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 We examine the econometric performance of regime-switching models for interest rate data from the
 United States, Germany, and the United Kingdom. Regime-switching models forecast better out-of-
 sample than single-regime models, including an affine multifactor model, but do not always match
 moments very well. Regime-switching models incorporating international short-rate and term spread
 information forecast better, match sample moments better, and classify regimes better than univariate
 regime-switching models. Finally, the regimes in interest rates correspond reasonably well with business
 cycles, at least in the United States.
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 1. INTRODUCTION

 The stochastic behavior of interest rates varies over time.

 For example, the behavior of interest rates in the 1979-1982
 period in the United States or around the German reunifica-
 tion period seems to indicate a structural break in the time
 series. More generally, changes in business cycle conditions
 and monetary policy may affect real rates and expected infla-
 tion and cause interest rates to behave quite differently in
 different time periods. Regime-switching (RS) models consti-
 tute an attractive class of models to capture these changes
 in the stochastic behavior of interest rates within a station-

 ary model. Many authors have built on the seminal work of
 Hamilton (1989) to model short rates by a model where the
 parameters change over time driven by a Markov state vari-
 able (assumed to be unobserved to the econometrician). For
 example, Hamilton (1988), Lewis (1991), Evans and Lewis
 (1994), Sola and Driffill (1994), Garcia and Perron (1996),
 Gray (1996), and Bekaert, Hodrick, and Marshall (2001) all
 examined empirical models of regime switches in interest
 rates.

 Importantly, RS models accommodate regime-dependent
 mean reversion of interest rates. Mankiw and Miron (1986),
 among others, argued that the predictive power of the term
 spread for future short rates in the United States is very much
 a function of the monetary policy regime. In particular, they
 argued that the interest rate smoothing efforts of the Federal
 Reserve Bank make the U.S. short rate behave like a random

 walk, and this behavior causes rejections of the expectations
 hypothesis. When a regime-switching model is fitted to U.S.
 data, however, Bekaert et al. (2001) and Gray (1996) showed
 that such random walk behavior is only true for low inter-
 est rates, whereas high interest rates show considerable mean
 reversion. Several authors (Cecchetti, Lam, and Mark 1993;
 Garcia 1998) showed that single-regime models are economet-
 rically rejected in favor of their RS counterparts.

 Despite their economic appeal, RS models are less attrac-
 tive than one-regime models from an econometric estima-
 tion perspective. Although with the work of Gray (1996) and
 Hamilton (1994) the likelihood construction has been simpli-
 fied, estimating RS models is difficult. Often, the data do not

 allow clear regime classification; that is, the probability of
 having observed a regime ex-post may hover around a half.
 These problems may explain why there are few RS term struc-
 ture models of interest rates (see Naik and Lee 1994; Evans
 1998; Bansal and Zhou 1999).

 In this article, we provide an analysis of the economet-
 ric properties of RS models, with both constant and state-
 dependent transition probabilities, for interest rates in the
 United States, Germany, and the United Kingdom. Apart from
 residual diagnostic tests, we use two statistical criteria to com-
 pare and rank alternative one-regime and RS models of short
 rates. The first criterion investigates the fit of the models with
 the unconditional moments of the data. One attraction of RS

 models is that they may accommodate some of the nonlin-
 earities in interest rates that may show up in higher order

 unconditional moments (see AYt-Sahalia 1996; Stanton 1997;
 Ahn and Gao 2000). The dependence of mean reversion on
 the level of the interest rate may also induce an autocorrelo-
 gram that is difficult to match by parsimonious autoregressive
 moving average (ARMA) models. The second criterion con-
 cerns the forecasting power of the different models for both
 first and second moments. Finally, we propose a new metric
 to compare the performance of different RS models in iden-
 tifying the regime over the sample. Our regime classification
 measure (RCM) uses the simple fact that the ex-post proba-
 bility of observing one of the regimes ought to be close to 1
 at all times when regime classification is perfect.

 Given the econometric problems mentioned previously, it is
 not a priori clear that RS models perform well on these sta-
 tistical criteria, even when they are the true data-generating
 process (DGP). Moreover, as Bekaert et al. (2001) stressed,
 the estimation may suffer from a peso problem, in that the
 fraction of observations drawn from one particular regime in
 the sample at hand may not correspond to the population fre-
 quency of that regime. In that case, the estimation is biased.
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 For example, it is unlikely that we could get a reliable esti-
 mate of the mean reversion at large interest rates in U.S. data
 without including the 1979-1982 period. Furthermore, ARMA
 models may generally constitute good approximations to any
 covariance stationary process and hence may outperform RS
 models in small samples if the parameter estimates of the RS
 models are severely biased and inefficient.
 To overcome these problems, we extend the effective sam-

 ple size through two channels. First, we investigate multicoun-
 try systems of interest rates. It is possible that short rates in
 the United States Granger-cause rates in other countries (or
 vice versa) and that Granger causality may be regime depen-
 dent. Whereas such relations would immediately affect the
 forecasting performance, we may also obtain more efficient
 estimates if interest rate innovations across countries are cor-

 related. If some parameters are identical in different countries,
 further gains in efficiency are to be expected. The model we
 propose and estimate allows for correlated interest rate inno-
 vations and Granger causality between rates in some regimes.
 We compare the performance of several variants of the multi-
 variate RS models to their single-regime vector-autoregressive
 (VAR) counterparts and to one multifactor model in the affine
 term structure class.

 Second, we exploit information in the term structure by
 adding term spreads to the model. Under the null of the expec-
 tations hypothesis, spreads should forecast future short rates,
 so the potential for improved performance is obvious. The
 moments criteria here include the cross-correlations between

 short rates and spreads. As Pfann, Schotman, and Tschernig
 (1996) showed, the correlation between short rates and long
 rates changes with the level of the interest rate, suggesting the
 correlation may be informative about the regime.

 Apart from a number of methodological contributions, this
 article offers some important empirical results. First, whereas
 RS models do not always outperform single-regime models
 in the in-sample diagnostics, they forecast very well out of
 sample. Second, multivariate RS models perform better than
 univariate models in terms of regime classification and fore-
 casting. The best forecasting model is invariably a multivari-
 ate RS model. Hence, our results greatly expand on Gray
 (1996), who examined the out-of-sample forecasting power of
 a univariate RS model for second moments of the U.S. short

 rate. Third, the regime classification implied by RS models is
 closely related to economic business cycles and the ex-ante
 regime probabilities are good short-horizon predictors of the
 business cycle in the United States.

 The article is organized as follows. Section 2 describes the
 data and establishes a set of stylized facts. Section 3 out-
 lines the general empirical and econometric framework and
 discusses our diagnostic statistics. It presents a general mul-
 tivariate RS model and considers as special cases univariate
 short-rate models, multicountry models of the short rate, and
 bivariate short-rate and term spread models for each country.
 A stark implication of the framework is that univariate models
 generally cannot be consistently estimated. Section 4 briefly
 discusses the empirical estimation results, and Section 5 dis-
 cusses the performance of the various models. To interpret
 the results, we perform a Monte Carlo experiment that exam-
 ines the performance of single-regime and RS models in small

 samples when the true DGP is an RS model. We consider the
 quality of regime classification and determine if the regimes
 are related to the business cycle in Section 6. Section 7 con-
 cludes the discussion.

 2. DATA AND STYLIZED FACTS

 Our empirical work uses monthly observations on 3-
 month short rates and 5-year long rates of zero-coupon gov-
 ernment bonds from the United States, Germany, and the
 United Kingdom from January 1972 to August 1996. The
 dataset combines data from Jorion and Mishkin (1991) with
 a proprietary dataset of zero-coupon rates (see Bekaert et al.
 2001). We denote the short rates as r,' and the spreads as
 z' for country m. We estimate models based on an in-sample
 period, with forecasting done on an out-of-sample period of
 the last 30 months. Hence, our in-sample period has 267 obser-
 vations.

 Table 1 reports the first four central moments of the short
 rates and spread data on the in-sample period. The table
 also shows the autocorrelations for each country, the cross-
 correlations of short rates for each pair of countries, and corre-
 lations of short rates and spreads within each country. We note
 that the short rates for Germany and the United Kingdom do
 not show excess kurtosis. Short rates are very persistent, with
 the United Kingdom showing the least persistence. Spreads
 are also autocorrelated, but less so than short rates. Turning
 to international cross-correlations, lagged short rates of the
 United States are more highly correlated with current German
 and U.K. rates than present levels of U.S. short rates. This
 suggests that lagged U.S. short rates may Granger-cause short
 rates in Germany and the United Kingdom. The contempora-
 neous correlations of short rates across countries are not very
 high except for the U.S. and U.K. rates.

 In Table 2, we determine whether the behavior of the term

 structure changes over the business cycle. For the United
 States, we use the National Bureau of Economic Research

 (NBER) dates for business cycle expansions and contractions,
 which can be found at www.nber.org/cycles.html; dates for
 Germany and the United Kingdom are from the Center for
 International Business Cycle Research at Columbia University
 (see Zarnowitz 1997). The table divides the interest rate obser-
 vations into periods of expansions and contractions and per-
 forms x2 tests for the equality of various moments assuming
 independence across the cycles. As Zarnowitz (1997) noted,
 only the United States has a business cycle history that is "offi-
 cial," in the sense of being accepted by governmental author-
 ities, and the dating of the cycles for other countries is less
 reliable. This means we must interpret the results for Germany
 and the United Kingdom with caution.

 Focusing on the country with the best cycle dating, the
 United States, Table 2 reveals that recessions are characterized

 by significantly higher interest rates and somewhat more vari-
 able interest rates. The variability is, somewhat surprisingly,
 not significantly different across expansions and recessions.
 Interest rates in expansions exhibit higher kurtosis than those
 in recessions and they are significantly less mean reverting.
 Spreads are lower and more variable in recessions, but only
 the mean of the spread is significantly different across cycles.
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 Table 1. Sample Moments

 Panel A: Sample central moments

 U.S. Germany U.K.

 Parameter Short rate Spread Short rate Spread Short rate Spread

 Mean 7.3381 1.2198 6.9045 .4984 10.5605 .0643
 (.4449) (.2028) (.4197) (.2719) (.4268) (.2491)

 Variance 8.3103 2.0366 7.1111 3.1241 8.2388 2.7458
 (1.9390) (.3833) (1.3380) (.6714) (1.4354) (.5292)

 Skewness .8172 -.7281 .6806 -.5410 -.1521 -.2596
 (.2167) (.2782) (.2515) (.3227) (.1797) (.2404)

 Kurtosis 3.6102 3.5921 2.6987 3.3732 2.5406 2.8086
 (.6718) (.7179) (.4405) (.5768) (.3264) (.4071)

 Panel B: Sample autocorrelations

 U.S. Germany U.K.

