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ABSTRACT

We propose a new valuation method for private equity investments. It constructs a

replicating portfolio using cash flows on listed equity and fixed-income instruments

(strips). It then values the strips using an asset pricing model that captures the risk

in the cross-section of bonds and equity factors. The method delivers a risk-adjusted

profit on each PE investment and a time series for the expected return on each fund

category. We find negative risk-adjusted profits for the average PE fund, with sub-

stantial heterogeneity and some persistence in performance. Expected returns and

risk-adjusted profit decline in the later part of the sample.
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Private equity investments have risen in importance over the past 25 years. In contrast,

the number of publicly listed firms has been falling since 1997, especially among smaller

firms. Private equity funds account for $5.8 trillion in assets under management, and

raised nearly $800 billion in new capital in 2018 alone (Bökberg et al. (2019)). Large insti-

tutional investors such as pension and sovereign wealth funds allocate substantial frac-

tions of their portfolios to such private investments. For example, the celebrated Yale

University endowment invests more than 50% of its portfolio in alternative assets. As

the fraction of overall wealth held in the form of private investments grows, so does the

importance of developing appropriate valuation methods. The nontraded nature of these

assets and their irregular cash flows make this a challenge.

As with any investment, the value of a private equity (PE) investment equals the

present discounted value (PDV) of its cash flows. The general partner (GP, fund man-

ager) deploys the capital committed by the limited partners (LPs, investors) by investing

in a portfolio of risky projects. The risky projects pay some interim cash flows that are dis-

tributed back to the LPs. The bulk of the cash flows accrue when the GP sells the projects

and distributes the proceeds, net of fees, to the LPs.

The main challenge in evaluating a PE investment is how to adjust the distributions

the LPs receive for the systematic risk inherent in the cash flows. Industry practice is to re-

port the ratio of distributions to capital contributions (TVPI) and the internal rate of return

(IRR), both of which ignore the risk. Standard risk-adjustment procedures, namely, the

public market equivalent (PME) approach of Kaplan and Schoar (2005) and the general-

ized PME approach of Korteweg and Nagel (2016), only consider aggregate stock market

risk.

We propose a novel, two-step methodology that broadens the nature and refines the

timing of the cash-flow risk for PE investments. In a first step, we estimate the exposure

of PE funds’ cash flows to the cash flows of a set of publicly listed securities. We consider

a much richer cross-section of risks than prior PE literature. To capture the temporal
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nature of risk, we estimate the exposure of PE cash flows to dividends and capital gains

on the listed factors at each cash-flow horizon. Intuitively, exposure to dividend strips

captures how PE cash flows from operations covary with stocks and bonds. Exposure

to gain strips captures the covariance of PE cash flows that arise from asset dispositions.

Exposures may depend on the market environment at the time of fund origination. For

identification, we assume that all PE funds within a given category and vintage have the

same exposures to the public market strips. Estimating the many potential exposures

across horizons and factors is greatly facilitated by using an elastic net approach. The

first step results in a replicating portfolio of strips that has the same amount of systematic

risk as the PE investment.

With the exception of zero-coupon bonds and a short history of dividend strips on the

aggregate stock market, data on strip prices are not available. Therefore, the second step

of the approach sets up and estimates a flexible asset pricing model to obtain dividend

and capital gain strip prices for all the listed securities that feature in the replicating port-

folio. This estimation is disciplined by the observed prices on nominal and real Treasury

bonds of various maturities as well as by the prices and dividends on the various equity

factors. The asset pricing model also delivers a time series of the expected return for all

strips. The strip prices and expected returns are new and of independent interest to the

asset pricing literature.

Combining the replicating portfolio of strips obtained from the first step with the strip

prices from the second step, we obtain the fair price for the PE-replicating portfolio for

each PE category and vintage. We define the risk-adjusted profit (RAP) of a fund as the

difference between the net present value of the PE cash flows and the net present value of

the replicating portfolio. A fund has a positive RAP because it delivers positive idiosyn-

cratic cash flows or because it delivers systematic cash-flow exposure at lower cost than

that available in public markets. Under the joint null hypothesis of no outperformance

(after GP fees) and the correct asset pricing model, RAP should be zero.
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We also obtain a time series of the expected return on each PE category-vintage pair

and decompose the expected return into its various horizon components (strips) and

cross-sectional exposures. This decomposition provides deeper insight into what risk

sources PE investors are exposed to and compensated for. By providing expected returns

of PE funds and their covariances with traded securities, our approach allows for stan-

dard portfolio analysis despite the absence of a time series for realized PE returns.

We apply our method to the universe of all PE fund categories and vintages. Our main

sample contains 4,474 funds with $4.3 trillion of assets under management (AUM) across

eight PE categories. We follow funds started between 1981 and 2018, and we use cash flow

data through the third quarter of 2019. Buyout is the largest category with 1,145 funds

and $1.9 trillion in AUM, followed by Real Estate ($592 billion), Fund of Funds ($528

billion), and Venture Capital ($489 billion). Infrastructure, Restructuring, Debt Fund, and

Natural Resources make up the remaining PE categories. Our main data source is Preqin,

but all results replicate on a different data set provided by Burgiss.

Our first main finding is that PE funds display substantial exposure to risk factors be-

yond the traditional Treasury bond and aggregate stock market factors. The nature of this

factor exposure varies in ways related to the nature of the underlying assets the fund in-

vests in. Real estate funds, for instance, take on listed real estate exposure; infrastructure

fund cash flows have listed infrastructure factor exposure, and venture capital (VC) funds

have distribution payoffs best proxied by growth gain strips, corresponding to a strategy

of selling growth stocks. The replicating portfolio for Buyout funds includes substantial

amounts of small, growth, and value dividend and capital gain strips. This accords well

with a Buyout fund’s strategy to buy small companies, harvest some dividends early in

the life of the fund, and then gradually sell the companies near the end of the life of the

fund. Ignoring these cross-sectional exposures may lead investors and researchers to con-

clude that VC funds have large aggregate market betas rather than average small-growth

exposures, for example. This not only affects our understanding of what risks VC funds
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expose their investors to, but may also result in distorted inference on the expected return.

Our second main finding is that accounting for a richer factor exposure reduces aver-

age RAP across PE categories. A substantial component of the return to PE investment,

which previous research has considered outperformance (abnormal return after fees), can

instead be attributed to missing factor exposure. We find that the average PE fund creates

little value for its LPs after accounting for a broader spectrum of risk. We estimate average

RAP of -6 cents per $1 of committed capital for Buyout, -9 cents for VC, -16 cents for Real

Estate, -19 cents for Fund of Funds, -0.1 cents for Restructuring, -13 cents for Debt funds,

-6 cents for Infrastructure, and -6 cents for Natural Resources. The corresponding PMEs

(after subtracting the initial investment) are 36 cents for Buyout, 22 cents for VC, -4 cents

for Real Estate, 17 cents for Fund of Funds, 20 cents for Restructuring, 12 cents for Debt

funds, 17 cents for Infrastructure, and 26 cents for Natural Resources. Hence, the richer

risk adjustment turns substantial outperformance into substantial underperformance.

Third, we find that there is large cross-sectional dispersion in performance. A non-

trivial fraction of funds in each category delivers a substantially positive RAP. There is

persistence in the identities of GPs that outperform, and this persistence is about as large

as for simpler risk-adjustment methods like PME.

Fourth, both average RAPs and expected returns have been trending downward, and

are especially low in recent periods. The decline in expected returns for PE funds reflects

a broad-based decline in expected returns in public markets. The decline in RAP indicates

that the PE industry has not been able to repeat the early successes in Buyout and VC for

funds started in the 1980s and 1990s.

Our paper makes four contributions to the literature. First, we contribute a rich stochas-

tic discount factor (SDF) model to the asset pricing literature that provides prices of divi-

dend and capital gain strips for cross-sectional risk factors. A literature started by Lettau

and Wachter (2011), van Binsbergen, Brandt, and Koijen (2012), and van Binsbergen et al.

(2013) studies claims that pay a single dividend on the aggregate stock market. Our model
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provides dividend strip prices for a much longer sample period than is available from fu-

tures data and for every maturity. It prices dividend strips for size, value, growth, real

estate, infrastructure, and natural resource factors, shedding new light on the temporal

composition of risk in the cross-section of equities. We also introduce the concept of gain

strips, that is, assets that pay the realized stock price at a future date. The term structures

of expected returns on dividend strips in these various factors display a range of levels

and shapes that provide new targets for asset pricing models. Recent work by Weber

(2018) and Giglio, Kelly, and Kozak (2020) has a similar goal.

The SDF model follows in a long tradition of combining a vector autoregression model

for the state variables (Campbell (1991, 1993, 1996)) with a no-arbitrage model for the SDF

(Duffie and Kan (1996), Dai and Singleton (2000), Ang and Piazzesi (2003), Lustig, Van

Nieuwerburgh, and Verdelhan (2013)). Our model’s state vector includes a broader cross-

section of equity factors and the market prices of risk feature richer dynamics, in light of

new evidence in the literature (Haddad, Kozak, and Santosh (2020)). The estimation of the

market prices of risk matches a broad set of asset pricing moments. It also imposes good-

deal bounds that limit the maximum Sharpe ratio (Cochrane and Saa-Requejo (2000)).

Our finding that PE funds are exposed to the cross-sectional risk factors underscores

the importance of including more than just the aggregate stock market risk factor. Adjust-

ing for this exposure results in substantially lower estimates of performance. Our study

presents the most comprehensive risk adjustment to date.

