T

)]−1

, (9)

where K is finite. The time-varying weights wk,t enable optimal market timing in K market-

related securities—e.g., stocks and variance-, skewness-, and kurtosis-based derivatives when

K = 4. With this approximation, the expected equity premium is:

EtR̃m,T = R−1
f,t

K∑
k=1

wk,tE∗
t R̃

k+1
m,T . (10)

Hereafter we refer to the model of the pricing kernel in equation (9) as the implied risk

premium and its application to the stock market in equation (10) as the implied equity

premium (IEP). The IEP generalization of Martin (2017) shows that the predictive power

of risk-neutral variance will depend on the weight of the market, w1,t, and any nonzero

weights on market-related derivative securities in the GO portfolio. For example, a nonzero

quadratic term in the pricing kernel implies that the GO portfolio has a nonzero weight

in variance derivatives—i.e., w2,t ̸= 0. If all additional GO weights are zero, the expected

equity premium would be linear in risk-neutral variance and skewness:

EtR̃m,T = R−1
f,t

[
w1,tE∗

t R̃
2
m,T + w2,tE∗

t R̃
3
m,T

]
.
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If instead one allows for nonzero weights on higher-order derivatives, such as bets on market

skewness, the expected equity premium would be linear in additional risk-neutral moments,

such as kurtosis. Since trading strategies based on skewness or even kurtosis in market

returns are feasible using deep-out-of-the-money options, this study examines approximation

degrees up to K = 4.

The remaining challenge is estimating up to K = 4 unknown GO weights in the implied

risk premium.14 To tackle this problem, we exploit the pricing equation for the variance

risk premium, which enables estimates of the unknown weights in terms of observable op-

tion prices and precisely estimated expected physical variance. Applying the risk premium

equation (6) to market variance, n = 2, and setting a finite K value to approximate the GO

portfolio, we obtain the following expression for the variance premium implied by option

prices:

E∗
t R̃

2
m,T − EtR̃

2
m,T = −R−1

f,t

K∑
k=1

wk,t

(
E∗

t R̃
k+2
m,T − E∗

t R̃
k
m,TE∗

t R̃
2
m,T

)
, (11)

Equation (11) shows that the implied variance premium equals a linear combination of

higher-order risk-neutral moments weighted by the GO portfolio weights. As discussed in

Section 2, we obtain precise estimates of the left-hand side variables using realized high-

frequency moments for physical variance and option prices for risk-neutral variance. We

also use option prices to measure the risk-neutral moments on the right-hand side. Since

equation (11) holds at all times t, we use time-series regressions of the variance premium on

higher-order risk-neutral moments to estimate the coefficients, wk,t, in the GO portfolio.15

To provide intuition for the IEP, consider the linear, K = 1, approximation of the GO

pricing kernel. Setting K = 1 in equation (11), the GO portfolio’s weight on the market

14One could estimate predictive regressions of excess market returns on risk-neutral variance, skewness,
kurtosis, and fifth moments. But the four regression coefficients, wk,t, would be poorly estimated since
realized market returns are weakly correlated with expected returns.

15Instead one could use a purely cross-sectional approach by applying equation (5) to derivatives based on
market skewness, kurtosis, and higher-order moments, RT = R̃k

m,T , with k ≥ 3. The empirical challenges are
obtaining accurate estimates of higher-order physical moments of market returns and dealing with illiquidity
in the options needed for very high-order risk-neutral moments.
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equals the variance risk premium divided by negative risk-neutral skewness:

w1,t =
E∗

t R̃
2
m,T − EtR̃

2
m,T

−R−1
f,tE∗

t R̃
3
m,T

.

Since empirical estimates of the variance risk premium and negative risk-neutral skewness are

both consistently positive, the estimate of the GO market weight is always positive. Using

this optimal market weight, we obtain a closed-form expression for the equity premium in

terms of the variance premium, risk-neutral variance, and risk-neutral skewness:

EtR̃m,T =
E∗

t R̃
2
m,T − EtR̃

2
m,T

−E∗
t R̃

3
m,T

× E∗
t R̃

2
m,T .

The IEP will be positive whenever the GO market weight is positive, which it is in general.

In fact, as noted in the introduction, the empirical GO market weight almost always exceeds

one, which is consistent with the Martin lower bound in equation (8).

For readers seeking more intuition, Appendix 5 provides a simple two-state example that

illustrates how empirical estimates of the variance premium and risk-neutral skewness enable

recovery of the true equity premium and pricing kernel. The following subsection provides

interpretation for the general case with any distribution of market returns.

1.2 A Heterogeneous Agent Model of Market-Related Securities

Here we offer one interpretation of the implied risk premium framework that rationalizes

the proposed GO pricing kernel and offers insights into the meaning of the parameters.

This interpretation exploits the result that a GO kernel prices a set of securities, e.g., the

stock market and options on the market, if and only if it satisfies the first-order condition

(FOC) derived from the portfolio optimization of a log utility investor who invests in these

securities. Thus, we analyze a partial equilibrium model featuring the hypothetical portfolio

choices of log utility or growth-optimal (GO) investors in frictionless, complete markets for

market-related securities.

There are two types of investors: type G, growth-optimal, who seek to maximize ex-

pected log utility of (long-run) wealth in period T and have rational expectations of returns;
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and type B who select portfolios based on potentially biased expectations of returns, non-

standard preferences, and unspecified constraints. Because maximizing expected log utility

is equivalent to maximizing expected long-run wealth, type G investors choose to hold the

GO portfolio.16 Although this specification of sophisticated investors has strong normative

appeal (e.g., Markowitz (1976)) and support from evolutionary arguments, the existence of

such investors is not necessary for the implied risk premium’s validity. In period t, the en-

dowed wealth of type G is eG,t and that of type B is eB,t. We normalize the supply of stock

market shares to 1 and the supply of each derivative’s shares to zero.

This interpretation of the implied risk premium is notable for what it does not assume.

There are no restrictions on type B investors’ beliefs, preferences, or constraints, and no dis-

tributional assumptions about returns, which need not even be stationary. The tractability

of frictionless, complete markets combined with the myopia of log utility investors enables

this generality.

Type G (GO) investors solve the following portfolio optimization:

max
wG,k,t

Et [ln (eG,tRG,p,T )] ,∀k = 1, ...K, (12)

subject to RG,p,T = Rf,t +
K∑
k=1

wG,k,t

(
R̃k

m,T − E∗
t R̃

k
m,T

)
, (13)

where RG,p,T is the uncertain return on the type G (GO) portfolio. The FOC for optimal

weights shows that the reciprocal of the GO portfolio return prices all assets:

Et

[
R−1

G,p,T

(
R̃k

m,T − E∗
t R̃

k
m,T

)]
= 0,∀k = 1, ...K, (14)

where k = 1 is the FOC for the market. These FOCs imply that the risk-free rate satisfies:

EtR
−1
G,p,T = R−1

f,t . (15)

16Allowing for intermediate consumption has no impact on the results.
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From these FOCs, the GO pricing kernel, MT = R−1
G,p,T , prices all assets because:

Et

[
MT

(
R̃k

m,T − E∗
t R̃

k
m,T

)]
= 0

R−1
f,tE

∗
t R̃

k
m,T −R−1

f,tE
∗
t R̃

k
m,T = 0,∀k = 1, ...K, (16)

where Rf,t = (EtMT )
−1.

Since the asset pricing equations ((3) and (16)) and pricing kernel equations ((1) and

(13)) are the same, the solution to the log utility investor’s portfolio choice problem results

in the same GO pricing kernel as the no-arbitrage argument from Section 1. So, the same

equity and variance risk premium formulas apply to the partial equilibrium considered here.

Market clearing equations in this heterogeneous agent model suggest type G (GO) in-

vestors must hold the stocks and derivatives that type B investors do not hold at equilibrium

prices. These equations relate type G investors’ portfolio weights, which are the unknowns

in the GO pricing kernel, to interesting economic variables. Stock market clearing implies:

wG,1,teG,t + wB,1,teB,t = Pt

wG,1,t = e−1
G,t (Pt − wB,1,teB,t) , (17)

where Pt is the price and total capitalization of the stock market. Market clearing in each

derivative security implies:

wG,k,t = −e−1
G,twB,1,teB,t,∀k = 2, ...K. (18)

Market clearing links GO weights to the portfolios of type B investors. For example, if

type B investors hold only stocks and have no net holdings of any derivatives, then wG,k,t = 0

for k = 2, ..., K. In this case, the equity premium is proportional to risk-neutral variance,

EtR̃m,T = R−1
f,twG,1,tE∗

t R̃
2
m,T , and the GO portfolio return becomes linear in excess market

returns, RG,p,T = Rf,t + wG,1,tR̃m,T . If type B investors hold no stocks or the same stock

weight as type G investors, then wG,1,t = 1 and the equity premium equals Martin’s lower

bound.

As another example, if type B investors hold both stocks and variance derivatives, then

type G investors are exposed to variance derivatives and stocks not held by type B in-
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vestors. The GO portfolio return is then quadratic in excess market return, RG,p,T =

Rf,t + wG,1,tR̃m,T + wG,2,t

(
R̃2

m,T − E∗
t R̃

2
m,T

)
, implying that the second-order approximation

in the no-arbitrage model will exactly account for the equity premium as in equation (10).

Thus, the complexity of type B investor portfolios determines the maximum degree of risk-

neutral moments needed to account for the equity premium and the polynomial degree of

the GO portfolio return.

1.3 Implications of the Model

The asset pricing implications of the model depend on the GO pricing kernel, which is the

reciprocal of GO portfolio return. When behavioral (type B) investors do not hold derivatives

derivatives, i.e., wk,t = 0 for k = 2, ..., K, this model resembles the conditional CAPM.17 To

see how the nonlinear transformation of the CAPM pricing kernel affects equilibrium pricing,

consider a Taylor expansion of this one-parameter GO pricing kernel around R̃m,T = 0:

MT = R−1
f,t

[
1− w1,t

(
R̃m,T/Rf,t

)
+ w2

1,t

(
R̃m,T/Rf,t

)2

− w3
1,t

(
R̃m,T/Rf,t

)3

+ ...

]
, (19)

where the ellipsis summarizes higher-order terms that follow the same sign-flipping pattern

as above. The term that is linear in the market return is the same as that in the conditional

CAPM. As in the conditional CAPM, the equilibrium risk-return trade-off varies over time.

In this model, variation in the weight of the market in the GO portfolio, w1,t, determines

the risk-return trade-off, including time-variation in the equity premium and the slope of the

cross-sectional relation between securities’ risk premiums and their market betas.

Interestingly, the same parameter, w1,t, affects how higher-order moments are priced. The

model’s distinct feature is the risk premium’s dependence on higher-order moments. The

quadratic term mimics the pricing kernel proposed by Harvey and Siddique (2000), who

find that there is a significant price of coskewness risk coming from this term. The cubic

term gives rise to a cokurtosis premium of the opposite sign, consistent with the findings

in Christoffersen et al. (2021). Allowing for nonzero GO pricing kernel weights on market

derivatives based on variance, skewness, and kurtosis, as in Section 2, introduces additional

17That is, the GO pricing kernel is a monotonic function of the conditional CAPM pricing kernel.
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higher-order terms in the pricing kernel. Yet even the simplest version of the GO pricing

kernel has the potential to explain many empirical shortcomings of the conditional CAPM.

2 Empirical Methodology

We now return to the minimalist IEP framework in Section 1.1 and apply it to provide

daily estimates of the equity and variance premiums at horizons ranging from monthly (30

days) to annual (360 days). There are three key steps in the estimation procedure:

1. estimating risk-neutral moments, including option-implied market variance

2. estimating expected (physical) market variance based on realized variance

3. regressing the variance premium on risk-neutral moments.

The main data are daily physical and risk-neutral moments of the stock market. Our

proxy for the market is the Standard and Poor’s (S&P) 500 index. As in Martin (2017),

we focus on the 1996 to 2021 period in which OptionMetrics data are available for options

on S&P 500. To measure realized market variance, we use intraday data on market returns

from 1994 to 2021 for the SPDR S&P 500 Exchange-Traded Fund (ETF) Trust, ticker SPY.

As a historical equity premium estimate, we use the market minus risk-free (MktRf) factor

from Ken French’s website.

To measure risk-neutral moments of market returns, we use the prices of actively traded

S&P 500 options from OptionMetrics. We use only cash-settled European options with a.m.

settlements that do not expire at quarter ends, following Martin (2017) and others. Fol-

lowing the options literature (e.g., Bakshi, Kapadia, and Madan (2003), and Chang et al.

(2013)), we employ thorough data cleaning procedures to reduce the impact of illiquidity on

estimates of risk-neutral moments. We describe procedures for cleaning data and approxi-

mating integrals, including alternative methods for robustness, in the Internet Appendix.

We measure physical moments of market returns using SPY ETF trades in the Trades and

Quotes (TAQ) database. We use daily realized variance (RV) based on SPY ETF returns

over 78 intraday intervals spaced equally in business (i.e., transaction) time throughout

regular trading hours: 9:30am to 4:00pm Eastern time. We employ thorough data cleaning

procedures, such as averaging subsample estimates, to reduce the impact of illiquidity on
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estimated physical return variance, following the microstructure literature (e.g., Barndorff-

Nielsen et al. (2008, 2009), Patton and Sheppard (2015)). We provide details in the Internet

Appendix.

For the risk-free rate, we use constant-maturity market yields of Treasury bills of 1, 3, 6,

and 12 months from the Federal Reserve Economic Database (FRED) to match equity pre-

mium horizons.18 Option-implied volatility calculations use risk-free rates, dividend yields,

and index values from OptionMetrics. We interpolate rates between option maturities and

use dividend yields and closing prices for the index, ticker SPX.

2.1 Variance Premium Estimation

We estimate the IEP and GO portfolio weights using equation (11), which requires esti-

mates of the expected variance premium. Here we compute this premium as the difference

between estimates of the risk-neutral and physical variances of market excess returns.

2.1.1 Risk-Neutral Moments

We estimate risk-neutral moments of excess market returns, R̃m,T , from the prices of call

and put options on the market using the general formula of Bakshi and Madan (2000), as

specialized in Carr and Madan (2001). This formula shows that risk-neutral expected excess

market returns raised to the jth power are:

R−1
f,tE

∗
t R̃

j
m,T =

j!

Sj
t

[∫ ∞

Ft,T

(K − Ft,T )
j−2C (K) dK +

∫ Ft,T

0

(K − Ft,T )
j−2 P (K) dK

]
, (20)

where j = 2, 3, 4, 5, 6 for relevant moments, St is the market index value, K, the strike price

of calls and puts priced at C(K) and P (K), respectively, and Ft,T = Rf,tSt is the futures price

of the market for maturity T .19 Denoting the risk-neutral moment of order j for maturity

T at time t by Mjt,T—e.g., M2t,30 is risk-neutral market variance at the 30-day horizon at

t—we estimate Mjt,T using the right-hand side of equation (20) multiplied by Rf,t. We refer

the right-hand side of equation (20) as “discounted” risk-neutral moment, denoted by M̃jt,T .

18We use the average of one and three-month rates as the 60-day rate and the one-month risk-free rate
from Ken French’s website before July 31, 2001, when FRED data on the one-month yield become available.

19This formula for moments of simple returns is analogous to the formula for the moments of log returns
in Bakshi, Kapadia, and Madan (2003), except that we do not scale higher-order moments by variance.
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2.1.2 High-Frequency Identification of Expected Variance

Our forecasts of market variance at horizons up to yearly are primarily based on a one-

parameter model of daily realized variance (rvt) as a fractionally integrated stochastic pro-

cess. The key parameter is the order of fractional differencing, 0 ≤ d ≤ 0.5. This model

captures the well-established long memory property of return variance (e.g., Andersen et al.

(2001)) where autocorrelations decay at a hyperbolic rate, much slower than the exponential

decay in classic autoregressive (AR) models.