 Lag Short rate Spread Short rate Spread Short rate Spread

 1 .9706 .8669 .9845 .9657 .9565 .9322

 (.0181) (.0292) (.0216) (.0265) (.0237) (.0238)
 2 .9295 .7663 .9583 .9207 .8948 .8776

 (.0347) (.0497) (.0436) (.0507) (.0450) (.0425)
 3 .8931 .6958 .9253 .8715 .8271 .8234

 (.0513) (.0689) (.0638) (.0711) (.0637) (.0596)
 4 .8551 .6221 .8858 .8127 .7627 .7692

 (.0653) (.0820) (.0812) (.0868) (.0784) (.0753)
 5 .8256 .5873 .8428 .7502 .7006 .7200

 (.0778) (.0836) (.0957) (.0999) (.0895) (.0895)

 Panel C: Sample cross correlations

 Short rates of countries Short rates/spreads

 Lag U.S./Germany U.S./U.K. Germany/U.K. U.S. Germany U.K.

 -3 .4197 .6470 .3279 -.3655 -.7929 -.6524

 (.1334) (.0777) (.1007) (.1130) (.0563) (.0727)
 -2 .4205 .6549 .3523 -.4213 -.8326 -.7016

 (.1322) (.0725) (.0964) (.1091) (.0435) (.0607)
 -1 .4120 .6521 .3696 -.4907 -.8656 -.7375

 (.1315) (.0686) (.0939) (.1038) (.0317) (.0521)
 0 .3953 .6454 .3808 -.5920 -.8804 -.7637

 (.1310) (.0678) (.0933) (.0976) (.0284) (.0459)
 1 .3756 .6139 .3782 -.5952 -.8634 -.7057

 (.1325) (.0698) (.0945) (.0982) (.0335) (.0539)
 2 .3542 .5758 .3717 -.5715 -.8389 -.6608

 (.1335) (.0754) (.0974) (.1013) (.0406) (.0629)
 3 .3294 .5485 .3650 -.5522 -.8097 -.6210

 (.1328) (.0828) (.1008) (.1080) (.0477) (.0718)

 NOTE: Sample period 1972:01-1993:02 (in-sample period). Standard errors are given in parentheses and are estimated using GMM

 with six Newey-West (1987) lags. In panel C, the cross-correlations are the estimates of cov(rt+,7 rtIr2)/ var(rt1)var(rt72) for
 i = -3, -2,..., +2, +3 and country m1 and country m2.

 In recessions, there is significantly more skewness (or a lack
 of negative skewness) and spreads are more mean reverting.
 These patterns are not perfectly replicated in Germany

 and the United Kingdom. In these countries, autocorrelations
 of the short rate and spread are not significantly different
 across the business cycle. In Germany, the patterns are similar
 to those in the United States, except for mean reversion, which
 is insignificantly higher in expansions. In the United Kingdom,
 the volatility of both spreads and interest rates is higher in
 expansions, although the p values are not very low. Although
 the point estimates of mean reversion follow the same pattern
 as in the United States, the differences across cycles are not
 statistically significant.

 Finally, in the United States and the United Kingdom, the
 correlation between the short rate and the spread varies over
 the business cycle. The difference in correlations suggests that
 in expansions the long rate is less sensitive to short-rate shocks
 than in recessions. To see this, note that

 p(r4, r,) = WI[w2 p(z, r) 1], (1)

 where w1 = o-(r,)/o-(r,), w2 = o-(zt)/o-(r), which is less
 than I empirically, r, is the short rate, z, is the spread, r, is
 the long rate, and p(x, y) is the correlation between x and y.
 In expansions, p(z,, r,) is more negative and correspondingly
 the correlation between short and long rates is lower.
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 Table 2. Interest Rate Behavior Over the Business Cycle

 U.S. Germany U.K.

 Recession Expansion X2 p Value Recession Expansion X2 p Value Recession Expansion X2 p Value

 Number of observations 50 247 149 148 128 169

 Variable Statistic
 Short Mean 9.6466 6.5970 .0001 7.4319 5.8327 .0043 11.9695 8.6856 .0000

 rate r (.7064) (.3118) (.4705) (.3028) (.3478) (.4178)
 Variance 8.4518 6.3173 .3581 8.9237 4.0253 .0055 4.7049 8.1835 .0177

 (1.8775) (1.3677) (1.3898) (1.0894) (.8396) (1.2026)
 Skewness .6841 1.0360 .5199 .2782 1.3318 .0298 .3151 .4186 .7551

 (.4745) (.2721) (.2448) (.4185) (.2559) (.2113)
 Kurtosis 2.0077 4.5499 .0159 2.0590 5.1641 .0408 2.5627 2.1248 .3906

 (.7198) (.7708) (.2111) (1.5036) (.4227) (.2854)
 Pi .7858 .9503 .0750 .9436 .8894 .2771 .8650 .9243 .2981

 (.0902) (.0201) (.0383) (.0319) (.0504) (.0266)
 P2 .5657 .9061 .0276 .8878 .7641 .1754 .7674 .8353 .4504

 (.1501) (.0368) (.0677) (.0613) (.0746) (.0503)

 Spread z Mean .5568 1.3835 .0474 .0247 1.2443 .0004 -.4896 .8025 .0001
 (.3903) (.1469) (.2688) (.2179) (.2128) (.2517)

 Variance 3.1724 1.5362 .1206 3.0657 2.1719 .2866 1.6891 2.9732 .0832

 (1.0170) (.2776) (.5956) (.5906) (.2843) (.6845)
 Skewness .2928 -1.0507 .0038 -.5584 -.8092 .6436 -.3903 -.8350 .1631

 (.4090) (.2188) (.2996) (.4517) (.2207) (.2300)
 Kurtosis 3.4900 3.9699 .6487 2.8995 4.9111 .1210 2.2583 3.5922 .1192

 (.7742) (.7144) (.4963) (1.1986) (.3802) (.7672)
 Pi .6461 .8630 .0362 .9010 .8590 .5751 .8487 .9123 .2889

 (.0987) (.0313) (.0588) (.0465) (.0529) (.0284)
 P2 .3000 .7700 .0007 .8089 .6918 .3698 .7646 .8200 .5278

 (.1308) (.0435) (.0952) (.0895) (.0707) (.0517)
 p(r, z) -.2580 -.6947 .0413 -.8813 -.8591 .6637 -.6272 -.7948 .0863

 (.1703) (.0886) (.0300) (.0414) (.0876) (.0433)

 NOTE: Sample period 1972:01-1996:08 (full sample). Recessions are defined to be from the peak to the trough of the business cycle. Standard errors are in parentheses and are computed
 using GMM with three Newey-West lags. pi denotes the ith autocorrelation, p(r, z) denotes the correlation between short rates and spreads, and X2 p value denotes the p value from a X2
 test of equality assuming independence across cycle periods.

 For the United States, the picture that emerges is one in
 which, in expansions, short rates are more persistent, the
 long rate is not as sensitive to short-rate shocks, and the
 short rate-spread correlation is more negative. In expansions,
 the interest rate persistence may arise from the smoothing
 efforts of the monetary authorities. In recessions, long rates
 are more sensitive to short-rate shocks despite the lower per-
 sistence of short rates. Here, shocks to the short rate are more

 likely to move the whole term structure. The difference in
 the short rate-spread correlation across expansions and reces-
 sions is significant at the 5% level in the United States, but
 only significant at the 10% level in the United Kingdom and
 not significant in Germany. However, the pattern of the short
 rate-spread correlation across expansions and recessions in the
 United Kingdom is quantitatively similar to the pattern in the
 United States.

 Overall, Table 2 implies the following points about the
 behavior of interest rates across the business cycle. First,
 the moments of interest rates vary from recessions to expan-
 sions; in particular, the mean is higher in recessions. Sec-
 ond, the spread is informative about the regime, with the
 spread increasing during expansions and correlations between
 the spread and the short rate changing across the business
 cycle. Third, mean reversion in the United States is signifi-
 cantly different across economic regimes. These patterns can
 potentially be accommodated in models that contain a regime
 variable.

 3. EMPIRICAL AND ECONOMETRIC FRAMEWORK

 3.1 General Multivariate Regime-Switching Model

 We describe a general multivariate RS model of short rates

 S= (rTUs, rger, rtuk)' and spreads z, = (zs, zter, Zuk)'. Let yt =
 (r', z )'. We assume that the information set J1t for our econo-

 , ' I ' Our most general metric model is composed of [y, Yt-1,... ]'. Our most general
 model is an RS vector autoregression (VAR):

 Yt = /-t(St) + A(st)yt-_ + 12(S,)E,, (2)

 where st denotes the regime realization at time t and Et
 iid N(0, I). We restrict attention to first-order VAR's because
 in our empirical work we usually estimate at most first-order
 systems.

 The process st follows a Markov chain with K regimes and
 with transition probabilities that may be logistic functions of
 lagged endogenous variables:

 eO, j+0 ijyt-1

 P(St ist-1 = J.t-1) = 1 + ejijyt- (3)

 Let Y, = (yy',Y - ... y'yo')' and denote the parameters of the
 likelihood by 0. Then, following the methodology of Hamilton
 (1994), we write the conditional likelihood as

 f( ,; 6) = l- f(ytlltl, st = i; O)p(st =/ ij1t-; 6) . (4)
 t=1 i=1
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 The ex-ante probability Pit = p(s, = iIlJt-1; 0) can be written as

 K

 Pit = P(st = ist-1 = j, t-"; 0)
 j=1

 [ f (Yt-_ Ist_ I j, ' t-2; O)P(St-I = JIt-2; 0)
 SE m=l f (y,_t- ls,_t- = m, Jt-2; O)p(St- = 1 t-2; (5)

 where the first term in the sum is the transition probability,
 which can be state dependent, and the other terms follow from
 Bayes' rule.

 We start the algorithm using (5) with p(s, = ijJ'l) equal to
 the ergodic probabilities of the system at t = 1 given by

 Xii x i (6)
 ?j=1 X

 where Xii is the iith cofactor of the matrix X = I - P1 and P1
 is the K x K transition matrix of the system at t = 1, which can

 depend on our conditional information set :J0. In the special
 case of constant transition probabilities, we start at the ergodic

 probabilities r7r of the transition matrix P that solve 7r = P'Tr.