In this context, it is often argued that the long-term capital lock-up feature inherent

in PE fund structures should entitle GPs and/or LPs to an illiquidity premium. Like

any other performance metric in the PE literature, RAP does not distinguish skill from

an illiquidity premium. The fact that we find low average RAPs suggests that true skill

would be lower still if there were an illiquidity premium.1

1To the best of our knowledge, there is no hard evidence for the existence of an illiquidity premium

in PE. In contrast, many institutional investors such as pension funds seem to value the fact that they do
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Our second contribution is a reassessment of valuation approaches that use the re-

alized SDF. Rather than discounting PE cash flows by the realized SDF, as is done, for

example, under the PME and GPME approaches, we propose using strip prices to com-

pute the PDV of cash flows. Strip prices are expectations of the SDF and avoid the use of

realizations of the SDF. Monte Carlo simulations show that using the realized SDF results

in large cross-fund dispersion in value-added where there should be none. The issue is

that realizations of long-horizon SDFs, used to discount long-horizon PE cash flows, tend

to be far below their unconditional mean.2 The Monte Carlo exercise shows that our pro-

posed statistic, the RAP, is tightly estimated around the truth in samples of the size of the

data: it reliably recovers GP skill (outperformance after fees) if there is skill, and recovers

no skill if there is none.

Third, the insight that strip prices can be productively used to value nontraded cash

flows is new to the PE literature. It applies more broadly to any valuation problem with

a stream of private cash flows, such as valuing an individual private firm, building, or

project. Applying the method to the PE context, we contribute to a large empirical lit-

erature on the performance evaluation of PE funds, such as Kaplan and Schoar (2005),

Phalippou and Gottschalg (2009), Cochrane (2005), Harris, Jenkinson, and Kaplan (2014a),

Korteweg and Sorensen (2017), and Robinson and Sensoy (2016), among many others.

Most of this literature focuses on Buyout and Venture Capital funds. Recent work in valu-

ing privately held real estate assets includes Peng (2016) and Sagi (2017). Ammar and

Eling (2015) and Andonov, Kräussl, and Rauh (2020) study infrastructure investments.

not have to mark-to-market PE investments. Given that public pensions are the largest investors in PE,

the equilibrium illiquidity premium may well be negative to reflect the “convenience” of the illiquidity.

Recently, Asness (2019) and Riddiough (2020) express a similar view. Further exploration of this possibility

represents an interesting direction for future work.
2The issue is similar to that in Martin (2012). Let M be the SDF and X be the cash flow. Martin (2012)

shows that the sample mean of M1X1, · · · , MtXt converges to zero almost surely even though E[MX] = 1.

While this result applies only asymptotically, we find that it already has bite for the cash-flow horizons

relevant to PE analysis.
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The literature reports mixed results regarding PE outperformance and its persistence, de-

pending on the data set and period in question; see Korteweg (2019) for a recent review.

Our analysis spans the full sample from 1981 to 2019 and covers all PE investment cat-

egories. Our approach results in substantially lower estimates of average risk-adjusted

profits for PE funds across all categories, albeit with large cross-sectional and time-series

variation and some evidence of persistent outperformance for a small group of funds.

Another difference between our approach and extant methods like PME and GPME

is that our approach provides exposures to risk factors.3 The replicating-portfolio step

estimates exposures of PE funds with respect to a range of cross-sectional risk factors that

vary by (i) PE category, (ii) vintage, and (iii) horizon of the cash flow. This decomposition

provides new insight into the nature of risk that PE investors are exposed to.

In complementary work, Ang et al. (2018) filter a time series of realized private equity

returns using Bayesian methods. They then decompose that time series into a system-

atic component, which reflects compensation for factor risk exposure, and an idiosyn-

cratic component (alpha). While our approach does not recover a time series of realized

PE returns, it does recover a time series of expected PE returns. At each point in time,

the asset pricing model can be used to revalue the replicating portfolio for the PE fund.

Since it does not require a Bayesian estimation step, our approach is easier to imple-

ment, and hence more flexible in terms of the number of factors as well as the factor risk

premium dynamics. Other important methodological contributions to PE valuation in-

3The GPME approach estimates market price of risk parameters, while the PME approach does not

estimate any parameters. Like GPME, our approach estimates market prices of risk, but it considers a

larger set of risks and allows the prices of risk to vary over time. Sorensen and Jagannathan (2015) assess

the PME approach from a SDF perspective. Like ours, the PME and GPME approaches avoid making

strong assumptions on the return-generating process of the PE fund because they work directly with the

cash flows. Cochrane (2005) and Korteweg and Sorensen (2010) discuss this distinction. In contrast, much

of the earlier literature assumes linear beta-pricing relationships, for example, Ljungqvist and Richardson

(2003) and Driessen, Lin, and Phalippou (2012).
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clude Driessen, Lin, and Phalippou (2012), Sorensen et al. (2014), and Metrick and Yasuda

(2010).

Our fourth contribution is to use the elastic net approach to estimate fund exposures

to a large set of risk factors. While the use of machine learning tools in asset pricing has

gained substantial traction recently (Kozak et al. (2017), Gu, Kelly, and Xiu (2020), Karolyi

and Van Nieuwerburgh (2020)), the tools are equally relevant in the PE context because

(i) considering exposures to a broader range of risk factors is indispensable when valuing

alternative asset categories, and (ii) the amount of PE fund data available is not that large

relative to the number of exposures to be estimated. The combination of limited data and

a large number of factors necessitates the use of dimension-reduction techniques.

The rest of the paper is organized as follows. Section I describes our methodology.

Section II sets up and solves the asset pricing model. Section III presents our main re-

sults on the risk-adjusted profits and expected returns of PE funds. Section IV concludes.

The Internet Appendix provides additional derivations (Section II), additional details on

the VAR estimation (Section III), estimates on shock-exposure elasticities of our estimates

(Section IV), results on additional fund categories (Section V), a validation exercise on

public equities (Section VI), robustness of our estimates across different choices of hyper-

parameters in the elastic net estimation (Section VII), and estimates on the Burgiss data

set (Section VIII).4

I. Methodology

PE investments are finite-horizon strategies. Upon inception of the fund, the investor

(LP) commits capital to the fund manager (GP). The GP deploys that capital at her discre-

tion, but typically within the first two to four years. Intermediate cash flows may accrue

from the operation of the assets, such as net operating income from renting out an office

building. Towards the end of the fund’s life (typically in years 5 to 12), the GP “har-

4The Internet Appendix is available in the online version of this article on the Journal of Finance website.
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vests” the assets and distributes the proceeds to the LPs after subtracting fees (including

performance fees called the carry or promote). These distribution cash flows are risky.

Understanding the nature of the risk in these cash flows is the key question in this paper.

Denote the sequence of net-of-fee cash-flow distributions for fund i by {Xi
t+h}

T
h=0.

Time t is the inception quarter of the fund, the vintage, defined here as the quarter in

which the fund GP makes the first capital call to the LPs. The horizon h indicates the

number of quarters since inception; we also refer to it as the age of the fund. The maxi-

mum horizon H is set to 64 quarters to allow for “zombie” funds that continue past their

expected life span of approximately 10 years. Any cash flows observed in the data after

quarter 64 are discounted and allocated evenly across quarters 61 to 64. Monthly fund

cash flows are aggregated to the quarterly frequency.

All PE cash flows in our data are reported for a $1 investor commitment. In practice,

GPs do not always call the full $1, maybe because they lack profitable investment oppor-

tunities, and/or they call in the capital over multiple years. Our baseline results assume

that the LP commits the present value of actual calls made, which we label Ct ≤ 1, where

the discounting uses the nominal term structure of Treasury yields. This is equivalent to

assuming that the LP invests the committed but yet-to-be-called capital in a portfolio of

Treasuries, with a maturity profile that matches that of the actual calls. This assumption is

conservative in that it results in a higher RAP than the alternative assumption that the LP

sets aside $1 in cash, earning a zero return, while she waits for the GP to call in the com-

mitted funds. This alternative assumption penalizes the GP for time lost in deploying the

money, but rewards for skillful delay. Under this alternative assumption, the LP’s coun-

terfactual investment strategy (to be compared to the actual fund investment) invests the

full $1 in the replicating portfolio at time t.5 We return to the role of calls in Section III.G,

5We truncate call amounts above $1. While infrequent, such instances occur more frequently in more

recent periods. They arise because of recycling provisions that allow GPs to reinvest capital proceeds from

early exits back into the fund to be drawn down later for new investments. From the LP’s perspective, the

call amount never exceeds $1.
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where we present results for the alternative treatment of calls. Having addressed capital

calls and their timing, our method focuses on valuing the distribution of cash flows.

A. Two-Step Approach

In a first step, we use our asset pricing model to price the time series and cross-section

of zero-coupon bond and equity strips. Let Ft,t+h be the K× 1 vector of cash-flow realiza-

tions on the public securities in the replicating portfolio, where K is the number of factors.

The first element of Ft,t+h is the payoff on a nominal zero-coupon bond that is bought at

time t and matures at time t + h, namely, $1. The second element of Ft,t+h is the payoff on

a dividend strip on the aggregate stock market of maturity h,
Dm

t+h
Dm

t
. The realized dividend

at time t + h is scaled by the dividend at vintage origination t to create a cash flow that is

comparable in magnitude to the payoff on the zero-coupon bond of $1. The third element

of Ft,t+h is the payoff on a capital gain strip on the aggregate stock market of maturity h,
Pm

t+h
Pm

t
. The gain strip is an asset that pays off the realized stock price at time t + h. This pay-

off is scaled by the stock price at time t. For each additional cross-sectional equity factor,

we include both dividend and gain strips. For example, the payoff on a value dividend

strip of horizon h is
Dvalue

t+h
Dvalue

t
while the payoff on a value gain strip is

Pvalue
t+h

Pvalue
t

. In the full model,

we have zero-coupon bonds, seven dividend strips, and seven gain strips for a total of

K = 15 risk factors. Since there are H = 64 horizons, we have KH = 960 strips in total.