We assume the rvt process satisfies:

(1− L)drvt = ϵt, (21)

rvt = (1− L)−dϵt, (22)

where ϵt is white noise and L is the lag operator defined by Lxt = xt−1 for any process xt.

Expanding equation (22) shows the hyperbolic decay in impulse response weights:

rvt = ϵt + dϵt−1 +
d(d+ 1)

2!
ϵt−2 +

d(d+ 1)(d+ 2)

3!
ϵt−3 + ..., (23)

We recursively estimate d using maximum likelihood (ML), expanding the estimation window

annually. We demean rvt on a recursive basis before estimating dt.

Applying these real-time dt estimates to the rvt series enables estimation of ϵt via equation

(21) and thus real-time forecasts of rvt+h at any horizon h ≥ 1 via equation (22) or its

equivalent equation (23). The recursive ML estimates of dt are within 0.40 ± 0.03 in 24 of

26 years. These estimates are precise in all years with standard errors ranging from 0.01 to

0.03, with the latter applying only to the first few sample years.

We use forecasts of rvt+h from this fractionally integrated model at horizons ranging from

monthly (RV30 =
∑30

h=1 rvt+h) to annual (RV360 =
∑360

h=1 rvt+h) as the basis for computing

the variance premium at these horizons. We adjust these raw fractionally integrated forecasts

because they are based on intraday realized variance during the trading day, whereas the

expected market variance in the variance premium is based on the variance of long-run

market returns. The adjustment accounts for the overnight return period and illiquidity

from short-run reversals in intraday, daily, and weekly returns that do not affect long-run

variance. Although these effects partially offset, it is unlikely that they exactly cancel.
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We address both issues by applying a simple regression-based multiplier, κt, to fraction-

ally integrated forecasts (e.g., EtRV30) to convert them into predictions of long-run return

variance (e.g., PVart,30 = κtEtRV30). The multiplier, κt, is the coefficient from a regression

of squared 30-day market returns on 30-day predicted realized variance based on a recur-

sive expanding window. We omit the constant term so that the multiplier reflects the ratio

of the average squared market return to the average cumulative realized variance. We use

the lagged squared 30-day market return to maximize the correlation with the predicted

30-day realized variance, which also depends on (intraday) squared market returns over the

same window as well as additional returns. Consistent with offsetting effects, the average

coefficient estimate is 1.02 with a volatility of 0.20.20

Table 1, Panel A summarizes these estimates of risk-neutral and predicted market variance

(M2 and PVar), and the expected variance risk premium at the monthly and annual horizons.

It also reports realized monthly and annual equity premiums for comparison purposes. We

annualize all quantities and multiply them by 100 to convert to annual percentages, except

for the monthly equity premium which is a monthly percentage.

[Insert Table 1 here]

The bottom rows in Panel A show that the average estimated variance premiums are

positive at the monthly and annual horizons at 1.52% and 1.55%, respectively. The middle

rows confirm that average risk-neutral monthly (annual) variance of 4.28% (4.30%) exceeds

the corresponding predicted market variance of 2.76% (2.75%). The top row shows that

the monthly equity premium averaged 0.74% with a volatility of 4.74% and an annualized

variance of 2.70% , almost identical to the average predicted monthly variance, PVar30,

of 2.76% in row four, providing evidence that the fractionally integrated model is well-

calibrated. The variance premium estimates exhibit a very narrow range—the 5th to 95th

percentile range is −0.03% to 5.35% (0.35% to 3.79%) for the monthly (annual) variance

premium—showing that the model’s variance prediction closely tracks market pricing of

variance. Table 1, Panel B confirms that the correlations between model-predicted and risk-

neutral variance are extremely high at 0.93 monthly and 0.91 annually, even though the

fractionally integrated model does not use option prices.

20The coefficient estimate averages 0.90 in the pre-2008 period and 1.10 in the post-2008 period, indicating
high-frequency return reversals are more pronounced in the first half of the sample.
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We also find that unadjusted rvt+h forecasts from the fractionally integrated (FI) model

perform well relative to two challenging benchmarks: forecasts from the heterogeneous au-

toregressive (HAR) model proposed by Corsi (2009) and those from risk-neutral variance

(M2). Table 2, Panel A compares the ability of the HAR, M2, and FI models to predict

realized variance RVT , as measured by out-of-sample (OOS) R2, at horizons ranging from

monthly (T = 30 days) to annual (T = 360 days). The null model for computing OOS R2

is average in-sample realized variance, which is 0.0260 annualized (16.1% volatility). The

M2 model uses coefficients from a recursive linear regression of RVT to make out-of-sample

predictions. The fractionally integrated model beats the HAR model at all horizons, espe-

cially those longer beyond 30 days, even though it uses fewer parameters. It also beats the

M2 model at all horizons, except monthly, despite one fewer parameter. The last row shows

that all three models have negative point estimates of OOS R2 at the annual horizon, driven

by two unanticipated crisis years (2008 and 2020).

[Insert Table 2 here]

Table 2, Panel B shows the in-sample R2 values resulting from adjusting each model’s

forecasts using linear transformations that best fit realized variance at each horizon. This

panel shows that the HAR model could perform better if its coefficients were better cal-

ibrated, e.g., using shrinkage, but it would still underperform the fractionally integrated

model at long horizons, which is striking given the fewer degrees of freedom in the fraction-

ally integrated model. The fractionally integrated model exhibits an in-sample R2 value of

10.2% at the annual horizon, which contrasts with the negative R2 OOS values in Panel A.

Table 2, Panel C, which reports pairwise correlations between the model forecasts, pro-

vides arguably the strongest evidence for the fractionally integrated model. The simplest ex

ante forecast of realized variance is a linear transformation of the market’s pricing of variance

(M2). At all horizons, the fractionally integrated model’s prediction of unadjusted realized

variance exhibits a correlation ∼ 85% with M2. As noted earlier, the adjusted RV forecasts

are even more highly correlated with risk-neutral moments than the unadjusted forecasts,

suggesting that the multiplier parameter, κt, serves its intended purpose.

Hereafter our main estimate of the expected variance premium for maturity T is:

VPt,T = M2t,T − κtEtRVt,T , (24)
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where EtRVt,T comes from the fractionally integrated model of expected market variance.

Figure 1 shows that the predicted variance from the fractionally integrated model closely

tracks risk-neutral variance. Panel A (Panel B) illustrates this finding for variance at the

30-day (360-day) horizon. Panel C displays the resulting 30-day and 360-day estimates of

the expected variance premium, as computed in equation (24).

[Insert Figure 1 here]

The fractionally integrated model of expected market variance provides a “natural expla-

nation” to the “puzzle” posed by Bollerslev et al. (2009), Bekaert and Hoerova (2014), and

Cheng (2019), who find that the variance premium seems to be negative in periods of sudden

market turmoil, such as September 2008, which would be inconsistent with investor aversion

to variance risk. The fractionally integrated model does not have this puzzling feature and

forecasts return variance just as well, if not better, than the models used in prior work,

as shown in Table 2. Although the limited and noisy data on crises do not permit clear

statistical inferences about which model is most accurate, the fractionally integrated model

has strong theoretical appeal and is maximally parsimonious with its single parameter.

2.2 Equity Premium Estimation

We estimate the equity premium using the key equation (10), substituting empirical

estimates of the expected variance premium from equation (24) and risk-neutral moments

from equation (20). We estimate the unknown GO portfolio weights in this equation using

the analogous variance premium equation (11) with these same GO portfolio weights. We

estimate up to four GO weights as coefficients in a linear regression of the expected variance

premium on up to four excess discounted risk-neutral moments—M3, M4, M5, M6 multiplied

by R−1
f,T .

The implementation hurdles are time-varying GO portfolio weights, heteroskedasticity in

variance premiums, multicollinearity in risk-neutral moments, persistence in these measures,

and approximation error in the theoretical variance premium equation (11). To estimate the

time-varying GO weights, we use recursive regressions with exponentially declining weights

on distant data. The half-life of the exponentially declining weights is 1250 days, which

matches the five year rolling windows frequently used in the realized variance literature.

20



Next, to enhance efficiency and robustness to heteroskedasticity, we apply inverse variance

(i.e., precision-based) weights to the errors in the least squares objective function, as in

weighted least squares. We use PVar−1
t,30 as the precision weights.

We address multicollinearity in risk-neutral moments by imposing theory-driven assump-

tions to reduce dimensionality. As shown in Table 3, Panel A risk-neutral moments of differ-

ent orders are strongly correlated within a given horizon. These strong correlations pose a

challenge to accurate estimates of the GO portfolio weights, as multicollinearity among the

regressors inflates standard errors. Table 3, Panel A shows correlations between M2, M3,

M4, M5, and M6 at monthly and annual horizons.21 Risk-neutral moments also are strongly

correlated across horizons. Table 3, Panel B reports the correlations between discounted

third- and fourth-order risk-neutral moments, M3 and M4, at monthly through annual hori-

zons (T = 30, 60, 90, 180, 360 days). The correlations between the same-order moments with

monthly to quarterly horizons range from 0.92 to 0.98. The correlations between the same-

order moments with semiannual and annual horizons are also very high at 0.86 (0.97) for

third-order (fourth-order) moments.

[Insert Table 3 here]

Motivated by theory, we impose a strong but reasonable assumption that the GO portfolio

weights on each market-related security are equal across all horizons up to one year:

wk,t,T1 = wk,t,T2 ,∀T1 = 30, ..., 360, T2 = 30, ..., 360 (25)

For example, the GO weights on the stock market are equal at the monthly and annual

horizons; and the weights on variance-based derivatives are equal at these horizons. These

cross-horizon restrictions facilitate identification of the GO weights because cross-moment

correlation is much weaker across different horizons, as shown in Table 3, Panel A. Asset

pricing theory suggests GO weights on a given market-related security are likely to be similar

across horizons. For log utility investors, who maximize long-term wealth, the GO portfolio

21The table includes M2 for reference even though it is not a regressor in the variance premium regressions.
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maintains its optimality irrespective of the horizon.22 In the model from Section 1.2, be-

havioral investor fear of stocks drives time-series variation in w1,t,T for all maturities T ; and

investor desire to hedge variance drives variation in w2,t,T for all T .23

Relaxing the cross-section restriction could provide insights into how investors treat risks

related to various moments across horizons. Short-term investors may focus on minimizing

variance, while long-term investors might prioritize skewness and kurtosis. However, precise

estimation of GO weights for individual horizons is challenging due to high correlations

among risk-neutral moments. One could try to jointly estimate weights using variance and

skewness premium equations, the latter derived from a second-order Taylor expansion of

the pricing kernel equation (9). Difficulties in reliably estimating long-horizon skewness

(Neuberger (2012), and Aretz & Arisoy (2023)) coupled with the observation that variance

and skewness premium tend to be highly correlated, make the cross-horizon assumption a

practical necessity.

We adopt two methods to address approximation error from the truncation (finite K) of

the expected variance premium equation (11) arising from the pricing kernel approximation

in equation (9). We allow an intercept in each variance premium regression to account for

the average value of omitted higher-order moments. Our intercept varies across different

horizons, enabling us to capture fixed effects specific to each horizon. We also evaluate how

variance premium estimates improve as K increases, using K = 1, 2, 3, 4.

We jointly estimate variance premium regressions in equation (11) at all horizons, monthly

through annual, to account for the strong correlation in the error terms. We impose the cross-

horizon restrictions in equation (25) using the feasible generalized least squares (FGLS) es-

timator, using weights inversely proportional to variance and declining exponentially with

time. Because it allows for correlation across equations, this FGLS estimator is a weighted

seemingly unrelated regression (SUR), as defined in Zellner (1962). We require a minimum

of one year of data for these recursive regressions, meaning that the first estimates become

available in January 1997. We use the estimated time-varying GO weights from these re-

gressions, along with risk-neutral moments, to estimate the time-varying variance and equity

22The pricing kernel from Martin’s (2017) lower bound on the equity premium trivially satisfies the cross-
horizon restriction in equation (25) as w1,t,T = 1 ∀ T and wk,t,T = 0 ∀ T when k > 1.

23Although the model applies to a each maturity T , maturities are linked through the market clearing
condition when there is common time-series variation in wB,k,t,T across T for any value of k, such as k = 1
(stock holdings) or k = 2 (variance-based derivative holdings).
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premiums at each horizon as in equations (11) and (10), respectively.

3 Risk Premium Estimates

Here we report the model’s estimates of the equity and variance premiums and evaluate

its performance against benchmarks.

3.1 Variance Premium Fit

We measure the fit of the variance premium regression, R2, across all horizons for approx-

imation degrees K = 1, 2, 3, 4. As a benchmark, we consider the representative log utility

model from Martin’s (2017) lower bound. In this log utility model, the variance premium

is simply the negative of discounted risk-neutral skewness—i.e., equation (11) with w1,t = 1

and wk,t = 0 ∀k > 1. This analysis shows whether variance premiums implied by various

models can explain the empirical expected variance premium and enables tests of the validity

of the cross-horizon restriction on GO weights, which necessarily impairs model performance

at some horizons.

We examine the ability of models to explain the expected variance premium in equation

(24), not the realized premium. Using the realized premium would reduce the power of the

test, as shown in Table 2, Panel A. The precise estimate of the expected variance premium

depends on the model of physical variance but alternative models provide similar estimates,

as shown in Table 2, Panel C.

We report percentage R2 values based on recursive rolling regressions for the expected

variance premium as described in Section 2.2. Table 4 shows these R2 values for monthly

to annual horizons (rows) for the five models: log utility and the K = 1, 2, 3, 4 models,

which include K regressors of risk-neutral moments, orders 3, ..., K+2. All four implied risk

premium models nest the log utility model. The null model for computing R2 values is the

historical mean of the expected variance premium, estimated using the same recursive proce-

dure with declining exponential weights as in the four models. The recursive historical mean

of the quarterly (90-day) variance premium ranges from 1.09% to 2.44%, averaging 1.71%

per year in 1997-2021, closely matching the average variance premium of 1.85% generated

by our model.
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[Insert Table 4 here]

The first column of Table 4 shows that the log utility model has modest predictive power

for the empirical variance premium at monthly to quarterly horizons (R2 ≈ 5% to 8%) but

has no predictive ability at the semiannual and annual horizons (R2 < 0). In contrast,

the implied variance premium from all four models explains most of the variation in the

empirical variance premium, as shown by median R2 statistics that exceed 50%. The lowest

explanatory power of any model at any horizon is 41%. The median R2 across horizons

increases with the approximation degree of the model, K, suggesting that using a high-order

approximation could be necessary to capture relevant variation in the GO pricing kernel.

The K = 4 implied variance premium, which uses risk-neutral moments M3, M4, M5, and

M6 to explain the variance premium, has a median R2 value of 71% compared to the median

R2 of 57% for the K = 1 model.

Table 4 provides evidence that the cross-horizon restriction, equation (25), imposed on

GO weights reduces the model’s ability to explain the variance premium at extreme horizons.

The R2 is lowest at the shortest (30-day) and longest (360-day) horizons, comparing the first

and last rows to the middle rows. Even so, the K = 4 model explains 64% of monthly and

55% of annual variation in the variance premium, indicating that the cross-horizon restriction

is plausible.

3.2 Growth-Optimal Portfolio Weights and Pricing Kernel

Recursive variance premium regressions provide estimates of GO portfolio weights on

each day. Figure 2, Panel A shows the GO portfolio weights on the stock market, w1,t from

all K = 1, 2, 3, 4 models. All models include the first (k = 1) term in the pricing kernel.

This term represents investor aversion to stock risk, making the equity premium depend on

the second-order (k = 2) risk-neutral moment (variance) and the variance premium on the

third-order (k = 3) risk-neutral moment (skewness). In the interpretation in Section 1.2,

the GO portfolio weight on the stock market reflects behavioral investors’ reluctance to hold

stocks, producing risk premiums that induce the GO investor to hold more stocks.