 3.2 Special Cases

 Because the regime variable is unobserved to the econome-
 trician and must be factored out of the likelihood function,
 under what conditions can we obtain inefficient but consis-

 tent estimates when ignoring some variables? Let Zt represent
 variables that do not enter into our estimation and Xt repre-
 sent variables that do, so Yt = (Z,9 X')'. Using conditioning
 arguments, we can write

 T

 f(YT; 0) = II f (YtI3t-1; 6)
 t=

 = 'Ef(Ytlst= i, )t--l; 8)p(st,= iljft-1; 8) t=l i=1

 = H Ef (ZtlXt, St = i, 5t-1; " )f(Xtlst = i, 9rt-1; ")
 t=1 i=1

 x p(st = ijlt_1; 0)). (7)

 To take f(ZtX,, st = i, ,t-1; 8) out of the sum, assume that
 the excluded variables do not depend on the regime:

 f(ZtX,, s, = i, ft,1; 8) = f(ZtX,, ft,1; "). (8)

 We parameterize the model so that 6 = (300)' and {Oz} f

 {Ox} = O, where Oz and Ox affect the conditional distribution
 of the excluded variables and the included variables, respec-
 tively. We also assume that the ex-ante probability of being in

 a particular regime depends only on O8,:

 p(s, = ilt_-1; 8) = p(s, = ilt-_; Ox). (9)

 The likelihood can be written as

 T

 ?(ZT; 0) = Elogf(ZtlXt, jt-1, ; 0z)
 t=1

 + - lo(g Ef(Xtst = i, it_-l; OX)

 x p(s = it-; Ox)). (10)

 Maximizing the second sum in (10) yields consistent but
 inefficient estimates relative to full information maximum

 likelihood.

 Estimation of the full system is infeasible given the dimen-
 sion of 0, so we focus on models of subsets of the variables.
 Our choice here is partially based on previous literature and
 partially on economic reasoning. We believe that regimes in
 real rates, expected inflation, or business cycles are the source
 for potential regimes in nominal interest rates (see Garcia and
 Perron 1996; Evans and Lewis 1995). To obtain parsimony
 in modeling, we assume the existence of a two-state Markov
 regime variable in every country driving the entire term struc-

 ture. These country-specific regime variables are assumed to
 be independent across countries. It is conceivable that there
 is a world business cycle driving interest rates in many coun-
 tries simultaneously, and in some of the models we con-
 sider we allow for interdependence of various forms across
 countries. Nevertheless, it should be noted that the correla-

 tion between spreads and short rates within a country is typi-
 cally of a higher magnitude than the correlation of short rates
 and spreads across countries (see Table 1), providing empiri-
 cal motivation for this assumption. Although the two-regime
 specification may seem restrictive, it is the most the data can
 bear without extreme computational problems in estimation,
 and it suffices to capture the main empirical nonlinearities.
 In particular, Ang and Bekaert (2000) showed that two-state
 RS models can replicate the nonparametric drift and volatility
 functions of the short rate estimated by Aft-Sahalia (1996) and
 Stanton (1997). Finally, most of the past RS literature focused
 on two-state models, with the exception of Garcia and Perron
 (1996) and Bekaert et al. (2001) who estimated three-state RS
 models.

 Because most of the RS literature focuses exclusively on
 univariate interest rate models, we start by analyzing univari-
 ate short-rate models for the United States, Germany, and
 the United Kingdom. As (8) shows, to consistently estimate
 univariate short-rate RS models, the distribution of the term

 spreads or short rates from other countries should not depend
 on the regime of the short rate we consider. If regimes capture
 business cycle effects, the different correlations in the United
 States across economic cycles in Table 2 violate the assump-
 tions needed for consistent estimation.

 Incorporating the extra information from international and
 term structure data allows us to weaken the implicit assump-
 tions but makes estimation much more complex. In a sec-
 ond set of models, we add information from the short rates

 from other countries. In our multicountry model (discussed
 later), defining the regime variable st becomes more involved
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 Table 3. Summary of Models Estimated

 Univariate models of short rates

 Two regime equivalents

 One regime Constant probabilities Time-dependent probabilities

 AR(1) RS1 RS2
 (3) (8) (10)

 GARCH(1,1) RS3
 (5) (12)
 CIR RS4 RS5
 (3) (8) (10)

 Multicountry models of short rates

 Model Description

 VAR1 u Unconstrained VAR(1)
 (18)

 G1 One-regime Granger-causality model; homoscedastic errors
 (13)

 RSG1 RS Granger causality with the same a;, pi, ao, P, and Q across countries;
 (16) square-root errors

 RSG2 RS Granger causality with the same a,, pi, P, and Q across countries,
 (20) but different o-; square-root errors

 D1 One-regime diagonal model; homoscedastic errors
 (11)

 RSD1 RS diagonal model with the same a;, pi, o,, P, and Q across countries;
 (12) homoscedastic errors

 Multivariate models of the term spread

 Two regime equivalents

 One regime Constant probabilities Time-dependent probabilities

 VAR(1) RSM1 RSM2
 (9) (20) (24)
 VAR(2)

 (13)
 ATSM

 (9)

 as it embeds all possible combinations of the country-specific
 regime variables for the three countries.

 Finally, we consider models in which term spreads are
 added to the short rate and their dynamics remain driven by
 one country-specific regime variable. In most term structure
 models, the term spread is an exact function of a number of
 factors that also drive the short rate. However, the evidence
 from a growing literature that focuses on the response of the
 term structure to various shocks suggests that the spread con-
 tains additional independent information, which may help in
 the classification of regimes. For example, Evans and Mar-
 shall (2000) showed that monetary policy shocks have large
 effects on the short rate but leave the long rate unaffected,
 hence shrinking the spread. However, shocks from real eco-
 nomic activity affect the whole term structure and correspond
 to a level effect, increasing the interest rate but leaving the
 spread largely unaffected. Estrella and Mishkin (1997) found
 that the spread is useful in predicting future activity and that
 the spread contains predictive information that is not captured
 by other monetary policy variables. A reduced-form model
 where the spread and short rate have correlated innovations
 and different feedback rules, in which spreads help predict

 future regimes, may be a good representation of such a world.
 We estimate the short rate-spread model country by country
 but also consider one estimation that uses cross-country infor-
 mation.

 Table 3 presents a summary of the models estimated, their
 abbreviations used throughout the article, and the number
 of parameters in parentheses. We now briefly outline each
 of these models. (Parameter estimates are available in an
 appendix, which is available from the authors on request.)

 3.2.1 Univariate Models. For each country m, we con-
 sider special cases of the following general model considered
 in Gray (1996):

 rm = r (s) + p(stm)rtm - + hm (s ).t, (11)

 where e - iid N(0, 1). The conditional volatility htm (st) is
 specified as

 (h-1 (st))2 = ao(st) + a(Stm) q-1

 + b, (st)(ht_2)2 + b2(s)(rtml), (12)
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 where (ht'l)2 = E_l[(rtm)2] - (Et[r]m )2 and = r -
 E,_,[rtm]. The regime variable st is either 1 or 2 and has tran-
 sition probabilities:

 eaj+bjrm
 (s = jlst1 -= j, rtm-) 1 ea+br' j=1,2. (13)

 We denote constant transition probabilities as P and Q for

 j = 1, 2, respectively. We evaluate E_1 [rt] and E_1 [(rt)2] as

 2

 E,_li[rm] = E Pt,j(.j +pjr'm,),
 j=1

 2

 E,_,[(rt)2] Pt, j((j -t j tl2 + -(ht+lj)2), (14)
 j=1

 where the subscripts indicate the state s -j.
 The special cases we consider involve setting a1 = b= = b2 =

 0 (RS AR(1)), b2 = 0 (RS GARCH(1, 1)), and ao = a1 = b, =
 0 (RS CIR). The last model is the RS equivalent of the dis-
 cretized square-root model of Cox, Ingersoll, and Ross (1985).

 In practice, many interest rate RS models yield one unit-
 root or near unit-root regime and one more mean-reverting
 regime. Ang and Bekaert (1998) and Holst, Lindgren, Holst,
 and Thuvesholmen (1994) proved that such processes retain
 covariance stationarity as long as the unconditional autocorre-
 lation is strictly less than 1. This is guaranteed by appropriate
 mixing of the two regimes. With constant transition probabili-
 ties, a sufficient condition is that the ergodic probability asso-
 ciated with the stationary regime is nonzero.

 3.2.2 Multicountry Models. For rt =(rts rtger rtk)',
 we consider the following general multicountry RS model:

 aus s(sU

 r = (Sger) +Au(sus s ger uk -1 -ul tl t tt t ., 1

 + 11/2 us ger Sukt, (15)

 with = (Es E ger uk)t iid N(0, I).
 We assume that there are two regimes per country with con-

 stant probabilities, so for country m the transition matrix is

 (,iQ I-m). For computational tractability, and to keep the
 number of parameters as small as possible, we do not con-
 sider state-dependent transition probabilities in the multicoun-
 try model.

 We assume regimes in different countries to be indepen-
 dent of the regimes in another country. Formally, let Sm =

 {st, s_ 1,... } denote the past history of regimes for country

 m. Then

 p(stm I Ss, Sger, Suk) - p(stm Sm) = p(smlsml1). (16)

 Intuitively, this means that the regime for one country is unaf-

 fected by the regime in another country. We may justify this
 by interpreting the regimes as arising from country-specific
 factors. This independence assumption can only be relaxed at
 considerable computational cost and proliferation of param-
 eters. With two regimes for three countries, it is possible to
 enlarge the state space to 23 = 8 regimes, where the regimes

 are defined as st = 1 .... ,8 (see Hamilton 1994):

 s, U.S. Germany U.K.
 1 1 1 1

 2 2 1 1

 3 1 2 1

 4 2 2 1

 5 1 1 2

 6 2 1 2

 7 1 2 2

 8 2 2 2

 We then calculate an 8 x 8 transition matrix, where, for exam-

 ple, p(st = IIs,_, = 1) = puspgerpuk
 With the regimes now redefined as st = 1 ... 8, we rewrite

 (15) as

 rt = a(st) + A(st)rt_1 + ut, (17)

 where ut N(0, (s,)). From hereon, subscript i's refer to the
 values each specific country's state comprises in the overall
 state i. For example, for st = 4,

 aus aus (sus = 2)

 ger ger (ger = 2) .

 uk uk uk 1)

 Given the number of parameters, estimation of the full
 model is infeasible. To gain efficiency, we test whether some
 parameters are identical in the one-regime VAR. In particular,
 we test for Granger causality on each country's short rates.
 These results are presented in Table 4. The table shows that a
 joint test for no country Granger-causing another just fails to
 reject (p value = .0528). Nevertheless, there is some evidence
 that U.S. rates Granger-cause German and U.K. rates (p value
 = .0029).

 The results of Table 4 lead us to consider two formula-

 tions of Ai, a triangular formulationwhere Ai =- i p( ^ger o
 \ uk oL puk

 Table 4. Granger Tests in the Multicountry VAR Model

 Granger causality A[i, j] = 0 p value

 No country Granger-causes another All off-diagonal elements = 0 .0528
 U.S. Granger-causes Germany and U.K. A[2, 1] = A[3, 1] = 0 .0029
 Germany and U.K. Granger-cause U.S. A[1,2] = A[1, 3] = 0 .7332
 Germany and U.K. Granger-cause each other A[2, 3] = A[3, 2] = 0 .6742

 NOTE: Wald tests are performed using GMM with six Newey-West lags. The notation A[i, j] refers to the element in row i, column j.
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 which we refer to as a Granger-causality formulation, and a /P? 0 0
 diagonal formulation where Ai = 0 per o ` .