Intuitively, PE cash flows that result from operating the assets in its portfolio are akin

to dividends earned on listed securities. PE cash flows that result from asset dispositions

are akin to realizing capital gains on listed securities. We expect overall PE cash flows to

be more strongly correlated with dividend strips early in the life cycle (small h), when few

portfolio assets have been sold, while late-in-life cash flows should have greater exposure

to the listed gain strips.

Denote the K × 1 vector of strip prices by Pt,h. The first element is the time-t price

of a nominal zero-coupon bond of maturity h, which we also denote by P$
t,h. The second
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element denotes the time-t price of the h-period market dividend strip. The third element

is the price of the market gain strip, and so on. The time-t price of the gain strip of

maturity h is less than $1 since the stock price at time t + h reflects only the dividends

after period t + h while the stock price at time t reflects all dividends after period t.

Let the one-period nominal SDF be Mt+1. Then the h-period cumulative SDF is

Mt,t+h =
h

∏
j=1

Mt+j.

The (vector of) strip prices satisfy the (system of) Euler equation

Pt,h = Et[Mt,t+hFt,t+h] = Et[Mt,t+h]Et[Ft,t+h] + Covt[Mt,t+h, Ft,t+h].

Strip prices reflect expectations of the SDF, expectations of cash flows, and their covari-

ance. Using strip prices to value PE cash flows avoids using the realized SDF.

In the second step of our approach we obtain the replicating portfolio, which consists

of positions in dividend and gain strips, for the PE cash-flow distributions. Denote the

vector of exposures of PE fund i’s cash flow at time t + h to the cash flow in the repli-

cating portfolio by βi
t,h. The exposure vector describes how many units of each strip the

replicating portfolio contains. We estimate the exposures from a projection of realized PE

cash flows on the cash flows of the listed strips,

Xi
t+h = βi

t,hFt,t+h + ei
t+h, (1)

where ei
t+h denotes the idiosyncratic cash-flow component, which is orthogonal to Ft,t+h.

Below explain the cross-equation restrictions imposed on the estimation of (1).
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Expected Returns The expected return on PE fund i, measured over the life of the fund,

is given by

Et

[
Ri
]
=

H

∑
h=1

K

∑
k=1

wi
t,h(k)Et [Rt+h(k)] , (2)

where wi is a 1×HK vector of replicating portfolio weights with generic element wi
t,h(k) =

βi
t,h(k)Pt,h(k). The HK× 1 vector Et[R] denotes the expected returns on the K traded asset

strips at each horizon h, obtained from the asset pricing model. Fund expected returns

vary over time for two reasons. First, expected returns on the listed strips vary (because

the market prices of risk in the SDF model vary over time). Second, the fund exposures

βi
t,h also vary over time due to vintage effects, as explained below. Equation (2) decom-

poses the risk premium into the sum of compensation earned for exposure to each of the

listed risk factors at each horizon, that is, “strip by strip.”

The expected return in (2) is measured over the life of the fund. For comparison with

IRRs, for example, it is useful to annualize it. Akin to a Macauley duration in fixed in-

come, we define the maturity of the fund, expressed in years (rather than quarters), as

δi
t =

1
4

H

∑
h=1

K

∑
k=1

w̃i
t,h(k)h, (3)

where the weights w̃i
t,h(k) are the original weights wi

t,h(k) rescaled to sum to one. The

annualized expected PE fund return is then

Et

[
Ri

ann

]
=
(

1 + Et

[
Ri
])1/δi

t − 1. (4)

This is the first main object of interest.6

6For the annualized return to correctly reflect how a dollar grows in the fund, one must first calculate the

total return over the fund life by weighting life-time strip returns, and then annualize that life-time return.

First annualizing strip returns and then calculating their weighted average does not result in the correct

future value of the fund. This alternative approach assumes that the fund earns the average annualized

strip return for the average number of years. The resulting annualized return tends to understate the
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Risk-Adjusted Profit Performance evaluation of PE funds requires quantifying the LP’s

profit after taking into account the riskiness of the PE investment. This ex-post realized,

risk-adjusted profit is the second main object of interest. Under the maintained assump-

tion that all of the relevant sources of systematic risk are captured by the payoffs of the

assets in the replicating portfolio, PE cash flows consist of one component that reflects

compensation for risk and a second component that reflects a RAP.

We define the RAP for fund i in vintage t as

RAPi
t =

(
H

∑
h=1

Xi
t+hP$

t,h − Ct

)
−
(

H

∑
h=1

K

∑
k=1

βi
t,h(k)Ft,t+h(k)P$

t,h − βi
t,h(k)Pt,h(k)

)

=
H

∑
h=1

ei
t+hP$

t,h +

(
H

∑
h=1

K

∑
k=1

βi
t,h(k)Pt,h(k)− Ct

)
. (5)

The risk-adjusted profit is the difference between the net present value (NPV) of the

PE fund and the NPV of the replicating portfolio. The NPV of the PE fund equals the

future cash flows of the PE fund, discounted at the risk-free term structure of interest

rates (recall that nominal bond prices are P$
t,h), minus the $Ct ≤ 1 of capital committed to

the fund. Apart from discounting, the first term would be the traditional TVPI measure

that captures cash received out of the investment relative to cash put in. It is also like

the PME measure, except that Treasury yields are used for discounting rather than the

aggregate stock market return. The second term measures the NPV of the replicating

portfolio: the discounted value of all realized cash flows minus the cost of purchasing the

replicating portfolio.

Rewriting, we can express the RAP as the sum of two components. The first is the

discounted sum of the idiosyncratic fund cash flows ei. Since the idiosyncratic cash flows

are orthogonal to the priced cash flows, they are discounted at the risk-free interest rate.

The second component is the difference between the purchase price of the replicating

expected return if the term structure of expected strip returns is flat or upward-sloping and overstate the

expected return if the term structure is downward-sloping.
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portfolio of strips and the purchase price of the PE fund, Ct.

The first term in (5) attributes out-performance to funds that deliver a stream of high

idiosyncratic cash flows, by selecting the right portfolio of assets (asset selection skill).

The second term in RAP credits PE funds with outperformance to the extent that they

are able to deliver a set of factor exposures at an (after-fee) cost Ct that is lower than the

cost of that portfolio in public asset markets. An outperforming fund is one that generates

cash flows without taking commensurate risk. This can manifest as a replicating portfolio

that contains a large quantity of risk-free bonds. Since risk-free bonds are valuable, the

second term is positive.

A PE fund with market timing skills, which buys assets at the right time (within the

investment period) and sells at the right time (within the harvesting period) will have a

positive RAP.7 The RAP measure does not credit the GP for lucky realizations of the risk

factors.

The null hypothesis of no outperformance is E[RAPi
t ] = 0, where the expectation is

taken across funds. Under the null, the idiosyncratic cash flows average to zero across

funds, and purchasing a portfolio of strips that has the same systematic risk as the PE

fund has the same cost as the PE fund itself.

This null is a joint null of also having a correctly specified SDF. All relevant risk fac-

tors for the evaluation of PE cash flows are included. Much of the modern asset pricing

literature finds that a fairly low-dimensional factor structure spans the cross-section of

stock returns (e.g., Kozak, Nagel, and Santosh (2017), Gu, Kelly, and Xiu (2020)). The 15

cross-sectional factors that we include should go a long way towards capturing this factor

structure. Our method can easily accommodate extra factors.8

7The fund’s horizon is endogenous because it is correlated with the success of the fund. As noted by

Korteweg and Nagel (2016), this endogeneity does not pose a problem as long as cash flows are observed.

They write, “Even if there is an endogenous state-dependence among cash-flows, the appropriate valuation

of a payoff in a certain state is still the product of the state’s probability and the SDF in that state.”
8Omitted risk factors may bias RAP estimates. Which way the bias goes depends on the covariance of the
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The RAP measure can be computed for each fund. To assess the performance of PE

funds, we report the distribution of RAP across all funds in the sample as well as the

equal-weighted average RAP by vintage. When calculating our RAP measure (and only

then), we exclude vintages after 2010 Q4 for which we are still missing a substantial frac-

tion of the cash flows as of 2020.

B. Identifying and Estimating Cash-Flow Exposures

The replicating portfolio must be rich enough that it spans all priced sources of risk,

yet it must be parsimonious enough that its exposures can be estimated with sufficient

precision. Allowing every fund in every category and vintage to have its own unrestricted

cash-flow exposure profile for each risk factor leads to parameter proliferation and lack

of identification. We impose cross-equation restrictions to aid identification.