Estimates of the GO weight on the stock market are positive in all K = 1, 2, 3, 4 models.

They are stable except in the first sample year, 1997, due to limited historical data. The

market’s GO weight in the K = 1 model is easy to interpret because the GO investor holds
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no other market-related positions in this model. The market’s GO weight in this model

always exceeds one, suggesting that the typical investor is more risk averse than the log

utility benchmark as discussed in Section 1.2.

[Insert Figure 2 here]

We interpret the market’s GO weight in the K > 1 models along with the GO investor’s

positions in other market-related securities, such as variance-based derivatives correlated

with stocks. Figure 2, Panel B shows the GO weights in the four market-related securities

from the K = 4 model. This figure omits the first sample year, when estimates are noisy.

The GO weights on the stock market and the k = 4 security (swap on market kurtosis) are

always positive, whereas the weights on the variance- and skewness-based market securities

are consistently negative. Most weights fluctuate widely in the first few years of the sample,

stabilizing shortly after 2008, showing the impacts of estimation noise and uncertainty. The

four weights exhibit strong time-series correlations partly because of correlations among the

underlying risk-neutral moments, which exhibit alternating signs as shown in Table 3, Panel

A. As a result, weights with an odd degree k = 1, 3 are negatively (positively) correlated

with weights of an even degree k = 2, 4 if these weights are of the same (opposite) signs. For

example, the stock market (k = 1) weight is positively correlated with the variance derivative

(k = 2) weight because these weights have opposite signs—i.e., stock weight is positive and

the variance weight is negative.

We calculate standard errors of GO weights using a moving block bootstrap with 10,000

iterations and a block length of 252 days. Figure 2 shows GO weights with their 95%

confidence bounds.24 Using a heteroskedasticity-robust Wald test, we reject the null that

the GO weights are as predicted by representative log utility (w1 = 1, w2 = w3 = w4 = 0).

We also reject the null that market weights are unity for the full sample and the post-crisis

subsample (p-value < 10−4), but not in the pre-crisis period (p-value = 0.078).25

Figures 3 and 4 show how GO portfolio weights and standard errors change with shorter

half-lives of exponentially declining weights in GO regressions. While shorter half-lives align

24The moving block bootstrap (Künsh (1989)) resamples overlapping blocks of consecutive observations
to preserve any time-series dependence in the data. We split periods of length n into n− b+ 1 overlapping
blocks of length b, draw n/b blocks with replacement, and concatenate them.

25Our standard error estimates are increasing in block length. Methods for optimizing the block length
(Politis and White (2004)) could improve these estimates.
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portfolios more closely with recent market conditions, they become increasingly sensitive to

short-term shocks. Standard errors for all asset categories rise as the half-life shortens. The

effects are pronounced for weights tied to high-order moments, where estimation challenges

are compounded by the leverage inherent in these positions. While modest reductions in half-

life (e.g., from 1250 to 1000 or 750 days) do not significantly compromise weight stability,

aggressive reductions produce large estimation errors and extreme portfolio rebalancing.

[Insert Figure 3 here]

[Insert Figure 4 here]

By placing a positive weight on stocks, the GO investor benefits from the unconditional

equity premium. With a negative weight on variance, the GO investor takes advantage of

the variance premium. The GO weight on the stock market is persistently higher after the

2008 crisis in the K ≥ 3 models. We estimate the time-varying GO weight on stocks solely

from rolling regressions of the variance premium on risk-neutral skewness, controlling for

other moments. The mechanical reason for the increasing market weight is the rising partial

correlation between the variance premium and risk-neutral skewness. Controlling for higher-

order moments is important as the relationship between higher-order risk-neutral moments

and the variance premium in the early sample absorbs much of the variation in the variance

premium.

To ensure that the main properties of the GO weights are robust to different weighting

approaches, we test two alternatives: one based on a Kalman filter and the other inspired

by dynamic conditional beta (Engle, 2016). The weights generated by these methods share

key features with our original findings, such as the signs and magnitudes of GO market

and variance weights and the steady rise in market weights after the 2008 crisis. As a

result, these methods produce equity premiums that are comparable to those obtained using

FGLS. Modest differences arise, however, from methodological limitations and computational

challenges.26 We present these results in the Internet Appendix.

To understand the economic implications of these GO weights, we analyze estimates of

the GO pricing kernel on select dates. Figure 5, Panel A shows GO pricing kernels based

on different approximation degrees, K = 1, 2, 3, 4, using GO weight estimates on the day

26The Kalman filter is slow to react to shocks, resulting in lower market weights and a lower equity
premium from 2008 to 2011, even though it closely matches our main results in other periods.
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when the risk-neutral variance is at its median level. The excess market returns plotted on

the x-axis span the 5th-to-95th percentile range of annual returns in the sample. The values

of the pricing kernel range from 0.5 to 3.7, with positive values being consistent with no

arbitrage. All pricing kernels are monotonically decreasing over this range, consistent with

investor risk aversion. The K = 3 pricing kernel takes on the most extreme values, from 0.53

when the excess market return is 34.3% to 3.71 when the excess return is −26.2%, whereas

the K = 2 kernel is the flattest.27

[Insert Figure 5 here]

Figure 5, Panel B shows pricing kernels on a date with expected monthly returns exactly

at the 95th percentile: November 12, 2020 in the aftermath of the Covid-19 Pandemic. As

expected, all pricing kernels are steeper on this date, especially those that include cubic and

quartic terms. The K = 3 (K = 4) pricing kernel peaks at 4.19 (2.93) and has a low of

0.52 (0.58) in this time of turmoil. Outside the typical range of market returns, the pricing

kernel approximation is not necessarily accurate, and non-monotonic kernels and negative

values can arise in such ranges.28 Fortunately, the closed-form expressions for implied risk

premiums do not require kernel estimates in such extreme scenarios.29

3.3 Equity Premium Forecasts

Table 5, Panel A summarizes equity premium estimates from the four IEP models and the

log utility model. The average annual (360-day) IEP estimates range from 6.84% to 9.47%

in the IEP models; and the monthly (30-day) IEP averages range from 0.57% to 0.84% per

month. These estimates are significantly higher than the log utility estimates of 4.22% per

year and 0.35% per month. The 95th percentile of the IEP is 15.1% in the K = 4 model

as compared to just 7.6% in the log utility model, reflecting the higher skewness in the IEP

model. The main reason for the higher average, volatility, and skewness of the IEP relative

to the log utility model is that the estimated GO weight on the stock market consistently

27The K = 3 kernel also has the highest curvature as measured by the ratio of slopes at extreme market
returns, changing from a slope of −40.8 in bad times to a slope of just −0.57 in good times.

28The estimated pricing kernels are positive and monotonic mainly because the positive GO stock market
weight dominates other weights in the range of realized returns.

29For applications that require pricing kernel values in rare disaster scenarios, linear extrapolation of the
GO kernel from the realized range of returns could be sufficient and would simplify practical risk assessment.
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exceeds one. Because risk-neutral variance is positive, volatile, and positively skewed, a

higher GO weight on the market increases the average, volatility, and skewness of the IEP.

[Insert Table 5 here]

The average 360-day Sharpe ratios range from 0.32 to 0.44 in the IEP models; and the

(annualized) 30-day Sharpe ratios range from 0.34 to 0.48. These estimates are nearly twice

the average log utility estimate of 0.22. As seen in Figure 8 the implied Sharpe ratio is

well-behaved, reaching a high of 1.0 at the annual horizon during the 2008 financial crisis.

[Insert Figure 8 here]

We analyze the forecasting performance of the IEP with the caveat that stock returns are

highly unpredictable and the sample contains just 24 non-overlapping yearly periods. Table

5, Panel B shows out-of-sample R2 values for the IEP and the log utility models at horizons

up to one year. The null model for R2 computation is a constant expected return equal

to the sample average.30 The log utility model has a positive R2, replicating the finding

in Martin (2017). The first- and second-order IEP models (IEP1 and IEP2) have lower R2

values than the log utility model (RLUEP).

However, the equity premium predictions from the third- and especially fourth-order

models (IEP3 and IEP4) generally outperform the log utility predictions (RLUEP). The IEP

model predictions improve as the approximation degree of the GO pricing kernel increases.

At all horizons, the IEP4 R2 values are high as judged against the low benchmarks in the

return predictability literature (Goyal and Welch (2008, 2021)). The R2 is 1.23% monthly,

3.17% quarterly, and 8.09% annually.

In economic terms, these IEP4 R2 values translate into large improvements in the GO

investor’s expected return. We quantify the value of forecasting from the perspective of a GO

(log utility) investor holding the market and risk-free asset using the one-period framework

of Campbell and Thompson (2008). The ability to forecast the equity premium increases

this investor’s expected excess portfolio return by R2

1−R2 (1 + S2), where S2 is the squared

unconditional Sharpe ratio on the market and R2 is the model’s ability to predict market

returns. Using the S2 and R2 values from Tables 1 and 5, the investor increases annualized

30Using a recursively estimated historical mean would result in slightly worse performance for the null
model because returns are modestly negatively autocorrelated in the sample.
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returns by 15% (10.6%) with the monthly (annual) IEP4 forecasts. We interpret these large

estimates of investment gains with caution given the short sample.

We now assess the calibration and incremental explanatory power of IEP forecasts using

regressions to predict stock market returns. In theory, the IEP would predict the realized

equity premium with a coefficient of unity, and no other variable, such as the variance

premium, would forecast returns. Table 7 tests this hypothesis by regressing excess market

returns on IEP4, the Martin (2017) lower bound (RLUEP), and the variance premium. The

table shows results for horizons ranging from monthly to annual (30 to 360 days) in Panels

A to E, where the independent and dependent variables in each regression have matching

horizons. There are h − 1 overlapping days in each daily predictability regression with a

horizon of h days. Standard errors of regression coefficients are based on the truncated

Hansen and Hodrick (1980) kernel with a bandwidth of h− 1 days.

[Insert Table 7 here]

At all horizons, equity premium predictions from the main model (IEP4) compare well to

those in Martin (2017) and those based on the variance premium. The univariate coefficients

on IEP4 are statistically indistinguishable from unity31 with point estimates ranging from

0.69 to 1.08 at monthly to annual horizons in the full-sample regressions in columns (1)

to (3). Interestingly, when controlling for IEP4, all of the point estimates on risk-neutral

variance, RLUEP , and the variance premium, V P , are negative, which contrasts with the

(unreported) uniformly positive univariate coefficients on these predictors. Standard errors

are high because of the short and volatile sample period and the strong correlations among

the predictors: IEP4, RLUEP, and VP.

Since our model assumes no arbitrage, the IEP should forecast market returns more

accurately when this assumption holds. Columns (4) to (6) in Table 7 show predictability

regressions based on a sample that excludes 61 trading days in 2008, from September 19

to December 15, when arbitrage between stock and option markets is limited. We refer to

the period excluding these 61 days as the no-arbitrage sample. The United States Securities

31We cannot reject H0 : β = 1 with two-sided p-values ranging from 0.58 to 0.86 across various horizons.
We also cannot reject H0 : α = 0 (p-values ranging from 0.54 to 0.78). These results are robust to including
controls for RLUEP and V P .
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and Exchange Commission began placing restrictions on short sales on September 17, 2008,

which “dramatically increased bid-ask spreads for options” (Battalio and Schultz (2011)).32

Stock return predictability from IEP4 roughly triples when excluding the 1% of days (61

of 6,293) with severely limited arbitrage—i.e., R2
adj in column (4) is three times its value

in column (1)—in the specifications with monthly to quarterly horizons. The statistical

significance of the coefficients on IEP4 is much stronger, too. The incremental R2
adj from

the other predictors remains low or even negative in the no-arbitrage period. These findings

suggest that the IEP model performs better when arbitrage costs are low.

Figure 6 shows that the one-year (360-day) IEP from K = 4 is strongly correlated (89%)

with Martin’s (2017) lower bound on the equity premium and exhibits equally strong corre-

lation with Chabi-Yo and Loudis’ (2020) conditional bounds (90%). It shows that IEP4 is

greater than Martin’s lower bound from 1997 to 2021 on 99% of days for the annual horizon

and always greater than the lower bound for other horizons. The model deviation is, how-

ever, substantial in the post-2008 period, averaging 5.0% per year with 2.5% volatility. While

IEP4 generally lies between Chabi-Yo and Loudis’ conditional bounds—averaging 5.9% (an-

nual) and 6.1% (monthly) for the lower bound and 10% (annual) and 10.6% (monthly) for

the upper bound—its position relative to these bounds shifts over time. In the pre-2008 pe-

riod, IEP4 is quite close to the conditional lower bound, deviating by only 0.5%. However,

after 2008, IEP4 moves closer to the conditional upper bound, with the deviation from the

lower bound increasing to over 3% and the deviation from the upper bound declining to an

average of 1%. IEP4 is also 1.9% lower than the expected excess return from Bakshi et al.

(2019) before the crisis, but it exceeds their post-crisis estimate. These two measures are

highly correlated: 82% (73%) at the annual (monthly) horizon.

[Insert Figure 6 here]

Many properties of IEP4 arise from the properties of the growth-optimal weight on stocks,

as shown in Figure 2. The GO weight on stocks almost always exceeds 100%, which produces

a high required equity premium in equilibrium. This high GO weight on stocks is consistent

32We define the 61-day exclusion based on the first doubling of the weekly average spread, September 19,
and the first halving of the monthly average spread, December 15, after the initial short sale ban, September
17, 2008. For each horizon, h, we measure the spread on a synthetic stock market index, created from S&P
500 options and risk-free Treasury bills maturing on day h, as a percentage of the index value. We compute
daily average synthetic spreads across all strike prices weighting options by dollar volume.

30



with the idea that most other investors, who hold a mix of stocks and bonds, are more risk

averse than log utility. The post-2008 increase in the GO weight on stocks drives the higher

post-crisis equity premium, which is consistent with evidence on realized returns.33 One

interpretation is that GO stock holdings increase in response to a buying opportunity driven

by behavioral investors’ fear of holding stocks after the crisis. Indeed survey evidence in

Greenwood and Shleifer (2014) shows that individual investors’ beliefs about stock returns

were pessimistic after 2008.

Analogously, the consistently negative weight on skewness in the GO portfolio could

suggest that some behavioral investors exhibit a preference for negative skewness. This

preference might stem from biases such as loss aversion or strategic concerns; notably, hedge

funds may favor strategies with negative skewness due to reputation concerns, as argued in

Malliaris and Yan (2021), and their assets under management have dramatically increased

since 2008. Although the model does not explain why some investors are willing to speculate

on stock market crashes, it can rule out rational unconstrained maximization of log utility.

Figure 7 shows the IEP for models with approximation degrees K = 1, 2, 3, 4. Panel A

(Panel B) shows the one-year (monthly) IEPs. Reassuringly, the correlations between the

IEP estimates from different models are very high, exceeding 93% for all pairwise correlations

between the K = 2, 3, 4 models at the monthly and annual horizons. There is also evidence

for a common factor in expected returns across horizons. The cross-horizon correlations

range from 0.85 to 0.88 between IEPs at the monthly and annual horizons for all models.

[Insert Figure 7 here]

Both panels indicate that the IEP rose and fell abruptly during the economic crises of 2008

and 2020. Recall that the IEP is a linear combination of risk-neutral moments weighted by

the GO portfolio allocations. These temporary spikes in the IEP arise mainly from changes

in the risk-neutral variance, as the GO weight on the market did not change dramatically

during these crises as shown in Figure 2.