 O 0 puk
 To impose further structure on the error terms, we model

 the errors as

 ush us I e

 ut, i hrt-1,iE t
 ger hger 2 ger1
 ut, t-,Et + Y et (18)

 uuk h"k 3 + yukk.1 t, i t-l,t Yi Et

 where E, = (f, E 2, E 3)' are drawn from an iid N(0, I) distri-
 bution and the conditional volatility of country m, hm'Li, is
 specified either as a constant, h 1_,i = oim, or as a square-
 root process, h1,i = --rm/r. In this specification, the
 errors from the United States also shock the interest rates of

 Germany and the United Kingdom, but not vice versa. Another
 interpretation along the lines of a world business cycle is
 that there are "world" shocks, which drive the dominant U.S.

 economy, whereas Germany and the United Kingdom are also
 subject to these shocks as well as "country-specific" shocks.
 The extent to which these countries are exposed to the world
 shock depends on the state of the domestic economy. Given
 the dominance of the United States in the world economy,
 such a structure seems reasonable. The conditional covariance

 matrix, conditional on state st = i, is given by

 t, (S, = i) = E[utu1Jt_,, st = i]

 (hus 2 Ygerh us yAkhus,

 Sgerhusi (her",t (y+(er)2 ygeryuk . (19)
 yuk hus k ger (huk )2 uk2 i t-, Yi iht-l,i

 This specification arises because the errors umi inherit a mul-
 tivariate normal distribution from the normality of the errors

 Etmi. Note that German and U.K. shocks are conditionally cor-
 related to the extent only that they correlate with the U.S.
 shock.

 It is possible to obtain probability inferences for a particu-
 lar country by summing together the relevant joint probabili-
 ties. For example, if we want the ex-ante probability p(stus
 115t_), we just sum over the probabilities p(stl1t_l) where
 sUs = 1. In this case, we would sum over states s = 1, 3, 5, 7.
 3.2.3 Term Spread Models. For yt = (rt zr)', the

 short rate and spread for country m, the RS term spread
 model is

 yt = 4(st) + A(st)ytm1 + '1/2(Sm)Et, (20)

 where e " N(0, I). We use two regimes, with constant transi-
 tion probabilities and logistic state-dependent transition prob-
 abilities where

 p(st- = jlstm_l = j, ytml )

 exp(aj + bjrt1 + cztl ) 1ep ?br 4jL= , 2. (21)
 1 + exp(aj + birt, + ciztml)'

 We also estimate the term spread model jointly across the
 United States, Germany, and the United Kingdom, following
 Bekaert et al. (2001). This estimation views each country as an

 independent draw of the DGP, by assuming independence of
 the regimes across countries, lack of cross-country correlation,
 and the same parameters across countries.

 We consider two classes of one-regime models as potential
 benchmarks. First, we estimate unconstrained VAR's of the

 short rate and the term spread, restricting attention to first-
 and second-order VAR's. Second, we consider the affine class

 of term structure models (see Duffie and Kan 1996). In these
 models, zero-coupon yields are affine (constant plus linear
 term) functions of the unobservable factors. This implies that
 we can represent y'(n), the yield for maturity n for country
 m, as an affine function of the state variables Xm' for coun-
 try m:

 yt(n) = A(n) + B(n)'Xt, (22)

 where the scalar A(n) and vector B(n) are functions of the
 model parameters. We represent the dynamics of Xt, without
 loss of generality, by a first-order VAR:

 X 4 + F 7 + _l -1/2 Em, (23)

 where et, -N(0, I). The 1-month yield (which we do not
 observe) takes the form:

 y (1) = 8O + 8' Xt, (24)

 where 80 is a scalar and 8, is a vector. The specification of a

 pricing kernel 7rt+l, for each country m, completes the model.
 The pricing kernel prices all nominal bonds through the recur-
 sive relation:

 Pn(n + 1) = E,[TT+IPt+I (n)], (25)

 where Pt(n) is the zero-coupon bond price of maturity n for
 country m.

 Different affine models make different assumptions about
 the state variable dynamics and the specification of the pric-
 ing kernel, in particular, the specification of the prices of risk.
 Standard models assume either homoscedastic state variable

 dynamics with constant prices of risk, for example, corre-
 lated Vasicek (1977) models, or a square-root process with
 time-varying prices of risk or a combination of the two. Duf-
 fee (2001) demonstrated that standard affine term structure
 models forecast poorly out of sample. Therefore, we con-
 sider an alternative affine model not considered by Duffee. We
 consider Gaussian, homoscedastic state variables, but time-
 varying prices of risk. More specifically, we assume that the
 pricing kernel has the form:

 t+1 = exp - 2 A, - S -8, X AEm t (26)

 where the risk premia A, are time varying:

 A, = A + h1X?, (27)

 where Ao is a vector and A1 is a matrix.
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 We work with a two-factor model and for identification pur-

 poses, we impose the following parameter restrictions:

 ?0- - \12 V22 '
 fl = I, AO = Io 0A,=1( 0 A122 (28)

 We call this bivariate correlated factor model the Gaussian

 affine term structure model (ATSM) with time-varying risk
 premia.

 The model has a structural VAR representation in terms of
 the observable yields. The short rate and spread for country m
 can be written as

 ( A(3) + B(3) Xm (29) A(60) - A(3)) ( B(60) - B(3) (29)

 or, by appropriately defining A and B, as y = A + BX". The
 discrete-time recursive relations determining A(n) and B(n)
 are derived in Ang and Piazzesi (2001). By substituting (23)
 into (29), it is straightforward to show that

 Y" = tA + Ayt1 + 1/2Et, (30)

 where e, - N(0, I), t = (I - BFB-1)A, A = Bf(B-', and
 11/2 = B. This representation makes both maximum likeli-
 hood estimation and forecasting using the observed yields
 easy. Clearly, the ATSM is simply a VAR model with cross-
 equation restrictions. Whereas the estimation of this model
 went smoothly for the United States, the likelihood surfaces
 for the United Kingdom and Germany proved very flat. Mod-

 els with A restricted to 0, that is, standard correlated Vasicek
 (1977) models, do not converge at all for all countries. Dai
 and Singleton (2001) showed that a Gaussian model with
 affine prices of risk matches the deviations from the expecta-
 tions hypothesis observed for U.S. data, but they ignore small-
 sample biases (see Bekaert, Hodrick, and Marshall 1997).

 3.3 Model Diagnostics

 We start by reporting a number of standard in-sample
 residual tests for our various models. Our second diagnostic
 more easily leads to comparisons across a large number of
 nonnested models of varying complexity. We measure the fit
 of the unconditional moments implied by the models to the
 sample estimates of the unconditional moments. Single-regime
 models may perform reasonably well along these dimensions
 even though they are not the true DGP. However, they are
 less likely to perform well over tests that exploit the changing
 behavior of interest rates across regimes. To easily rank the
 performance across all models, we focus on summary statistics
 for out-of-sample forecast errors. Finally, we compare differ-
 ent RS models, using a measure of the quality of the regime
 classification. We discuss these in turn.

 3.3.1 Residual Tests. We report two tests on in-sample
 scaled residuals e' of short rates of country m where
 em = (rt7 -E,_l[rtm])/h_1. The conditional volatility h_,1 is

 given by

 (hml)2 = Vart-1 (rt - E_,1 [rt])

 = E,_ [(r"t)2] - (E,_ [rt])2. (31)

 For a univariate RS model, Et,_[r7t] and Et,_[(rtm)2] are eval-
 uated using Equation (14).

 Following Bekaert and Harvey (1997), we use a generalized
 method of moments (GMM) test of the moment conditions on
 the mean of the scaled residuals:

 E[etemj ] = 0 for j = 1, 2,.... ,k, (32)
 which we refer to as "mean" residual tests, and a GMM test
 of the moments of the variance of the scaled residuals:

 E[((e)2 - 1)((em )2 - 1)] = 0 for j = 1,2,... k,
 (33)

 which we refer to as "variance" residual tests. In both tests, we

 choose k = 6 and correct for heteroscedasticity in the residuals
 following Andrews (1991).

 3.3.2 Unconditional Moment Comparisons. We compute
 the unconditional population moments of our various models
 using analytical expressions where possible but use a simu-
 lation for the RS models with time-varying transition prob-
 abilities. Analytical formulas for moments are available only
 for one-regime CIR and generalized autoregressive condi-
 tional heteroscedasticity (GARCH) processes as well as for
 autoregressive regime-switching models with constant transi-
 tion probabilities (see Timmerman 2000). Because of the high
 persistence of the series, we use sample sizes of one million.

 To enable comparison across several models, we introduce
 the point statistic:

 H = (9 - g)'Ig1 (g - g), (34)

 where g are sample estimates of unconditional moments, g are
 the unconditional moments from the estimated model, and 1,
 is the covariance matrix of the sample estimates of the uncon-

 ditional moments. 1, is estimated using a GMM estimation
 of the unconditional moments, and, for the purposes of this
 article, we use a Newey-West (1987) estimate with six lags.
 The point statistic assigns weights to the deviations between
 the unconditional moments implied by various models and the
 sample unconditional moments, which are inversely propor-
 tional to the error by which the sample moments are estimated.

 We test for the first four central moments, the autocorrelo-

 gram, and cross-correlations. In the first case, g contains the
 mean, variance, skewness, and kurtosis; for the autocorrelo-
 gram, the first 10 autocorrelations; and for cross-correlations,
 lags from -3 to +3. Generally, the high persistence of interest
 rates may lead to poor estimation of unconditional moments.
 Therefore, there are instances where high correlation between
 the estimated moments leads to somewhat poorly conditioned
 weighting matrices. Hence, we also calculate a related statis-

 tic H*, which uses as a weighting matrix the diagonal of Eg.
 Strong correlations between the estimated moments sometimes
 imply that the model minimizing H does not minimize H*.
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 3.3.3 Forecast Comparisons. Our forecast methodology
 is to estimate only using the in-sample period and forecast
 without updating the parameters on the out-of-sample period.
 We use two point statistics for comparison of unconditional
 forecast errors, the root mean squared error (RMSE), and
 mean absolute deviation (MAD). For a time series 4,, these
 are defined as

 j,1 RMSE =- - )2, T

 MAD= n C4 - Ot, (35)
 where the hatted values denote conditional forecast values. In

 our application, we let 4, = rk for univariate and multicountry
 models, looking at first and second moments k = 1, 2. In term

 spread models, we also consider 4 = z, and the cross-moment
 Ot = rtzt?