Identifying Assumptions Identification is achieved both from the cross-section and from

the time series. We make four assumptions. First, the cash flows Xi∈c
t+h of all funds i in cat-

egory c (category superscripts are omitted below for ease of notation) and vintage t have

the same risk factor exposures at horizon h, βi
t,h(k) = βc

t,h(k), ∀i ∈ c. We drop the category

superscript in what follows but note that exposures are estimated separately for every

fund category. Second, the risk exposures βt,h(k) are the sum of a vintage effect ak
t and an

omitted factor with the included factors and on the magnitudes of omitted and included strip prices. If the

PE cash flows have a strong positive loading on the omitted factor’s cash flow, the direct effect is to reduce

the cost of the replicating portfolio since the portfolio does not buy the omitted strips by definition. The

indirect effect is that the missing exposure will be partially picked up by higher exposures to the included

factors. More of the included strips will be bought, increasing the cost of the replicating portfolio. The

net effect is ambiguous, and depends on the net change in the cost of the replicating portfolio under the

misspecified model. As an example, we consider the setting of Section I.A of the Internet Appendix, which

assumes that the true model is a three-factor model. We estimate RAP for a misspecified model that omits

the third factor. We find that the direct effect dominates because the included factors are not that highly

correlated with the omitted factor. The result is a downward bias for RAP.
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age effect bk
h for each factor k. Third, horizon effects are constant for the four quarters in a

calendar year. This reduces the number of horizon effects that need to be estimated for

each factor from H = 64 to H/4 = 16.9 Fourth, the vintage effects depend on the price-

dividend ratio of the aggregate stock market in the quarter of fund inception: ak
t = ak

pd(t).

The vintage effects thus capture dependence on the overall investment climate at the time

of PE fund origination. Haddad, Loualiche, and Plosser (2017) emphasize the importance

of price-divident ratios and aggregate equity premia in explaining Buyout activity. The

choice of the pdm
t ratio is also motivated by the asset pricing model of Section II, where

the pdm
t ratio is one of the key state variables driving time-variation in risk premia.10 To

simplify the time dimension, vintages are separated into four groups by the quartile of

the pdm
t ratio distribution at the time of fund inception. Quartile breakpoints are based

on the full 1974 to 2019 sample. Only three of the four vintage effects are identified so we

normalize the vintage effects to zero on average across quartiles.

To summarize, we estimate (H/4 + 3) × K risk exposures for each fund category,

rather than H × T × K exposures in an unrestricted model. We use N f × T × H fund

cash-flow observations to do so, where T reflects the number of different vintage quarters

in the sample, N f the average number of funds in a category per vintage quarter, and H

the life span of a fund in quarters (H = 64). We include all available vintages in estimat-

ing the exposures, including very recent ones, because the early cash flows from recent

vintages still aid in the estimation of the first few elements of bh and the vintage effects

apd(t).

Two-Factor Model We start with a model in which all PE cash flows are only exposed to

bonds and aggregate stock market capital gain strips. We refer to this as the two-factor

9We find no systematic evidence of seasonality in PE fund cash flows.
10A natural alternative would be to consider total capital raised by vintage. One challenge with this

metric is that it is nonstationary since the PE industry has grown. Even scaling by GDP does not remove

this trend. Nevertheless, we find similar results under this alternative.
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model (K = 2). Fund cash flows for the two-factor model can be expressed as

Xi∈c
t+h = βbond

t,h + β
equity
t,h Fequity

t,t+h + ei
t+h

= abond
pd(t) + bbond

h +
(

aequity
pd(t) + bequity

h

)
Fequity

t,t+h + ei
t+h. (6)

We estimate equation (6) by OLS. This model extends the PME and GPME approaches in

that it (i) estimates a richer SDF model with time-varying prices of bond and aggregate

stock market risk, and (ii) results in exposures of fund cash flows that differ by vintage

and cash-flow horizon.

K-Factor Model Our main model is a K-factor model in which we add cross-sectional

equity market factors beyond the two factors from the previous model to better capture

the systematic risk in PE fund cash flows. PE fund cash flows are modeled as

Xi∈c
t+h = βbond

t,h +
K

∑
k=2

βt,h(k)Ft,t+h(k) + ei
t+h

= abond
pd(t) + bbond

h +
K

∑
k=2

(
ak

pd(t) + bk
h

)
Fk

t,t+h + ei
t+h. (7)

In the empirical implementation, K = 15. The 15 factors are bond strips plus both div-

idend strips and capital gain strips on seven equity factors: the aggregate stock market,

small stocks, growth stocks, value stocks, REITs, infrastructure stocks, and natural re-

source stocks. Under our identifying assumptions, we estimate 3K = 45 vintage effects

(the a’s) and KH/4 = 240 age effects (the b’s) for a total of 285 coefficients. The replicating

portfolio for PE funds takes time-varying positions in KH = 960 strips that are obtained

from these 285 coefficients.

Because of the large number of exposure coefficients to be estimated and the rela-

tive data scarcity, it is paramount to use a dimension-reduction technique. We use the

well-known elastic net approach, which selects only some of the 285 potential exposure
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coefficients and shrinks others to zero. Using dimension reduction avoids having to take

a stance on the identity of a small number of factors that drive PE cash flows, a problem

with the OLS approach. Furthermore, we impose a non-negativity constraint on all es-

timated positions in the replicating portfolio. This avoids spurious long-short positions

that arise due to the high correlation among some of the listed factors, as well as difficul-

ties and costs related to taking on short positions (especially in cross-sectional risk factors)

that investors face in reality. For example, some pension funds may be prohibited from

taking short positions.

The elastic net estimation of equation (1) can be written as

β̂EN = arg min
β∈RKH

‖Xi
t+h − βt,hFt,t+h‖2

2 + λ01{β < 0}+ λ
[
(1− α)‖β‖2

2/2 + α‖β‖1

]
. (8)

We set the hyper-parameter λ0 = ∞, which ensures only positive coefficients. The

parameter α governs the lasso component, zeroing out a subset of coefficients (factor se-

lection), and λ is the ridge regression penalty, which shrinks the magnitude of coefficient

estimates closer to zero. Setting α = 1 reduces the problem to the case of a lasso specifica-

tion only, while α = 0 corresponds to the ridge regression. The λ parameter determines

the total penalty amount. We use cross-validation to tune the hyper-parameters α and λ

for each fund category separately. Section VII of the Internet Appendix details the hyper-

parameter choices and shows robustness of the results to these choices.

C. Approaches that Use Realized SDF

If one has estimated a rich SDF that fits the listed asset data well, why not directly

use the realized SDF time series and the fund cash flows to measure firms’ value-added?

Define the value-added of a PE fund using the realized SDF as

VAsd f ti
t =

H

∑
h=1

Mt,t+hXi
t,t+h − Ct. (9)
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While in expectation this measure is identical to the RAP measure, sample averages show

wide divergence. A Monte Carlo study in Section I of the Internet Appendix shows that

the distribution of the VAsdf across funds and vintages shows left-skewness and substan-

tial dispersion. Martin (2012) shows that there is a generic problem with discounting a

long-run stream of cash flows using the realized SDF. Even though his results are asymp-

totic in nature, the problem materializes at horizons relevant for PE valuation. To com-

pensate for a few high realizations of Mt,t+h (aggregate disasters), most SDF realizations

need to be vanishingly small so as to enforce the Euler equation. The first term in (9)

converges to zero almost surely as h is very large, but is already close to zero for h < 64

in rich models of the SDF. For the SDF that we estimate in the next section, the estimated

mean of VAsdf is indeed close to −Ct. According to the VAsd f estimation, LPs lose their

entire investment on a risk-adjusted basis when, in truth, funds have zero value-added.

This problem arises not only for our rich SDF model but also in much simpler SDF models

such as the CAPM, as we show in Section I of the Internet Appendix.

Our RAP approach in (5) is fundamentally different because it uses strip prices, which

are expectations of the SDF. This avoids having to use realizations of the SDF (times the cash

flow).

Our approach requires estimation of exposures or PE fund cash flows to strip cash

flows, but this has the advantage of generating useful information about the underlying

risk exposures of PE funds. Section I of the Internet Appendix shows that our strip-based

approach reliably recovers the true risk factor exposures, and results in a RAP distribution

that is tightly centered around zero if in truth RAP is zero for each fund: it recovers skill

(heterogeneity) where there truly is skill (heterogeneity), and finds no evidence for skill

when there is none.
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II. Asset Pricing Model

The second main step is to obtain prices for the dividend and gain strips. If the only

source of risk were fluctuations in the term structure of interest rates, this step would be

straightforward. After all, we directly observe zero-coupon bond prices of all maturities

at each date. However, fluctuations in interest rates are not the only, and indeed not even

the main, source of risk in the cash flows of PE funds. If fluctuations in the aggregate stock

market were the only other source of aggregate risk, then we could use price information

from dividend strips. Those prices can be observed directly from dividend strip futures

markets (van Binsbergen et al. (2013)) or inferred from options and stock markets (van

Binsbergen, Brandt, and Koijen (2012)). However, the available time series is too short for

our purposes – strips are not available for horizons beyond seven years and do not come

in one-quarter-horizon increments. Moreover, the only dividend strip data correspond to

the aggregate stock market – there are no strip data for the additional traded factors we

wish to include in our analysis such as publicly listed real estate or infrastructure assets

or a small stock, value stock, or growth stock index. Finally, we do not observe expected

returns on the available strips, only realized returns, expected returns are difficult to infer

from short time series of realized returns. We therefore need an asset pricing model to

generate the time series of strip prices, Pt,h, and the corresponding expected returns for

each strip.

We propose a reduced-form SDF model that prices publicly traded assets well, in-

cluding the available dividend strip data. A virtue of the reduced-form model is that it

can accommodate a substantial number of risk factors. We argue that it is important to

go beyond the aggregate stock and bond markets to capture the risk embedded in PE

fund cash flows. As Korteweg and Nagel (2016) note, the objective is not to test the as-

set pricing model itself but rather to investigate whether a potential PE investment adds

value to an investor who already has access to securities whose sources of risk are cap-
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tured by the SDF. In complementary work, Gredil, Sorensen, and Waller (2020) investigate

consumption-based asset pricing models’ ability to price PE cash flows.

