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Abstract. We develop a flexible content-based search model that links the content pref-
erences of search engine users to query search volume and click-through rates, while
allowing content preferences to vary systematically based on the context of a search.
Content preferences are defined over latent topics that describe the content of search
queries and search result descriptions. Compared with existing applications of topic
modeling in marketing and recommendation systems, our proposed approach can si-
multaneously capture multiple types of information and investigate multiple aspects of
behavioral dynamics in a single framework that enables interpretable results for business
decision making. To facilitate efficient and scalable inference, we develop a full Bayesian
variational inference algorithm. We evaluate our modeling framework using real-world
search data for TV shows from the Bing search engine. We illustrate how our model can
quantify the content preferences associated with each query and how these preferences
vary systematically based on whether the query is observed before, during, or after a TV
show is aired. We also show that our model can help the search engine improve its ranking
of search results as well as address the cold-start problem for new page links.
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1. Introduction
Every minute, more than three million queries are
entered in the Google search engine alone (Internet-
LiveStats 2016), followed by clicks on the presented
sponsored and organic results. Data on queries, page
results, and subsequent clicks can provide tremen-
dous insights into what type of information people
seek over the course of a day. Based on a multitude of
variables such as weather, daily and special events,
time of day, and, in the case of this paper, TV events/
shows that are aired, people’s search intentions change.
For example, Figure 1 reports the normalized total
search volume for a few of the most popular queries
by United States Bing users related to the 2016 Super
Bowl, divided into three time windows: 24 hours
before the game, the 4.5 hours during the game, and
24 hours after the game.1 From the figure, it is ap-
parent that some queries are used much more fre-
quently than others, suggesting different overall levels
of consumer interest across Super Bowl topics. In ad-
dition, some queries, such as “super bowl” and “car-
olina panthers,” are searched for consistently over

time, whereas other queries exhibit usage dynamics.
For example, before the game started, users tended to
search for “tickets,” “kickoff time,” and “prediction”;
during the game, users tended to search for “watch”
and “live stream”; and after the game, users tended to
search for “MVP,” “commercial,” and “highlights.”
Such variations in content preferences may be iden-
tified by simply observing variations in search vol-
ume over time.
Other variations in content preferences, however,

are more subtle and can only be identified by observ-
ing downstream behavior such as clicks on returned
links. Depending on when a query is entered (in this
case, in relation to a TV event), the information that
users wish to obtain by entering the query may vary,
holding the query constant. These dynamicsmean that
users may click more frequently on some returned
URLs based on the time they enter a search. As an
illustration, Figure 2 displays the top 10 most fre-
quently presented URLs on the search engine results
page (SERP) for the query “super bowl,” ranked by
their average positions across impressions. A search
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impression is defined as one set of organic search
results returned by the search engine in response to
one individual search.2 Figure 2 reports the click-

through rate (CTR) for each URL within each time
window, holding the query “super bowl” constant.
As expected, there is generally a decrease in the CTR

Figure 1. Normalized Search Volume for Super Bowl 2016 on Bing

Note. For each sample query, this figure shows the proportion of searches issued during each of the three timewindows (24 hours before, during,
and 24 hours after the game was aired).

Figure 2. CTRs of Top Search Results for “Super Bowl” on Bing

Note. The CTR of each link in each time window is computed as the number of observed clicks divided by the number of impressions.
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as the position decreases. More interestingly, we also
see significant differences in the CTR for several URLs
across time. For example, the CTR for the third link,
which is for Super Bowl champions onwikipedia.org,
is 50% higher before the game than during the game,
and the CTR for the fourth link, which is for Super
Bowl news on nytimes.com, is at least 100% higher
after the game than before and during the game.
Importantly, when comparing the CTR across URLs
within the same time window, it is possible to sug-
gest a different ranking from that shown in Figure 2.
For instance, after the game, the third link (from
wikipedia.org about Super Bowl champions) should
probably be ranked higher than the second link (from
cbssports.com); during the game, the 10th link (about
the channel airing the Super Bowl) should probably
be ranked much higher. In other words, the positions
of links on the SERP are not always consistentwith the
actual relevance of the links to users at a particular
point in time, as measured by the observed CTR.

This example suggests that the search engine may
be able to improve its CTR predictions by quantifying
the content preferences associated with each query
across contexts (e.g., time, location, device) based on
observed search volume and CTR. Such informa-
tion could also be valuable for advertisers. Although
search-related advertising has reached $90 billion
annually in the United States alone (Statista 2017a),
Google (2014) argues that advertisers waste their
money on more than half of all Internet ads. There-
fore, there is a need for advertisers to optimize the
set of queries or keywords on which they bid, the
amounts they bid, and the ad copy shown to search
engine users. Such optimization can now be per-
formed dynamically over time with the advent of
moment marketing companies (such as TVTY) that
enable advertisers to instantly launch and optimize
search advertising campaigns triggered by offline
events such as TV commercials (Liu and Hill 2021).
Such exercises rely on being able to predict the CTR
for a sponsored search result at a particular point in
time, given the query submitted by the user. Espe-
cially when there are no or very few data available to
predict CTR based on past CTR alone, a model is
needed that links users’ content preferences to their
search queries, the content of the search results to
which they are exposed, and their clicking behavior,
across contexts. However, to the best of our knowl-
edge, no methodology has yet been developed to
address this opportunity.

In this paper, we aim to fill this gap by developing
an interpretable model that cannot only identify
and quantify users’ content preferences across search
contexts in ameaningful way, but also predict CTR on
the SERP.Ourmodel combines themerits of graphical
models, latent factor models, and content analysis

based on probabilistic topic modeling. In essence, our
model is a unified probabilistic nonnegative matrix
factorization model (Salakhutdinov and Mnih 2008)
that can simultaneously leverage and link data on
query search volume, CTR on different search results,
and the textual content of these results. It estimates
a latent vector of content preferences over topics
revealed by each query, with preferences allowed to
vary systematically across different contexts. It also
associates the content of each search query and search
result description (title and snippet on the SERP)
with a latent vector over the same set of topics,
constraining both sets of vectors to be sparse and
nonnegative. Therefore, compared with existing ap-
plications of natural language processing (NLP) and
topic modeling in marketing and recommendation
systems (e.g., Gopalan et al. 2014, Tirunillai and Tellis
2014, Liu and Toubia 2018), our proposed approach
can simultaneously capture multiple types of infor-
mation and investigate multiple aspects of behavioral
dynamics in a single, robust modeling framework.
To facilitate efficient and scalable inference, we de-
velop a full variational Bayesian inference algorithm.
Its posterior inference method with data augmenta-
tion retains conjugacy and performs efficiently with
the sparse data that typically describe user behavior
on search engines.
Our proposed modeling framework offers at least

two benefits over purely predictive approaches. First,
we extract interpretable topics and related parame-
ters that shed light on users’ content preferences and
how these preferences vary across contexts. Second,
our method is able to address the cold-start problem
for new links. This is because topic modeling can
provide a representation in terms of latent themes
discovered from the existing document collection,
which allows the algorithm to make meaningful pre-
dictions and recommendations for a new link that is
not part of the training data, based on its textual de-
scription on the SERP. This is not possible with tra-
ditional collaborative filtering algorithms, for exam-
ple, which can only make predictions about items
that have been consumed. This feature of our model
is particularly important for search engines and ad-
vertisers because it is critical for them to improve
predictions for new links quickly so they can ad-
just ranking or search campaign strategies without
“wasting” too many valuable impressions testing
these new links experimentally. Finally, with our
proposed modeling framework and inference algo-
rithm, our model predictions can be applied very
efficiently for real-time applications. For example,
estimating our model for a moderate corpus (with
1,000 unique search queries) takes around 30 min-
utes on a personal laptop. Computation time should
be lower on more powerful machines such as those
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available to search engines and data analytics com-
panies. Once all the model parameters have been
estimated, user CTR can be predicted on the fly (in
milliseconds) for both warm- and cold-start links.

We validate the proposed model using compre-
hensive data sets from Microsoft Bing on consumer
searches for TV shows (aired in February 2016 and
2017), a large and important category that exhibits
intuitive user search dynamics. We find that our
content-based search modeling framework has the
potential to improve the rankings chosen by Bing.
Managerially, we find that our model can provide
meaningful interpretation of the content preferences
underlying each search query and can identify and
quantify whether and how the content preferences
revealed by a search query vary systematically based
on whether the query is observed before, during, or
after a show is aired. Due to the nature of our em-
pirical data sets, in this paper we help the search
engine improve its prediction of CTR and hence its
ranking algorithm for organic results. Our proposed
model can be applied similarly to sponsored search
data available to advertisers, for example, to gain
insights into which search ads should be targeted to
which users, when, and on which devices.

The rest of the paper is organized as follows. We
review the relevant literature in Section 2. We then
introduce our proposed model framework in Section 3.
We describe our empirical data sets in Section 4.
This is followed by Section 5, which reports the es-
timation results and model evaluation. We conclude
in Section 6.

2. Relevant Literature
Our content-based search model is built upon graph-
ical models,3 which provide a language to express
assumptions about relationships between different
variables (e.g., relationships among users’ prefer-
ences, search queries, subsequent clicks, and a search
engine’s textual content in our case), as well as topic
modeling and Poisson factorization, both of which
impose statistical assumptions for inferring these
relationships. Our research context lies at the inter-
section of the information retrieval and marketing
literatures. In this section, we briefly highlight how
our research contributes to these literatures.

In information retrieval and marketing, most ex-
isting research has aggregated users’ behavioral sig-
nals (i.e., click throughs) over time across all queries
and applied it identically for all types of queries
(Agichtein et al. 2006). Other studies have built
statistical/econometric models of click-through be-
havior in attempts to measure the impact of different
types of keywords and positions of results, but these
have either used aggregated information across con-
sumers’ search queries or ignored textual information

altogether (e.g., Yang and Ghose 2010, Narayanan
and Kalyanam 2015, De los Santos and Koulayev
2017, Abhishek et al. 2018). Another important issue
that has been largely ignored in the literature is the
context of users’ content preferences (e.g., time, lo-
cation, demographics, and search device). Adomavicius
and Tuzhilin (2015) leveraged such contextual in-
formation in the context of recommendation systems,
and Radinsky et al. (2013) investigated temporal
trends and periodicity in online search interests.
However, whereas the analysis performed by these
authors was specifically designed to focus on tem-
poral variations, our model can accommodate any
discrete context that affects preferences, such as the
type of device or the geographic location from which
the search query was submitted. In addition, these
authors did not leverage the textual information in
queries and links. In contrast, our approach extracts
features from the content of queries and links, which
not only enables interpretation of content preferences
across contexts but also allowsmaking predictions for
new links that were not part of the training data.
There is a stream of studies in marketing that has

applied NLP to analyze search data and other user-
generated content to understand consumers and gen-
erate better marketing intelligence (Archak et al. 2011,
Lee and Bradlow 2011, Ghose et al. 2012, Netzer et al.
2012). More recent work has adopted topic modeling
to extract topic-level information from content such as
online reviews (Tirunillai and Tellis 2014, Büschken
and Allenby 2017) and search keywords (Abhishek
et al. 2018). However, text-based search behaviors
such as typing a search query have not yet been
studied extensively. Typing a search query is a first-
order search behavior on most search platforms, and
queries contain valuable information about users’
preferences. Recently, Liu and Toubia (2018) devel-
oped a topic model that quantifies how the content in
search results relates to the content in search queries,
which can be applied to estimate a user’s preferences
based on a single query. Our work differs from Liu
and Toubia (2018) in three main aspects. First, the
approach that Liu and Toubia (2018) take relies only
on publicly available data (from the Google appli-
cation programming interface [API]) to link the con-
tent in search queries to the content in search results.
In contrast, we leverage richer data from Microsoft
Bing, which include search volume and CTR over
time. Second (and as a result of the first difference),
the estimation of content preferences based on the
approach of Liu and Toubia (2018) requires specify-
ing assumptions about how users translate their
content preferences into search queries. In contrast,
our richer data allow us to remain agnostic on the
underlying process. Third, methodologically, whereas
Liu and Toubia (2018) and other studies on the extant
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applications of topic models in the marketing liter-
ature have been primarily based on latent Dirichlet
allocation (LDA) (Blei et al. 2003), our modeling ap-
proach relies on Poisson factorization.