 3.3.4 Regime Classification. Previous specification tests
 for RS models have focused on properties of residuals (Gray
 1996) or scores (Hamilton 1996), but here we propose a sum-
 mary point statistic that captures the quality of regime clas-
 sification. An RS model assumes that at each point of time
 the data are drawn from one of the regimes that is observed
 by agents in the economy but not by the econometrician. To
 conduct inference about the regime, most articles focus on the

 smoothed (ex-post) regime probabilities, p(st = 115T), which
 we denote as p,. Weak regime inference implies that the RS
 model cannot successfully distinguish between regimes from
 the behavior of the data and may indicate misspecification. An
 ideal RS model should classify regimes sharply so that pt is
 close to 1 or 0; in inferior models, p, may hover close to a
 half.

 To measure the quality of regime classification, we therefore
 propose the regime classification measure (RCM), defined for
 two states as

 RCM = 400 x - pt(1 - p). (36)
 T r=l

 The constant serves to normalize the statistic to be between

 0 and 100. Good regime classification is associated with low
 RCM statistic values: A value of 0 means perfect regime clas-
 sification and a value of 100 implies that no information about
 the regimes is revealed. Because the true regime is a Bernoulli
 random variable, the RCM statistic is essentially a sample esti-
 mate of its variance.

 The statistic easily generalizes to multiple regimes. A gen-
 eral definition of the statistic for K regimes is

 RCM(K)= 100K2 1 I (37) T- r=- Pi, t ' (37)
 where Pi, t = P(s, = il7).

 4. EMPIRICAL RESULTS

 4.1 Estimation Results of the Regime-Switching Models

 Estimation of regime-switching models in finite samples is
 plagued by the presence of multiple local maxima. To ensure

 that we identify the global maximum for the 31 RS models
 we estimate, we use the following procedure. First, we obtain
 estimates for a large set of starting values and select a can-
 didate global maximum. Second, to check for stability of the
 global, we reestimate using starting values randomly chosen
 in a +10% interval around the parameters of the provisional
 global maximum. When models have trouble converging to a
 well-behaved global using this procedure, we either dropped
 the model or simplified it, rather than continuing the numeri-
 cal search toward poorly identified models.

 The RS models all produce one regime with a unit root
 and lower conditional volatility and a second regime that is
 stationary with higher conditional volatility. This type of esti-
 mation is found in univariate, multicountry, and term spread
 models. Economically, the first regime corresponds to "nor-
 mal" periods where monetary policy smoothing makes interest
 rates behave like a random walk. When extraordinary shocks
 occur, interest rates are driven up, volatility becomes higher,
 and interest rates become more mean reverting.

 In general, models with time-varying transition probabilities
 have many insignificant coefficients in the probability terms,
 which suggests overparameterization. Previous studies with
 time-varying probabilities such as Gray (1996) also document
 this. For some of our models, we fail to reject the null hypoth-
 esis of constant probabilities. Nevertheless, the general pattern
 that emerges in the majority of cases is as expected: Higher
 short rates (and spreads) increase the probability of switching
 to the high-volatility regime.

 To highlight the features of specific models, we discuss
 univariate, multicountry, and term spread RS models in turn.
 Recall that Table 3 presents the nomenclature scheme of the
 models.

 4.1.1 Univariate Models. As Table 3 shows, we consider
 three different conditional volatility specifications. We retain
 constant transition probability models for all countries for all
 the formulations, except for the UK GARCH model. We do
 not estimate state-dependent models for the GARCH formu-
 lation, because the constant probability models are already
 overparameterized. In estimating models with state-dependent
 transition probabilities, we only find significant state depen-
 dence for the US CIR model and the German RS AR(1)
 model. We drop the RS AR(1) model with state-dependent
 transition probabilities for the United States.

 4.1.2 Multicountry Models. RSD1 is a diagonal model
 with the same parameters (ate, pi, oi) across countries and
 homoscedastic within-regime errors. The RSG1 model is iden-

 tical but has square-root errors. Constraining oi to be the same
 across countries imposes the restriction that the conditional
 volatility for Germany and the United Kingdom is higher than
 the conditional volatility for the United States. We relax this
 formulation in the RSG2 model and find that it makes little

 qualitative difference.
 The estimation results show that Granger causality by U.S.

 shocks is important only for the United Kingdom in the sec-
 ond mean-reverting high-variance regime. Granger causality
 of Germany is insignificant in both regimes. Looking at the
 impact of U.S. shocks on the error terms of Germany and the
 United Kingdom, the Granger-causality model RSG2 has sig-
 nificant shock terms for Germany and the United Kingdom
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 in the first random walk regime. The diagonal model, how-
 ever, shows U.S. shocks affecting only U.K. shocks in the first
 regime. To summarize, in the "normal" random walk regime
 U.S. shocks propagate into Germany and the United Kingdom,
 whereas in the second regime U.S. short rates Granger-cause
 only U.K. short rates.
 4.1.3 Term Spread Models. In the RS term spread mod-

 els, we find that Granger causality is model dependent. For
 the United States and Germany, one regime produces a sig-
 nificant Ai[1, 2] term, so the spread Granger-causes the short
 rate in only one regime (the higher variance regime for the
 United States but the lower variance one for Germany). The
 evidence for the United Kingdom is less clear as the coeffi-
 cient is just insignificant in one regime but very insignificant
 in the other. Similarly, the short rates Granger-cause spreads
 only in one regime but these may not be the same regimes
 where spreads Granger-cause short rates. In the United States,
 these are in opposite regimes, but for Germany these regimes
 are the same. In the joint estimation where we assume inde-
 pendence and the same parameters across countries, short rates
 and spreads Granger-cause each other in the same regime (the
 lower conditional variance regime).
 The correlation between short rates and spreads differs

 markedly across regimes. The high-variance less persistent
 regime has more negative correlation than the low-variance
 regime. Wald tests for equality across the regimes reject with
 zero p value for all countries. Short rates and spreads seem
 less correlated in the first regime, which corresponds to "nor-
 mal" periods. However, note from Table 2 that the correlation

 between the short rate and spread is more negative in expan-
 sions, which is the opposite to what the regime-switching
 models imply. Nevertheless, the high-mean, high-variance

 second regime does correspond to economic recessions. We
 examine this further in Section 6.

 For our time-varying probability formulations, the transi-
 tion probabilities depend on both the short rate and the spread,
 except for the United States where we use a model with tran-
 sition probabilities dependent only on the spread. Likelihood
 ratio tests for constant transition probabilities versus time-
 varying probabilities reject for all countries. The results on
 Granger causality and regime-dependent correlations hold for
 both the constant and the time-varying transition probability
 models.

 5. PERFORMANCE MEASURES

 Section 5.1 analyzes residual tests and the moment per-
 formance, and Section 5.2 analyzes forecast performance.
 Section 5.3 summarizes the evidence and makes use of a

 Monte Carlo experiment to help interpret the results. The
 results are reported in Tables 5 through 10.

 5.1 In-Sample Tests

 5.1.1 Residual Tests. Table 5 lists the results of the mean

 and variance residual tests. Turning first to the U.S. results, the
 benchmark single-regime models perform well, passing both
 the mean and the variance residual tests. However, in each
 of the univariate, multicountry, and term spread models, the
 variance residual test has a p value of only slightly larger than
 5%. The only models that comfortably pass both the mean and
 the variance residual tests incorporate term spread information
 in an RS model (RSM1 and RSM2). The single-regime or
 RS (RS3) univariate GARCH models and the CIR models fail

 Table 5. Residual Tests on Short Rates

 U.S. Germany U.K.

 Model Mean Variance Mean Variance Mean Variance

 Univariate models

 AR1 .3170 .0523 .0212* .4826 .4855 .8401
 RS1 .0101* .4980 .0003** .2782 .4868 .6243
 RS2 - - .0001** .0094** .0000** .0248*
 GARCH .0085** .1529 .0000** .5841 .4543 .8894
 RS3 .0153 .5452 .0011** .4612
 CIR .0071** .0000** .0088** .1321 .4410 .7602
 RS4 .0039** .5368 .0000** .1489 .4519 .8656
 RS5 .0030** .6816 .0000** .0592 .0000** .2700

 Multicountry models

 VAR1u .3728 .0508 .0137* .2463 .5197 .6841
 G1 .8767 .0000** .0246* .1189 .7495 .6441
 RSG1 .0483* .1081 .0002** .5369 .7702 .5769
 RSG2 .0311* .1478 .0002** .5476 .7753 .6668
 D1 .2497 .0513 .0211* .4820 .4885 .8407
 RSD2 .0016** .0000** .0000** .0000** .6210 .4704

 Term spread models

 VAR1 .5087 .0547 .0197* .4432 .4598 .4517
 VAR2 .8715 .0185* .3146 .1572 .4568 .4146
 ATSM .0120* .0911 .0233* .4902 .0329* .4132
 RSM1 .3831 .1753 .0011** .3581 .5929 .8920
 RSM2 .2988 .1434 .0013** .3682 .4338 .9694

 NOTE: The table reports p values from mean and variance residual tests. p values significant at the 5% (1%) level are labeled (*) (**).
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 Table 6. Moments of Univariate and Multicountry Models

 Panel A: Univariate models

 Model

 Statistic RS1 RS2 RS3 RS4 RS5 AR(1) GARCH CIR

 U.S.
 Central moments H 330.99 - 327.56 113.72 63.03 30.32 - 3.11*

 H* 112.15 - 72.92 36.78 46.24 15.26 - 1.71*
 Autocorrelogram H 10.01 - 6.67 8.82 5.23 3.88* - 3.91

 H* 20.84 - 7.81 16.31 6.19 1.30* - 5.34

 Germany
 Central moments H 67.03 4,563.76 5,211.55 100.78 17.03* 165.53 34.11

 H* 17.80 153.80 4,088.45 27.78 9.61 7.98 - 6.54*
 Autocorrelog ram H 6.82 9.21 5.08* 6.14 7.67 6.91 - 5.96

 H* 13.01 22.30 3.07* 12.46 20.59 13.74 - 9.59

 U.K.
 Central moments H 3.49* 4.00 - 29.02 36.90 5.81 6.82 25.11

 H* 4.38 4.19 - 18.34 34.27 2.83* 4.09 19.13
 Autocorrelogram H 7.43 7.75 - 7.98 7.36* 9.51 8.84 8.43

 H* 11.06* 13.07 - 14.01 14.61 20.24 17.55 15.58

 Panel B: Multicountry models

 Model

 Statistic VARlu D1 RSD 1 G 1 RSG 1 RSG2

 U.S.
 Central moments H 30.83 21.73 13.38* 30.31 28.66 32.66

 H* 15.25 15.76 11.10* 15.26 17.26 22.64

 Autocorrelogram H 3.43 3.34* 8.06 3.87 9.77 11.70
 H* .97 .25* 13.44 1.29 19.84 27.34

 Germany
 Central moments H 174.98 166.62 54.91 207.78 26.09* 26.47

 H* 7.90* 7.98 15.50 8.20 10.09 11.09

 Autocorrelogram H 6.12* 6.91 7.19 6.99 7.96 9.12
 H* 12.43* 13.82 13.21 15.10 16.55 21.84

 U.K.
 Central moments H 6.40 6.06* 64.62 7.94 146.54 287.66

 H* 2.76 2.80 55.29 2.71* 81.77 123.56

 Autocorrelogram H 10.08 9.63* 26.13 11.67 31.97 34.04
 H* 21.90 20.69* 81.71 26.34 106.81 113.68

 NOTE: Lowest statistic values are denoted with an asterisk.

 to pass the mean residual tests. The multicountry RS models
 generally do poorer than their single-regime counterparts.