Figure 9 decomposes the IEP into contributions from each market exposure in the GO

portfolio, as represented by each term in the weighted sum of risk-neutral moments in equa-

tion (10). The primary contributor to the equity premium is the k = 1 term representing

33The pre-crisis IEP4 averages 6.2% with a Sharpe ratio of 0.30, whereas the post-crisis IEP4 is 9.4% with
a Sharpe ratio 0.42.
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the GO investor’s required compensation for bearing stock market risk, which depends on

risk-neutral variance (M2). This term averages 8% per year with 5.4% volatility, accounting

for the entire mean of IEP and more than 100% of IEP variance. It peaks at roughly 40%

per year during the 2008 and 2020 crises. The k = 3 term representing the GO investor’s

exposure to crash risk partially offsets the k = 1 term during crises, as the GO investor

reduces exposure to market risk by hedging crash risk, R̃3
m, as shown in Figure 2, Panel B.

[Insert Figure 9 here]

Figure 10 shows that the term structure of the equity premium is time-varying: flat

or mildly upward sloping under normal conditions, but sharply downward sloping during

crises. This aligns with the predictions of equilibrium asset pricing models that incorporate

mean-reverting expected returns—see van Binsbergen and Koijen (2017). Figure 11 shows

an upward-sloping term structure of the implied variance premium, aligning with existing

literature (Aı̈t-Sahalia, Karaman, and Mancini (2020) and Dew-Becker et al. (2017)).34

Combining these findings, unconditional Sharpe ratios decline modestly with an investor’s

horizon, as shown in Panel C of Table 5. The level and slope of the IEP term structure are

strongly negatively correlated with the slope having a correlation of −60% with IEP4360 and

−94% with IEP430.
35

[Insert Figure 10 here]

[Insert Figure 11 here]

4 The IEP in a Macroeconomic Model

Here we test how the IEP methodology performs in a simulated environment by applying

it to an equilibrium pricing model. This exercise allows us to compare IEP estimates to the

true equity premium in the model. We identify this value by simulating the state variables

of the model and computing implied moments.

34We define the variance premium as the difference between risk-neutral and physical measures, whereas
some studies use the opposite convention.

35The level is IEP4360 in equation (9) and the slope is the difference between the annualized one-year and
one-month IEPs divided by the difference in these maturities.
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We focus on the extended “bad environment-good environment” (BEGE) model of Bekaert,

Engstrom, and Ermolov (BEE, 2023). This model offers several advantages in testing the

IEP methodology. First, it is designed to fit the variance premium, the dependent variable in

our regressions for estimating the pricing kernel. Second, it has a quasi-closed form solution,

facilitating computation of high-order risk-neutral moments, the key independent variables

in these regressions. Third, shocks in the model are gamma distributed with a time-varying

shape parameter, and non-normal shocks are necessary to generate high-order risk-neutral

moments in discrete time (BEE). Lastly, this model includes two state variables in excess

returns, and more than one state variable is necessary to avoid a singular covariance matrix

when estimating IEP regressions. We describe key components of the model and calculation

of the moments in the Internet Appendix. For consistency with the IEP model, which is

based on simple returns, we differ slightly from BEE by calculating conditional moments of

simple returns Rt+1 = ert+1 instead of log returns.

4.1 Simulated IEP in a BEGE Model

We conduct 10,000 simulations of the BEGE model at a monthly frequency with T = 324

months in each iteration. We use the extended pure preference shock model calibration in

BEE (their Table IV, third column). We obtain the true expected return, physical variance

forecast, and the k = 2, 3, . . . , 6 risk-neutral moments from the simulated state variables,

as described in the Internet Appendix. Table 8, Panel A displays the levels and standard

deviations of key moments in the model, Panel B displays the correlations across moments,

and Panel C displays the correlations between risk-neutral moments.

[Insert Table 8 here]

The calibrated model has several realistic features, including the average values of the

equity and variance risk premiums and stock return variance, and the rich patterns in corre-

lations among the risk-neutral moments. However, implied correlations of the realized equity

premium with other price variables are roughly ten times lower than in the data, which will

reduce stock return predictability relative to empirical estimates.

Using the implied risk-neutral moments and variance premium, we estimate the IEP

regression as in equation (11). This exercise does not exactly replicate our IEP methodology

in practice for several reasons. First, we obtain risk-neutral moments directly in the model,
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as opposed to using option prices, which would require numerical simulation. Second, for

tractability reasons, we use only the single monthly horizon. Third, the model is simulated

at the monthly, not daily, frequency. Lastly, in our baseline specifications, we use the entire

sample for our parameter estimates. Table 9 shows the full-sample estimated coefficients for

the IEP with K = 1, . . . , 4 models.

[Insert Table 9 here]

[Insert Table 10 here]

We compare models’ out-of-sample R2 values to the truth, which is the maximum R2,

and report these values in Table 10. We consider models with and without a constant, as

well as one with time-varying weights, which we estimate using weighted least squares with

a five-year half life. We do this separately for each simulation, requiring a minimum of 12

observations (one simulated year) for initial parameter estimates.

In general, there is relatively low predictability within the model. However, the true

equity premium calculated from rational expectations provides an upper bound on the OOS

R2 of 13 basis points. Relative to this, the IEP for K = 3, 4 with no constants performs fairly

well, generating OOS R2 values of just over 10 basis points. Notably, the K = 1 model with

time-varying weights generates a similarly high R2 of just over 11 basis points, suggesting

a trade-off between flexibility and approximation degree. We interpret these results with

caution given the low upper bound on predictability. But this exercise shows the potential

of the IEP methodology in approximating the equity premium, as compared to the RLU

model and in absolute terms.

5 Conclusion

The economic insight from the IEP model is that the equilibrium equity premium de-

pends on the amount of stock market risk borne by a GO investor, who is exposed to the

market through stocks and market-related derivatives. One can interpret this GO investor’s

exposures as market positions that other investors are unwilling to hold. Variation in these

residual positions drives variation in the market risk premiums, including the equity, vari-

ance, and skewness risk premiums.
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The model’s econometric innovation is using high-frequency data to identify the stock

market’s physical return variance, which facilitates recovery of market risk premiums from

option prices. Although future research could improve the precision of moment and param-

eter estimates, this paper’s implementation of the IEP model provides useful new estimates

of market risk premiums and the empirical pricing kernel. These estimates can help test

whether market-related risks are priced in other securities, including individual stocks and

bonds. Lastly, since the modeling approach here applies equally well to the set of individ-

ual securities with traded options, one can use the IEP model to estimate expected returns

of individual stocks with options, even without the preference assumptions in Martin and

Wagner (2019) or Kadan and Tang (2020). We are pursuing this idea in ongoing research.
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Table 1: Summary Statistics

Panel A summarizes estimates of risk-neutral and predicted market variance (M2 and PV ar),
variance risk premiums (V P = M2 − PV ar), and equity premiums (EP ) at the monthly and
annual horizons (30 and 360 days). We annualize all quantities and multiply them by 100 to
convert to annual percentages, except for the monthly EP which is in monthly percentage terms.
The statistics in columns are the mean, standard deviation (StdDev), percentiles (P5, P25, P50,
P75, P95), and number of days in the 1996 to 2021 sample.

Mean StdDev P5 P25 P50 P75 P95 Days

EP30 0.74 4.74 -7.20 -1.58 1.26 3.48 7.16 6545
EP360 8.06 17.75 -25.37 1.14 10.60 18.57 33.61 6545
M230 4.28 4.37 1.17 1.87 3.14 5.03 10.97 6545
PVar30 2.76 2.53 1.03 1.45 2.07 3.33 5.80 6545
M2360 4.30 2.23 2.05 2.68 3.84 5.33 7.87 6545
PVar360 2.75 1.38 1.43 1.86 2.38 3.23 4.84 6545
VP30 1.52 2.23 -0.03 0.31 0.85 1.83 5.35 6545
VP360 1.55 1.13 0.35 0.76 1.22 2.07 3.79 6545

Panel B reports correlations among estimates of risk-neutral and predicted market variance (M2
and PV ar), and variance risk premiums (V P = M2− PV ar) at the monthly and annual horizons
(30 and 360 days).

EP30 EP360 M230 PVar30 M2360 PVar360 VP30 VP360

EP30 1.00 0.33 0.11 0.10 0.10 0.11 0.10 0.06
EP360 0.33 1.00 0.22 0.27 0.18 0.28 0.13 -0.00
M230 0.11 0.22 1.00 0.93 0.85 0.82 0.91 0.68
PVar30 0.10 0.27 0.93 1.00 0.85 0.91 0.68 0.57
M2360 0.10 0.18 0.85 0.85 1.00 0.91 0.69 0.86
PVar360 0.11 0.28 0.82 0.91 0.91 1.00 0.56 0.57
VP30 0.10 0.13 0.91 0.68 0.69 0.56 1.00 0.68
VP360 0.06 -0.00 0.68 0.57 0.86 0.57 0.68 1.00
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Table 2: Predicting Realized Variance

This table compares realized variance forecasts from the heterogeneous autoregressive (HAR), risk-
neutral variance (M2), and fractionally integrated (FI) models. The left columns of Panel A show
out-of-sample (OOS) R2 for the three models at horizons ranging from monthly (T = 30 days)
to annual (T = 360 days). The benchmark for OOS R2 is average in-sample realized variance,
which is 0.0260 annualized (16.1% volatility). The next three columns show R2 values resulting
from adjusting each model’s forecasts using linear transformations that best fit realized variance
at each horizon. The last column shows the number of non-overlapping observations (NNObs) at
each horizon in the 1996 through 2021 sample.

OOS R2 Adjusted OOS R2

Horizon HAR M2 FI HAR M2 FI NNObs

30 0.380 0.399 0.397 0.422 0.427 0.409 304
60 0.212 0.224 0.275 0.303 0.271 0.294 152
90 0.113 0.151 0.200 0.232 0.205 0.233 101
180 0.005 0.039 0.078 0.134 0.129 0.153 51
360 -0.086 -0.112 -0.070 0.039 0.080 0.086 25

Panel B reports pairwise correlations between the models’ forecasts at each horizon.

HAR-M2 HAR-FI FI-M2 NNObs
Horizon

30 0.751 0.820 0.847 304
60 0.677 0.747 0.841 152
90 0.636 0.693 0.850 101
180 0.541 0.589 0.852 51
360 0.410 0.485 0.844 25
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Table 3: Correlations among Risk-Neutral Moments

Panel A shows correlations between risk-neutral moments of different orders—M2 (variance), M3
(skewness), M4 (kurtosis), M5, and M6—at monthly (30-day) and annual (360-day) horizons.

M230 M330 M430 M530 M630 M2360 M3360 M4360 M5360 M6360

M230 1.00 -0.93 0.92 -0.85 0.81 0.85 -0.44 0.83 -0.46 0.76
M330 -0.93 1.00 -0.92 0.93 -0.86 -0.78 0.53 -0.78 0.55 -0.71
M430 0.92 -0.92 1.00 -0.95 0.97 0.70 -0.38 0.78 -0.44 0.78
M530 -0.85 0.93 -0.95 1.00 -0.96 -0.65 0.43 -0.72 0.48 -0.71
M630 0.81 -0.86 0.97 -0.96 1.00 0.60 -0.34 0.70 -0.42 0.73
M2360 0.85 -0.78 0.70 -0.65 0.60 1.00 -0.67 0.95 -0.68 0.84
M3360 -0.44 0.53 -0.38 0.43 -0.34 -0.67 1.00 -0.65 0.96 -0.55
M4360 0.83 -0.78 0.78 -0.72 0.70 0.95 -0.65 1.00 -0.70 0.96
M5360 -0.46 0.55 -0.44 0.48 -0.42 -0.68 0.96 -0.70 1.00 -0.64
M6360 0.76 -0.71 0.78 -0.71 0.73 0.84 -0.55 0.96 -0.64 1.00

Panel B reports the correlations between third- and fourth-order risk-neutral moments, M3 (skew-
ness) and M4 (kurtosis), at monthly through annual horizons (30, 60, 90, 180, 360 days).

M330 M360 M390 M3180 M3360 M430 M460 M490 M4180 M4360

M330 1.00 0.96 0.92 0.81 0.53 -0.92 -0.91 -0.89 -0.86 -0.78
M360 0.96 1.00 0.98 0.89 0.63 -0.87 -0.92 -0.92 -0.91 -0.85
M390 0.92 0.98 1.00 0.94 0.71 -0.82 -0.88 -0.91 -0.92 -0.87
M3180 0.81 0.89 0.94 1.00 0.86 -0.67 -0.75 -0.79 -0.85 -0.82
M3360 0.53 0.63 0.71 0.86 1.00 -0.38 -0.44 -0.50 -0.60 -0.65
M430 -0.92 -0.87 -0.82 -0.67 -0.38 1.00 0.97 0.94 0.87 0.78
M460 -0.91 -0.92 -0.88 -0.75 -0.44 0.97 1.00 0.98 0.94 0.86
M490 -0.89 -0.92 -0.91 -0.79 -0.50 0.94 0.98 1.00 0.98 0.91
M4180 -0.86 -0.91 -0.92 -0.85 -0.60 0.87 0.94 0.98 1.00 0.97
M4360 -0.78 -0.85 -0.87 -0.82 -0.65 0.78 0.86 0.91 0.97 1.00
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Table 4: Predicting the Expected Variance Premium

This table compares the fit of five models in predicting the expected variance premiums in equa-
tion (24). The measure of fit is model R2 based on recursive rolling regressions. The table shows
percentage R2 values for monthly to annual horizons (rows) for the five models (columns): rep-
resentative log utility (RLUVP) and the K = 1, 2, 3, 4 implied variance premium (IVP) models,
which include K regressors consisting of risk-neutral moments of orders 3, ...,K+2. The null model
for computing R2 values is the historical mean of the variance premium, using the same recency
weights as in the IVP models. The last column reports the number of days in the model evaluation
period spanning 1997 to 2021.

RLUVP IVP1 IVP2 IVP3 IVP4 Days

30 7.8 48.7 46.1 63.3 63.5 6293
60 8.8 58.2 55.9 69.9 71.4 6293
90 5.4 58.6 57.3 69.4 71.8 6293
180 -4.6 57.2 61.2 63.9 71.0 6293
360 -27.7 41.2 64.1 44.5 55.4 6293
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Table 5: Summary of Equity Premium Predictions

Panel A summarizes equity premium estimates from four implied equity premium (IEP) models
and from the representative log utility model (RLUEP) at monthly (30-day) and annual (360-day)
horizons. The IEP estimate that uses K terms to approximate the pricing kernel at horizon h
days is IEPKh. The RLUEP estimate at horizon h days is RLUEPh. Equity premiums are not
annualized. The columns show the mean (Mean), standard deviation (StdDev), and percentiles
(P5, P25, P50, P75, P95) of equity premiums for all 6,293 days from 1997 to 2021.

Mean StdDev P5 P25 P50 P75 P95 Days

RLUEP30 0.35 0.36 0.09 0.15 0.26 0.41 0.91 6293

IEP130 0.70 0.85 0.18 0.29 0.45 0.81 1.82 6293

IEP230 0.57 0.73 0.16 0.23 0.37 0.65 1.46 6293

IEP330 0.84 1.04 0.23 0.37 0.56 0.92 2.14 6293

IEP430 0.69 0.85 0.17 0.30 0.46 0.77 1.81 6293

RLUEP360 4.22 2.16 1.95 2.69 3.83 5.12 7.63 6293

IEP1360 8.22 5.02 4.01 4.98 6.79 10.18 15.24 6293

IEP2360 6.84 4.29 3.41 4.14 5.41 8.40 12.99 6293

IEP3360 9.47 5.47 4.48 6.23 7.88 10.87 18.51 6293

IEP4360 7.87 4.35 3.40 5.21 6.75 9.39 15.10 6293

Panel B reports out-of-sample R2 values of equity premium predictions from the IEP and RLUEP
models at horizons ranging from monthly (30 days) to annual (360 days). The last column shows
the number of non-overlapping observations (NNObs) at each horizon in the 1997 through 2021
sample.