A. Setup

A.1. State Variable Dynamics

Time is denoted in quarters. We assume that the N× 1 vector of state variables follows

a Gaussian first-order VAR,

zt = Ψzt−1 + Σ
1
2 εt, (10)

with shocks εt ∼ i.i.d.N (0, I) whose variance is the identity matrix. The companion

matrix Ψ is a N × N matrix. The vector z is demeaned. The covariance matrix of the

innovations to the state variables is Σ; the model is homoskedastic. We use a Cholesky

decomposition of the covariance matrix, Σ = Σ
1
2 Σ

1
2 ′, which has nonzero elements only on

and below the diagonal. The Cholesky decomposition of the residual covariance matrix

allows us to interpret the shock to each state variable as the shock that is orthogonal to

the shocks of all state variables that precede it in the VAR. We discuss the elements of the

state vector and their ordering below. The (demeaned) one-quarter bond nominal yield is

one of the elements of the state vector: y$
t,1 = y$

0,1 + e′ynzt, where y$
0,1 is the unconditional

average one-quarter nominal bond yield and eyn is a vector that selects the element of the

state vector corresponding to the one-quarter yield. Similarly, the (demeaned) inflation

rate is part of the state vector: πt = π0 + e′πzt is the (log) inflation rate between t− 1 and

t. Lowercase letters denote logs.

A.2. Stochastic Discount Factor

The nominal SDF M$
t+1 = exp(m$

t+1) is conditionally log-normal,

m$
t+1 = −y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1. (11)
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Note that y$
t,1 = −Et[m$

t+1]− 0.5Vt[m$
t+1]. The real log SDF mt+1 = m$

t+1 + πt+1 is also

conditionally Gaussian. The innovations in the vector εt+1 are associated with a N × 1

market price of risk vector Λt of the affine form,

Λt = Λ0 + Λ1zt. (12)

The N× 1 vector Λ0 collects the average prices of risk while the N×N matrix Λ1 governs

the time-variation in risk premia. Asset pricing amounts to estimating the market prices

of risk (Λ0, Λ1).

A.3. Bond Pricing

Proposition 1 in Section II of the Internet Appendix shows that nominal bond yields

of maturity τ are affine in the state variables,

y$
t,τ = −1

τ
A$

τ −
1
τ

(
B$

τ

)′
zt.

The scalar A$(τ) and the vector B$
τ follow ordinary difference equations that depend on

the properties of the state vector and on the market prices of risk. The appendix also

calculates the real term structure of interest rates, the real bond risk premium, and the

inflation risk premium on bonds of various maturities. We include the cross-section of

nominal and real bond yields (price levels) in the set of moments used to estimate the

market price of risk coefficients. We put more weight on matching the time series of one-

and 20-quarter nominal bond yields since those yields are part of the state vector zt. We

also fit the dynamics of 20-quarter nominal bond risk premia (price changes).

A.4. Equity Pricing

The VAR contains both the log price-dividend ratio and log dividend growth for each

equity risk factor. Together these two time series imply a time series for log stock returns.
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The VAR implies linear dynamics for the expected excess stock return, or equity risk

premium, for each equity risk factor. We choose market prices of risk to match these

dynamics (price changes).

The price of a stock equals the PDV of its future cash flows. By value-additivity, the

price of the aggregate stock index, Pm
t , is the sum of the prices to each of its future cash

flows Dm
t . These future cash-flow claims are the so-called market dividend strips or zero-

coupon equity (Wachter (2005)). Dividing by the current dividend Dm
t yields

Pm
t

Dm
t

=
∞

∑
τ=1

Pd
t,τ (13)

exp
(

pd + e′pdm zt

)
=

∞

∑
τ=0

exp
(

Am
τ + Bm′

τ zt
)

, (14)

where Pd
t,τ denotes the price of a τ-period dividend strip divided by the current dividend.

Proposition 2 in Section II of the Internet Appendix shows that the log price-dividend

ratio on each dividend strip, pd
t,τ = log

(
Pd

t,τ
)
, is affine in the state vector and provides

recursions for the coefficients (Am
τ , Bm

τ ). Since the log price-dividend ratio on the stock

market is an element of the state vector, it is affine in the state vector by assumption.

Equation (14) restates the present value relationship from equation (13). It articulates a

nonlinear restriction on the coefficients {(Am
τ , Bm

τ )}∞
τ=1 at each date (for each state zt),

which we impose in the estimation (price levels). Analogous present value restrictions

are imposed for each of the six other traded equity factors, whose price-dividend ratios

and dividend growth rates are also included in the state vector.

If dividend growth were unpredictable and its innovations carried a zero price of risk,

then dividend strips would be priced like real zero-coupon bonds. The strips’ dividend-

price ratios would equal yields on real bonds with the coupon adjusted for deterministic

dividend growth. All variation in the price-dividend ratio would reflect variation in the

real yield curve. In reality, the dynamics of real bond yields account for only a small frac-

tion of the variation in the price-dividend ratio, implying large prices of risk associated
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with shocks to dividend growth that are orthogonal to shocks to bond yields.

A.5. Dividend Futures

The model readily implies the price of a futures contract that receives the single real-

ized nominal dividend at some future date, D$
t+k. That futures price, Fd

t,τ, scaled by the

current nominal dividend D$
t , is

Fd
t,τ

D$
t

= Pd
t,τ exp

(
τy$

t,τ

)
.

The one-period realized return on this futures contract for k > 1 is

R f ut,d
t+1,τ =

Fd
t+1,τ−1

Fd
t,τ

− 1.

Section II of the Internet Appendix shows that log(1 + R f ut,d
t+1,τ) is affine in the state vector

zt and in the shocks εt+1. It is straightforward to compute average realized returns over

any subsample and for any portfolio of futures contracts.

B. Estimation

B.1. State Vector Elements

The state vector contains N = 18 variables. The first six variables, in order of ap-

pearance, are (1) GDP price inflation, (2) real GDP growth, (3) the nominal short rate

(three-month nominal Treasury bill rate), (4) the spread between the yield on a five-year

Treasury note and a three-month Treasury bill, (5) the log price-dividend ratio on the

CRSP value-weighted stock market, (6) the log real dividend growth rate on the CRSP

stock market. Variables 7, 9, 11, 13, 15, and 17 are the log price-dividend ratios on the

REIT index of publicly listed real estate companies, a listed infrastructure index (infra),

the first size quintile of stocks (small), the first book-to-market quintile of stocks (growth),
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natural resource stocks (nr), and the fifth book-to-market quintile of stocks (value), while

variables 8, 10, 12, 14, 16, and 18 are the corresponding log real dividend growth rates:11

zt =
[
πt, xt, y$

t,1, y$
t,20 − y$

t,1, pdm
t , ∆dm

t , pdreit
t , ∆dreit

t , pdin f ra
t , ∆din f ra

t , (15)

pdsmall
t , ∆dsmall

t , pdgrowth
t , ∆dgrowth

t , pdnr
t , ∆dnr

t , pdvalue
t , ∆dvalue

t

]′
.

This state vector is observed at the quarterly frequency from 1974 Q1 until 2019 Q4

(184 observations). This is the longest time series for which all variables are available.12

Our PE cash-flow data start shortly thereafter in the early 1980s. While the bulk of PE cash

flows occur after 1990, we use the longest possible sample to more reliably estimate the

VAR dynamics and especially the market prices of risk. All state variables are demeaned

with the observed full-sample mean.13

The VAR is estimated using OLS in the first stage of the estimation. We recursively

11The ordering of the state variables is not that important for our purposes since we are not interested in

structurally interpreting the risk prices, but rather in finding a good fit for the asset pricing moments.
12We use the average of daily constant-maturity Treasury yields within the quarter. The REIT index is

the NAREIT All Equity index, which excludes mortgage REITs. The first observation for REIT dividend

growth is in 1974 Q1. All dividend series are deseasonalized by summing dividends across the current

month and past 11 months. This means we lose the first eight quarters of data in 1972 and 1973 when com-

puting dividend growth rates. The infrastructure stock index is measured as the value-weighted average

of the eight relevant Fama-French industries (Aero, Ships, Mines, Coal, Oil, Util, Telcm, Trans). The natural

resource index is measured from the Alerian Master Limited Partnership from 1996 Q1 thereafter and as

the Fama-French Oil industry index beforehand.
13The VAR literature finds that results can be sensitive to the choice of state variables. Campbell and

Voulteenaho (2004) emphasize the role of the small value spread as a predictor of aggregate market returns,

while Liu and Zhang (2008) suggest using the market-to-book spread of value-minus-growth and the book-

to-market spread of value-minus-growth as separate predictors. Haddad, Kozak, and Santosh (2020) argue

that each risk factor’s expected return is driven by its own dividend-price ratio. Our model allows each

factor’s pd ratio to affect the expected return, but also allows for cross-predictability and for the level and

slope of the yield curve to predict stock returns, for example. With N = 18 state variables, our VAR model

is large and includes the candidate state variables highlighted in the literature.
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zero out all elements of the companion matrix Ψ whose t-statistic is below 1.96. Section

III of the Internet Appendix contains the resulting point estimates for Ψ and Σ
1
2 .

B.2. Market Prices of Risk

The state vector contains both priced sources of risk as well as predictors of bond and

stock returns. We estimate 12 nonzero parameters in the constant market price of risk

(MPR) vector Λ0 and 92 nonzero elements of the matrix Λ1, which governs the dynamics

of the risk prices. The point estimates are reported in Section III.B of the Internet Ap-

pendix. We employ the following target moments to estimate the MPR parameters.