 The mean residual tests for Germany reject all the mod-
 els, with the exception of a second-order VAR, despite a first-
 order VAR being the optimal Akaike information criterion
 (AIC) and Bayesian information criterion (BIC) choice. Sev-
 eral RS specifications (RS2 and RSD2) do less well than their
 single-regime counterparts, with the variance residual test also
 rejecting them. In comparison, almost all the models pass the
 residual tests on U.K. data, with univariate RS state-dependent
 transition probability specifications (RS2 and RS5) and the
 ATSM being the exception.

 The Gaussian ATSM's reject the mean residual test at
 a 5% level across all countries. The implied factors from
 affine models are severely biased, which leads to the poor
 in-sample performance, but the ATSM's manage to pass the
 variance residual tests. This confirms evidence in Ghysels and
 Ng (1998), who rejected the conditional mean specification of
 affine models, but also found less evidence of misspecification
 with second moments.

 In summary, no single model passes all the residual tests for
 all countries. For the United States and the United Kingdom,
 RS term spread models comfortably pass the residual tests,
 whereas almost all models fail to pass the residual tests on
 German data.

 5.1.2 Matching Sample Moments. We present H statis-
 tics for univariate models in panel A of Table 6. For the
 United States, the one-regime models seem to work better in
 matching unconditional moments than the RS models. The
 dismal performance of models RS1-3 for the United States is
 partly caused by the unit root in one of the regimes, although
 the models are theoretically stationary. For Germany, RS2 and
 RS3 do poorly because they produce large values for kurto-
 sis. The best fits for the moments for Germany are for the
 one-regime and RS CIR models. For the United Kingdom, the
 AR(1) RS processes work best with the square-root processes
 performing more poorly. RS models with state-dependent
 probabilities (RS2, RS5) and GARCH errors (RS3) fare less
 well than the constant probability models, RS1 and RS4.
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 Table 7. Unconditional Moments of Term Spread Models

 Model

 Statistic VAR 1 VAR2 ATSM RSM1 RSM2

 U.S.

 Central moments rt H 31.51 29.99 29.62* 193.20 141.95
 H* 15.26* 15.27 15.35 97.05 54.83

 zt H 10.09 10.07* 10.88 119.70 30.96
 H* 7.62* 7.62 7.87 86.30 21.77

 Autocorrelations rt H 2.46* 890.48 52.25 4.32 5.13
 H* .84* 17.35 249.45 1.33 12.11

 zt H 21.70 5,724.77 5.30* 16.82 10.58
 H* 43.26 68.67 5.67* 69.27 14.52

 Cross-correlation rtzt H 86.99 444.51 73.71 12.73 2.05*
 H* 16.24 8.82 260.11 31.29 .19*

 Germany
 Central moments rt H 232.01 157.55* 250.97 374.27 268.22

 H* 8.24 8.08* 10.42 20.11 11.40
 zt H 6.43 6.03* 17.11 38.98 18.69

 H* 3.29* 3.69 7.49 10.04 5.97
 Autocorrelations rt H 7.41 2,941.41 4.85* 6.65 6.04

 H* 15.28 23.09 3.24* 13.90 10.63
 zt H 8.50 316.92 5.70* 15.57 14.66

 H* 17.39 34.19 8.68* 51.67 47.65
 Cross-correlation rtzt H 6.96* 142.92 1,718.14 17.30 10.80

 H* 8.89 7.71 4,228.46 10.91 4.21*
 U.K.

 Central moments rt H 4.84 4.93 4.33* 23.51 32.49
 H* 3.03 3.00* 3.10 4.33 5.60

 zt H 2.25 2.17* 77.39 9.80 11.09
 H* 1.42 1.40* 46.42 7.63 9.15

 Autocorrelations rt H 8.04 50.26 7.24* 8.69 8.98
 H* 16.26 60.28 13.31* 19.00 21.69

 zt H 2.82* 119.41 8.61 2.99 3.09
 H* .38* 21.27 16.61 2.00 2.42

 Cross-correlation rtzt H 7.87* 199.73 397.72 17.00 11.36
 H* 11.44 10.93 1,233.65 9.34 2.09*

 NOTE: Lowest statistic values are denoted with an asterisk.

 Panel B of Table 6 reports H statistics for the multicoun-
 try models. Among the one-regime models, diagonal models
 match central moments better than the unconstrained VAR(1)
 or Granger-causality models, suggesting overparameterization
 in these models. With the exception of the United Kingdom,
 the RS diagonal model performs better than its one-regime
 diagonal counterpart. This is quite an achievement, consider-
 ing that this model constrains each country to have the same
 parameters. The RS Granger-causality models perform more
 poorly than the RS diagonal models for the United States and
 the United Kingdom but not for Germany. There is little dif-
 ference when we no longer constrain ai to be equal across
 countries in the RS Granger-causality models.
 Table 7 reports the H and H* statistics for the bivariate

 short rate-spread system. The one-regime models (VAR(1),
 VAR(2), and ATSM) generally outperform the RS models
 (RSM1 and RSM2) at matching unconditional moments. For
 one-regime models, the more parsimonious VAR(1) defi-
 nitely does better at matching autocorrelations than VAR(2),
 with comparable results for the central moments. For the
 United States, the ATSM performs almost as well as VAR(1)
 and VAR(2) in matching central moments, but this is not
 the case for the United Kingdom and Germany. In matching
 autocorrelations, the ATSM performs best across the board in
 Germany, performs best for the short-rate aucorrelations in

 the United Kingdom, and also performs best for spread cor-
 relations in the United States. However, the ATSM's perform
 extremely poorly in all countries matching the short rate-
 spread cross-correlation. This is because the off-diagonal term
 in the companion matrix of the factors [()12 in (28)] is near
 0 for Germany and the United Kingdom. Turning to the RS
 models, the state-dependent probability models fare better for

 the United States and Germany than their constant probabil-
 ity counterparts, but for the United Kingdom this result is
 reversed. One-regime models clearly outperform RS VAR's
 for central moments and autocorrelograms. Only for cross-
 correlations does RSM2 provide a good fit.
 Does incorporating extra information improve the perfor-

 mance of RS models? By looking across panels A and B of
 Table 6, we compare the univariate RS models with the mul-
 ticountry RS models. We see a dramatic improvement when
 incorporating multicountry information for the United States

 but not for Germany or the United Kingdom. Comparing the
 univariate RS models in Table 6, with the bivariate RS term
 spread models in Table 7, the term spread information leads
 to a better match of moments only for the United States, and

 for autocorrelations only for the United Kingdom. Overall,
 using the extra information from other countries or the term
 spread unequivocally helps the United States obtain a better
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 Table 8. Forecasts of Univariate and Multicountry Models

 Panel A: Univariate models

 Model

 Statistic RS1 RS2 RS3 RS4 RS5 AR(1) GARCH CIR

 U.S.

 r, MAD .1488 - .1458 .1458 .1487 .1483 .1387* .1664
 RMSE .1956 - .1943 .1945 .1968 .1888* .1999 .1999

 rt MAD 1.5161 - 1.4696 1.4771 1.5048 1.6540 1.3410* 1.9874
 RMSE 1.9421 - 1.9167* 1.9277 1.9525 2.0335 1.9207 2.3042

 Germany

 r, MAD .1307 .1299 .1329 .1285 .1327 .1501 .1207* .1615
 RMSE .1732 .1732 .1716 .1694 .1732 .1900 .1627* .2006

 rt MAD 1.2097 1.1979 1.1822 1.1407 1.1824 1.4568 1.0895* 1.4985
 RMSE 1.5936 1.5943 1.5351 1.5114 1.5423 1.8174 1.4736* 1.8637

 U.K.

 rt MAD .2509 .2137* - .2449 .2288 .2419 .2555 .2539
 RMSE .2890 .2668* - .2819 .2771 .2772 .2910 .2893

 rt MAD 3.5109 2.9807* - 3.2783 3.0626 3.3666 3.4550 3.3090
 RMSE 4.0030 3.5617* - 3.7319 3.6206 3.8180 3.9192 3.7569

 Panel B: Multicountry models

 Model

 VARlu D1 RSD1 G1 RSG1 RSG2

 U.S.

 rt MAD .1619 .1499 .1378 .1483 .1160* .1174
 RMSE .2002 .1891 .1841 .1888 .1625* .1626

 rt MAD 1.5550 1.7159 1.2139 1.3992 .9949* 1.0388
 RMSE 1.8065 2.0771 1.4980 1.6453 1.1930* 1.2146

 Germany

 rt MAD .1580 .1500 .1429 .1327* .1451 .1466
 RMSE .1959 .1899 .1868 .1704* .2035 .2062

 rt MAD 1.6591 1.4557 1.2822 1.4632 1.1957 1.2436*
 RMSE 1.8537 1.8164 1.5706 1.6303 1.5206* 1.5899

 U.K.

 rt MAD .2747 .2410 .1429 .2668 .1124* .1142
 RMSE .3116 .2762 .2017 .3055 .1766* .1833

 rt MAD 2.2897 3.3541 1.6389 2.1274 1.2960 1.2872*
 RMSE 2.0020 3.8040 2.1859 1.8801 1.8465* 1.8554

 NOTE: Lowest statistic values are denoted with an asterisk.

 fit to unconditional moments, but it definitely does not help
 Germany. The evidence for the United Kingdom is mixed.

 5.2 Out-of-Sample Tests

 Tables 8 and 9 list the forecast performance results. Focus-
 ing first on univariate models in panel A of Table 8, the state
 dependence of the probabilities in RS AR(1) models produces
 superior forecasts, even though many of the estimated coeffi-
 cients are insignificant and the performance in matching the
 sample moments is poor. However, this result is not shared
 by the RS CIR model, with only the United Kingdom's state-
 dependent formulation performing better. Overall, with the
 exception of the United Kingdom, the GARCH models pro-
 duce the best results. For the United Kingdom, the superior
 performance of the RS2 model, using either the RMSE or the
 MAD criterion for both first and second moments, is remark-

 able, given that regime classification in the United Kingdom is

 rather poor (see Fig. 1). Relative to their one-regime counter-
 parts, RS models generally perform better. For all countries,
 with the exception of the one-regime GARCH model, the RS
 AR(1) models forecast better than a simple AR(1) and the RS
 CIR models forecast better than the single-regime CIR models.