Poisson factorization is an alternative text model to
and has been shown to outperform LDA (Canny 2004,
Gopalan et al. 2014). It is a form of probabilistic non-
negative matrix factorization (Salakhutdinov and Mnih
2008, Cemgil 2009) that replaces typical Gaussian
likelihood and real-valued representations with Pois-
son likelihood and nonnegative representation. Two
properties of Poisson factorization make it particu-
larly attractive (Canny 2004). First, by definition, the
model can support sparse matrices, which is conve-
nient when dealing with sparse data in real-world
problems such as consumer product ratings and
movie viewership. Second, by imposing a proper
gamma prior distribution, it is possible to build a
sophisticated Poisson factorization model that main-
tains conditional conjugacy, allowing the develop-
ment of efficient inference algorithms for fitting large-
scale data. Poisson factorization has been applied in
recommendation system problems for (scientific and
news) articles, movies, and music (Gopalan et al.
2013, 2014). To the best of our knowledge, our pa-
per is the first to use Poisson factorization to model
user behavior and content simultaneously in the
context of search engines.

3. Content-Based Search Model
In this section, we first describe each component of
our model. We then derive its posterior inference and
introduce its inference algorithm based on the vari-
ational Bayes method.

3.1. Specification
Figure 3 shows the graphical model representation of
our approach, which includes five groups of indices:

search queries, indexed by q; links, indexed by p;
words in the vocabulary, indexed by w; topics, in-
dexed by k; and search contexts, indexed by t. In our
case, context is captured by time: before, during, and
after a TV show is aired. This comes without any loss
of generalizability. The input to the model (i.e., the
variables that are observed) are shaded in Figure 3.
The number of occurrences of each word in each
query is wqv; the number of occurrences of each word
in each link description is wpv; the search volume for
each query in each period is Sqt; the CTR on each link
retrieved as a top result for each query in each period
is Cpqt; and other query-link-time-specific covariates
such as position are Xpqt. The remaining variables are
unknown model parameters that are defined in the
following as we describe the five blocks of the model.

3.1.1. Topics. Let V denote the total number of words
in the vocabulary of a particular search category, with
thesewords indexed by {1, 2, ..,V}.We use a collection
of K unnormalized topics φ1:K to describe the latent
space of users’ content preferences, their queries, and
the descriptions of the links presented on the SERP.
Each topic φk is a collection of intensities of the words
in the vocabulary, and the prior distribution on each
componentφvk is gamma: φvk ∼ Gamma(a1, a2), where
a1 and a2 are the shape and rate parameters for the
gamma distribution, respectively.

3.1.2. Queries. We consider a collection of Q target
search queries (defined a priori). Each query q is rep-
resented by a vector of length V, {wq1,wq2, . . . ,wqV},
where wqv is the number of times the vth word in the
dictionary appears in query q. To model the genera-
tion process of each query’s content, each query is
associated with a vector of K latent topic intensi-
ties, θq. The prior distribution on each component θqk
is assumed to be gamma: θqk ∼ gamma(c1, c2). Then,
the observed word count wqv is assumed to follow a
Poisson distributionwhose rate parameter is the inner
product of q’s topic intensities and v’s topic weights,
that is:

wqv ∼ Poisson θT
qφv

( )
, (1)

for q � 1, 2, . . . ,Q and v � 1, 2, . . . ,V. The form of the
factorization θT

qφv represents the expected number of
occurrences of word v in query q. The choice of the
gamma distribution for the prior and the Poisson
distribution for the likelihood function offers several
benefits (Gopalan et al. 2013). First, the gamma dis-
tribution induces sparsity on the topic weights and
intensities. Second, the Poisson distribution is well-
suited for sparse data like ours. Third, these two
distributions are conjugate, which provides signifi-
cant computational benefits.

Figure 3. Graphical Representation of the Content-Based
Search Model
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3.1.3. Links. We consider the collection of P different
links retrieved by the set ofQ queries.We focus on the
information available to search engine users when
deciding whether to click on each link. Accordingly,
for each link, we focus on the text of its description
(including the title) on the SERP, rather than the
content of the actual web page to which the link
points. Each link description p is represented by a
vector wp of length V, {wp1,wp2, . . . ,wpV}, where wpv is
the number of times the vth word in the dictionary
appears in the description of link p shown to users
on the SERP.4 The generation process of the link
description is defined similarly as that for queries.
We define each link p’s topic intensities as θp:
θpk ∼ gamma(b1, b2). The observed word count is as-
sumed to satisfy:

wpv ∼ Poisson θT
pφv

( )
, (2)

for p � 1, 2, . . . ,P and v � 1, 2, . . . ,V. The form of the
factorization θT

pφv represents the expected number of
occurrences of word v in link p.

3.1.4. Search Volume. For eachquery q issued at time t,
we observe two types of user search behaviors, search
volume and CTR on the top search results. We model
search volume (the number of times each query q is
issued by users at time t) as a Poisson distribution,
whose rate parameter couples users’ time-specific
content preferences, βt and γt, with the query’s topic
intensities, θq:

Sqt ∼ Poisson αq + θT
q βt + γt
( )( )

. (3)

In this equation,αq captures the baseline popularity or
search volume for query q, θq contains the topic in-
tensities of the query introduced in Equation (1), and
βt and γt capture temporal variations in users’ content
preferences. The distinction between these two pa-
rameters is discussed in more detail following the
introduction of the next equation. For the same reason
mentioned earlier when introducing the prior dis-
tribution for the query-related parameters, the pa-
rameters αqk, βtk, and γtk also have a gamma prior
distribution: Gamma(e1, e2).5

3.1.5. Click-Through Rates. When Sqt > 0, the search
engine will retrieve results for query q. We let Ipqt
denote the observed number of impressions of link p
on the first SERP for query q during period t. We treat
multiple clicks on the same result by the same user
following a query as only one click, so users’ total
number of clicks Clickpqt on link p at time t is bounded
by Ipqt. We observe Clickpqt only if Sqt > 0 and Ipqt > 0.
Let Lqt denote all the top links for query q observed at
time t. For each link p ∈ Lqt, we model its CTR using a

Poisson distribution. As the Poisson distribution
captures only discrete counts, we model the rounded
number of clicks that link p receives per 100 im-
pressions (i.e., the integer part of Clickpqt/Ipqt × 100,
denoted as Cpqt). We model CTR as being related to
both query-specific and time-specific user content
preferences as follows:

Cpqt ∼ Poisson θT
p θq + εq + βt
( ) + λXpos

pqt

( )
, (4)

where εq is part of the user content preferences un-
derlying query q, which we discuss in more detail in
the following paragraph; the positive scale parameter
λj captures the fixed effect of position j on the SERP;
and Xpos

pqt is an integer indicating the (rounded) ob-
served average position of link p for query q at time t
on the SERP.6 We note that our model assumes, for
tractability, that the CTR of each link on a SERP is
independent of the other links on the page, which is a
limitation. Our results provide a lower bound of the
performance that could be achieved by extensions of
our model that relax this assumption, which we leave
to future research.
The user content preferences underlying query q at

time t are specified as θq + εq + βt. The presence of the
topic intensities of query θq reflects the fact that user
content preferences underlying query q should be at
least partly captured by the actual content of the
query. The presence of the vector of offset parameters
εq is motivated by two factors. First, it scales the
parameter θq to fit the CTR data (as θq, inferred
mainly through the text in query q, tends to have very
small magnitude). Second, it allows content prefer-
ences across topics to deviate from the textual in-
formation in the query. Such specification is consis-
tent with Liu and Toubia (2018, 2020), who suggested
that queries may not be a direct representation of
what users are searching for. Hence, θq + εq captures
the query-specific, time-invariant preferences under-
lying query q. We assume that εq also has a gamma
prior distribution: Gamma(e1, e2).
Finally, we discuss the difference between pa-

rameters γt and βt, which capture different types of
temporal variations in content preferences. Parameter
γt does not appear in the CTR equation (Equation (4)).
Hence,γt captures temporal variations in users’ content
preferences that are directly related only to changes in
search volume. Holding the query constant, γt does
not influence CTR for the links retrieved by that
query. If a topic has a high weight γt in a particular
period t, Equation (3) implies that a query that fea-
tures this topic will tend to have a higher search
volume during the same period. However, the fact
that a particular link description features this topic
does not influence the CTR for the link, conditional on
the query. The parameter γt may, however, influence
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the unconditional CTR on link descriptions that
feature that topic at time t, but only through variations
in search volume. The inclusion of γt is motivated by
variations in the data illustrated by Figure 1; in other
words, this set of parameters captures variations in
content preferences that are captured by variations in
search volume.

In contrast, the set of parameters βt appears in both
Equations (3) and (4) and thus these parameters
capture temporal variations in users’ content pref-
erences that are directly related to variations in both
search volume and CTR. That is, βt allows the CTR on
links to vary over time, even when holding the query
constant. The presence of these parameters in the
model is motivated by the model-free evidence il-
lustrated by Figure 2, which suggests that variations
in search volume are insufficient to provide a full
picture of the variations in content preferences, and
that CTR may vary over time for a (query, link) pair. In
our empirical study reported in Section 5, we provide
additional evidence to support our model specification.

3.2. Remarks
In this paper, we apply this model on search logs from
the Bing search engine for organic results. In doing
so, we aim to help the search engine improve its
prediction of CTR and hence its ranking algorithm.
However, we note that our model can also be applied
to sponsored search data available to both search
engines and advertisers. In particular, advertisers get
reports from search engines on query impressions for
their campaigns, the average positions of their search
ads, and CTRs on different ads across contexts. Once
all posteriors of the model parameters are calibrated
(details are given in Section 3.3), the first term,θT

p (θq +
εq + βt), in Equation (4) predicts the relative click-
through tendency on ad p given search query q at t
by capturing the fit between the ad copy and the
estimated content preferences revealed by the query.
This prediction can help advertisers design effec-
tive campaigns so that more preferred web pages
are promoted, with descriptions that resonate better
with users.

We have two additional notes regarding our pro-
posed framework. First, our model can predict click-
through tendency for a (query, time, link) combina-
tion even for cold-start links (i.e., links that were
never observed in the training data). Such prediction
requires the parameters θp, θq, εq, and βt. These last
three sets of parameters are estimated based on the
training data, whereas the topic intensities of the link
description θp may be estimated based on the content
of the link description, using the model parameters
estimated from the training data. Second, our model
is flexible in the sense that depending on the nature of
available data and the research objective, one can add

or remove some components while still maintaining
model conjugacy (which is described in Section 3.3).
For example, one can have multiple indices t such as
time and search device, or one can remove the search
volume equation.