RLUEP IEP1 IEP2 IEP3 IEP4 NNObs

30 0.61 -0.88 -0.18 0.13 1.23 304

60 1.09 -1.18 0.01 0.72 2.36 152

90 1.15 -2.05 -0.46 1.01 3.17 101

180 2.58 0.08 2.05 6.62 8.10 51

360 1.91 -1.39 1.23 7.70 8.09 25

Panel C shows the average annualized Sharpe ratios implied by the four implied equity premium
(IEP) models and representative log utility (RLU) model from 1997 to 2021 for all horizons.

30 60 90 180 360

RLU 0.222 0.225 0.227 0.226 0.223

IEP1 0.413 0.411 0.410 0.404 0.398

IEP2 0.340 0.340 0.339 0.334 0.324

IEP3 0.483 0.479 0.476 0.462 0.437

IEP4 0.396 0.396 0.395 0.386 0.365
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Table 7: Market Return Predictability Regressions

This table shows regressions of the realized market equity premium, EPh, on the implied equity premium, IEP4h, the
representative log utility equity premium, RLUEPh, and the variance premium, V Ph, where h is the horizon in days
and the regressors are lagged by h days for horizons h = 30, 60, 90, 180, 360 days. Hansen-Hodrick (1980) standard errors
based on a bandwidth of h− 1 days appear in parentheses.

Panel A contains results for the full sample of days from 1997 through 2021, whereas Panel B shows results for the
“No-Arbitrage” sample that excludes 61 days from September 19, 2008 to December 15, 2008.

Panel A: Full Sample (6293 Observations)

30-Day Horizon 60-Day Horizon 90-Day Horizon 180-Day Horizon 360-Day Horizon

EP30 EP30 EP30 EP60 EP60 EP60 EP90 EP90 EP90 EP180 EP180 EP180 EP360 EP360 EP360

Const 0.002 0.003 0.002 0.003 0.004 0.003 0.004 0.005 0.004 -0.007 -0.003 -0.005 -0.014 -0.011 -0.008
(0.004) (0.004) (0.004) (0.009) (0.008) (0.008) (0.013) (0.012) (0.013) (0.021) (0.017) (0.02) (0.051) (0.042) (0.043)

IEP4 0.694 1.036 0.709 0.736 1.003 0.861 0.762 1.144 0.902 1.083∗∗ 1.502 1.656∗∗∗ 1.112∗∗∗ 1.306 2.112∗∗∗

(0.55) (1.163) (0.843) (0.657) (1.179) (0.998) (0.688) (1.237) (0.944) (0.455) (1.566) (0.508) (0.393) (1.814) (0.737)
RLUEP -0.845 -0.658 -0.937 -0.997 -0.436

(2.727) (2.124) (2.255) (3.079) (3.425)
VP -0.007 -0.113 -0.191 -1.554 -5.402

(0.231) (0.455) (0.633) (1.316) (3.299)
Adj. R2 0.015 0.015 0.015 0.027 0.027 0.027 0.035 0.035 0.035 0.080 0.080 0.094 0.075 0.076 0.137

Panel B: No-Arbitrage Sample (6232 Observations)

30-Day Horizon 60-Day Horizon 90-Day Horizon 180-Day Horizon 360-Day Horizon

EP30 EP30 EP30 EP60 EP60 EP60 EP90 EP90 EP90 EP180 EP180 EP180 EP360 EP360 EP360

Const -0.001 -0.002 -0.001 -0.004 -0.004 -0.004 -0.01 -0.009 -0.01 -0.021 -0.019 -0.02 -0.019 -0.015 -0.013
(0.003) (0.003) (0.003) (0.006) (0.006) (0.006) (0.01) (0.01) (0.01) (0.024) (0.022) (0.022) (0.054) (0.045) (0.045)

IEP4 1.393∗∗∗ 1.153 1.44 1.371∗∗∗ 1.417 1.633∗∗ 1.525∗∗∗ 1.692 1.933∗∗∗ 1.49∗∗∗ 1.69 2.222∗∗∗ 1.183∗∗∗ 1.346 2.248∗∗∗

(0.507) (1.307) (0.998) (0.448) (1.209) (0.737) (0.429) (1.188) (0.592) (0.412) (1.522) (0.527) (0.446) (1.818) (0.79)
RLUEP 0.605 -0.114 -0.417 -0.487 -0.383

(2.585) (2.4) (2.412) (3.14) (3.536)
VP -0.02 -0.226 -0.527 -1.912 -5.662

(0.254) (0.377) (0.536) (1.473) (3.442)
Adj. R2 0.040 0.040 0.040 0.065 0.065 0.067 0.103 0.103 0.106 0.118 0.118 0.136 0.072 0.072 0.138
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Table 8: Moments in the BEGE Model (BEE, 2023)

Panel A reports the levels of monthly variables in the “bad environment-good environment” (BEGE)
model of Bekaert, Engstrom, and Ermolov (BEE, 2023) averaged across 10,000 simulations of the
model for 324 months.

Mean StdDev P5 P25 P50 P75 P95

EP30 0.41 3.81 -4.94 -1.81 0.05 2.38 6.97
M230 2.39 0.42 1.90 2.08 2.30 2.59 3.18
PVar30 1.75 0.33 1.36 1.51 1.68 1.92 2.39
VP30 0.64 0.13 0.54 0.57 0.61 0.67 0.79

Panel B reports the monthly correlations of simulated monthly variables in the BEGE model
calculated across 10,000 simulations of the model for 324 months.

EP30 M230 PVar30 VP30

EP30 1.00 0.03 0.04 0.02
M230 0.03 1.00 0.97 0.79
PVar30 0.04 0.97 1.00 0.61
VP30 0.02 0.79 0.61 1.00

Panel C reports the monthly correlations of the monthly risk-neutral moments calculated across
10,000 simulations of the BEE model for 324 months.

M230 M330 M430 M530 M630

M230 1.00 -0.54 0.44 -0.31 0.30
M330 -0.54 1.00 -0.99 0.97 -0.96
M430 0.44 -0.99 1.00 -0.99 0.99
M530 -0.31 0.97 -0.99 1.00 -1.00
M630 0.30 -0.96 0.99 -1.00 1.00
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Table 9: IEP Coefficients in the BEGE Model

The table shows IEP coefficients estimated from pooled regressions across all simulations of the
BEGE model of Bekaert, Engstrom, and Ermolov (BEE, 2023). Hansen-Hodrick (1980) standard
errors based on a bandwidth of 12 periods appear in parentheses.

Constant No Constant
K=1 K=2 K=3 K=4 K=1 K=2 K=3 K=4

Const 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

1 1.981 5.957 3.451 3.468 2.194 3.413 2.182 2.470
(0.003) (0.004) (0.010) (0.010) (0.001) (0.030) (0.001) (0.011)

2 7.239 -4.825 -4.561 1.861 -10.827 -10.327
(0.007) (0.051) (0.068) (0.045) (0.011) (0.025)

3 -11.930 -9.261 -17.784 -28.554
(0.051) (0.375) (0.019) (0.432)

4 3.336 -15.576
(0.441) (0.632)

Adj. R2 0.897 0.998 1.000 1.000 0.995 0.996 1.000 1.000
Observations 3240000 3240000 3240000 3240000 3240000 3240000 3240000 3240000

Table 10: Restricted R2 for Equity Premium Estimates in BEGE Model

The table shows out-of-sample R2 values for alternative IEP estimates in simulations of the BEGE
model of Bekaert, Engstrom, and Ermolov (2023). The R2 values come from monthly (one-period)
comparisons of the IEP to the unconditional sample mean equity premium across all simulations.
The second column shows the R2 as a fraction of the R2 from the model’s true equity premium,
which is an upper bound.

Estimate R2 (%) As Fraction of Truth

Truth 0.129 1.000
IEP4, No Const, TV Weights 0.045 0.351
IEP3, No Const, TV Weights 0.050 0.388
IEP2, No Const, TV Weights -2.463 -19.130
IEP1, No Const, TV Weights 0.112 0.867
IEP4, No Const 0.107 0.828
IEP3, No Const 0.105 0.816
IEP2, No Const -0.229 -1.778
IEP1, No Const 0.095 0.740
IEP4, Const -0.174 -1.350
IEP3, Const -0.151 -1.174
IEP2, Const -2.400 -18.645
IEP1, Const 0.093 0.722
RLU -0.248 -1.923
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Figure 1: The Estimated Variance Premium
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Figures show predicted (physical) variance from the fractionally integrated model and risk-neutral
variance from option prices at the monthly (30-day) and annual (360-day) horizons.
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Figure shows annualized variance premiums at the monthly (30-day) and annual (360-day) horizons.
Each variance premium is the difference between risk-neutral variance and predicted variance from
the fractionally integrated model at each horizon.
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Figure 2: Growth-Optimal Portfolio Weights
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Figures show estimated growth-optimal (GO) portfolio weights in models of implied risk premiums.
The top panel shows the weight on the stock market in the GO portfolio for models that include the
risk-free asset, the market, and K−1 market-related securities for K = 1, 2, 3, 4. The bottom panel
shows weights on all (K = 4) risky assets in the growth-optimal portfolio based on the risk-free
asset, the market (k = 1), and three market-related securities (k = 2, 3, 4). Weight estimates come
from recursive regressions of the variance premium on K risk-neutral moments, as in equation (11).
Shaded areas represent 95% confidence intervals based on standard errors from a moving block
bootstrap with a block length of 252 days.
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Figure 3: Growth-Optimal Portfolio Weights
Alternative Recency Weights
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Figures show the weights on all (K = 4) risky assets in the
growth-optimal portfolio based on the IEP4 model using
exponentially declining weights with half lives ranging from
250 to 1000 days. Dotted lines represent weights obtained
using a half life of 1250 days as in figure 2.

Figure 4: Standard Errors of GO Weights
Alternative Recency Weights
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Figures show standard errors of weights on all (K = 4)
risky assets in the growth-optimal portfolio based on the
implied risk premium model using exponentially declining
weights with half lives of 250 to 1000 days. Standard errors
are from a moving block bootstrap with a block length of
252 days.
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Figure 5: Growth-Optimal Pricing Kernel
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Figures show growth-optimal (GO) pricing kernels that include weights on the risk-free asset, stock
market, and K − 1 market-related securities. The market-related securities have excess returns
equal to the market excess return raised to the kth power, where k = 2, ...,K. The left panel shows
the GO pricing kernel for implied risk premium models with K = 1, 2, 3, 4 risky assets on June 13,
2016, which is the day on which the risk-neutral variance is at its median level. The right panel
plots the GO pricing kernel on November 12, 2020, when the expected equity premium was at the
95th percentile for the sample.
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Figure 6: The Implied Equity Premium versus Alternatives
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This figure compares the one-year (360-day) implied equity premium (IEP) to the lower bound
from Martin (2017) and conditional bounds from Chabi-Yo and Loudis (2020) from 1997 to 2021.
The IEP (IEP4360) is based on the fourth-order (K = 4) approximation of the growth-optimal
pricing kernel in equation (9). The lower bound is the representative log utility equity premium,
Lower Bound360, which is a special case of equation (9) with w1,t = 1 and wk,t = 0 ∀ k > 1. Chabi-
Yo and Loudis bounds are based on a replication using our moments. The data are daily from 1997
through 2021.
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Figure 7: Implied Equity Premiums
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Figures show one-year (360-day) and one-month (30-day) implied equity premiums (IEP1, ..., IEP4)
for models that approximate the growth-optimal pricing kernel with degrees K = 1, 2, 3, 4. The
data are daily from 1997 through 2021.
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Figure 8: Implied Sharpe Ratio
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This figure shows 30-day and 360-day implied Sharpe ratios for the IEP4 model. The data are
daily from 1997 through 2021.

Figure 9: Decomposing the Implied Equity Premium
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This figure shows components of the implied equity premium (IEP) at the 360-day horizon. IEP is
based on the fourth-order (K = 4) approximation of the growth-optimal pricing kernel, IEP4360.
IEP components are the four terms (k = 1, 2, 3, 4) in equation (9), where k is the exponent applied
to the market excess return. Data are daily from 1997 through 2021.
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Figure 10: Term Structure of the Implied Equity Premium
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This figure shows the term structure of implied equity premiums (IEPs) for models with degrees
K = 1, 2, 3, 4 and for representative log utility (RLU). The term structures in the right (left) panel
are averages during NBER recessions (normal times).

Figure 11: Term Structure of the Implied Variance Premium
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This figure shows the term structure of average implied variance premiums (IVPs in %) for models
with degrees K = 1, 2, 3, 4 and for representative log utility (RLU).
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Appendix : Recovery in a Two-State Model

In a simple setting, we show how to use empirical estimates of the variance premium and

risk-neutral skewness to find the true equity premium and pricing kernel. As in the main

model, available assets include a risk-free security with a gross rate of Rf , a stock market

with an excess return of R̃m, and options on the market with a continuum of strike prices.

We assume that there are no arbitrage opportunities.

The model has two states: state H has high market excess returns, R̃m,H > 0, and state

L has low market excess returns, R̃m,L < 0. State H occurs with probability 0 < p < 1.

These restrictions on return realizations and probabilities are necessary to ensure the absence

of arbitrage. We parameterize return realizations so that the true equity premium is µ

and return volatility is σ. This implies that R̃m,H = µ + p−0.5 (1− p)0.5 σ and R̃m,L =

µ − p0.5 (1− p)−0.5 σ. Negative excess returns in the low state implies an upper bound on

the market Sharpe ratio: µ/σ < p0.5 (1− p)−0.5.

R̃m

R̃m,L < 0

1− p
1− q

R̃m,H > 0

p
q

The econometrician does not observe the equity premium, µ, but has useful information

about it. She observes the second moment of market excess returns, ER̃2
m, which is like

empirical market variance. She effectively observes all risk-neutral moments of excess market

returns, E∗R̃j
m for j = 1, ...,∞, because they are weighted sums of prices of market options.

In this simple model, observation of risk-neutral variance and skewness, E∗R̃2
m and E∗R̃3

m,

will be sufficient to recover the physical return distribution.

By the no-arbitrage assumption, the growth-optimal portfolio consisting of the risk-free

asset and stock market is the reciprocal of the pricing kernel, m =
(
Rf + wR̃m

)−1

, that

prices these two assets. The two parameters are Rf , which is known, and w, which is the

unknown weight on stocks. In this two-state model with no arbitrage, any pricing kernel
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that prices the risk-free rate and the stock market must also price all options based on the

market because the former assets span the latter.

One can explicitly compute risk-neutral probabilities and pricing kernel values for the

two states in terms of the unknown equity premium and market variance. Because the

risk-neutral excess return of the market is zero, the risk-neutral probabilities of the high

and low states must be q = − R̃m,L

R̃m,H+R̃m,L
> 0 and 1 − q =

R̃H,L

R̃m,H+R̃m,L
> 0, respectively.

Because the pricing kernel is proportional to the ratio of risk-neutral to physical prob-

abilities, its values in the high and low states must be Rf

(
Rf + wR̃m,H

)−1

= q/p and

Rf

(
Rf + wR̃m,L

)−1

= (1− q) / (1− p), respectively. From the pricing kernel definition,

this implies that the unknown weight on stocks is:

w = − Rfµ

R̃m,LR̃m,H

.

This weight on stocks is positive, w > 0, because −R̃m,L > 0.

We now show how to estimate w and thus µ from option prices and physical return vari-

ance. The first step is to express observable quantities in terms of the unknown parameters

of the physical return distribution. Risk-neutral variance is:

E∗R̃2
m = qR̃2

m,H + (1− q)R̃2
m,L

= −R̃m,LR̃m,H ,

which is positive because −R̃m,L > 0. Risk-neutral skewness is:

E∗R̃3
m = qR̃3

m,H + (1− q)R̃3
m,L

= −R̃m,LR̃m,H

(
R̃m,H + R̃m,L

)
.