First, we target the average 20-quarter bond yield and its dynamics. This delivers one

restriction on Λ0 and N = 18 restrictions on Λ1:

−A$
20/20 = y$

0,20 and − B$
20/20 = [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Because the demeaned five-year bond yield is the sum of the third and fourth elements in

the state vector, the MPR must be such that −B$
20/20 has a value of one in the third and

fourth places and zeroes everywhere else.

Second, we match the time series of nominal bond yields for maturities of one quarter,

one year, two years, five years, 10 years, 20 years, and 30 years. This leads to about 7× T

moments, where T = 184 quarters.14

Third, we match the time series of real bond yields for maturities of five, seven, 10,

20, and 30 years. They constitute about 5× T2 moments, where T2 = 68 quarters.15 Hav-

ing both nominal and real bonds helps disentangle the respective roles of growth and

inflation risks.
14The 20-year bond yield is missing prior to 1993 Q4 while 30-year bond yield data are missing from 2002

Q1 to 2005 Q4. In total 107 observations are missing, so that we have 1,232-107=1,125 bond yields to match.
15FRED data on Treasury Inflation Indexed bond yields start in 2003 Q1. Real yields for the 20-year and

30-year bonds are available only for 61 and 39 quarters, respectively.
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Fourth, we require that the time series of risk premia for the aggregate stock mar-

ket, real estate stocks, infrastructure stocks, small stocks, growth stocks, natural resource

stocks, and value stocks match the expected excess returns implied by the VAR, that is,

from the data. The expected excess return in logs, including a Jensen adjustment, equals

minus the conditional covariance between the log SDF and the log return. For example,

for the aggregate stock market we have

Et

[
rm,$

t+1

]
− y$

t,1 +
1
2

Vt

[
rm,$

t+1

]
= −Covt

[
m$

t+1,r
m,$
t+1

]
rm

0 + π0 − y$
0(1) +

[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt

+
1
2
(
edivm + κm

1 epd + eπ

)′ Σ (edivm + κm
1 epd + eπ

)
=

(
edivm + κm

1 epd + eπ

)′ Σ 1
2 Λt.

The left-hand side is given by the VAR (data), while the right-hand side is determined by

the market prices of risk Λ0 and Λ1 (model). This provides (N + 1)× 7=133 additional

restrictions. These moments identify the 6th, 8th, 10th, 12th, 14th, 16th, and 18th elements

of Λ0 and the corresponding rows of Λ1.

Fifth, we match the time series of log price-dividend ratios (price levels) on the seven

stock indices. The model’s price-dividend ratios come from 3,600 quarterly dividend

strips according to equation (13). We impose these present value relationships in each

quarter, which results in 7× T moments.

Sixth, we price a claim that pays the next eight quarters of realized nominal dividends

on the aggregate stock market. The value of this claim is the sum of the prices on the near-

est eight dividend strips. Data on the price-dividend ratio of this claim and the fraction

it represents of the overall stock market value (S&P500) for the period 1996 Q1 to 2009

Q3 (55 quarters) come from van Binsbergen, Brandt, and Koijen (2012). This procedure

delivers 2× 55 moments. We also ensure that the model is consistent with the high av-

erage realized returns on short-horizon dividend futures documented by van Binsbergen

et al. (2013). Table 1 in van Binsbergen and Koijen (2017) reports that the average return
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on an equally weighted portfolio of one- through seven-year U.S. SPX dividend futures

over the period November 2002 to July 2014 is 8.71% per year. We construct an average

return for the same short-maturity futures portfolio (paying dividends 2 to 29 quarters

from now) in the model:

R f ut,port f
t+1 =

1
28

29

∑
τ=2

R f ut,d
t+1,τ.

We evaluate the realized return on this dividend futures portfolio using the state variables

observed between 2003 Q1 and 2014 Q2, average it, and annualize it. This procedure

results in one additional restriction. These dividend strip moments identify (some of) the

MPR parameters associated with the market price-dividend ratio shock (fifth element of

Λ0 and first six elements of the fifth row of Λ1).

Seventh, we impose a good deal bound on the standard deviation of the log SDF, the

maximum Sharpe ratio, in the spirit of Cochrane and Saa-Requejo (2000). We also impose

a penalty on choosing excessively large values for Λt. These 1+ T constraints help reduce

the entropy of the SDF.

Eighth, we impose regularity conditions on bond yields. We require that very long-

term real bond yields have average yields that weakly exceed average long-run real GDP

growth, which is 2.63% per year in our sample. Long-run nominal yields must exceed

long-run real yields by 2%, an estimate of long-run average inflation. Nominal and real

bond yields must flatten out as the maturity grows. These regularity conditions are satis-

fied at the final solution.

Not counting the regularity conditions, we have 5, 245 moments to estimate 116 MPR

parameters. Section III.C of the Internet Appendix contains a detailed discussion of the

estimation algorithm and argues that the parameters are identified.

Still, concerns about estimation error around the many MPR point estimates are nat-

ural.16 In the PE analysis of the next section we take these MPR estimates as given. For

16We have calculated standard errors on the MPR parameters using GMM and find them to be modest.

Intuitively,by matching the time series of bond yields of various maturities, the stock price dividend ratios,
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the purposes of PE performance measurement this is fine. An analogy to the CAPM may

be useful here. If the βi of fund i were known, we could estimate abnormal returns as

avg(Ri)− βiavg(Rm) = α + avg(ei). The “MPR estimate” inside avg(Rm) drops out. It is

efficient to subtract β avg(Rm), not β E[Rm].17

B.3. Model Fit

Figure 1 plots the nominal bond yields on bonds of maturities one quarter, one year,

five years, and 10 years. Those are the most relevant horizons for the PE cash flows.

The model matches the time series of bond yields in the data closely. It matches nearly

perfectly the one-quarter and five-year bond yields, which are part of the state space. Fig-

ure 2 shows that the model also does a good job matching real bond yields. The top panels

of Figure 3 show the model’s implications for the average nominal (left panel) and real

(right panel) yield curves at longer maturities. These long-term yields are well behaved.

The bottom right panel shows a decomposition of the yield on a five-year nominal bond

into the five-year real bond yield, annual expected inflation over the next five years, and

the five-year inflation risk premium. The importance of these components fluctuates over

time. The bottom left panel shows that the model matches the dynamics of the nominal

bond risk premium, defined as the expected excess return on five-year nominal bonds.

The compensation for interest rate risk varies substantially over time, both in data and in

the model.

and the expected returns on each equity factor, as well as by imposing an adding-up constraint that the

dividend strip prices add up to the total equity price for each equity index, there is little room for the

estimation to arrive at sufficiently different strip prices that it would make a material difference for PE

performance analysis.
17We thank the Editor for pointing this analogy out to us. We note that this argument requires estimating

avg(Ri) and avg(Rm) on the sample sample. We estimate our MPR on a slightly longer sample (1974 to

2019) than we have for the fund data (1981 to 2019). In a robustness check, we have reestimate our MPR on

the 1990 to 2019 subsample, over which most of the fund data are concentrated. The results are similar. The

code for this subsample is provided as part of the code replication package.
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— Figures 1–3 go about here —

Figures 4 and 5 show the equity risk premium and the expected excess return in the left

panels and the price-dividend ratio in the right panels. The various rows cover the seven

equity indices that we price. The dynamics of the risk premia in the data are dictated by

the VAR. The model chooses the MPR to fit these risk premium dynamics as closely as

possible. The price-dividend ratios in the model are based on the price-dividend ratios

on the strips of maturities ranging from 1 to 3,600 quarters, as explained above. The

figures show an excellent fit for price-dividend levels and a good fit for risk premium

dynamics. Some of the VAR-implied risk premia have outliers which the model does

not fully capture. This is due in part to the fact that the good deal bounds restrict the

SDF from becoming too volatile and extreme. We note large level differences in valuation

ratios across the various stock factors, as well as big differences in the dynamics of both

risk premia and price levels, which the model is able to capture well.

— Figures 4–5 go about here —

C. Temporal Pricing of Risk

The first key inputs from the model into the PE valuation exercise are the prices of

the various bond and stock strips. Figure 6 plots zero-coupon bond and dividend strip

prices, the latter scaled by the current quarter is dividend. For readability, we plot only

three maturities: one, five, and 10 years. The model implies substantial variation in strip

prices over time, across maturities, as well as across risky assets.

— Figure 6 goes about here —

As part of the estimation, the model fits several features of traded dividend strips on

the aggregate stock market. Figure 7 shows the observed time series of the price-dividend

ratio on a claim to the first eight quarters of dividends (red line, left panel), as well as the
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share of the total stock market value that these first eight quarters of dividends represent

(red line, right panel). The blue line represents the model. The model generates the right

level for the price-dividend ratio on the short-horizon claim. For the same 55 quarters for

which the data are available, the average is 7.85 in the model and 7.65 in the data. The first

eight quarters of dividends represent 3.4% of the overall stock market value in the data

and 3.3% in the model over the period in which data are available. The model captures the

dynamics of this share reasonably well, as shown in the right panel, including the decline

over 2000 Q4 to 2001 Q1 when the short-term dividend strip prices fell by more than the

overall stock market. The market clearly perceived the 2001 recession to be short-lived. In

contrast, the contribution of short-term strips to the overall stock market value increases

in the Great Recession, both in the data and in the model, in recognition of the persistent

nature of the crisis.