3.3. Posterior Inference and Inference Algorithm
The central computational problem is posterior in-
ference, which reverses the model’s generative pro-
cess to learn the unknown parameters. In our appli-
cation, the input of the model includes the content of
queries and link descriptions on a search engine, the
search volume for each query over time, the CTR, and
the average position for each (query, time, link)
combination. Given {wq,wp,Sqt,Cpqt,X

pos
pqt}, our goal is

to infer the model parameters, including {φk}, {εq},
{γt}, {βt}, {θq}, {θp}, {αq}, and {λj}.
To facilitate inference, we first augment the model

with auxiliary variables in Equations (1) to (4), which
makes it conditionally conjugate. In Appendix A, we
show how these auxiliary variables fit into the pos-
terior inference and derive the full conditionals for all
the model parameters. Preserving conjugacy pro-
vides a closed-form understanding of how the algo-
rithmplaces differentweights across observed data in
learning model parameters. More importantly, it also
leads to significant computational benefits, even with
variational Bayes inference. When deriving some of
these posteriors, we also discuss the underlying in-
tuition and some attractive features resulting from
our (conjugate) model specification. For example, our
inference procedure iterates only over nonzero count
observations, which leads to significant computa-
tional efficiency for large-scale data. In addition, our
model inference naturally addresses the sparsity of
the textual information in search queries by augment-
ing them with CTR data in a semisupervised fashion.
This can ultimately enhance the interpretability/
learning of the topic distributions and the underlying
consumer content preferences behind different search
queries. Readers should refer to Appendix A for ad-
ditional technical details.
One could simply run a Gibbs sampler to iterate

over the posterior of all the model parameters given
inAppendixA.However, given the large-scale nature
of real-world online search data in this problem,
the computational time required for Markov chain
Monte Carlo (MCMC) methods would be prohibitive
(Salakhutdinov and Mnih 2008). To address scal-
ability, we adopt a variational inference algorithm,
which is a deterministic optimization-based strategy
for approximating posterior distributions in complex
and large-scale probabilistic models (Jordan et al.
1999). The basic idea of variational inference is that
it posits a family of distributions over the hidden
variables, indexed by free variational parameters,
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and then finds the member of this family that is closet
in Kullback-Lieber divergence to the true posterior.
The variational inference algorithm typically con-
verges to its final approximation much faster than
MCMC methods, and convergence can be assessed
more easily than with MCMC methods. In this re-
search, we derive a coordinate ascent variational
inference (CAVI) algorithm, which is based on the
mean-field family in which all the latent variables are
assumed to be independent and each is governed by
its own distribution (Jordan et al. 1999). Appendix B
describes the details of this algorithm. Note that be-
cause of the conditional independence of the variables
shown in the posterior inference, the data can be
distributed across many machines, and the posterior
updates for each type of variable can be implemented
in parallel to improve convergence speed.

4. Data
4.1. Data Collection and Processing
Our empirical study is conducted with data from
search logs for TV shows from the Bing search engine
in the U.S. market. There are several reasons why we
use this data set for our empirical study. First, TV
show search is an important category, as millions of
users search for TV shows on a daily basis (Statista
2017b). Second, TV show searches exhibit intuitive
dynamics that we can use to evaluate the face validity
of the model output. In particular, we can expect users’
interest in a TV show to vary depending on whether
the show has aired (Fossen and Schweidel 2017).

We study 14 TV shows from various genres (in-
cluding sports, variety, reality, drama, and comedy)
that were aired in February 2016 and were popular
according to Comcast’s viewership rankings across
all TV shows during that month. Table 1 provides the

show names and broadcast networks. For each show,
we collect related searches whose queries contain
either the name of the show or names of major cast
members obtained from IMDB. We focus on searches
that were issued over three separate time windows
for a given episode: the 24 hours before the show was
aired, during the show, and the 24 hours after the
show was aired. Hence, we study the dynamics of
user preferences across T � 3 periods in this appli-
cation. We collect all searches across multiple epi-
sodes aired in February 2016 for 11 weekly TV shows.
For three annual events (i.e., the Super Bowl, Grammy
Awards, and Oscars), we collect all searches for two
consecutive years (2016 and 2017). We treat each
episode as a separate set of observations, and pool
information across episodes to train the model pa-
rameters for each show separately.
We focus on the queries that were issued by users a

minimum number of times within each time window
for each episode (the cutoff value is five for weekly TV
shows and 20 for annual TV events).7 For each se-
lected search query observed in each time window,
we collect all the organic links on the first SERP of
Bing. To obtain reliable measures of CTR, for each
query q observed at time t, we include only links that
were presented on the first SERP in at least 60% of the
impressions. For each (query, time, link) combina-
tion, we compute the average position of the link
across impressions when training the model (how-
ever, all of our model validation is done at the level of
individual impressions).When computing the CTR of
each (query, time, link) combination, we incorporate
the following empirical decisions. First, when mul-
tiple links are clicked after a search by the same user,
we consider all the clicks. Second, if the same link is
clicked multiple times after a search by the same user,

Table 1. Descriptive Statistics of the Corpora

ID. Show name (network) Episodes
Vocabulary

size Queries
Words per

query Links
Words per

link
Query-time
combinations

Links per query-time
combination

1. Super Bowl (CBS) 2 3,552 5,631 3.59 (1.10) 8,634 23.69 (8.50) 9,026 6.64 (2.68)
2. Oscars (ABC) 2 1,840 2,231 3.19 (0.95) 3,520 21.60 (8.00) 3,442 6.67 (2.69)
3. Grammy (CBS) 2 1,069 1,502 3.29 (1.06) 1,996 21.04 (7.74) 2,215 6.12 (2.45)
4. Shark Tank (ABC) 3 423 122 3.64 (0.86) 568 14.55 (4.37) 250 7.88 (2.96)
5. The Bachelor (ABC) 3 1,074 785 2.91 (0.88) 1,979 15.44 (3.92) 1,211 7.55 (2.73)
6. Saturday Night Live (NBC) 2 1,342 650 3.69 (1.41) 1,983 17.11 (4.50) 848 6.77 (2.40)
7. Survivor: Kaôh Rong (CBS) 2 1,070 407 2.89 (1.10) 1,548 14.74 (4.24) 807 7.25 (2.73)
8. The X-Files (Fox) 4 892 523 2.60 (0.93) 1,549 14.60 (4.11) 1,195 7.11 (2.77)
9. The Blacklist (NBC) 4 409 201 2.86 (1.13) 701 13.53 (4.26) 616 7.30 (2.56)
10. The Walking Dead (AMC) 3 1,750 2,155 3.96 (0.97) 4,338 17.75 (3.96) 4,805 6.84 (2.34)
11. Criminal Minds (CBS) 2 338 130 3.78 (0.96) 526 15.25 (4.14) 257 7.85 (2.76)
12. Law & Order (NBC) 4 829 276 3.75 (1.48) 1,229 16.58 (5.22) 587 7.04 (1.98)
13. The Big Bang Theory (CBS) 2 849 317 3.85 (1.30) 1,240 16.06 (4.45) 608 6.83 (2.36)
14. Modern Family (ABC) 3 263 71 3.08 (0.86) 386 14.08 (4.72) 222 7.81 (2.86)

Notes. We report the average with the standard deviation in parentheses. The length of a query or link description is calculated based on the
vocabulary.
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we count this as one click. Finally, we combine all the
selected queries, their search results, and link de-
scriptions for the same show as one corpus. Following
the bag-of-words approach, we treat each query or
link description as an unordered set of words. We
process the text in each corpus based on standard
practice in text mining. We remove any delimiting
characters used to separate words; we eliminate
punctuation and a standard list of English stop
words; and we do not perform stemming. We form
the vocabulary for each corpus using words that
appear at least five times across all the documents.

We now report some descriptive statistics of the
corpora, subject to confidentiality constraints that
prevent us from reporting raw search volume or CTR
data. First, Table 1 reports the size of the corpora,
including the vocabulary size, number of unique
queries/links, number of words per query/link de-
scription, number of unique (query, time) combina-
tions, and number of links per (query, time) combi-
nation. In addition, we illustrate the overall sparsity
in CTR at the query-link-time level, which is the unit
of analysis in the model, for annual TV events and
weekly shows separately. For weekly shows, we find
that 48.1% of observations have a CTR of 0 (with a
standard deviation of 5.5% across TV shows). For
annual events, about 25.5% of observations have a
CTR of 0 (with a standard deviation of 2.1%). These
observations confirm the sparsity in CTR. This further
suggests the challenges in extracting meaningful in-
formation from consumer search behavior and hence
in predicting CTR. Finally, online Appendix C pres-
ents additional descriptive statistics related to the
variation across searches and position effect on CTR.

4.2. Additional Data for Assessing Search
Result Variations

Although Bing did not strategically adjust search
results around airing time during our main study
period, we want to understand more generally the
systematic variations in search engines’ rankings.
Hence, we further explore the systematic variations in
the appearance as well as position of search results
before, during, and after TV events. For that, we
collect additional data from both Google and Bing for
TV shows. As these additional datawere collected at a
different time than our main data, we acknowledge
the possibility that their results may not hold in our
main study period. All other analyses reported in the
paper are based on our main data described in Sec-
tion 4.1. We want to emphasize that our model takes
the search engine results as given and is agnostic as to
whether variations exist in search results around the
airing time of shows as well as the source of this
variation. In Section 5.4, we compare the ranking of

results suggested by our model to the actual ranking
on Bing.

4.2.1. Data Collection. We compiled a list of 50 top
weekly TV shows and 29 sports events (i.e., NBA and
NFL games) scheduled to be aired during Novem-
ber 2018. For each weekly TV show, we formed one
search query that contained only the show name; for
each sports event, we formed one search query that
contained the two teams playing against each other
(e.g., “Seattle Seahawks VS Green Bay Packers”). We
wrote a Python script that automatically collected the
top 10 organic search results for these 79 search
queries on Bing and Google, every 30 minutes con-
tinuously (i.e., 48 times per day for each search en-
gine). The script was run for a month, from No-
vember 4, 2018 at 7:15 a.m. to December 5, 2018 at 7:15
a.m. During this period, there were a total of 212 TV
events: 183 unique episodes from the 50 weekly TV
shows plus 29 sports events, for which we also col-
lected the actual airing (start and end) times. Al-
though the data acquired from the APIs do not reflect
customization at the individual user level, they do
reflect the baseline SERP from a given search engine
for a given query at a particular point in time.