 Panel B of Table 8 presents the forecasting results for the
 multicountry models. The diagonal one-regime models outper-
 form the unrestricted VAR on mean forecasts and do worse

 for second-moment forecasts only for the United States, again
 showing overparameterization of the unconstrained VAR. The
 multi-country RS diagonal model outperforms the one-regime
 model despite having the interest rate DGP constrained to be
 the same across all countries. This is a strong endorsement of
 the importance of regime shifts in forecasting. Granger causal-
 ity seems to aid in forecasting in both one-regime and RS
 frameworks. The RS Granger models do particularly well for
 the United States and the United Kingdom.
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 Table 9. Forecasts of Term Spread Models

 Model

 Statistic VAR 1 VAR2 ATSM RSM1 RSM2

 U.S.

 rt zt rt zt rt zt rt zt rt zt
 MAD .1885 .2117 .1918 .2186 .1224* .2134 .1531 .2070* .1588 .2072
 RMSE .2312 .2760 .2490 .2735 .1641* .2825 .1948 .2653* .2025 .2650

 rt z rtzt r z rtz r rz zr rtzt rt z4 rtzt rt2 z rtzt
 MAD 2.1183 .7141 1.2672 2.1267 .7422 1.2122 1.2065* .8501 1.0970* 1.5907 .6267* 1.1044 1.6529 .6280 1.0964
 RMSE 2.5226 .9181 1.5309 2.6521 .9534 1.4835 1.5005* 1.0292 1.4816 1.9941 .8292* 1.1391* 2.0755 .8287 1.3870

 Germany
 rt zt rt zt rt zt rt zt rt zt

 MAD .1359 .2191 .1796 .2395 .1212 .2176* .1197 .2214 .1074* .2186
 RMSE .1765 .2796 .2219 .2826 .1632 .2734* .1617 .2821 .1471* .2755

 r 4 zt rztz r r zt rtzt r t z4 rtzt r t z4 rtzt MAD 1.3464 .7084* .9882 1.6568 .8016 1.0049 1.2121 .7507 .8999* 1.1333 .7168 1.0243 .9772* .7225 1.0092
 RMSE 1.7109 .8757* 1.3273 2.1278 .9241 1.2957 1.5805 .8999 1.2992 1.5495 .8909 1.3346 1.3531* .8962 1.2937*

 U.K.

 rt zt rt zt rt zt rt zt rt zt
 MAD .2172 .2455* .2607 .2603 .4510 .3274 .2211 .2491 .1768* .2590
 RMSE .2529 .3031 .3112 .3384 .4867 .4308 .2180* .3078 .2414 .3121

 rt2 Z rtzt rt 2 Z2 rtzt rt z r4tZt r 2 rtZt r 2 rtZt
 MAD 3.0729 1.0989* 1.2995* 3.5870 1.1921 1.3297 6.2222 1.2128 1.5194 3.1016 1.1168 1.3197 2.4471* 1.1370 1.3864
 RMSE 3.4981 1.4991* 1.5292* 4.1074 1.6290 1.6097 6.6166 1.9078 1.9809 3.5814 1.5343 1.5416 3.1786* 1.5423 1.5746

 NOTE: Lowest statistic values are denoted with an asterisk.

 Table 9 reports forecast performance in the term spread
 models. In forecasting the first and second moments, the more

 parsimonious VAR(1) outperforms the VAR(2) for all coun-
 tries, suggesting that the VAR(2) is overparameterized. In the
 United States, the ATSM provides better forecasts of the short
 rate than unrestricted VAR's, which confirms the results in

 Ang and Piazzesi (2001). This finding is repeated for Germany
 but not for the United Kingdom, where the ATSM fails to
 beat the VAR specifications. For the United States, the ATSM
 outperforms all the other bivariate specifications for forecast-

 ing short rates and second moments of short rates. Duffee
 (2001) noted that affine models with constant risk premia fore-

 cast very poorly, but he did not consider forecasts of affine
 models with time-varying risk premia as in our ATSM spec-
 ification. In contrast to the U.S. results, in Germany and the

 United Kingdom RS models outperform the one-regime mod-
 els for forecasting the level and square of short rates. The
 results of forecasts of spreads and cross-moments are mixed.
 Whereas the RS models outperform the one-regime specifica-
 tions in the United States, the ATSM and VAR specifications

 provide better forecasts in Germany and the United Kingdom.
 The lowest RMSE statistics for cross-moment forecasts belong

 to the RS models for the United States and Germany; the best

 cross-moment forecast for the United Kingdom is VAR(1).

 Adding information from other countries or term spreads
 to the estimation uniformly improves forecasts. Focusing on
 the RMSE criterion, Table 8 shows that the multicountry
 approach generally yields better forecasts than the univari-
 ate models. Table 9 shows that adding term spreads improves
 forecasts, with the RS spread models beating univariate fore-
 casts with the exception of the United States, where the ATSM
 dominates.

 5.3 Summary and Interpretation

 In general, we find that, in matching sample moments, RS
 models do not systematically outperform one-regime models.
 However, in forecasting out of sample, RS models almost
 invariably do better. Focusing on short rates, Table 10 reports
 the best models with the lowest H, RMSE, and MAD statis-
 tics. There is no clear-cut "best" model. However, it appears
 that, whereas single-regime models may produce lower H
 statistics (e.g., in the U.S. case), RS models forecast better for
 all countries. We note that, for the United States, the ATSM
 comes very close to giving the best forecast for the short
 rate. Moreover, the best RS forecasting models incorporate
 information from other countries or the spread. Interestingly,
 RS models with state-dependent transition probabilities tend
 to forecast better than their constant probability counterparts,
 even though they perform very poorly at matching sample
 moments.

 How do we interpret these results? As indicated before,
 the RS models considered here need large simulations to pin

 Table 10. Overall Moments and Forecast Comparisons for Short Rates

 Best H statistics

 U.S. Germany U.K.

 Central moments CIR RS5 RS1

 Autocorrelogram VAR1 ATSM ATSM

 Best RMSE statistics Best MAD statistics

 U.S. Germany U.K. U.S. Germany U.K.

 rt RSG1 RSM2 RSG1 RSG1 RSM2 RSG1
 r2 RSG1 RSM2 RSG1 RSG1 RSM2 RSG2
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 Table 11. Small-Sample Experiment: Percentage of Time Models Do Best

 Unconditional moments Forecasts

 AR RS AR VAR RS VAR AR RS AR VAR RS VAR

 rt central 15.9% 59.9% 14.8% 9.4% rt 30.6% 16.3% 24.5% 28.6%
 p(rt) 43.4% 3.3% 43.7% 9.6% rt2 29.4% 18.0% 20.5% 32.1%
 zt central 90.1% 9.9% zt 45.8% 54.2%
 p(zt) 36.3% 63.7% z2 46.1% 53.9%

 p(rt, zt) 88.9% 11.1% Cross 44.2% 55.8%

 NOTE: We simulate data of length 297 from the joint estimation across the U.S.-Germany-U.K. of a bivariate system of the short
 rate rt and spread zt with time-varying probabilities (model RSM2). We then estimate an AR(1), a regime-switching AR(1), a VAR, and
 a regime-switching VAR, denoted AR, RS AR, VAR, and RS VAR, respectively and record which model gives the lowest H and RMSE
 statistics. The table lists the percentage times the model performed the best in each small sample. We conducted 1,000 simulations.

 down their unconditional moments with any precision. This
 means that the small-sample behavior of RS models may be
 poor. In other words, it is conceivable that more parsimo-
 nious one-regime models produce better estimates of the sam-
 ple unconditional moments than RS models in small samples,
 even though an RS model is the true DGP. Here we run a
 Monte Carlo experiment to specifically investigate this con-
 jecture.

 Consider the following RS VAR population model of the
 short rate and spread, y, = (rt zt)': Yt = A(st) + A(st)yt_1 +
 11/2(st)Et where et -, N(0, I), s, = 1, 2 with Markov state-
 dependent logistic transition probabilities depending on lagged
 Yt. We use the parameters from the joint estimation as the pop-
 ulation model and find the true population moments of this
 model using a very long simulation. Then, we simulate a small
 sample of size T + N and compute unconditional moment esti-
 mates over the in-sample of size T and RMSE forecast statis-
 tics over the out-sample of size N for several aproximations
 to the true model. We set T and N to be the size of our in-

 sample and out-sample datasets in this article, 267 and 30,
 respectively. The models we consider are an AR(1) and an
 RS AR(1) on the short rates with constant probabilities and
 a VAR(1) and an RS VAR(1) on the bivariate short rate and
 spread with constant transition probabilities. We denote these
 as AR, RS AR, VAR, and RS VAR, respectively.

 Unfortunately, we cannot include the true model because of
 the problems we encounter in finding satisfactory estimates of
 the RS VAR with time-varying probabilities in small samples.
 The many convergence failures that occur, even when starting
 from the true parameters, are themselves proof of the small-
 sample problems RS models face.

 To compare the unconditional moment estimators, we calcu-
 late H statistics with the mean, standard deviation, skewness,
 and kurtosis and then record which of the four models yields
 the best (lowest) statistic value for each simulated sample. To
 compare out-of-sample forecasts, we record which model pro-
 duces the lowest RMSE statistic. We use 1,000 Monte Carlo

 replications. Table 11 reports the percentage times each model
 best fit the population moments or produced the best forecasts.
 For example, for the simulations performed, in 15.9% of cases
 the AR(1) model gave the best fit to the population moments
 as measured by the H statistic, even though the true model
 was an RS VAR(1) with state-dependent probabilities.

 Table 11 shows that the one-regime models are good
 approximations of the true RS models in small samples and

 that, despite the true DGP being an RS model, parsimonious
 one-regime models may perform better at matching moments
 and forecasting. It is notable that RS models perform quite
 poorly in matching unconditional moments, but perform bet-
 ter in forecasting. These results parallel our findings for the
 actual RS models estimated on real data.