— Figure 7 goes about here —

The second key inputs from the model into the PE valuation exercise are the expected

excess returns on the bond and stock strips of horizons of 1 to 64 quarters. After all, the

expected return of the PE fund is a linear combination of these expected returns per equa-

tion (2). Figure 8 plots the average risk premium on nominal zero-coupon bond yields

and on dividend strips. Risk premia on nominal bonds (top left panel) are increasing in

maturity, from zero to 4.5%. The top right panel shows the (spot) risk premia on div-

idend strips on the aggregate stock market (solid blue line). It also plots the dividend

futures risk premium (red line). The difference between the spot and futures risk premia

is approximately equal to the nominal bond risk premium. The unconditional dividend

futures risk premium is downward-sloping in maturity at the short end of the curve and

then flattens out. The graph also plots the model-implied dividend futures risk premium,

averaged over the period 2003 Q1 to 2014 Q2 (yellow line). If anything, this risk premium

is less downward-sloping than that averaged over the entire 1974 to 2019 sample (red

line). The model matches the realized portfolio return on dividend futures of maturities
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from one to seven years over the period 2003 Q1 to 2014 Q2, which is 8.7% in the data

and 8.6% in the model.18

The remaining panels of Figure 8 show the unconditional dividend strip (spot and fu-

ture) risk premia for the other cross-sectional factors. There are interesting differences in

the levels of future risk premia especially at shorter horizons and in the shapes of the term

structures. Average futures risk premia are generally declining to flat in maturity, but they

are increasing for small and value firms beyond the five-year horizon. Heterogeneity in

risk premia by asset class, by horizon, and over time will give rise to heterogeneity in the

risk premia on the PE-replicating portfolios.

— Figure 8 goes about here —

Figure 9 plots the time series of expected returns on bonds and on both dividend and

gain strips for the seven equity factors; the maturity of all plotted strips is 20 quarters.

Expected returns are annualized. We observe rich cross-sectional heterogeneity in levels

and dynamics across panels, a low-frequency decline over time in the level of expected

returns common across most panels, and high pairwise correlation between dividend and

capital gain strip expected returns in each panel.

— Figure 9 goes about here —

Section IV of the Internet Appendix provides further insight into how the model prices

risk at each horizon using the tools developed by Hansen and Scheinkman (2009) and

Borovička and Hansen (2014). Specifically, we show that the various equity factors have

very different risk exposures from each other, and at various horizons.

18As an aside, the conditional risk premium, which is the expected return on the dividend futures portfolio

over the 2003 Q1 to 2014 Q2 period, is 9.8% per year in the model. The risk premium on the dividend

futures portfolio over the full sample is 5.7%.
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III. Expected Returns and Risk-Adjusted Profits in PE
Funds

In this section, we combine the cash-flow exposures from Section I with the asset prices

from Section II to obtain expected returns and risk-adjusted profits on PE funds.

A. PE Cash Flow Summary Statistics

Our fund data cover the period January 1981 to June 2019. Our main data source is

Preqin, but we find comparable results using the Burgiss data set as shown in Section

VIII of the Internet Appendix.19 We group PE funds into eight categories: Buyout (LBO),

Venture Capital (VC), Real Estate (RE), Infrastructure (IN), Natural Resources (NR), Fund

of Funds (FF), Debt Funds (DF), and Restructuring (RS). Our FF category contains the

Preqin categories Fund of Funds, Hybrid Equity, and Secondaries. The Buyout category

is commonly referred to as Private Equity, whereas we use the PE label to refer to the

combination of all investment categories.

We include all funds with nonmissing cash-flow information. All cash flows are net

of fees imposed by the GPs. Table I reports the number of funds and the aggregate AUM

in each vintage-category pair. In total, we have 4,474 funds with $4.3 trillion in AUM.

Buyout is the largest category by AUM ($1,888 billion), followed by RE ($592 billion), FF

($528 billion), and VC ($489 billion). We group funds by their vintage, defined as the

quarter in which they make their first capital call. The last column of the table shows

the quartile of the price-dividend ratio on the aggregate stock market, which we use to

sort funds into vintage bins. The table reports the average price-dividend quartile across

the four quarters in the calendar year. We observe clear business-cycle variation in the

19Preqin data are substantially sourced by FOIA requests made to public pensions, which may have dif-

ferential pricing terms in side letters and “Most Favored Nation” clauses. However, Da Rin and Phalippou

(2017) suggest that public pensions are not statistically different from other investors in their access to these

clauses. Burgiss data come from a more representative set of institutional investors.
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timing of fund starts as well as in their size (AUM). The last cash flow we include in the

estimation corresponds to for June 2019, since cash flows in the second half of 2019 have

not been fully reported as of the timing of writing. The last vintage we consider in the

estimation of exposures is 2017 Q4. For the RAP analysis, which requires a full life cycle,

the last vintage we consider is 2010 Q4.

— Table I goes about here —

Figure 10 shows the average cash-flow profile in each category for distribution events,

pooling all funds and vintages together and equally weighting them. For this graph, we

combine all monthly cash flows into one yearly cash flow for each fund and then average

across funds within the category. The first 15 orange bars are for the first 15 years since

the first capital call. The last bar (in green) represents the cash flows that occur in year 16

and the discounted sum of cash flows that occur after year 16.20 The literature typically

treats PE vehicles as lasting 10 years. While the majority of distribution cash flows occur

between years 5 and 10, cash flows after year 10 still account for a substantial portion of

the total cash received by LPs.21

— Figure 10 goes about here —

Figure 11 zooms in on the four largest investment categories: Buyout, VC, RE, and

FF. The figure shows the average cash-flow profile for each vintage. Since there are few

20We discount cash flows after quarter 64 at the nominal term structure. For infrastructure, we have a

smaller and more recent sample. We consider 12 regular cash-flow years and year 13 as the terminal year.
21Industry publications have noted the increasing lifespan of PE funds. For instance, a Preqin report

from 2016 notes that “The average lifespan of funds across the whole private capital industry is increasing

beyond the typical 10 years... older funds of vintages 2000 to 2005 still hold a substantial $204bn worth

of investments, equating to 7.2% of total unrealized assets” (Preqin (2016)). In the sample of funds with

vintages before 2011, 48.3% of funds distribute more than 10% of cash flows after year 10. In a robustness

check, we reestimate our results on a subsample of funds that distribute 10% or less of their cash after 10

years and find comparable results.
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Buyout and VC funds prior to 1990 and few RE and FF funds prior to 2000, we start

the former two panels with vintage year 1990 and the latter two panels with vintage

year 2000. The figure reveals substantial variation in cash flows across vintages, even

within the same investment category. This variation allows us to identify vintage effects.

The figure also shows that there is a lot of variation in cash flows across calendar years.

VC funds started in the mid- to late-1990 vintages realized very high average cash flows

around calendar year 2000 and a sharp drop thereafter. Since growth stocks had very

high stock price realizations in 2000 and a sharp drop thereafter, this type of variation will

lead the model to estimate a high exposure of VC funds to growth gain strips. Internet

Appendix IA.F shows cash-flow profiles for the remaining four PE categories.

— Figure 11 goes about here —

B. Factor Estimation in OLS and Elastic Net

We compare the results of two estimation approaches, run separately for each fund

category. The first is a two-factor model (bond and aggregate stock market gain strips)

estimated using OLS; recall equation (6). The second is an elastic net model estimated

on the full set of 15 factors; recall equations (7) and (8). The estimated parameters are

the factor exposures across horizon, bk
h, and how these exposures shift by vintage (price-

dividend quartile), captured by ak
pd(t). Their sum, ak

pd(t) + bk
h, measures the number of

units of strip k with maturity h that the PE-replicating portfolio buys. The elastic net

approach finds a parsimonious replicating portfolio consisting of long-only positions in

some of the strips. While we have not constrained the elastic net estimation to require that

adjacent years have similar exposures, we frequently find that factors have some periodic

tendencies, with rising and falling exposures over stretches of the fund’s life cycle.22

22To minimize overfitting, we rely on a cross-validation exercise in which we use a leave-out sample to

fit the α and λ hyper-parameters. Section VII of the Internet Appendix discusses the details and provides

robustness checks on the benchmark hyper-parameter choices.
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Figure 12 shows the estimated age effects b̂h for the two-factor model estimated using

OLS (left panels) and the 15-factor model estimated using elastic net (right panel). The

rows correspond to the four main PE categories. Internet Appendix Figure IA.8 contains

these estimates for the other four PE categories. Appendix Figures IA.9 and IA.10 show

the estimates for the price-dividend quartile effects âpd(t).

— Figure 12 goes about here —

Buyout For the two-factor model in the top left panel of Figure 12, Buyout displays sub-

stantial positive exposure to market gain strips throughout the life cycle, with peak ex-

posure in years 3 to 6. A strategy that sells the aggregate stock market is correlated with

the distribution cash flows made by Buyout funds. Years 5 to 12 show substantial bond

exposure in the replicating portfolio. The large bond exposure hints at out-performance.

Buyout managers produce cashflows in the peak harvesting period that appear to be risk-

free, according to the simple two-factor model.

The 15-factor model, estimated using elastic net and plotted in the right panel, gives

a very different account of the riskiness of Buyout funds’ cash flows. The two factors

in the OLS model receive much less weight in the elastic net model. Instead, a rich set

of cross-sectional risk factors contributes to describe the systematic riskiness of Buyout

funds. The positions in each of the individual strips is much smaller. Early cash flows are

exposed to value dividend strips, consistent with the findings of Stafford (2017). Later

cash flows tend to load more on gain strips such as small and NR gain strips. This overall

pattern corresponds to Buyout fund activities that consist of purchasing a broad range of

companies, restructuring the operations, harvesting some initial cash flows (for instance,

through dividend recapitalization), and ultimately selling these assets.