4.2.2. Identification Strategy. Our objective is to mea-
sure systematic variations in the results that are
shown in response to a search query for a TV show
around the show airing time. For each event e on a
given search engine and each link l that appeared at
least once for event e, we let Ie,lr indicate whether link l
appeared on the top SERP in the API request r; if
Ie,lr � 1, we let Pose,lr denote the position of link l in API
request r. We are interested in the amount of variation
in Ie,lr and Pose,lr across three windows: (1) the X hours
before the start of show airing, (2) during show air-
ing, (3) the X hours after the end of show airing. If the
search results are adjusted around the airing of the
event, the variations between these three windows
should be increased due to the airing of the event. We
consider X ∈ {12, 24, 36} to evaluate the robustness of
our results.
For each (e, l), we compute five statistics to capture

variations in Ie,lr and Pose,lr :
• Ye,l

1a: a binary variable equal to 1 if link l appeared
in only one of the three windows.
• Ye,l

1b (definedonly ifYe,l
1a � 0): a binaryvariable equal

to 1 if the total variance of Ie,lr over the API requests
corresponding to the three windows is positive, that
is, Se,lTotal �

∑
w,r∈Oe

w
(I e,lr − I e,l)2 > 0, whereOe

w is the set of
API requestswithin timewindoww for event e, and Ie,l

is the average of Ie,lr over the three windows.
• Ye,l

1c (defined only if Ye,l
1b � 1): the ratio of the be-

tween-window variation in Ie,lr to the total variation,
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i.e., Ye,l
1c � ∑

w |Oe
w|(I e,lw − Ie,l)2/Se,lTotal, where I e,lw denotes

the average of Ie,lr in window w.
• Ye,l

1d (defined only ifYe,l
1a � 0): an indicator variable

equal to 1 if the total variance of Pose,lr over the
API requests corresponding to the three windows is
positive. The formula for the total variance is the same
as for Ye,l

1b , replacing Ie,lr with Pose,lr and only counting
API requests for which Ie,lr � 1.

• Ye,l
1e (defined only if Ye,l

1d � 1): the ratio of the be-
tween-windowvariation in Pose,lr to the total variation.
The formula is the same as for Ye,l

1c , replacing Ie,lr
with Pose,lr .

If results change around show airing, Ye,l
1a will more

likely to be equal to 1. If Ye,l
1b � 1 and/or Ye,l

1d � 1, it
means that there is some variation in the set of search
results and their positions. A large value of Ye,l

1c and/
or Ye,l

1e indicates systematic variations across win-
dows, relative to the overall amount of variation in
search results.

Although some variations in search results are
bound to occur naturally over searches, our focus is
specifically on variations that happen due to the
airing of the event. That is, ideally, for each (e, l) pair
we would like to compare the presented statistics
from the observed data to those from a counterfactual
set of observations over the same time period but
without the airing of the event. Hence, for each sta-
tistic, we are interested in the following treatment
effect: Ye,l

1 − Ye,l
0 , where the subscript 0 refers to a

counterfactual scenario in which the TV event would
not be scheduled during the time window in which it
was scheduled. Because we only observe Ye,l

1 , we use
two pseudo-control conditions to approximate Ye,l

0 .
They have the same time duration as the treated
condition, but they are shifted by three days either
backward (denoted as “control pre”) or forward
(denoted as “control post”). Hence, the control con-
ditions are similar to the treated one for each TV
event, with the important distinction that only the
treated period includes the actual airing of the event
(which also required having the control periods cover
different days of the week).

As an example, we illustrate the operation for a TV
event aired on November 10 at 8:00 p.m. for 30
minutes when X � 24. In this case, the treated ob-
servations cover the following three time periods:
November 9, 8:00 p.m.–November 10, 7:59 p.m. (24
hours before); November 10, 8:00 p.m.–November 10,
8:30 p.m. (during); and November 10, 8:31 p.m.–
November 11, 8:30 p.m. (24 hours after). The first
control window (control pre) would be similar to the
treatment window, but shifted by three days into the
past: November 6, 8:00 p.m.–November 7, 7:59 p.m.;
November 7, 8:00 p.m.–November 7, 8:30 p.m.; and
November 7, 8:31 p.m.–November 8, 8:30 p.m. The

second control window (control post) would be
shifted by three days in the other direction: November
12, 8:00 p.m.–November 13, 7:59 p.m.; November 13,
8:00 p.m.–November 13, 8:30 p.m.; and November 13,
8:31 p.m.–November 14, 8:30 p.m. Note that for all TV
events and values of X, the control windows never
include any airing of the show, as our events were
either one-time events or weekly TV shows.

4.2.3 Results. We compute the five statistics in the
treated and control conditions, and take the average
across links and across TV events of the same type (TV
show versus sports event), for each search engine and
for each value ofX. The details are presented in online
Appendix D. Here we provide only a brief summary
of the comparisons between the treated and control
conditions. We find some evidence that the identity
and position of search results vary systematically
around the airing time of TV shows and sports events
on Google and Bing, with the exception of TV shows
on Bing. Without access to internal data from Google,
we cannot determine whether these variations are
driven by variations in content, search volume, and
CTRs that lead to automatic andmechanical updating
of the results or by a strategic and conscious effort by
the search engine. In the case of Bing, our discussions
with the company suggest that the search engine did
not strategically update the set of results and their
positions around TV airing times in our main study
period. Again, these findings are not directly relevant
to the results reported in the following section, in
which we compare the ranking of results suggested
by our model to the actual ranking on Bing, without
making any assumption on the extent or source of
variations in search results around the airing time
of shows.

5. Empirical Results
In this section, we first describe the model estimation
procedure using our data, and then report sample
model output that may provide interesting and im-
portant insights for managers. Lastly, we evaluate the
performance of our model in CTR prediction and
ranking recommendation.

5.1. Estimation
We split the corpus for each TV show into in-sample
and out-sample data sets (recall that we estimate the
model separately for each TV show). If a TV show has
N episodes in our data set, the in-sample data set
contains all the searches from the first N − 1 episodes
and the out-sample data set includes all the searches
from the last episode. This allows us to simulate a
situation in which the search engine would update its
predicted CTR and optimize the position of results for

6387
Liu, Toubia, and Hill: Content-Based Model of Web Search Behavior
Management Science, 2021, vol. 67, no. 10, pp. 6378–6398, © 2021 INFORMS



searches around the airing time of a new episode for
each (q, t) combination, based on the searches from
previous episodes. We further split the in-sample
data set into a training data set, which is used for
estimating the model parameters, and a tuning data
set, which is used for determining the optimal choice
of the number of topics K. We form the tuning data set
from 10% of randomly selected (query, time, link)
combinations, leaving the remaining 90% as the train-
ing data set. In the out-sample data set, about 25% (70%)
of queries for annual events (TV shows) also appear
in the in-sample data set (i.e., over the past episodes).
These warm-start queries account for about 50% (90%)
of searches in the out-sample data set for annual events
(TV shows). Note that our proposed model can only
make predictions for warm-start queries as these pre-
dictions rely on query-specific parameters trained us-
ing in-sample observations. However, our model is
able to handle the cold-start link problem. In the
case of a cold-start link, when predicting CTR out of
sample, we estimate the topic intensities of the new
link by running a Poisson factorization, using the
textual description of the link and the topics extracted
from the training stage.

FollowingGopalan et al. (2013), we set each gamma
shape and rate hyper-parameter at 0.3 for topics, topic
distribution, preferences, and baseline search vol-
ume. For the scale parameters λ, we set the gamma
shape and rate hyper-parameter at 0.1 and 1, re-
spectively. We initialize topics φ and topic distribu-
tion θ for queries and links using LDA. We search for
K in [5, 20]. For each given candidate K, we estimate
our proposed model using the training data set, and
we evaluate the model performance on the tuning
data set.We define the optimalK as the one that yields
the highest accuracy in predicting the CTR in the
tuning observations. The specific metric we use is the
mean absolute error between actual and predicted
CTR. Our selected K varies between 6 and 14 for
various TV shows. More generally, firms that apply
ourmodel can set K to be smaller or larger, depending
on the trade-off between clear and intuitive inter-
pretation on the one hand and prediction accuracy on
the other.

5.2. Substantive Results
As an example, in this section we report the sub-
stantive results from the Super Bowl corpus, which
show very good face validity. These observations
confirm that our model may provide reliable insights
for other search domains. Importantly, as mentioned
earlier, these insights would not be possible with a
purely item-based modeling approach to ranking, as
such an approach would not model the content of
queries and search results.

5.2.1 Topics. The first output is the topics that are
extracted from a corpus. To ease interpretation, we
compute the relevance of each word in each topic
(Bischof and Airoldi 2012, Sievert and Shirley 2014).8

Then, we simulate content for each topic using the
exponential of the computed relevance measure. That
is, we generate sets of words for each topic, where the
occurrence probability of eachword is proportional to
the exponential of its relevance. We use word clouds
to visualize the simulated sets of words, where words
with larger font size have higher relevance.
Figure 4 present all eight topics from the Super

Bowl. In plotting these word clouds, we have re-
moved words that are very common or not highly
interpretable (e.g., non-English terms, verbs, adjec-
tives) for better visualization. The sets of the most
relevant words are quite different across topics, and
the topics revealed through these words are coherent
and meaningful. These extracted topics also confirm
our expectations and knowledge about what content
users may be interested in regarding the Super Bowl.
We label these eight topics “Watch Online,” “Pre-
diction,” “Falcons,” “Stats,” “Rivalry,” “Commer-
cial,” “Patriots,” and “Halftime Show.” In online
Appendix E, we report eight topics from the popular
TV show TheWalking Dead. Overall, we find that most
topics are show-specific, but there are a few topics
that appear consistently across most TV shows. These
are mainly about show time and watching online,
spoilers and recaps, and episodes and seasons.

5.2.2. Time-Specific Content Preferences. We analyze
the estimated time-specific variations in content pref-
erences directly reflected in search volume only (i.e.,
those that do not influence CTR, controlling for the
query), γt, and variations that are directly reflected in
bothsearchvolumeandCTR,βt. As an example, Table 2
reports these estimated topic weights for the Super
Bowl. It is clear that there are major differences be-
tween these two types of time-specific content pref-
erences. For instance, there are more topics with large
weights on γt than on βt. That is, variations in content
preferences seem to manifest mostly through varia-
tions in search volume. For instance, users are more
likely to search for information on how to watch a
game online and on predictions (topics 1 and 2) before
the game; teams playing in the game (topics 3 and 5)
during the game; and game results, commercials, and
halftime shows (topics 4, 6, and 8) after the game.
Nevertheless, βt is large for some topic-time combi-
nations, meaning that some variations in preferences
may only be identified from variations in CTR. For
example, holding the query constant, users are rela-
tively more likely to click on links about prediction
(topic 2) before the game (recall that only βt and not γt
appear in Equation (4), which models CTR).
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We also look at the extracted time-specific content
preferences for the 13 other TV shows. As another
example, in online Appendix E, we present the esti-
mated time-specific content preferences from The
Walking Dead. Although the results are show-specific,
a few observations are relatively consistent across
TV shows. For example, people are more likely to
search for specific episodes/seasons before or after a
show airs. People are also more likely to search for
recaps before and during a show. These general
patterns have good face validity.

5.2.3. Query-Specific Content Preferences. We can
understand the content preferences underlying each

query q by looking at the topic intensities of query q, θq,
which are learned through the text of the query, its
search volume, and CTR (θq appears in Equa-
tions (1), (3), and (4)), as well as by examining the offset
parametersεq, which aremainly learned throughCTR,
as they appear only in Equation (4). First, we find that
εq is often significant, confirming the need for this
additional offset parameter. For example, for the
Super Bowl, across all queries, the average of the
magnitude of the sum of εq (across topics) is 13.76,
with a standard of deviation of 9.65. In comparison,
the average magnitude of the sum of θq is 0.29, with a
standard deviation of 2.27. Second, we find that θq
and εq have different topic intensities, confirming that

Figure 4. (Color online) Word Clouds of Eight Topics from Super Bowl

Notes. Each word cloud contains the simulated content for one of the eight topics from the Super Bowl. The size of each word is proportional to
the exponential of its relevance.