The variance premium is:

E∗R̃2
m − ER̃2

m = −R̃m,LR̃m,H −
(
σ2 + µ2

)
=

[
p0.5 (1− p)−0.5 − p−0.5 (1− p)0.5

]
µσ − 2µ2.
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The second step is applying the variance premium equation (11) in the main model to

the case here with a single parameter, w, in the pricing kernel and solving for w to obtain:

w =
E∗

t R̃
2
m − ER̃2

m

−R−1
f E∗

t R̃
3
m

= − Rfµ

R̃m,LR̃m,H

,

which is the same as the true value for w.

The third and last step is applying the equity premium equation (10) in the main model

to the linear pricing kernel with slope w to obtain:

ER̃m = R−1
f wE∗R̃2

m

= R−1
f

Rfµ

R̃m,LR̃m,H

(
R̃m,LR̃m,H

)
= µ.

This last equation shows that the option-implied equity premium equals the true equity

premium in this simple model.

Recovery of the true pricing kernel, m, and equity premium, µ, is exact for any physical

distribution parameters (p, µ, σ) that satisfy the no-arbitrage assumption. In particular, the

recovery procedure works regardless of the signs of the variance premium and risk-neutral

skewness. The variance premium is positive whenever p > 0.5 + 0.5
[
µ2 (µ2 + σ2)

−1
]0.5

or

p < 0.5 − 0.5
[
µ2 (µ2 + σ2)

−1
]0.5

. The former condition is satisfied for reasonable equity

premium and volatility values, such as µ = 0.05 and σ = 0.15, because stocks outperform

Treasuries in most years (p ≈ 2/3). The conditions for negative risk-neutral skewness are

the same as those for a positive variance premium. Since these two quantities always have

opposite signs, the pricing kernel parameter, w, which is the negative of the ratio of these

quantities, is always positive. In the empirically relevant case, the variance premium is

positive, risk-neutral skewness is negative, and w is positive.
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Abstract

This Internet Appendix (IA) provides additional information on our data cleaning

processes; robustness checks for different methods of estimating implied volatility and

growth-optimal portfolio weights; and mathematical and simulation details for calcu-

lating the implied equity premium in the BEGE model. We also provide additional

summary statistics and figures documenting the properties of the estimated equity

premium.



1 Measuring Option Prices and Market Variance

1.1 Option Prices

We compute risk-neutral moments of market returns from SPX option prices using Option-

Metrics data. We adopt data filtering methods from Chang et al. (2013) and Martin (2017)

to eliminate securities with low liquidity and unreliable prices. We augment these meth-

ods using a customized no-arbitrage filter for options with extreme strike prices, which are

important for higher-order risk-neutral moments.

As in Martin (2017), we remove SPX options with:

• maturities less than 7 days or greater than 549 days

• duplicated data

• p.m. settlements

• non-positive closing bids

• quarter-end expiration dates

• non-null expiration indicators

• arbitrage violations relative to the SPX index

• the higher midpoint price, comparing the put and call for each date, maturity, and

strike price.

The minimum price filter restricts the sample to out-of-the-money options. For each

maturity, we set the SPX futures price as the lowest strike price such that an SPX put

exceeds the value of an SPX call by one penny.1 We also drop options with open interest

less than 1000 contracts to ensure sufficient liquidity. We drop options with zero or missing

implied volatility, which violate arbitrage bounds.

1This definition is almost perfectly correlated with the futures price implied by futures-spot parity.

2



We drop a few options with glaring data errors to reduce outliers, though these omissions

have little substantive impact on the results. Based on sudden changes in data coverage and

extreme illiquidity, we drop seven sets of options with the following date-maturity combina-

tions and nine contracts with the following date-maturity-strike-type combinations:

Date Maturity Strike Type
1998-03-24 1999-03-20 All Both
1998-09-21 1999-09-18 All Both
1999-09-20 2000-09-16 All Both
1999-09-21 2000-09-16 All Both
1999-09-22 2000-09-16 All Both
2007-06-19 2008-06-21 All Both
2001-09-17 2002-06-22 1900 Call
2001-09-18 2002-06-22 1900 Call
2001-09-19 2002-06-22 1900 Call
2001-09-20 2002-06-22 1600 Call
2001-09-20 2002-06-22 750 Put
2001-09-21 2002-06-22 800 Put
2006-01-19 2006-12-16 1900 Call
2008-10-10 2009-09-19 1525 Call
2011-06-06 2012-06-16 3000 Call

We design a set of filters to ensure sufficient information for the computation of risk-

neutral moments at each horizon. For each date-maturity pair, we require at least:

• a moneyness (i.e., strike/index) range from 95% to 105%

• two calls

• two puts

• five options of any type.

The minimum moneyness range drops 0.8% of date-maturity pairs and the last three re-

quirements drop only 0.1% of pairs.

Whereas Chang et al. (2013) drop options with bid-ask midpoints of less than $0.375
(3/8), we drop options with extreme moneyness until options with adjacent strike prices

differ by at least a penny. This filter eliminates most remaining arbitrage violations and

illiquid options.
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1.2 Risk-Neutral Moments

As in Chang et al. (2013) and Martin (2017), we compute risk-neutral moments based on

observed option prices and strike prices for each date and maturity. We use a discrete ap-

proximation of the integral in equation (20) of the paper based on the range of available strike

prices supplemented using extrapolated option prices, following Chang et al. (2013). We

assume options with strikes outside the available range of moneyness have implied volatility

equal to a trend-line extrapolation of the volatility skew based on the three options with

the closest strike prices. We estimate the trend-line parameters by minimizing the sum of

absolute deviations from the three closest strikes. We constrain the absolute value of the

slope to be no greater than 1.0, which affects almost no data. We only extrapolate insofar as

the range of available moneyness is within two standard deviations of the futures price. We

also winsorize the implied volatility range at 5% and 100% and the moneyness range at 1%

and 300% of the futures price, though these limits rarely bind. This extrapolation procedure

creates an additional 1.8% of options beyond the original cleaned data.

Linear extrapolation of the implied volatility (IV) surface might raise concerns, such as

underestimating tail risk and violating no-arbitrage by introducing a kink in the IV surface.

We address these issues in Internet Appendix (IA) Section 6 by using a procedure that allows

rich tail features that capture investor preferences during uncertainty. There we implement

the stochastic volatility inspired (SVI) model in Gatheral and Jacquier (2014) to obtain

arbitrage-free IV surfaces.

To infer the values of risk-neutral moments at consistent horizons of monthly, bimonthly,

quarterly and annual, we interpolate between moment values at the nearest available ma-

turities, as in Martin (2017) and related studies. Our interpolation procedure ensures data

availability and reduces the likelihood of errors. First, we set the raw odd (even) risk-neutral

moments to missing for date-maturity pairs with non-negative (non-positive) values, which

would be inconsistent with theory and prior evidence. This filter only affects 43 third-order

moments (0.1%) and 179 fifth-order moments (0.5%) out of 51,013 date-maturity pairs; and

it affects no even moments. We also set a handful of third- and fifth-order moments that

exceed a very small negative (annualized) value, -0.0001, to missing.

Second, for each moment, date, and irregular maturity, we fill in missing daily moments

using adjusted lagged weekly moments. To this end, we partition all moments into six

maturity groups with cutoffs defined by the uniform maturities of 30, 60, 90, 180, and 360

days, creating groupings of [7,30], [31, 60], [61, 90], [91, 180], [181, 360], and [361, 549] days.
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For each group, date, and moment, we estimate the lagged weekly moment using a rolling

median of the moment’s non-missing values on days -7 to -1. We fill in missing weekly

medians for the longest horizons, e.g., [361, 549], using values from the next longest horizon,

e.g., [181, 360]. We then apply this procedure to the shortest horizons with missing weekly

data using the next shortest horizon. These missing data procedures apply to fewer than

0.7% of observations for all weekly moments.

Third, to obtain values for standardized maturities, we interpolate between adjacent

horizon groups based on the local slope of the term structure of the risk-neutral moment.

For example, we estimate the third risk-neutral moment at a 30-day maturity using a [1/3,

2/3] weighted average of the third risk-neutral moments with 10-day and 40-day maturities.

We apply this interpolation to the raw daily moments and to the lagged weekly moments,

filling in any remaining missing values of weekly moments with most recently available values.

Lastly, we fill in any missing daily moments using adjusted weekly moments. The adjusted

weekly moment is the unadjusted weekly moment plus the median difference between the

daily and weekly moments across all horizons for which both are nonmissing. We apply this

same interpolation procedure to OptionMetrics’ risk-free rates with irregular maturities to

obtain risk-free rates with standardized maturities.

1.3 ETF Variance

We estimate the physical variance of market returns using the realized variance (RV) of the

ETF with ticker SPY. The RV estimator is the sum of squared log SPY returns over 78

intraday intervals, where 78 is the number of 5-minute periods in regular exchange trading

hours. The final RV estimator is the average of 10 sub-sampled RV estimators based on 10

staggered sets of 78 non-overlapping intervals. Each set of 78 return intervals is based on

79 trade prices that are equally spaced in transaction time—i.e., equal numbers of trades—

throughout regular trading hours. Thus, the 10 RV estimators use a total of 790 prices

equally spaced in business time. The first RV estimator uses prices 1, 11, 21, ..., 781, the

second uses prices 2, 12, 22, ..., 782, and the tenth uses prices 10, 20, 30, ..., 790.

For these estimators, we use only trades that satisfy the following standard conditions,

applied in the order below:

• price is positive

• quantity is positive
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• time must be between 9:30 a.m. and 4:00 p.m. Eastern Time

• correction code is “00”

• condition code is not 1, 4, 7, 8, 9, A through D, G, H, K, L, N, P, R, S, U through W,

Y, or Z

• exchange is the most active for SPY on that day

• price must be within the range of the ETF’s daily low and high.

We aggregate all trades by transaction time and use the median trade price for each time

as the price. We drop trades with extreme reversals as defined an absolute return exceeding

five times the 50-observation rolling average. The number of unique transaction times is the

basis for the partition into 790 prices equally spaced in business time.

We fix two glaring data errors in trade prices. We obtain the daily low and high prices

from the Center for Research in Securities Prices (CRSP) database. On March 31, 1997, we

use high and low prices from Yahoo! Finance because the CRSP high and low prices are

incorrect. On May 12, 1999, we set SPY prices in TAQ that are below the daily CRSP low

to the index low for trades before 12 noon and to the previous valid trade price for trades

after noon. These changes reduce outliers but have little substantive impact on the results.

2 Sharpe Ratios for All Models

In Table IA.I, we present the Sharpe ratios implied by various equity premium models (for

K = 1, 2, 3, 4) at the monthly (30-day) and annual (360-day) horizons. The implied equity

premium (IEP) model exhibits a Sharpe ratio of 0.36 (for K=4) at the annual horizon, which

is much higher than the RLU Sharpe of 0.22. These Sharpe ratios vary substantially over

time, with standard deviations for annual Sharpe ratios between 0.11 and 0.15.

3 Bootstrap Standard Errors of GO Weights

As discussed in Section 3.2, we calculate the standard errors of GO weights using a moving

block bootstrap. We chose a block length of 252 days (one year), which corresponds to the

maximum horizon for our equity premium analysis. Figure IA.1 shows that our standard

error estimates are generally increasing in block length. Standard errors nearly double when
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extending the block length from 63 to 252 days; however further increases in block length

only modestly increase the standard errors.

4 Term Structure of the Implied Equity Premium

Figure IA.2 shows the term structure of the implied equity premium (IEP). The level is

defined as the annualized IEP at the annual horizon. The slope is defined as the difference

between the annualized one-year and one-month IEPs, normalized by the maturity differ-

ence: (365/360× IEP4360 − 365/30× IEP430) /((360− 30)/365). The slope of the IEP term

structure exhibits a strong negative correlation with the level: −0.94 (−0.60) at the annual

(monthly) horizon. While the IEP slope is generally close to zero, it turns sharply negative

during crises, consistent with Figure IA.2.

5 Comparing Monthly Equity Premium Estimates

Whereas Figure 6 in the main paper compares the one-year (360-day) implied equity pre-

mium (IEP) to the lower bound from Martin (2017) and conditional bounds from Chabi-Yo

and Loudis (2020), Figure IA.3 compares the monthly (30-day) IEP measures to the corre-

sponding monthly benchmarks.

6 Robustness to Arbitrage-Free IV Surfaces

6.1 Carr and Madan (2005) Arbitrage Filter Algorithm

Here we analyze how estimates of risk-neutral moments depend on static arbitrage oppor-

tunities by applying the algorithm of Carr and Madan (2005). They show that applying

three filters on the costs of option trading strategies ensures that there is no static arbitrage.

The filter is straightforward to apply and model-free, fitting with our goal of minimizing the

dependency of the moments and IEP on any one particular model.

Following Carr and Madan’s notation, let i = 0, . . . , N index strikes Ki, let j = 1, . . . ,M

index available maturities Tj, and let Ci,j denote the corresponding call option price (Pi,j

the put option price). The first filter is for the price of a vertical spread which is long
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1/(Ki −Ki−1) at strike Ki−1 and short 1/(Ki −Ki−1) of strike Ki:

Qi,j =
Ci−1,j − Ci,t

Ki −Ki−1

, Q0,j = 0

the payoff of which is bounded between zero and one (for put options, we reverse the sign in

the numerator). Therefore, we filter for

0 ≤ Qi,j ≤ 1, ∀i, j.

The second filter is for the cost of a butterfly spread

BSpri,j = Ci−1,j −
Ki+1 −Ki−1

Ki+1 −Ki

Ci,j +
Ki −Ki−1

Ki+1 −Ki

Ci+1,j

which is long one share of the call at Ki−1, short (Ki+1 −Ki− 1)/(Ki+1 −Ki) shares of the

call at Ki, and long (Ki−Ki−1)/(Ki+1−Ki) shares of the call at Ki+1. The payoff is always

greater than zero, and the formula is the same for puts. We therefore keep only strikes i, j

such that

BSpri,j ≥ 0.

The last filter imposes that the calendar spread between maturities j and j + 1 has a

nonnegative cost:

Ci,j+1 − Ci,j ≥ 0.

We apply these filters iteratively, as arbitrages may still remain between the two strikes

Ki−1 and Ki+1 after removing Ki. We apply the algorithm until the percent of new obser-

vations removed in iteration n relative to the number of observations remaining in iteration

n − 1 is less than a specified tolerance level, which we set at 0.1%. We do this before ex-

trapolating the tails with a mean-absolute deviation line, with the intent of preserving the

same plus-or-minus two standard deviation moneyness range, but it does have the downside

of potentially allowing for arbitrages in the extrapolated tails. However, this occurs in less

than 2.5% of the extrapolated observations.

Table IA.II shows the means and standard deviations of the baseline risk neutral moments

in the paper compared to those where we apply Carr and Madan’s filter. Notably, the levels

and volatility of the moments are extremely close, suggesting that our baseline filters already

eliminate the most significant arbitrages and bad price quotes. Table IA.II also shows that
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the pairwise correlations between the baseline and arbitrage-free moments are also nearly

100% across all moments and horizons.

6.2 SVI Option IV Surface

Estimating risk-neutral moments of excess market returns, R̃m,T , is challenging when avail-

able options have a limited range of strike prices. This finite range introduces a truncation

error that varies over time, influenced by shifts in investor preferences, risk aversion, and

market liquidity. Additionally, the discretization of strike prices poses challenges, particu-

larly in the earlier parts of the sample, when the grid of available strike prices may not be

sufficiently dense.

Our primary strategy for addressing truncation error is to generate synthetic options

using a minimum absolute deviation (MAD) extrapolation scheme. Specifically, we assume

that the implied volatility (IV) function remains constant beyond the range of available

liquid options up to ±2 standard deviations. However, this approach creates two potential

problems: it could violate no-arbitrage conditions by creating discontinuities in the IV surface

and distorting the shape, thus affecting the estimation of risk-neutral moments.