 We also examine the empirical distribution of the moments
 produced by the models in small samples. Table 12 reports
 the population values of the unconditional moments for the
 short rates and spreads. The table also lists the mean values
 and standard deviations of the small-sample distribution of the
 moments produced by the various models. RS models tend
 to overestimate the mean and underestimate the variance of

 the short rate, but the population values lie within 95% con-
 fidence intervals of the small-sample model moments. How-
 ever, the AR and VAR single-regime models produce close to
 unbiased estimates of the mean and variance. This result may
 help justify the popularity of VAR-type models to test uncon-
 ditional term structure hypotheses, such as the expectations

 Table 12. Small-Sample Distribution of Moments

 Short rates

 Parameter Population AR RS AR VAR RS VAR

 Mean 7.3289 7.3905 8.5011 7.4066 8.8526

 (1.3454) (1.4462) (1.3802) (1.7742)
 Variance 11.2885 10.9206 7.8944 11.0027 8.9975

 (3.8646) (2.2026) (4.3127) (2.6317)
 Skewness .5750 .2032 .1185

 (.1700) (.3087)
 Kurtosis 3.0639 3.1360 3.2287

 (.3263) (3.3094)

 Spreads

 Parameter Population AR RS AR VAR RS VAR

 Mean .8642 .8509 .3410

 (.3903) (.4304)
 Variance 1.5460 1.4306 1.0500

 (.5161) (.2705)
 Skewness -.1815 -.0790

 (.2812)
 Kurtosis 3.0084 3.2709

 (1.8155)

 NOTE: These are the means, with standard errors in parentheses, of the moments of the
 estimated models in a small sample of 267 in the experiment of Table 11. Skewness and
 kurtosis for the AR and VAR models are theoretically 0 and 3, respectively.
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 Figure 1. Regime Probabilities. The figure shows the ex-ante prob-
 abilities p(s, = ll5,-,) (dotted line) and smoothed probabilities p(s, =
 11 r) (solid line) in the top subplots for each country, and the short rate
 and spread for each country in the bottom subplots.

 hypothesis, even in the presence of significant nonlinearities
 in the data.

 6. REGIME CLASSIFICATION AND
 REGIME INTERPRETATION

 Figure 1 displays the regime probabilities for the RS
 VAR state-dependent transition probability model for the
 United States, Germany, and the United Kingdom. The solid
 line in the top plots represents smoothed probabilities p(s, =

 1I1 T) using information over the full sample of size T and
 the broken line represents ex-ante probabilities p(s, = 1 1_,).
 Plots of ex-ante and smoothed probabilities for the other mod-
 els look similar. For the United Kingdom, there is a high fre-
 quency of switching between regimes because the transition
 probabilities P and Q are very close to a half. In a regime-
 switching model, if P + Q = 1 the model reduces to a simple
 switching model. For the U.K. models, we often cannot reject
 this hypothesis and the regime classification also appears poor
 because the smoothed regime probability often is far away
 from 1 or 0.

 For a more quantitative examination of regime classifica-
 tion, we present RCM statistics in Table 13. In univariate mod-
 els, the RS AR(1) model produces the sharpest regime clas-
 sification for the United States, whereas RS CIR models pro-
 duce the sharpest regime classification for Germany and the
 United Kingdom. For univariate models, moving from con-
 stant to state-dependent transition probabilities produces very
 little improvement. Our multicountry model produces sharper
 regime classification for the United Kingdom and Germany at
 the expense of the United States. In particular, there is a large
 improvement in regime classification for the United Kingdom
 by adding U.S. information. Including term spread informa-
 tion leads to lower RCM statistics for all countries.

 Are the regimes correlated with the business cycle? Table 14
 attempts to answer this question. The table first presents cor-
 relations between various lags j of the ex-ante probabilities

 Pt-j+l and a recession indicator for the business cycles of each
 country. The ex-ante probabilities are generated from the term
 spread RS model with time-varying probabilities (RSM2). We
 use this model because it is the model with the lowest RCM

 statistic for the United States in Table 13. We report the corre-
 lations between the second regime with mean-reverting higher
 volatility and the economic downturns. The table shows that
 this regime is associated with economic recessions, whereas

 Table 13. RCM Statistics

 Model U.S. Germany U.K.

 RS1 10.44 22.57 43.14
 RS2 - 23.69 41.54
 RS3 19.04 52.53 -
 RS4 11.53 21.02 42.29
 RS5 12.88 20.45 40.64

 RSD1 18.11 13.44 27.23
 RSG1 21.16 19.72 28.17
 RSG2 21.94 22.25 24.48
 RSM1 7.67 14.60 38.70
 RSM2 6.68 16.12 34.90
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 Table 14. Markov Regimes and Business Cycles

 U.S.

 Correlations Probit forecasting

 Months Ahead j p(1-P t-j+l, rect) p(zt-i, rect) 3(1 -pt-j+,) % Forecast P(zt_i) % Forecast
 1 .4264 -.3047 1.6203 83.8 -.2811 80.8

 (.1153) (.1104) (.2569) (.0605)
 2 .4618 -.3989 1.7537 84.2 -.3847 82.3

 (.1149) (.1028) (.2603) (.0645)
 4 .4840 -.5096 1.8428 84.4 -.5611 86.7

 (.1123) (.0851) (.2640) (.0760)
 6 .4122 -.5296 1.5569 85.1 -.5750 87.0

 (.1126) (.0820) (.2584) (.0745)

 Germany

 Correlations Probit forecasting

 Months Ahead j p(1 - Pt-j+, rect) p(zt-, rect) 3(1 - Pt-j+i) % Forecast P(zt_i) % Forecast
 1 .1892 -.5276 .5789 60.2 -.4903 75.2

 (.1109) (.0719) (.1879) (.0601)
 2 .2162 -.5830 .6632 61.5 -.6073 75.8

 (.1107) (.0615) (.1890) (.0696)
 4 .2472 -.6590 .7615 63.9 -.8474 77.9

 (.1101) (.0508) (.1908) (.0927)
 6 .2392 -.6811 .7366 63.6 -.9400 81.6

 (.1106) (.0483) (.1915) (.1024)

 U.K.

 Correlations Probit forecasting

 Months Ahead j p(l - Pt-j+i, rect) p(zt-j, rect) 03(1 - Pt-i+) % Forecast P(zt_-) % Forecast
 1 .0911 -.3439 .6856 54.1 -.2821 67.3

 (.1066) (.0999) (.4590) (.0506)
 2 .0779 -.3828 .5864 53.6 -.3218 69.4

 (.1067) (.0962) (.4601) (.0522)
 4 .0098 -.4508 .0740 51.3 -.4018 74.1

 (. 1077) (.0899) (.4646) (.0564)
 6 -.0230 -.4680 -.1756 49.0 -.4274 72.4

 (.1063) (.0837) (.471 0) (.0584)

 NOTE: Recessions are coded as a 1, expansions as 0. The symbol pt represents the ex-ante probabilities p(st = 1t_-1) of the first regime from the term spread RS model with time-
 varying transition probabilities (RSM2). Columns 2 and 3 give the correlation of the recession indicator (rec) with the ex-ante probability of the second regime and the spread zt. Standard

 errors are calculated using GMM with three Newey-West lags. The last four columns show results from fitting the Probit model p(rect = 1) = F(a +P(.)at_j), where F(.) is the normal
 cumulative distribution function, P is the coefficient corresponding to the variable atj, and we let at-j be current and lagged values of 1 - Pt-j and zt-j-1. Lags are in months. The %
 Forecast column is the percentage of correctly forecasted (in-sample) values from the Probit regression.

 the "normal" unit-root regime with lower volatility repre-
 sents economic expansions. The United States and Germany
 have significant correlations, whereas the correlations of the
 United Kingdom are insignificant.
 The business cycle association of the regimes is not sur-

 prising for the United States. Figure 1 shows that the ex-ante
 probabilities during the 1979-1982 period of monetary tar-
 geting are near 0, placing this period in the second regime.
 During this period, high variable interest rates were accompa-
 nied by a large recession. Germany also experienced a simi-
 lar episode around the same time (1980:03-1983:07) and also
 went through an earlier recession accompanied by high inter-
 est rates in the early 1970s (1973:09-1975:05). The reces-
 sion brought on by the re-unification, beginning in mid-1991,
 also saw rising interest rates, but the regimes do not cap-
 ture this period as successfully. The poor results for the
 United Kingdom are not surprising, given the poor regime
 classification of the U.K. model.

 The last four columns of Table 14 report coefficients from a
 Probit regression with the recession indicator being the depen-
 dent variable and current and lagged ex-ante probabilities
 being the independent variables. The Probit regressions yield
 significant coefficients for the United States and Germany. We
 also list the percentage of correctly forecasted recessions in-
 sample from the Probit regressions. For the United States, the
 ex-ante probabilities successfully predict 84% of recessions
 one-month ahead, with the success ratio slightly increasing as
 we try to predict further into the future. The success ratio is
 around 60% for Germany and, not surprisingly, only 50% for
 the United Kingdom.

 Harvey (1988) and Estrella and Mishkin (1997) found
 that term spreads successfully predict real economic activ-
 ity. Table 14 confirms their findings, showing that the mag-
 nitude of correlations between recessions and the spread
 increases with the lag and that the accuracy of the Probit fore-
 casts increases with the forecast horizon. This happens in all
 three countries. Looking specifically at the United States, the
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 ex-ante regime probabilities have better forecast ratios for one-
 and two-month-ahead predictions than the spread. Whereas
 the forecast ratios increase with horizon for the spread, the
 forecast ratios of the ex-ante probabilities remain essentially
 flat. This evidence indicates that, for the United States, the

 ex-ante regime probabilities are better contemporaneous indi-
 cators of the business cycle than the spread, and the spread is
 a forward-looking indicator with greater forecasting ability at
 longer horizons. For the other countries, the spread better pre-
 dicts recessions than our regime probabilities at all horizons.
 Given that both the regime classification and the dating of the
 actual business cycles is less precise for these countries, this
 is not surprising.

 7. CONCLUSIONS

 We compare the econometric performance of regime-
 switching (RS) models relative to their one-regime coun-
 terparts in several ways. First, residual tests show that RS
 models often perform worse than single-regime models. For
 the United States, only RS models with term spread informa-
 tion comfortably pass the residual tests. Second, the moments
 implied by RS models do not always fit the sample moments
 as well as simpler models do because of the difficulties in
 estimating RS models in small samples. A Monte Carlo exper-
 iment confirms that this happens, even when the RS model is
 the true data-generating process. Finally, RS models invariably
 forecast better than one-regime models, although a parsi-
 monious multifactor affine term structure model with time-

 varying prices of risk performs almost as well for U.S. short
 rates.

 To improve the econometric performance of RS models, it
 is important to incorporate additional information. In fact, uni-
 variate RS models yield inconsistent estimates when the omit-
 ted variables contain information on the regime. We compare
 the performance of univariate models with multicountry short-
 rate models and models incorporating term spreads. In particu-
 lar, U.S. short rates improve both the regime classification and
 the statistical performance for German and U.K. short rates
 (but not vice versa). Furthermore, inclusion of term spread
 information leads to general improvements over univariate
 models in forecasting and to dramatic superior performance in
 regime inference. The inclusion of additional cross-sectional
 country short rates or term spreads does not always improve
 the fit of the unconditional moments. However, the regimes
 correspond well with business cycle expansions and contrac-
 tions.
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