Table 2. User Time-Specific Preferences for the Super Bowl

βt + γt βt γt

Topic Before During After Before During After Before During After

1. Watch online 1,733.5 0.0023 0.0022 ≈ 0 ≈ 0 ≈ 0 1,733.5 0.0023 0.0022
2. Prediction 363.1 0.0034 0.0034 1.3088 0.0001 0.0001 361.8 0.0033 0.0033
3. Falcons 0.0022 1,698.6 0.0021 ≈ 0 ≈ 0 ≈ 0 0.0021 1,698.6 0.0021
4. Stats 0.0119 0.0122 2,407.9 ≈ 0 ≈ 0 ≈ 0 0.0118 0.0122 2,407.9
5. Rivalry 3,329.1 1,542.3 0.0177 0.0001 0.0001 0.0001 3,329.1 1,542.3 0.0176
6. Commercial 0.0387 0.0380 8,216.6 0.0001 0.0001 0.0001 0.0386 0.0379 8,216.6
7. Patriots 0.0005 0.0005 945.0 ≈ 0 ≈ 0 ≈ 0 0.0004 0.0004 945.0
8. Halftime Show 4,017.8 4,048.3 7,893.8 2.1141 0.8266 0.6429 4,015.7 4,047.4 7,893.2

Notes. The parameter γt captures temporal differences in content preferences that are reflected directly by changes in search volume only; and βt
captures temporal differences in content preferences that are reflected directly in both search volume and in CTR. We use ≈ 0 to denote a topic
weight that is smaller than 0.0001.
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it is important to have both parameters to better infer
and understand content preferences at the query
level. In particular, the average cosine similarity be-
tween θq and εq across all the Super Bowl queries is
0.35, with a standard deviation of 0.32.9

To further illustrate these differences, Table 3 pres-
ents three sample queries and their normalizedθq and
θq + εq (so that the summation of the intensities across
topics is 1 for each query). For the first query, “live
super bowl stream,” θq unsurprisingly has dominant
intensities on topic “Watch Online.”Although θq + εq
also has the highest weight on the same topic, it also
has a higher weight on the topic “Stats.” For the query
“facts about the super bowl,” although θq has a
dominant weight on the “Prediction” topic, θq + εq
tends to spread the weights more evenly across
topics. Finally, for the query “NFLMVPs,” for which
the underlying user search intent is relatively more
straightforward, we see that both θq and θq + εq have
dominantweightson the“Stats” topic, althoughθq + εq
again tends to spread the weights more evenly
across topics. Overall, the extracted user content
preferences underlying these search queries confirm
our expectations.

5.2.4. Query-Time Specific Content Preferences. By
combiningθq + εqwith βt, we obtain an estimate of the
content preferences associated with query q at time t.
As an example, we pick the query “super bowl,”
which was used to motivate our research in the in-
troduction, and report its estimated θq + εq + βt in
Table 4.We see that within each timewindow, several
topics have large intensities, indicating that users
tend to click on very diverse content when searching
for “super bowl.” In addition, we see some mean-
ingful shifts in the importance weights across time
for the same topic. For instance, content about sta-
tistics and the halftime show (topics 4 and 8) is more
important before the game starts; content about watch-
ing online (topic 1) becomes the most important rel-
ative to other topics during the game; and content

about commercials (topic 6) becomes much more im-
portant only after the game. The overall pattern of
these results is consistent with the click-through data
reported in Figure 2. This again suggests that our
model can automatically extract meaningful and in-
terpretable insights from web search behavior data.

5.3. Predicting Clicks at the Impression Level
We now evaluate our model’s predictions at the level
of individual search impressions. In our data set,
about 70% of search impressions generate no click on
any of the top organic search results whereas the
remaining 30% generate at least one click. We test our
model’s ability to predict whether a search impres-
sion will result in at least one click. To do this, for each
search impression we compute the average predicted
CTR across search results and compare this average
for search impressions forwhich therewas at least one
click, denoted as CTR1, with the average across search
impressions that resulted in no click, denoted as CTR0.
Table 5 reports the results for weekly shows and
annual events separately, for the in-sample and out-
sample data sets. Based on two-sample t-tests, we find
that CTR1 is always significantly larger than CTR0

across all show types and data sets (p-value < 0.001).
That is, the average predicted CTR across search re-
sults is a good predictor of whether a search engine user
will click on at least one of the search results.

5.4. Improving the Search Engine’s Ranking
For each search impression, our model can also be
used to order links based on predicted CTR, giving
rise to a ranking recommendation that may differ
from Bing’s ranking. In this section, we aim to de-
termine whether and under what circumstances our
content-based approach can help Bing improve its
ranking.We observe the ranking provided by Bing for
each search impression (i.e., one user submitting one
query to Bing and receiving a set of results), which
represents the exact outcome of Bing’s ranking al-
gorithm for that impression.

Table 3. User (Normalized) Query-Specific Preferences

Query 1. Watch online 2. Prediction . . . 4. Stats 5. Rivalry . . .

“live super bowl stream”
θq 0.6701 0.1487 . . . 0.0230 0.0114 . . .
θq + εq 0.5902 0.0154 . . . 0.1484 0.0177 . . .

“facts about the super bowl”
θq 0.0020 0.9162 . . . 0.0015 0.0733 . . .
θq + εq 0.0397 0.6397 . . . 0.0408 0.0443 . . .

“NFL MVPs”
θq 0.0016 0.0075 . . . 0.9855 0.0006 . . .
θq + εq 0.0084 0.0337 . . . 0.7897 0.0212 . . .

Notes. The parameter θq indicates the topic intensities of query q, and θq + εq indicates the user click-
through preferences underlying query q. For ease of interpretation, bothθq andθq + εq are normalized so
that the sum across topics is 1.
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5.4.1. Evaluation Metric. From a practical perspective,
users prefer to have themost relevant results at the top
of the SERP (Liu et al. 2009). This suggests that search
engines should ideally position the clicked link at the
top of the SERP. Consider the ranking of results
presented by Bing in search impression i for which a
user clicked on one of the results.We assume that Bing
presented the (organic) results in decreasing order of
predicted CTR. Let RBing

i be the position of the link on
which the user clicked. For each search impression i,
we also derive the ranking recommended by our
model based on CTR predictions. We denote as Rmodel

i
the position that was recommended by our model for
the link on which the user clicked. In cases for which
Rmodel
i < RBing

i , by following our model’s recommen-
dations, the search engine would have been able to
rank the link that was preferred by the user even
higher, which would have been desirable.

Therefore, comparing Rmodel
i to RBing

i allows us to
explore whether our proposedmodelmay potentially
help Bing improve its ranking algorithm. This anal-
ysis can only be performed on search impressions that
resulted in a click, which leaves uswithmore than one
million impressions.10 We note that such comparison
is a conservative test of the ranking generated by the
proposed model. Indeed, to the extent that user click
behavior is influenced by the actual position of links
on the SERP, clicks should be biased toward con-
forming to the actual positions selected by the search
engine (Hotchkiss et al. 2005, Joachims et al. 2005,
Varian 2007). For example, in our data, we find that
the percentage of search impressions for whichRBing

i � 1
is 54% for annual events and 67% for weekly shows.
In such cases, the best our model can do is tie with
Bing’s performance.

5.4.2. Performance Comparisons. Table 6 compares,
at the search impression level, the actual position of
the clicked link (RBing

i ) with the suggested position
derived from our content-based model (Rmodel

i ). We
again separately report performance for in-sample
and out-sample data, for weekly shows and for an-
nual events. The left panel is the average across all the
searches for each type of show. We find that for both
weekly shows and annual events, our content-based
search model performs significantly better than the
benchmark for both the in-sample and out-sample
datasets. Therefore, the results suggest that Bing
could use the proposedmodel to improve its ranking.

5.4.3. Moderators of Performance. We now study po-
tential moderators of the performance of the proposed
model. In other words, we identify conditions under
which the search engine would be able to detect that the
proposed model is likely to be more or less useful.
First, we split the (query, time) pairs on the basis of

whether the link with the highest CTR among in-
sample search impressions also had the highest av-
erage position among all links that were returned by
the search engine for that (query, time) combination.
For each (query, time) pair, we compute the average
position of each link across in-sample search im-
pressions, identify the linkwith the highest in-sample
CTR, and denote as R̃Bing

in-sample the rank of the average
position of the link with the highest in-sample CTR.
The middle panel in Table 6 focuses on the 37% of
observations for which in-sample R̃Bing

in-sample > 1. In
these situations, the ordering of links proposed by
the search engine is not aligned with the observed
ranking (implied by aggregated CTR) in the in-sample
data, which is more likely to call for an alternative
ranking of the links. The rightmost panel focuses on the
remaining 63% of observations for which in-sample
R̃Bing
in-sample � 1. In these cases, the in-sample data pro-

vides no evidence that the average ordering pre-
sented by the search engine is suboptimal for the
(query, time) combination. As expected, Bing’s rank-
ing improves when R̃Bing

in-sample � 1, but our model still
significantly outperforms Bing in these cases. That is,
even in situations where Bing is expected to perform
well on average based on in-sample data, our content-
based model can help improve its ranking algorithm.
Next, we investigate some query-level character-

istics that may influence our model’s ranking per-
formance. Shorter queries may contain less infor-
mation about users’ actual search intent, making the
ranking problem more difficult. Similarly, if a query
is ambiguous, there will be greater uncertainty re-
garding the type of information for which users
are searching, which could also make the ranking
problemmore challenging. We measure query length
as the number of words in the selected vocabulary of

Table 5. Predicting Clicks at the Search Impression Level

Weekly shows Annual events

Prediction In-sample Out-sample In-sample Out-sample

CTR1 0.125 0.121 0.153 0.161
CTR0 0.104 0.098 0.107 0.111

Table 4. User Click-Through Preferences for the Query
“Super Bowl” Across Time

Topic Before During After

1. Watch online 1.6623 6.8292 0.0247
2. Prediction 1.5412 0.6810 0.0202
3. Falcons 0.2522 1.0020 1.6623
4. Stats 6.8292 0.0247 0.2325
5. Rivalry 0.6810 0.0202 0.2522
6. Commercial 1.0020 1.6624 6.8292
7. Patriots 0.0247 0.2325 0.6810
8. Halftime show 2.1343 1.0788 1.6448
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the corpus that appear in the query. We measure
query ambiguity as its topic entropy, which captures
the uncertainty of a document’s topic distribution
(Abhishek et al. 2018). More formally, for a query q
with a (normalized) topic distribution θq, its topic
entropy is defined as Entropyq � −∑K

k�1 θqk log(θqk).
Higher topic entropy means greater ambiguity. We
find that for the out-sample data, the average query
length is 3.171,with a standard deviation of 1.081, and
the average query entropy is −4.4513, with a standard
deviation of 56.8107.