To address these issues, we calibrate Gatheral and Jacquier’s (2014) stochastic-volatility-

inspired (SVI) model. The SVI model, which is widely regarded for its practical relevance

and interpretive value, expresses implied variance as

σ2
BSM(x) = a+ b

(
ρ(x−m) +

√
(x−m)2 + σ2

)
,

where x = log (K/Ft,τ ) is the option’s log moneyness, Fb,τ is the futures price for maturity

τ , and a, b, ρ,m, and σ are parameters. For each date, we calibrate the SVI model by

minimizing the RMSE between observed IVs and SVI-implied IVs for all horizons separately

and use the parameters to generate an arbitrage-free surface. The fit has an average R2 of

98.3% and a median R2 of 99.7% across all date-maturities. Finally, we extrapolate out to

a minimum of two standard deviations OTM for each horizon and create a fine grid with an

interval of 0.01 moneyness units.

6.3 Robustness to Additional IV Surface Methods

Table IA.II shows that the moments obtained from the Carr and Madan filtering algorithm

and the SVI-implied surface are highly correlated with those from our base model and have
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similar means. Moments obtained from the Carr and Madan filtering algorithm are ef-

fectively indistinguishable from the moments obtained from the IV surface without those

filters. However, the SVI exerts a more substantial impact by more carefully modeling the

tails, particularly the right-hand side of the IV smile in the earlier part of our sample and

produces moments that are slightly different for the higher order moments, especially for the

odd (third and the fifth) moments.

Figure IA.4 shows the effect of these alternative approaches on our GO weight estimation

for the K = 4 IEP model. Using the moments from SVI, the GO weights for k = 1 and k

= 3 are larger, particularly before the 2008 crisis, because of the higher partial correlation

between the variance premium and the odd risk neutral moments.

Figure IA.5 shows the resulting IEP estimates for the monthly and annual horizons,

applying the re-estimated weights to the risk-neutral moments corresponding to each IV

surface cleaning and extrapolation method. Because they result in similar GO weights,

these alternative methods have little impact on our baseline estimates. Table IA.III shows

that the equity premium predictions are very similar across all models. The SVI surface

produces slightly higher equity premium estimates (by 0.84% for the 360-day horizon and by

0.18% for the 30-day horizon) because of higher GO weights in the pre-crisis period. Thus,

our main results are not overly sensitive to how one estimates risk-neutral moments in the

IV surface.
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7 Weighting Methods

Our IEP equation (10) suggests that one can recover the GO portfolio weights by estimating

a linear regression of the variance premium on the discounted risk neutral moments. In

Section 2.2, we use feasible generalized least squares (FGLS) regressions with cross-sectional

restrictions and inverse variance precision weights to address multicollinearity, heteroskedas-

ticity, and autocorrelation. To demonstrate robustness, we consider alternate specifications.

In the first alternative, we consider a state-space representation in which time-varying

GO weights result from a learning process. We model this learning using the Kalman filter in

which GO weights are latent variables that we estimate recursively through prediction and

update steps as in Adrian and Franzoni (2009). We obtain priors from a pooled regression

with horizon-specific intercepts, using the first three years of data for reasonably precise

priors. The state transition uses an identity matrix (random walk). We jointly update

system uncertainty and Kalman gain using data from all horizons while imposing the cross-

sectional restriction for weights, following the spirit of multi-sensor fusion Kalman filter (Sun

and Deng, 2004).2

We use 30-day expected realized variance (PVart,30)) as a measure of process noise and

derive measurement noise recursively from the target variable with a learning rate of 1%.

A higher process noise increases the filter’s sensitivity to data. In our approach, process

noise typically outweighs measurement error, allowing the algorithm to prioritize data. This

approach is sensitive to the choice of prior and noise processes, which often involve subjective

decisions.

As another alternative, we incorporate insights from the dynamic conditional correlation

(DCC) literature (Engle (2002, 2016)). The dynamic conditional beta (DCB) model uses the

theory of conditional heteroskedastic factor models to model the dynamics of betas, capturing

potential non-linearities and asymmetries in their evolution over time. The coefficients (GO

weights) are calculated as:

β̂DCB
t = Σ−1

XX,t ·ΣXY,t (1)

where the conditional covariance matrixΣt is specified as a DCC-GARCH(1,1) model, mean-

ing Σt = diag(ht)
1/2 Rt diag(ht)

1/2, ht consists of univariate GARCH(1,1) variances for each

2Alternatively, we can update the weights for each horizon separately and compute a precision-weighted
average. This approach produces GO weights that are both qualitatively and quantitatively comparable to
those derived from joint estimation.
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excess risk neutral moment, and the conditional correlation matrix Rt comes from a multi-

variate GARCH (MGARCH). Specifically, we model the conditional means of the regressors

as a first-order VAR process and the conditional covariances as a DCC-MGARCH process in

which the variance of each error term follows GARCH(1,1). We jointly estimate conditional

correlation matrices for all moments and horizons every week using expanding windows with

the same recency weights as in Section 2.2.3 The joint estimation of conditional correlation

allows us to capture cross-correlation effects. Finally, we average weights over a one-year

rolling window to smooth noisy daily estimates of the conditional variance.

Like our FGLS weights in Section 2.2, these weights are available in real time, but start

from 1999, after observing three years of data. Figure IA.6 compares Kalman filter and

DCB weights. They share characteristics with FGLS weights: a positive market weight

(k=1) typically exceeding one that rises after the 2008 crisis, and a large negative weight on

the variance asset (k=2). However, higher measurement noise during the 2008 crisis causes

the Kalman filter to react less to new information, producing a lower equity premium as seen

in Figure IA.7. The DCB approach, on the other hand produces higher weights around the

same period, driven by an increase in both the conditional correlations and the conditional

variances. Another notable departure is the flipped signs of the DCB weights on higher order

(k = 3, 4) assets, driven by the conditional correlation between the variance premium and

the fifth (sixth) excess moment being negative (positive).

The IEP derived from these weights correlates strongly with that from FGLS weights

(correlations of 83% to 97% across horizons) and exhibits similar means and out-of-sample

return predictability, especially in the no-arbitrage period. This evidence shows that, de-

spite variations in GO weight estimation from high multicollinearity, these different methods

product equity premium estimates with similar properties.

8 BEGE Model

This section describes the solution for the extended “preference shock” version of Bekaert,

Engstrom, and Ermolov (BEE, 2023)’s model. Their original appendix includes only the

solution for the baseline version of the model. While the solution for the preference shock

version is a straightforward application of their algorithm, we include it here for completeness.

3We estimate this weekly for ease of computation.
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8.1 Model Set Up

Utility has a habit form:

V = E0

∞∑
t=0

βt (Ct −Ht)
1−γ − 1

1− γ
.

One-period consumption evolves according to

gt+1 = ḡ + σcpωp,t+1 − σcnωn,t+1

ωp,t+1 ∼ Γ(pt, 1)− pt

ωn,t+1 ∼ Γ(nt, 1)− nt

The shape parameters of the shocks follow a mean-reverting AR(1) process with the same

shocks as consumption:

pt+1 = p̄+ ρp(pt − p̄) + σppωp,t+1

nt+1 = n̄+ ρn(nt − n̄) + σnnωn,t+1

Log inverse surplus qt = log(Qt) = log(Ct/(Ct −Ht)) is modeled directly as

qt+1 = q̄ + ρq(qt − q̄) + σqpωp,t+1 + σqnωn,t+1 + σqqωq,t+1,

ωq,t+1 ∼ Γ(st, 1)− st,

st+1 = s̄+ ρs(st − s̄) + σsqωq,t+1.

Lastly, dividends are a more volatile claim to the consumption shocks:

dt+1 = ḡ + γg(σcpωp,t+1 − σcnωn,t+1).

All prices and returns here refer to the dividend-paying asset.
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8.2 Pricing Kernel and Risk-Free Rate

The one period pricing kernel is

Mt,t+1 := Mt+1

=
∂V/∂Ct+1

∂V/∂Ct

=
βt+1(Ct+1 −Ht+1)

−γ

βt(Ct+1 −Ht+1)−γ

= β1

(
Ct+1

Ct

)−γ (
Ct+1 −Ht+1

Ct+1

)−γ (
Ct

Ct −Ht

)−γ

= βheγ(qt+1−qt−gt).

This implies a log pricing kernel that is linear in the state variables and shocks:

mt+1 = m0 +mqqt +mωpωp,t+1 +mωnωn,t+1 +mωqωq,t+1 (2)

where

m0 = log β − γḡ + γ(1− ρq)q̄

mq = −γ(1− ρq)

mω,p = γ(σqp − σcp)

mω,n = γ(σqn + σcn)

mω,q = γσqq.

This pricing kernel is similar to the kernel in the baseline model, but with the additional

preference shock term mω,qωq,t+1.

All moment calculations here depend on the fact that, as shown by BEE, for X ∼
Γ(k, θ)− kθ

E eX = e−g(θ)k, g(θ) = θ + log(1− θ).

The one-period log risk-free rate is given by

rf,t = − logEt e
mt+1 = f0 + fqqt + fppt + fnnt + fsst (3)
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where

f0 = −m0

fq = −mq

fp = g(mωp)

fn = g(mωn)

fs = g(mωq)

8.3 Equity Pricing

In this model, the price-dividend ratio of the equity asset has an exact solution, which we

log-linearize around the expected values of the state variables to enable feasible computations

of expected returns and higher order moments. We follow BEE’s algorithm here.

By the definition of P/D with no bubbles:

Pt

Dt

= Et

∞∑
i=1

e
∑i

j=1 mt+h+dt+j .

The solution method is to use recursive coefficients and iterated expectations to obtain the

form
Pt

Dt

=
∞∑
i=1

eAi+Bipt+Cint+Diqt+Fist (4)

The base case in the inductive algorithm is

Et e
mt+1+dt+1 = Et e

m0+mqqt+mωpωp,t+1+mωnωn,t+1+mωqωq,t+1+ḡ+γg(σcqωp,t+1−σcnωn,t+1)

= em0+ḡ−g(mωp+γgσcp)pt−g(mωn−γgσcn)nt+mqqt−g(mωq)st

which yields the initial coefficients

A1 = m0 + ḡ

B1 = −g(mωp + γgσcp)

C1 = −g(mωn − γgσcn)

D1 = mq

F1 = −g(mωq).
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Assuming that the coefficients hold for term i−1, the algorithm applies iterated expectations

and coefficient matching to term i:

eAi−1+Bi−1pt+Ci−1nt+Di−1qt+Fi−1st = Et e
∑j

i=1 mt+i+dt+i

= Et

[
emt+1+dt+1 Et+1 e

∑i
j=2 mt+j+dt+j

]
= Et e

mt+1+dt+1+Ai−1+Bi−1pt+1+Ci−1nt+1+Di−1qt+1+Fi−1st+1

where the third line applies the inductive hypothesis. Expanding the pricing kernel, divi-

dends, and state variables using their definitions shows that the term in the exponent on the

right-hand side is

m0 + ḡ +Bi−1p̄(1− ρp) + Ci−1n̄(1− ρn) +Di−1q̄(1− ρq) + Fi−1s̄(1− ρs)

+ (mq +Di−1ρq)qt +Bi−1ρppt + Ci−1ρnnt + Fi−1ρsst

+ (mωp + γgσcp +Bi−1σpp +Di−1σqp)ωp,t+1

+ (mωn − γgσcn + Ci−1σnn +Di−1σqn)ωn,t+1

+ (mωq +Di−1σqq + Fi−1σsq)ωq,t+1.

Evaluating the expectation and matching the coefficients then yields

Ai = A1 + Ai−1 +Bi−1p̄(1− ρp) + Ci−1n̄(1− ρn) +Di−1q̄(1− ρq) + Fi−1s̄(1− ρs) (5)

Bi = Bi−1ρp − g(mωp + γgσcp +Bi−1σpp +Di−1σqp) (6)

Ci = Ci−1ρn − g(mωn − γgσcn + Ci−1σnn +Di−1σqn) (7)

Di = D1 +Di−1ρq (8)

Fi = Fi−1ρs − g(mωq +Di−1σqq + Fi−1σsq) (9)

which is the conjectured form.

8.3.1 Log-linearization

Using the standard decomposition of log returns

rt+1 = logRt+1 = log

(
1 +

Pt+1

Dt+1

)
− pdt + dt+1
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we log-linearize the terms pdt = log(Pt/Dt) and log(1 + Pt+1/Dt+1) around the expected

values of the state variables (p̄, n̄, q̄, s̄). For notational convenience, define

Ψi := eAi+Bip̄+Cin̄+Diq̄+Fis̄.

Then, the first order approximation of pdt is

pdt ≈ K1
0 +K1

ppt +K1
nnt +K1

q qt +K1
s st

where

K1
p =

∑∞
i=1 BiΨi∑n
i=1 Ψi

K1
n =

∑∞
i=1 CiΨi∑n
i=1Ψi

K1
q =

∑∞
i=1 DiΨi∑n
i=1Ψi

K1
s =

∑∞
i=1 FiΨi∑n
i=1Ψi

K1
0 = log

(
∞∑
i=1

Ψi

)
−K1

p p̄−K1
nn̄−K1

q q̄ −K1
s s̄.

Similarly, the first order Taylor expansion of the nonlinear term is

log

(
1 +

Pt+1

Dt+1

)
≈ K2

0 +K2
ppt+1 +K2

nnt+1 +K2
q qt+1 +K2

s st+1
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where

K2
p =

∑∞
i=1 BiΨi

1 +
∑n

i=1Ψi

K2
n =

∑∞
i=1CiΨi

1 +
∑n

i=1Ψi

K2
q =

∑∞
i=1DiΨi

1 +
∑n

i=1Ψi

K2
s =

∑∞
i=1 FiΨi

1 +
∑n

i=1Ψi

K2
0 = log

(
1 +

∞∑
i=1

Ψi

)
−K2

p p̄−K2
nn̄−K2

q q̄ −K2
s s̄.

Substituting these terms into the return decomposition and expanding the t+1 terms in

terms of time t state variables and t + 1 shocks, we obtain that one-period log returns are

approximately

rt+1 ≈ r0 + rppt + rnnt + rqqt + rsst + rωpωp,t+1 + rωnωn,t+1 + rωqωq,t+1 (10)

where

r0 = ḡ +K2
0 −K1

0 +K2
p p̄(1− ρp) +K2

nn̄(1− ρn) +K2
q q̄(1− ρq) +K2

s s̄(1− ρs)

rp = K1
p +K2

pρp

rn = K1
n +K2

nρn

rq = K1
q +K2

qρq

rs = K1
s +K2

sρs

rωp = K2
pσpp +K2

qσqp + γgσcp

rωn = K2
nσnn +K2

qσqn − γgσcn

rωp = K2
sσsq +K2

qσqq.

8.4 Physical Moments

To calculate physical moments of simple returns Rt+1 = ert+1 , we apply BEE’s result for

the moment-generating function of a demeaned gamma distribution. For any expectation
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of Rk
t+1, where k ∈ N+, we can obtain quasi-closed form expressions using BEE’s log-linear

approximation:

EtR
k
t+1 ≈ Et e

k(r0+rppt+rnnt+rqqt+rsst+rωnωn,t+1+rωpωp,t+1+rωqωq,t+1)

= ekr0+krqqt+(krp−g(krωp))pt+(krn−g(krωn))nt+(krs−g(krωq))st

This expression allows us to compute the physical variance in the model as

Vart(R̃t+1) ≈ Et e
2rt+1 − (Et e

rt+1)2 .