We focus this analysis on the set of search im-
pressions in the out-sample data with at least one
click. For each search impression i of query q at time t,
the predicted position of any of its search results j is an
integer from1 to 8 (from the top to the bottom).Hence,
we consider an ordered probit regression model in
which the dependent variable is Rmodel

i , and the key
explanatory variables include query length, ambi-
guity, and their interaction term. We standardize
these two variables to make their coefficients com-
parable. We use fixed effects to control for actual
position, TV show, and time. The estimation results
are reported in Table 7. All the intercepts and our key
independent variables are statistically significant
(p < 0.01). In particular, the positive coefficient of query
length means that holding all other variables constant,
when increasing the query length by one unit, the
ordered odds of the clicked link having a worse po-
sition according to our model is exp(0.0597) � 1.0615
times greater. The negative coefficient of query am-
biguity means that holding all other variables con-
stant, when increasing the query ambiguity by one
unit, the ordered odds of the clicked link having a
worse position according to our model is exp(0.1123) �
1.1188 times smaller. Therefore, these results suggest
that our model tends to provide better ranking pre-
dictions (lower value of Rmodel

i ) for shorter and more
ambiguous search queries.

6. Discussion, Conclusion, and
Future Research

In this paper, we develop a model that links the
content preferences of search engine users to search

volume and CTR. Our model estimates a latent vector
of content preferences over topics revealed by each
query, where preferences are allowed to vary sys-
tematically along specific dimensions (in our case,
before, during, and after a TV show is aired). It also
associates the content of each search query and search
result description with a latent vector over the same
set of topics, constraining both sets of vectors to be
sparse and nonnegative. To facilitate efficient and
scalable inference, we develop a full Bayesian infer-
ence procedure via a variational inference algorithm.
Our proposed model has a novel structure within

the broad literature of topic modeling and search, and
our paper makes a methodological contribution to
this literature. Managerially, we find that our model
can generate meaningful substantive output that may
lead to important insights for search engines and
advertisers. More specifically, our framework can in-
terpret andexplain searchvolume, clicks on links, and the
relationship between the two. It can also automatically
identify, interpret, and quantify whether and how user
content preferences vary across contexts. More im-
portantly, our model can be used to predict CTR even
for links for which no prior data are available, and it
can help search engines improve their ranking by better
accommodating users’ context-dependent preferences.

Table 6. Improving the Search Engine’s Ranking

All observations R̃Bing
in-sample > 1 R̃Bing

in-sample � 1

Data Ranking Weekly Annual Weekly Annual Weekly Annual

In-sample Rmodel 1.214 1.613 1.282 1.941 1.145 1.524
RBing 1.685 1.933 1.806 2.351 1.561 1.820

Out-sample Rmodel 1.402 1.854 1.461 1.808 1.359 1.870
RBing 1.609 1.989 1.728 2.198 1.520 1.917

Note. As the table shows, we find thatRmodel is always significantly smaller thanRBing (p< 0.001), and the
difference is larger when R̃Bing

in-sample > 1.

Table 7. Ordered Probit Regression of Rmodel
i

Variable Estimates

Intercept: 1 | 2 0.8439 (0.0070)
Intercept: 2 | 3 1.2103 (0.0072)
Intercept: 3 | 4 1.4182 (0.0074)
Intercept: 4 | 5 1.5739 (0.0076)
Intercept: 5 | 6 1.8005 (0.0079)
Intercept: 6 | 7 2.0906 (0.0085)
Intercept: 7 | 8 2.4851 (0.0100)
Query length 0.0597 (0.0035)
Query ambiguity −0.1123 (0.0031)
Query length × ambiguity −0.0412 (0.0050)
Bing position fixed effect Yes
TV show fixed effect Yes
Time fixed effect Yes
Number of observations 192,532
Akaike Information Criterion 371,326

Note. Standard errors are reported in parentheses.
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Although we focus on organic search results in this
paper, as previously mentioned, our model can be
easily generalized to sponsored results. In such con-
texts, our model may not be relevant for optimizing
the ranking of sponsored search results, but it may
be useful for determining how much an advertiser
should be willing to pay to reach a user who submits
a particular query in a particular context, and for
establishing which ad copy should be shown to this
user. For example, our model allows advertisers to
quantify how well the copy of a given ad is aligned
with the content preferences of users who submitted a
particular query in a particular context, even if the ad
copy has not been previously tested. This information
can help advertisers decide which ad copy should be
shown to which users in which context and becomes
particularly valuable when advertisers rely on moment
marketing companies (e.g., TVTY) to instantly launch
and optimize search advertising campaigns triggered by
offline events such as TV commercials (Liu and Hill
2021). In addition, search engines now provide ad-
vertisers detailed campaign performance data across
many contexts (such as time, geographical location,
and some demographics). Variants of our model can
help advertisers extract meaningful insights from such
unstructured data and guide their decision making.

We close by highlighting additional areas for future
research. First, future research could include field
experiments that precisely measure the impact of
implementing the proposed model on the search
engine’s key performance indicators. Second, our
proposed modeling framework can be easily gener-
alized to study other dimensions that may describe
the search context, such as location, device, and de-
mographics. Third, whereas in this paper we model
aggregate users’ search behavior, future research
could extend our model with an individual-specific
(heterogeneous) preference structure, especially for
panel data in contexts like social networking and
online shopping. Finally, our model could be applied
to any search engine that involves querying and
clicking behavior, such as those embedded within
YouTube, Amazon, and Priceline. As such, our model
could be generalized to online communities to un-
derstand users’ readership and interests as well as the
structure of online content. Ultimately, it can be used
by sites to improve their content and recommend
content/friends to their users while also address-
ing the cold-start problem and capturing systematic
variations in preferences across contexts.
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Appendix A. Complete Conditionals
To facilitate inference, we first augment the model with
auxiliary variables, whichmakes it conditionally conjugate.
These auxiliary variables are added for Equations (1)–(4).
More specifically, for each query q in Equation (1), we addK
latent variables for each word v, dqvk, which denotes the
number of words v in query q that belong to topic k. Thus,
dqvk ∼ Poisson(θqkφvk), which are integers such that the
word count wqv � ∑

k dqvk. Similarly, for each link p in
Equation (2), we add K latent variables for each word v:
xpvk ∼ Poisson(θpkφvk), which are integers such that the
word countwpv � ∑

k xpvk. Forquery q at time t in Equation (3),
we add K latent variables: ya

qtk ∼ Poisson(θqkβtk), K latent
variables: yb

qtk ∼ Poisson(θqkγtk), and one latent variable:
yc
qt ∼ Poisson(αq), so that their summation satisfies Sqt �∑
k(ya

qtk + yb
qtk) + y c

qt. For each click-through count Cpqt in
Equation (4), weaddK latentvariables: z apqtk ∼Poisson(θpkθqk),
K latent variables: zbpqtk ∼ Poisson(θpkεqk), K latent vari-
ables: zcpqtk ∼ Poisson(θpkβtk), and one latent variable: z dpqt ∼
Poisson(λXpos

pqt
), such thatCpqt � ∑

k(z apqtk+ zbpqtk + z cpqtk) + zdpqt. A
sum of independent Poisson random variables is itself a
Poisson with a rate equal to the sum of the rates, so these
new latent variables preserve the marginal distribution of
the observations:

L Θ( ) �∑
q

log Pr αq
( ) + log Pr θq

( ) + log Pr εq
( ){

+∑
v

log Pr wqv|dqv( ) + log Pr dqv|θq,φv
( )[ ]

+∑
t

log Pr Sqt|yqt( ) + log Pr yqt|θq,αq, βt,γt
( )[ ]

+∑
p,t

log Pr Cpqt|zpqt( )[ + log Pr zpqt|λ, εq, βt, θq, θp
( )]}

+∑
p

log Pr θp
( ) +∑

v
log Pr wpv|xpv( )[{

+ log Pr xpv|θp,φv
( )]}

+∑
t

log Pr βt
( ) + log Pr γt

( )( )
+∑

v
log Pr φv( ) +∑

j
log Pr λj

( )
.

(A.1)
After the data augmentation, the parameters that we

need to estimate include:

Θ � φk,θq,θp, εq,γt, βt,αq,λ, dqvk, xpvk, yqkt, zpqtk
{ }

.

Note that when theword count, query usage, or click-through
is zero, these auxiliary variables are not random—the pos-
terior distribution will place all its mass on the zero vector.
Therefore, the inference procedure will only iterate over
nonzero observations (i.e., {wqv > 0,wpqv > 0,Sqt > 0,Cpqt > 0}).
The full joint log-likelihood function of the data and
these parameters can be expressed as Equation (A.1). In the
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following, we present the complete conditionals of all
these parameters.

A.1. Topics
The prior of the topic φvk has gamma prior, and its data
{dqvk}q and {xpvk}p all have Poisson distribution. Hence, the
complete conditional of φvk is conjugate and also gamma:

φvk | dqvk, θqk
{ }

q, xpvk, θpk
{ }

p∼ Gamma

a1 +
∑
q
dqvk +

∑
p

xpvk, a2 +
∑
q
θqk +

∑
p

θpk

( )
. (A.2)

A.2. Topic Intensities
For each query q, the prior distribution of θqk is gamma, and
its data {dqvk}v, {yaqtk, ybqtk}t, and {zapqtk}p,t all follow Poisson.
Therefore, the posterior distribution of θqk is also gamma:

θqk | dqvk,φvk
{ }

v, yaqtk, βt, y
b
qtk,γt

{ }
t
, zapqtk, θp

{ }
p,t

∼ Gamma c1 +
∑
v
dqvk +

∑
t

yaqtk + ybqtk
( )(

+∑
p,t

zapqtk, c2 +
∑
v

φvk +
∑
t

βtk + γtk

( ) +∑
p,t

θpk

)
. (A.3)

It is clear that the model learns the topic distribution of a
search query by combining the textual information with
user query usage as well as click-through data. Thus, the
model can naturally address the sparsity of the textual
information in user search queries (Liu and Toubia 2018),
hence leading to better interpretability through a semi-
supervised learning approach. The supervision is guided
by how users react to this textual information. Following
the same argument, for each link p, its intensity for topic
k satisfies:

θpk
⃒⃒
xpvk,φvk
{ }

v, zapqtk, z
b
pqtk, z

c
pqtk, θqk, εqk, βtk

{ }
q,t

∼ Gamma b1 +
∑
v
xpvk +

∑
q,t

zapqtk + zbpqtk + zcpqtk
( )

,

(

b2 +
∑
v
φvk +

∑
q,t

θqk + εqk + βtk
( ))

. (A.4)

In this case, the model learns the topic distribution of a link
by combining its textual information with user click-
through data, which can also be understood as semi-
supervised learning of link description.

A.3. User Preferences
We first derive the full conditional of user time-specific
preference for a topic βtk, whose data include {yaqtk}q and
{zcpqtk}p,q:

βtk

⃒⃒⃒
θq, yaqtk
{ }

q
, θpk, zcpqtk
{ }

p,q
∼ Gamma

e1 +
∑
q
yaqtk +

∑
p,q

zcpqtk, e2 +
∑
q
θqk +

∑
p,q

θpk

( )
. (A.5)

It is apparent that in posterior, the model learns user time-
specific content preferences through both query usage and
subsequent click throughs. This inference approach is
consistent with Liu and Toubia (2018, 2020), who suggested
that queries may not be a direct representation of user
preferences and that it is important to link queries to their
search results to better estimate user preferences.

Similarly, we derive the full conditional of the offset of
user time-specific preferences γt, whose data include only
{ybqtk}q, as:

γtk

⃒⃒⃒
θq, ybqtk
{ }

q
∼ Gamma e1 +

∑
q
ybqtk, e2 +

∑
q
θqk

( )
. (A.6)

That is, themodel learns the topic offset of user time-specific
preferences through the topic intensities of the queries that
users are mostly likely to issue. Finally, the data for the
offset of user query-specific preferences εq include {zbpqtk}p,
which all follow a Poisson distribution. Thereby, the
complete conditional of εq is:

εqk
⃒⃒⃒
θpk, zbpqtk
{ }

p,t
∼ Gamma e1 +

∑
p,t

zbpqtk, e2 +
∑
p,t

θpk

( )
. (A.7)

That is, the model learns the topic offset of user query-
specific preferences through the topic intensities of the links
that users tend to click.

A.4. Auxiliary Poisson Variables
The auxiliary variable dqv for the word count in a query is a
K-dimensional latent vector of Poisson count. When con-
ditional on the observed sum, wqv, dqv is distributed as a
multinomial for which the parameter is the normalized set
of rates (Cemgil 2009). Therefore, the complete conditional
of dqv is:

dqv|wqv,θq,φv ∼ Mult wqv,
θq · φv

θT
qφv

( )
, (A.8)

where · denotes the element-wise product operation. Like-
wise, the complete conditional of xpv for the word count of
link p is a K-dimensional multinomial whose observed
summation is wqv:

xpv|wpv,θp,φv ∼ Mult wpv,
θp · φv

θT
pφv

( )
. (A.9)

The complete conditional of yqt � (yaqt, ybqt, ycqt) for the usage
of query q at time t is a (2K + 1)-dimensional multinomial
whose observed summation is Sqt:

yqt|αq,θq, βt,γt ∼ Mult Sqt,
θq · βt
Nqt

,
θq · γt
Nqt

,
αq

Nqt

( )
, (A.10)

where Nqt � θT
q (βt + γt) + αq. Lastly, the complete condi-

tional for the click-through count zpqt � (zapqt, zbpqt, zcpqt, zdpqt)
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is a (3K + 1)-dimensional multinomial whose summation
is Cpqt:

zpqt|θp,θq, εq, βt,λ ∼ Mult Cpqt,
θp · θq

Npqt
,
θp · εq
Npqt

,
θp · βt
Npqt

,
λXpos

pqt

Npqt

( )
,

(A.11)
where Npqt denotes the summation θT

p (θq + εq + βt) + λXpos
pqt
.

A.5. Fixed Position Effect
Suppose the (rounded) observed position on the SERP is
Xpos

pqt ∈ {1, 2, · · · ,N}. We assume that the prior distribution of
each N position effect λj is Gamma(h1, h2). Given that the
data for these scale parameters are {zdpqt,Xpos

pqt}p,q,t, which
follows a Poisson distribution, the complete conditional for
λj follows a gamma distribution:

λj| zdpqt,Xpos
pqt

{ }
q,p,t

∼ Gamma

h1 +
∑
q,p,t

zdpqtI X
pos
pqt � j

( )
, h2 +

∑
q,p,t

I Xpos
pqt � j

( )( )
. (A.12)

A.6. Search Volume Baseline
The posterior distribution of the baseline search volume of
queryαq is conjugatewith gammaprior andPoisson data {ycqt},
such that:

αq| ycqt
{ }

t
∼ Gamma e1 +

∑
t
ycqt, e2 + T

( )
. (A.13)

Appendix B. Variational Inference Algorithm
B.1. Variational Family
The first step is to define a variational distribution f (·) of
each model variable as an approximation of the actual

posterior distribution that is given in Appendix A. In our
application, we define the variational family f (φ,θ, β, ε,
α,λ, d, x, y, z) with a mean-field variational form (Jordan
et al. 1999) in which all of the variables are assumed to be
independent, and each is governed by its own distribution:

f φ,θ, β, ε,α,λ, d, x, y, z
( )
� ∑

j
f λj
( )[ ] ∏

v,k
f φvk( )

[ ] ∏
q,k

f θqk
( )

f εqk
( )[ ]

× ∏
p,k

f θpk
( )[ ] ∏

q
f αq
( )[ ]

× ∏
t,k

f βtk
( )

f γtk

( )[ ] ∏
q,v,k

f dqvk
( )[ ] ∏

p,v,k
f xpvk
( )[ ]

× ∏
q,t,k

f yqtk
( )[ ] ∏

p,q,t,k
f zpqtk
( )[ ]

. (B.1)

Table B.1 summarizes the complete conditionals derived
in Appendix A and the corresponding variational param-
eters for all the variables for which the parameter form of
multinomial distribution corresponds to its formula in an
exponential family. For example, the variational distribu-
tion for preference εqk is Gamma(ε̃shpqk , ε̃rteqk ). We denote the
shape with the superscript “shp” and rate with the su-
perscript “rte.” The variational factors for these auxiliary
variables are all multinomial, which are the same as their
conditional distribution in Appendix A.

B.2. Variational Objective Function
Variational inference minimizes the Kullback-Leibler di-
vergence from the variational distribution to the posterior
distribution. This is equivalent to maximizing the evidence
lower bound (ELBO), a lower bound on the log-likelihood

Table B.1. Complete Conditionals and Variational Parameters

Variable Type Complete conditional Variational parameter

φvk Gamma a1 +∑
q dqvk +∑

p xpvk , a2 +∑
q θqk +∑

p θpk φ̃shp
vk , φ̃

rte
vk

θqk Gamma c1 +∑
v dqvk +∑

t(yaqtk + ybqtk) +∑
p,t zapqtk , θ̃

shp
qk

c2 +∑
v φvk +∑

t(βtk + γtk) +∑
p,t θpk θ̃rte

qk

θpk Gamma b1 +∑
v xpvk +∑

q,t(zapqtk + zbpqtk + zcpqtk), θ̃
shp
pk

b2 +∑
v φvk +∑

q,t(θqk + εqk + βtk) θrte
pk

εqk Gamma e1 +∑
p,t zbpqtk, e2 +∑

p,t θpk ε̃
shp
qk , ε̃

rte
qk

βtk Gamma e1 +∑
q yaqtk +∑

p zcpqtk , e2 +∑
q θqk +∑

p θpk β̃
shp
tk , β̃rtetk

γtk Gamma e1 +∑
q ybqtk , e2 +∑

q θqk γ̃
shp
tk , γ̃rte

tk

αq Gamma e1 +∑
t ycqt, e2 + T α̃

shp
q

λj Gamma h1 +∑
q,p,t zdpqtI(Xpos

pqt � j), h2 +∑
q,p,t I(Xpos

pqt � j) λ̃
shp
j

dqvk Multinomial logθqk + logφvk μd
qvk

xpvk Multinomial logθpk + logφvk μx
pvk

yqtk Multinomial logθqk + log βtk, if 1 ≤ k ≤ K; μ
y
qtk

logθqk + logγtk , if K + 1 ≤ k ≤ 2K;
logαq, if k � 2K + 1

zpqtk Multinomial logθpk + logθqk, if 1 ≤ k ≤ K; μz
pqtk

logθpk + log εqk, if K + 1 ≤ k ≤ 2K;
logθpk + log βtk, if 2K + 1 ≤ k ≤ 3K;
logλXpos

pqt
, if k � 3K + 1
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of the data (Jordan et al. 1999, Hoffman et al. 2013). Based on
the full joint log-likelihood function in Equation (A.1) and
the variational family in Equation (B.1), the ELBO of the full
model can be written as:

L f
( ) � Ef log Pr φ,θ, β, ε,γ,α,λ, d, x, y, z

( )[ ]
− Ef log f φ,θ, β, ε,γ,α,λ, d, x, y, z

( )[ ]
. (B.2)

In the first line, the first term is the expected log joint
distribution of the model, and the second term is the en-
tropy of the variational distribution, which encourages
distribution to be spread across configurations.

A few expectation terms in Equation (B.2) do not have
closed-form solutions and hence are intractable. Fortu-
nately, these difficult terms appear in both the joint log-
likelihood function and the entropy and thus can be can-
celed. To compute the expectation of a logarithm variable x
with a prior f (·) ∼ Gamma(a, b), we use the fact that
Ef [log x] � Ψ(a) − log b, where Ψ(·) denotes the digamma
function (the first derivative of the log gamma function).
After replacing all the expectation terms of these latent
variables under variational distribution f (·) and then re-
moving terms that are constant, we obtain a surrogate
expression of the ELBO in Equation (B.3) that depends only
on data, variational parameters, and hyperparameters:

L f
( )∝∑

j

{
h1 − λ̃

shp
j

( )
Ψ λ̃

shp
j

( )
+ λrte

j − h2
λrte
j

λ̃
shp
j + logγ λ̃

shp
j

( )}

+∑
q

{
e1 − α̃shp

q

( )
Ψ α̃shp

q

( )
+ αrte

q − h2
αrte
q

α̃shp
q + logγ α̃shp

q

( )}
+∑

v,k

{
a1 − φ̃shp

vk

( )
Ψ φ̃shp

vk

( )
− a1 log φ̃rte

vk .

− a2φ̃
shp
vk /φ̃

rte
vk + φ̃shp

vk + logγ φ̃shp
vk

( )}
+∑

p,k

{
b1 − θ̃

shp
pk

( )
Ψ θ̃

shp
pk

( )
− b1 log θ̃rte

pk+

− b2θ̃
shp
pk /θ̃

rte
pk + θ̃

shp
pk + logγ θ̃

shp
pk

( )}
+∑

q,k

{
c1 − θ̃

shp
qk

( )
Ψ θ̃

shp
qk

( )
− c1 log θ̃rte

qk

− b2θ̃
shp
qk /θ̃rte

qk + θ̃
shp
qk + logγ θ̃

shp
qk

( )
+ e1 − ε̃

shp
qk

( )
Ψ ε̃

shp
qk

( )
− e1 log ε̃rteqk

− e2ε̃
shp
qk /ε̃rteqk + ε̃

shp
qk + logγ ε̃

shp
qk

( )}
+∑

t,k

{
e1 − β̃

shp
tk

( )
Ψ β̃

shp
tk

( )
− e1 log β̃rtetk

− e2β̃
shp
tk /β̃rtetk + β̃

shp
tk + logγ β̃

shp
tk

( )
+ e1 − γ̃

shp
tk

( )
Ψ γ̃

shp
tk

( )
− e1 log γ̃rte

tk − e2γ̃
shp
tk /γ̃rte

tk

+ γ̃
shp
tk + logγ γ̃

shp
tk

( )}

+∑
q,v,k

{
− θ̃

shp
qk φ̃shp

vk

θ̃rte
qk φ̃

rte
vk

+ wqvμ
d
qvk Ψ θ̃

shp
qk

( )
− log θ̃rte

qk

(
.

+Ψ φ̃shp
vk

( )
− log φ̃rte

vk − logμd
qvk

)}

+ ∑
p,v,k

{
− θ̃

shp
pk φ̃

shp
vk

θ̃rte
pk φ̃

rte
vk

+ wpvμ
x
pvk Ψ θ̃

shp
pk

( )
− log θ̃rte

pk

(
.