8.5 Risk-Neutral Moments

We calculate higher-order risk-neutral moments of excess returns by expanding the polyno-

mial

E∗
t R̃

k
t+1 = erft Et

[
emt+1 (Rt+1 −Rft)

k
]
=

k∑
j=0

(
k

j

)
(−1)je(j+1)rft Et e

mt+1+(k−j)rt+1 . (11)

Then, the expectation term is

Et e
mt+1+urt+1

= em0+mqqt+u(r0+rqqt+rppt+rnnt+rsst) × Et e
(mωp+urωp)ωp,t+1+(mωn+urωn)ωn,t+1+(mωq+urωq)ωq,t+1

= em0+ur0+(mq+urq)qt+(urp−g(mωp+urωp))pt+(urn−g(mωn+urωn))nt+(urs−g(mωq+urωq))st .

8.6 Model Simulations

8.6.1 Errors in Approximations

Figure IA.8 shows the approximation errors in log returns that result from linearizing. Ap-

proximation errors are negligible for returns at or above -16% monthly. Returns are below

-16% in 0.16% of periods in our 10,000 simulated time series of 324 observations. Even

for exact returns of -30%, the approximate return understates the exact return by only 2

percentage points.
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8.6.2 Distribution of Rolling Weights

Figure IA.9 shows the distribution of the IEP coefficients in the BEGE model. We estimate

coefficients with separate rolling regressions in each of the 10,000 simulated time series. We

use least squares with an expanding window and minimum of 12 observations to estimate

the coefficients with no intercept term.

8.7 Implied SDFs in the Model

We compare implied SDFs from the IEP methodology to approximations of the true SDFs

in the model. Because the model has multiple state variables and shocks, there is no closed

form expression for the SDF Mt+1 in terms of the excess return R̃t+1. Therefore, we focus

on comparing IEP estimates to the quantity:

E
[
Mt+1|It, R̃t+1

]
(12)

where the information set It includes the four state variables in the model.

We calculate the expectation of the SDF in equation (12) by considering the model’s state

on a given day t in which risk-neutral variance, M2t, equals its median value and simulating

the model’s three shocks forward for one period. We truncate the sample at the 0.5 and

99.5 percentiles of returns. We then obtain the conditional expectation of the SDF as a

function of returns using both a locally-weighted regression and a tenth-order polynomial

expansion with restrictions corresponding to those in equation (9). Both methods produce

similar shapes for the pricing kernel. We compare this kernel to SDF estimates from the

IEP1 and IEP4 models with constant weights in Figure IA.10. The true SDF exhibits a

pronounced kink below zero which is difficult for polynomials to capture. Nonetheless, the

SDF from IEP4 reasonably approximates the curve of the true SDF, while the SDF from

IEP1 is too flat, emphasizing the advantages of including higher-order risk-neutral moments

in estimating the equity premium.4

4The SDF from IEP4 does curve slightly upward at higher levels of excess returns, contrasting with the
monotonic pricing kernel in the empirical analysis of 5, which is likely due to errors in the estimated weights
from multicollinearity.
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Table: IA.I: Sharpe Ratios of IEP Measures

This table summarizes the Sharpe ratio implied by the four implied equity premium models (Implied
Sharpe K, where K = 1, 2, 3, 4) and from the representative log utility model (RLU Sharpe) at
monthly (30-day) and annual (360-day) horizons. The implied Sharpe ratio that uses K terms
to approximate the pricing kernel at horizon h days is Implied Sharpe Kh. The RLU Sharpe at
horizon h days is RLU Sharpeh. Sharpe ratios are annualized. The columns show the mean (Mean),
standard deviation (StdDev), and percentiles (P5, P25, P50, P75, P95) of Sharpe ratios for all 6,293
days from 1997 to 2021.

Mean StdDev P5 P25 P50 P75 P95 Days

RLU Sharpe 30 0.22 0.11 0.11 0.14 0.20 0.26 0.44 6293
Implied Sharpe 130 0.41 0.23 0.19 0.26 0.35 0.49 0.86 6293
Implied Sharpe 230 0.34 0.19 0.16 0.21 0.29 0.40 0.71 6293
Implied Sharpe 330 0.48 0.25 0.25 0.32 0.40 0.57 0.92 6293
Implied Sharpe 430 0.40 0.21 0.18 0.26 0.34 0.47 0.76 6293
RLU Sharpe360 0.22 0.06 0.14 0.17 0.21 0.26 0.34 6293
Implied Sharpe 1360 0.40 0.15 0.25 0.30 0.35 0.46 0.70 6293
Implied Sharpe 2360 0.32 0.11 0.21 0.25 0.29 0.37 0.58 6293
Implied Sharpe 3360 0.44 0.14 0.28 0.33 0.41 0.50 0.68 6293
Implied Sharpe 4360 0.36 0.12 0.20 0.27 0.35 0.43 0.56 6293
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Table IA.II: Risk-Neutral Moments from Alternative Methods

This table compares the second through sixth risk-neutral moments–M2 through M6–as computed
in the main paper with those computed by applying the arbitrage filtering algorithm of Carr
and Madan (2005) and those from the stochastic-volatility-inspired (SVI) algorithm (Gatheral
and Jacquier (2013)). We present results for 30-day, 90-day and 360-day horizons, as shown by
the subscripts on each moment. Mean, StdDev and Median columns show the average, standard
deviation and the median values of risk-neutral moments from each procedure. The Corr columns
display correlations between moments from our baseline process of linear extrapolating the IV
surface and moments from alternative procedures.

MAD Extrapolation Carr & Madan Filters Stochastic Vol. Inspired

Mean StdDev Median Mean StdDev Median Corr Mean StdDev Median Corr

M230 4.28 4.37 3.14 4.26 4.34 3.12 1.000 4.75 4.72 3.48 0.996
M290 4.40 3.40 3.53 4.39 3.39 3.52 1.000 4.50 3.49 3.58 0.998
M2360 4.30 2.23 3.84 4.30 2.23 3.84 1.000 4.29 2.27 3.79 0.997
M330 -0.41 0.55 -0.24 -0.40 0.54 -0.23 0.999 -0.47 0.56 -0.28 0.967
M390 -0.63 0.59 -0.44 -0.62 0.59 -0.44 1.000 -0.64 0.59 -0.45 0.992
M3360 -0.76 0.41 -0.63 -0.75 0.41 -0.63 0.999 -0.73 0.41 -0.61 0.967
M430 0.34 0.82 0.13 0.33 0.80 0.13 1.000 0.38 0.80 0.15 0.976
M490 0.71 1.19 0.38 0.70 1.18 0.37 1.000 0.73 1.22 0.40 0.996
M4360 1.57 1.57 1.11 1.56 1.56 1.10 1.000 1.61 1.72 1.11 0.991
M530 -0.30 0.82 -0.09 -0.29 0.79 -0.08 0.998 -0.30 0.65 -0.10 0.906
M590 -0.77 1.34 -0.35 -0.75 1.33 -0.34 0.999 -0.74 1.28 -0.35 0.979
M5360 -1.68 1.42 -1.10 -1.66 1.41 -1.09 0.999 -1.60 1.39 -1.06 0.976
M630 0.61 2.28 0.11 0.57 2.16 0.10 0.998 0.54 1.64 0.11 0.910
M690 1.89 4.68 0.61 1.83 4.60 0.57 0.999 1.74 4.46 0.58 0.975
M6360 6.36 10.08 3.30 6.25 9.88 3.26 0.999 6.81 13.46 3.47 0.972

23



Table IA.III: Equity Premiums from Alternative Risk-Neutral Moments

The table summarizes implied equity premiums (IEPs) based on risk-neutral moments from alter-
native arbitrage-free surfaces. The first seven columns present the mean, standard deviation, and
percentiles of each IEP4 estimate obtained from different IV surfaces. The eighth and ninth columns
list the mean IEP of the baseline model–based on linear extrapolation of the IV surface–and corre-
lations with IEPs from alternative IV surface estimates. The last two columns show out-of-sample
R2 for the full-sample from 1996 to 2021 and the “No Arbitrage” sample, as defined in the paper.
We label rows by the name of each model, where “CM” refers to the IV surface with the additional
Carr and Madan (2005) filters applied; “SVI” refers to the estimates from risk-neutral moments
calculated from a fitted SVI model (Gatheral and Jacquier (2013)); and the subscripts refer to
horizons in days.

Mean StdDev P5 P25 P50 P75 P95 Mean Corr OOS R2 OOS R2

(MAD) (No Arb)

CM30 0.68 0.84 0.17 0.29 0.45 0.76 1.79 0.69 1.0 1.20 3.62
CM60 1.4 1.44 0.40 0.68 1.0 1.61 3.33 1.42 1.0 2.28 5.96
CM90 2.13 1.92 0.68 1.11 1.59 2.48 4.86 2.14 1.0 3.03 8.93
CM180 4.19 3.00 1.58 2.44 3.34 4.95 8.92 4.22 1.0 7.83 10.42
CM360 7.82 4.29 3.42 5.18 6.72 9.3 14.92 7.87 1.0 7.84 7.51

SVI30 0.87 0.99 0.24 0.38 0.59 0.96 2.29 0.69 0.984 -0.31 3.38
SVI60 1.66 1.62 0.54 0.82 1.21 1.91 3.88 1.42 0.989 0.40 5.27
SVI90 2.47 2.12 0.90 1.31 1.88 2.88 5.55 2.14 0.988 0.80 8.12
SVI180 4.77 3.23 2.08 2.86 3.85 5.61 9.94 4.22 0.986 6.09 9.44
SVI360 8.71 4.50 4.31 5.88 7.49 10.2 16.43 7.87 0.980 6.52 6.32
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Table IA.IV: Implied Equity Premium with Alternative Weights

This table summarizes estimates of the implied equity premium (IEP) with K = 4 at all horizons
for various weighting methods as described in IA Section 7 and Section 2.2. The columns display
the mean (Mean), standard deviation (StdDev), and percentiles (P5, P25, P50, P75, P95) of equity
premiums for all 5,788 days from 1999 to 2021. Equity premiums are not annualized. The table also
shows correlations (Corr) between the baseline IEP and IEPs from other GO-weighting methods
as well as out-of-sample R2 values for predictions from IEP models for all dates and for the No
Arbitrage subsample, which excludes 61 trading days from September 19 to December 15, 2008.

Mean StdDev P5 P25 P50 P75 P95 Corr OOS R2 OOS R2

(No Arb)

Kalman Filter30 0.69 0.77 0.16 0.27 0.47 0.85 1.88 0.94 0.88 3.09
Dynamic Conditional Beta30 0.62 1.02 0.12 0.20 0.34 0.59 1.96 0.97 0.32 3.76
Feasible Generalized LS30 0.70 0.88 0.17 0.29 0.46 0.77 1.80 - 1.02 3.76
Kalman Filter360 8.07 3.76 3.11 5.41 7.37 9.89 15.20 0.83 3.59 3.16
Dynamic Conditional Beta360 8.43 7.40 3.13 4.76 6.06 9.32 20.61 0.91 11.21 12.53
Feasible Generalized LSs360 7.98 4.43 3.39 5.29 6.85 9.46 15.45 - 9.00 8.60
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Figure IA.1: Block-Bootstrap Standard Errors of GO Weights.
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These figures show standard errors (SEs) of weights on all risky assets (k = 1, 2, 3, 4) in the growth-
optimal portfolio based on the IEP4 model. The three SE lines in each panel come from moving
block bootstraps with block lengths of 1 quarter (63 days), 1 year (252 days), and 2 years (504
days).
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Figure: IA.2: Term Structure of the Implied Equity Premium
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This figure shows the level and slope of the term structure of the implied equity premium
(IEP). The level is IEP4360 in equation (9) in the paper based on the fourth-order (K =
4) approximation of the growth-optimal pricing kernel. The slope is the difference between
the annualized one-year and one-month IEPs divided by the difference in these maturities:
(365/360× IEP4360 − 365/30× IEP430) /((360 − 30)/365). The data are daily from 1997 through
2021.
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Figure IA.3: The Implied Equity Premium and Alternative Bound Estimates
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This figure shows four estimates of the annualized equity premium at the 30-day horizon: the
implied equity premium (IEP), Martin’s (2017) lower bound, and Chabi-Yo and Loudis (2020)
upper and lower bounds on the equity premium. The IEP is based on the fourth-order (K = 4)
approximation of the growth-optimal pricing kernel, IEP430, in equation (9). The lower bound is
the representative log utility equity premium, Lower Bound30, which is a special case of equation
(9) with w1,t = 1 and wk,t = 0 ∀ k > 1. Chabi-Yo and Loudis bounds are based on a replication
using our moments. The data are daily from 1997 through 2021.
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Figure IA.4: Growth-Optimal Portfolio Weights with SVI-based IV Surface
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This figure shows the weights on all (k = 1, 2, 3, 4) risky assets in the GO portfolio based on
the IEP4 model. The left panel shows the weights obtained using risk-neutral moments based on
options that meet the Carr and Madan filters, while the right panel shows the weights obtained
using risk-neutral moments with the implied volatility (IV) surface extrapolated by fitting an SVI
model. Dotted lines in both figures correspond to weights obtained using our baseline procedure
without the extra filters and with linear extrapolation of the IV surface.
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Figure IA.5: IEP4 with Alternative IV Surfaces
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Panel B: 360-day horizon
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This figure compares the baseline implied equity premium (IEP4) from linear extrapolation to IEPs
from two alternative estimations of the implied volatility surface: Carr and Madan filters and SVI.
Panel A shows IEP4 estimates for the 30-day horizon, and Panel B shows those for the 360-day
horizon.
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Figure IA.6: Growth-Optimal Portfolio Weights
(Alternative Weighting Methods)
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The figure shows the weights on all risky assets (k = 1, 2, 3, 4) in the GO portfolio based on the
IEP4 model using the Kalman filter and dynamic conditional betas as described in IA Section 7.
Dotted lines in figures represent baseline GO weights obtained using the FGLS regression as in
Figure 2 in the main paper.
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Figure IA.7: 30-Day Implied Equity Premium
(Alternative Weighting Methods)
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Panel B: 360-day horizon
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Each panel in this figure shows the annualized implied equity premium (IEP) obtained from three
methods. The IEP comes from the fourth-order (K = 4) approximation of the growth-optimal
pricing kernel, IEP4, in equation (9). The three methods estimate this equation using the Kalman
filter, dynamic conditional betas, and the feasible generalized least squares to obtain GO (i.e.,
regression) weights as described in IA Section 7 and Section 2.2. Panel A shows IEP4 estimates
for the 30-day horizon, and Panel B shows IEP4 for the 360-day horizon Data is daily from 1999
through 2021.
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Figure IA.8: Approximation Errors in the BEGE Model Return Linearization
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The figure shows the approximation error in log returns for the BEGE log-linearization as a function
of the exact returns using a binned scatterplot. The y axis shows approximate log returns minus
exact log returns, and the x axis shows exact log returns. Each point corresponds to a binned
mean of the errors: the y value is the mean error for each bin, and the x value is the midpoint of
the upper and lower bin boundaries. The whiskers around each point show two-standard-deviation
ranges for each bin. Because bins have equal width, the leftmost bins have far fewer data points
than the rightmost bins.
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Figure IA.9: Distribution of Portfolio Weights in the Model
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The figure shows the distribution of estimated growth-optimal (GO) portfolio weights in the implied
equity premium (IEP) in the simulated BEGE model. Each row corresponds to a given IEP model
(K = 1, 2, 3, 4), and each column corresponds to a given weight parameter (wk, where k = 1, 2, 3, 4).
The y axis values represent counts in the hundreds of thousands. The dashed red line shows the
full-sample GO weight estimate across all 10,000 simulated time series.
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Figure IA.10: SDF in a BEGE Model
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This figure compares the true pricing kernel in a simulated BEGE model to IEP pricing kernels with
approximation degrees K = 1, 4. We approximate the true kernel using the expected pricing kernel
given returns for the day with median risk-neutral variance in the BEGE simulations. The solid
lines show the approximate true function using both locally weighted regressions and a tenth-order
polynomial, while the dashed lines show the implied growth-optimal kernel for the IEP models with
constant weights.
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