+Ψ φ̃shp
vk

( )
− log φ̃rte

vk − logμx
pvk

)}

+∑
q,t

{∑K
k�1

[
− θ̃

shp
qk β̃

shp
tk

θ̃rte
qk β̃

rte
tk

+ Sqtμ
y
qtk Ψ θ̃

shp
qk

( )(

− log θ̃rte
qk +Ψ β̃

shp
tk

( )
− log β̃rtetk − logμy

qtk

)]

+ ∑2K
k�K+1

[
− θ̃

shp
qk γ̃

shp
tk

θ̃rte
qk γ̃

rte
tk

. + Sqtμ
y
qtk Ψ θ̃

shp
qk

( )(
− log θ̃rte

qk +Ψ γ̃
shp
tk

( )
− log γ̃rte

tk − logμy
qtk

)]

− α̃
shp
q

αrte
q

+ Sqtμ
y
qt,2K+1 Ψ α̃shp

q

( )
− logαrte

q − logμy
qt,2K+1

( )}

+∑
p,q,t

{∑K
k�1

[
− θ̃

shp
pk θ̃

shp
qk

θ̃rte
pk θ̃

rte
qk

+ Cpqtμ
z
pqtk Ψ θ̃

shp
pk

( )(
− log θ̃rte

pk +Ψ θ̃
shp
qk

( )
− log θ̃rte

qk − logμz
pqtk

)]

+ ∑2K
k�K+1

[
− θ̃

shp
pk ε̃

shp
qk

θ̃rte
pk ε̃

rte
qk

+ Cpqtμ
z
pqtk Ψ θ̃

shp
pk

( )(
− log θ̃rte

pk +Ψ ε̃
shp
qk

( )
− log ε̃rteqk − logμz

pqtk

)]

+ ∑3K
k�2K+1

[
− θ̃

shp
pk β̃

shp
tk

θ̃rte
pk β̃

rte
tk

+ Cpqtμ
z
pqtk Ψ θ̃

shp
pk

( )(
− log θ̃rte

pk +Ψ β̃
shp
tk

( )
− log β̃rtetk − logμz

pqtk

)]

−
λ̃
shp
Xpos
pqt

λrte
Xpos
pqt

+ Cpqtμ
z
pqt, 3K+1

(
Ψ λ̃

shp
Xpos
pqt

( )

− logλrte
Xpos

pqt
− logμz

pqt, 3K+1

)}
. (B.3)

B.3. Coordinate Ascent Algorithm

Algorithm B.1. CAVI for Content-Based Search Model
Input: Data {wq,wp, Sqt,Cpqt,X

pos
pqt}, and tolerance δ

1: Initialize all variational parameters, ELBO0, ELBO1,
and �ELBO

2: while �ELBO > δ do
3: ELBO0 � ELBO1

4: procedure Updating Variational Parameters
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5: φ̃shp
vk � a1 +∑

q wqvμd
qvk +

∑
p wpvμx

pvk,φ̃
rte
vk � a2 +∑

q
θ̃
shp
qk

θ̃rte
qk
,

+∑
p
θ̃
shp
pk

θ̃rte
pk

6: θ̃
shp
qk �c1+

∑
vwqvμd

qvk+
∑

tSqt
(
μ
y
qtk+μy

qt,K+k
)+∑p,tCpqtμz

pqtk

7: θ̃rte
qk � c2 +∑

v
φ̃shp
vk

φ̃rte
vk
+∑

t

(
β̃
shp
tk
β̃rtetk

+ γ̃
shp
tk
γ̃rtetk

)
+∑

p,t
θ̃
shp
pk

θ̃rte
pk

8: θ̃
shp
pk �b1+

∑
vwpvμx

pvk+
∑

q,tCpqt
(
μz
pqtk+μz

pqt,K+k+μz
pqt,2K+k

)
9: θ̃rte

pk � b2 +∑
v
φ̃shp
vk

φ̃rte
vk
+∑

q,t

(
θ̃
shp
qk

θ̃rte
qk
+ ε̃

shp
qk

ε̃rteqk
+ β̃

shp
tk
β̃rtetk

)
10: ε̃

shp
qk � e1 +∑

p Cpqtμz
pqt,K+k, ε̃

rte
qk � e2 +∑

p
θ̃
shp
pk

θ̃rte
pk

11: β̃
shp
tk � e1 +∑

q Sqtμ
y
qtk +

∑
p Cpqtμz

pqt, 2K+kβ̃
rte
tk � e2,

+∑
q
θ̃
shp
qk

θ̃rte
qk

+∑
p
θ̃
shp
pk

θ̃rte
pk

12: γ̃
shp
tk � e1 +∑

q Sqtμ
y
qt,K+k, γ̃

rte
tk � e2 +∑

q
θ̃
shp
qk

θ̃rte
qk

13: α̃
shp
q � e1+∑

t Sqtμ
y
qt,2K+1, λ̃

shp
j � h1+∑

q,p,t Cpqtμz
pqt,3K+1× I

(
Xpos

pqt � j
)

14: μd
qvk∝ exp

{
Ψ
(
θ̃
shp
qk

) − log θ̃rte
qk +Ψ

(
φ̃shp
vk

) − log φ̃rte
vk

}
15: μx

pvk∝ exp
{
Ψ
(
θ̃
shp
pk

) − log θ̃rte
pk +Ψ

(
φ̃shp
vk

) − log φ̃rte
vk

}

16: μ
y
qtk∝

exp
{
Ψ
(
θ̃
shp
qk

)− log θ̃rte
qk +Ψ

(
β̃
shp
tk

)− log β̃rtetk
}

if k≤K
exp

{
Ψ
(
θ̃
shp
qk

)− log θ̃rte
qk +Ψ

(
γ̃
shp
tk

)− log γ̃rte
tk

}
if K+1≤ k≤ 2K

exp
{
Ψ
(
α̃
shp
q

)− logαrte
qk

}
if k� 2K+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17: μz
pqtk∝

exp
{
Ψ
(
θ̃
shp
pk

)− log θ̃rte
pk +Ψ

(
θ̃
shp
qk

)− log θ̃rte
qk

}
if k≤K

exp
{
Ψ
(
θ̃
shp
pk

)− log θ̃rte
pk +Ψ

(
ε̃
shp
qk

)− log ε̃rteqk
}

if K+1≤ k≤ 2K
exp

{
Ψ
(
θ̃
shp
pk

)− log θ̃rte
pk +Ψ

(
β̃
shp
tk

)− log β̃rtetk
}

if 2K+1≤ k≤ 3K
exp

{
Ψ
(
λ̃
shp
Xpos
pqt

)− logλrte
Xpos

pqt

}
if k� 3K+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
18: end procedure
19: procedureUpdating Metrics for Convergence Evaluation
20: Compute ELBO1 using Equation (B.3)
21: �ELBO � ELBO1 − ELBO0

22: end procedure
23: end while
24: Compute the posterior estimate as the ratio of the shape

and rate variational parameters
Output: {φk,θq,θp, εq,γt, βt,αq, dqvk, xpvk, yqkt, zpqtk,λj}
The mean-field variational family enables the CAVI al-

gorithm (Bishop 2006). The central idea of CAVI is to op-
timize one variational parameter each time while fixing all
others. This algorithm guarantees a local optimum of the
ELBO (i.e., the bound on the log probability of the model).
CAVI is closely related to the Gibbs sampler: the Gibbs
sampler maintains a realization of the latent variable and
iteratively samples from each variable’s complete condi-
tional, whereas CAVI maintains a mean-field variational
distribution and iteratively sets each variable’s variational
factor using the expected log of the complete conditional. If
the complete conditional distribution of a latent variable is
an exponential family and its corresponding variational
distribution has the same form, then its variational pa-
rameters have a closed-form solution using the coordinate
ascent algorithm (Hoffman et al. 2013). More specifically,
the variational parameter equals the expectation of the

conditional parameter in its corresponding complete con-
ditional distribution. Under the conditionally conjugate
augmented model, this property is satisfied. Accordingly,
for all the variational parameters whose distribution is
gamma, the update formulas are simply the expectation of
the conditional posterior derived in Appendix A under
variational distribution f (·). The update formulas for the
multinomial variables are also derived based on the ex-
pectation of the complete conditionals in Table B.1, and they
should be normalized together to ensure they sum to 1. We
present the complete procedure in Algorithm B.1.

Endnotes
1For confidentiality, we normalize the total search volume of each
query by dividing it by the total search volume of the query “super
bowl 50 highlights,” whose normalized search volume hence is 1
in Figure 1.
2We find that the positions of the URLs in Figure 2 are quite stable on
Bing across impressions. For this particular query, the ranking of the
URLs derived from the average position across impressions is the
same in all three time windows. More generally, we received con-
firmation from the company that at the time of writing this paper,
Bing did not systematically adjust the ranking of search results
around a TV show’s airing time. This is also confirmed by the ad-
ditional data reported in online Appendix D.
3Graphical models merge graph theory and probability theory in a
powerful formalism for multivariate statistical modeling. Examples
include hidden Markov models, latent Dirichlet allocation, and
Kalman filters. Graphical models have three appealing features
(Jordan 2004): (1) the relationships among different variables are
readable from a graph; (2) the models can define a factorization of the
joint probabilistic distribution of these variables; and (3) the inference
algorithm is connected with the learning algorithm by focusing on
the conditional independence of different random variables while
maintaining control over the computational cost associated with
the models.
4Note that in reality, such a description may change across searches.
However, based on the large-scale search data we collected from
Bing,we find thatwithin a short timewindow such as two days, there
are minimal changes to each link’s description. In our empirical
study, we use themost frequent version of the description of each link
recorded within 24 hours of show time.
5One can allow the hyper-prior parameters in the gamma distribu-
tion to differ across model parameters. Here, we use the same hyper-
prior parameters for different parameters for simplicity of notation.
Based on our empirical study, we also find that hyper-prior pa-
rameters do not significantly change the estimation results.
6One could consider alternative specifications of the position effect as
long as the model remains conjugate. For instance, we considered a
parametric specification of the position effect λ/Xpos

pqt , inwhich casewe
also allowed the coefficientλ to vary across queries. Although this can
capture query heterogeneity, we find that with our corpora, the
overall model performance is worse than under a fixed-effect spec-
ification, especially for annual TV events.
7We set a higher cutoff point for the annual events because they tend
to generate much larger search volumes thanmost weekly TV shows.
However, we still have a large number of queries for annual events.
See Table 1.
8The relevance of word w to topic k is measured as r(w, k|π) �
π log(φ̃kw) + (1 − π) log(φ̃kw/pw), where φ̃kw is the posterior estimate
of the probability of seeing word w given topic k (equal to
φkw/Σw′φkw′ ), pw is the empirical distribution of wordw in the corpus,
andπ determines theweight given to the probability of wordw under
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topic k relative to its lift φ̃kw/pw, both measured on the log scale. We
set π � 0.6, following Sievert and Shirley (2014).
9The cosine similarity between two vectors a and b is computed
based on their inner product: f (a, b) � a · b/‖a‖‖b‖. In our case, it
ranges from 0, indicating completely orthogonal, to 1, meaning
exactly similar.
10Among these selected searches, we find that about 90% of searches
generate only one click. Throughout this section, whenmore than one
link on the SERP was clicked, we evaluate only the link with the
highest position on Bing (i.e, lower value of R). This rule makes our
comparison more conservative, as it favors Bing.
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