The takeaway is that Buyout vehicles do not simply take on bond and equity exposure,

as is commonly assumed. Our best estimate for fund cash flow paints a more complex

picture of rich factor exposures across a range of cross-sectional equity factors and hori-

36



zons. Portfolio management of PE within institutional investor portfolios should consider

this rich pattern of risk exposure of Buyout funds.

Venture Capital We see further evidence of the importance of considering a broad cross-

section of factor exposures in the second row of Figure 12, which depicts results for Ven-

ture Capital funds. Our OLS two-factor model in the left panel places a large, hump-

shaped weight on stock market gain strips and takes a mirror-image short position in

bonds. This pattern suggests that VC funds are levered bets on the aggregate stock mar-

ket.

In contrast, the 15-factor model in the right panel describes VC funds as loading

mostly on growth gain strips. VC distribution cash flows are like those obtained from

initially investing and eventually selling growth stocks to capture the capital gain. Fig-

ure IA.9 suggests that this growth gain strip loading is higher for funds started when the

price-dividend ratio is in the second and fourth quartiles. Vintages in the early 1990s are

such second-quartile price-dividend vintages, which ended up with very high cash flows.

Vintages in the fourth price-dividend quartile, such as the 1997 to 2004 vintages, also have

higher growth gain exposure.

Our findings for VC funds accord with economic intuition. While Buyout funds ac-

quire a range of companies that may differ in their underlying risk exposures, VC funds

invest in early stage and rapidly growing entrepreneurial companies that distribute little

cash prior to exiting the investments. Since the same cross-validation procedure is used

for each fund category, the elastic net will pick up a small number of dominant risk factor

exposures if their payoffs are strongly related to PE cash flows. VC funds, unlike Buyout

(or Real Estate or Infrastructure) funds typically harvest few cash flows from operations

prior to deal exit. Correspondingly, we find that the bulk of VC fund cash flow exposure

can be accounted for by growth gains strips (rather than growth dividend strips).
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Real Estate The third row of Figure 12 considers Real Estate funds. The two-factor model

characterizes RE PE funds as levered positions in stock market gain strips, especially for

the first seven years of cash flows. Cash flows in some of the later years have positive

bond exposure, hinting at out-performance.

The 15-factor model assigns no weight to bonds nor to market gain strips, again high-

lighting the need to consider a broader cross-section. Instead, it retains substantial weight

on REIT dividend strips and value dividend strips in early years, and on small and REIT

gain strips in years 5 to 8. Reassuringly, REIT dividends and REIT gain strips are im-

portant components of the replicating portfolio of RE PE funds. The small and value

exposures accord well with the fact that listed REITS’ returns behave like those of small

value stocks (Van Nieuwerburgh (2019)). In later years, RE PE fund cash flows are ex-

posed to the same risk as infrastructure and natural resources dividend strips, real asset

cash flows that bear a certain intuitive resemblance to real estate cash flows. These results

suggest that Real Estate funds take on a distinct factor exposure profile from Buyout and

VC funds, and an exposure not well described by the two-factor model.

Fund of Funds The fourth row reports on the Fund of Funds category. The two-factor

model shows modest market gain strip exposure and rising bond strip exposure, which

becomes substantial in later years. The 15-factor elastic net model estimates a rich set

of factor exposures, including to small, value, and NR gain and dividend strips, which

corresponds to the miscellaneous nature of Fund of Funds strategies.

Other Categories The remaining four categories, which have substantially fewer fund ob-

servations, are shown in Figure IA.8. Infrastructure and natural resources show substan-

tial exposure to NR, Infrastructure, and REIT gain and dividend strips. These exposures

again point to the role of underlying asset characteristics in driving the fund-level cash

flow risk profile.
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Take-Aways The risk loadings on PE funds cannot be assumed to be static either in the

time series or across fund age (maturity). A simple bond-stock portfolio typically does

not survive inclusion of cross-sectional risk factors. The relevant factor identities differ

across PE categories. We conduct the first systematic analysis of the risk properties of

some of the alternative fund categories (RE, IN, NR), and find that they carry important

sector-specific asset exposures. These exposures are frequently concentrated in the first

half of the fund’s life. Our estimation approach allows us to translate these complex risk

dynamics into the expected return for different fund categories and to revisit the question

of performance evaluation. We turn to expected returns next.

C. Expected Returns

With the replicating portfolio of zero-coupon bonds and dividend strips in hand, we

can calculate the expected return on PE funds in each investment category using equation

(2). The expected return measures compensation to systematic sources of risk. It excludes

any abnormal performance, which is contained in the RAP. Figure 13 plots the time series

of the expected return for the four main PE categories. It aggregates over all of the horizon

effects and annualizes the resulting expected return per equation (4). The left panels of

this figure correspond to the two-factor OLS model and the right panels to the 15-factor

elastic net model. Figure IA.11 shows the results for the four other PE categories.

— Figure 13 goes about here —

On average over time, the expected return on PE vehicles is 9.5% for Buyout, 8.4%

for VC, 8.7% for RE, and 9.8% for FF. RS has a 7.5% average expected return, DF 7.2%,

Infrastructure 5.9%, and NR 8.2%. These expected returns are in the vicinity of IRRs

calculated under the same assumption on calls. Expected returns are higher under the

15-factor model than under the two-factor model. The additional risk factor exposures

result in a higher required return.
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Vintage effects in the exposures (the a’s for each of the factors) generate time-variation

in the exposures, and time-varying MPR generate time-variation in the expected returns

on dividend and gain strips. Combined, they lead to time-variation in the expected return

of PE funds. The annualized expected return that investors can anticipate on their PE

investments as compensation for systematic risk has seen large variation over time, with

a declining pattern at low frequencies. The low-frequency decline is inherited from a

low-frequency decline in strip expected returns. For example, the bond, growth, REIT,

and infrastructure risk premia in Figure 9 all show strong secular declines. The low risk

premia for PE at the end of the sample reflects the elevated prices for all risky assets at

that time.

At higher frequencies we note the low expected return around 2000, when the stock

market peaked, and an increase in risk premia during the Great Recession for several of

the PE categories. These dynamics are driven by vintage effects, which switch discretely

between price-dividend quartiles and sometimes result in spikes, and by dynamics on the

listed risk premia. For example, the aggregate MRP is very low around 2000, while small,

value, and growth risk premia are elevated in the Great Recession.

D. Risk-Adjusted Profit

Next, we turn to performance evaluation, the main result in the paper. Figure 14 plots

the histogram of RAP, computed from equation (5), for the two-factor OLS (gray) and

15-factor elastic net (yellow) models for all fund categories. A kernel density, estimated

from the discrete histogram, is superimposed.

— Figure 14 goes about here —

In all eight fund categories, the RAP distribution is shifted down when accounting for

the cross-sectional risk factors in the 15-factor model compared to the two-factor model.

For VC and real estate, a substantial part of the right tail of the distribution is removed

and shifted to the left.
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Across categories, adjusting for risk removes all (and for some categories more than

all) of the excess cash flows; the average TVPI and RAP are reported above each panel.

As a result, an LP who uses traditional approaches (TVPI) or even a flexible two-factor

model would attribute a fund’s excess payouts to outperformance, while the 15-factor

elastic net model instead attributes this profit to compensation for risk.

Average RAP under our benchmark (NVP Call) 15-factor model is -6 cents for the

average Buyout fund, -9 cents for the average VC fund, -16 cents for the average RE fund,

and -19 cents for the average FF. For the remaining four categories, we find -0.1 cents for

RS, -13 cents for DF, -6 cents for IN, and -6 cents for NR funds. With the exception of VC,

the risk-adjusted profit under the 15-factor model is far lower than under the two-factor

model.

The average RAP masks substantial cross-sectional dispersion. The RAP histograms

are wide. The Monte Carlo exercise in Section I.A of the Internet Appendix suggests

that the bulk of the dispersion in RAP reflects skill heterogeneity, with the remainder

attributable to idiosyncratic cash-flow risk (luck). As indicated above each panel of Figure

14, anywhere between 16% and 41% of funds have a RAP in excess of 10 cents. The

fraction is highest for natural resources and lowest for FF. Large dispersion also means

that a large fraction of PE funds destroy substantial value on a risk-adjusted basis, as

indicated by the large mass of the RAP distribution that is well to the left of zero.

Table II compares average outperformance. Panel A reports results from our main

categories, Panel B for the additional categories. The first three rows report standard

measures to evaluate PE funds: TVPI, IRR, and PME.23 The next two rows display results

23TVPI and PME subtract out the initial investment to express them as excess performance metrics. We

calculate the IRR since Preqin computes IRRs only for funds that are fully liquidated, which leads to a

bias. Like we do in the benchmark RAP calculation, we set the initial investment in the IRR calculation

equal to the discounted sum of calls, discounted at the Treasury yield curve. The implicit assumption that

the standard IRR calculation makes on calls—that any uncalled amounts are invested at the IRR—leads to

an IRR that is about 3% points higher. In related work, Phalippou (2009) discusses how cash-flow timing
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of our two-factor OLS and 15-factor elastic net models. The columns report the average

RAP and the cross-sectional standard deviation of the RAP. The mean performance shows

a downward shift for performance models that adjust for risk (PME and our models com-

pared to TVPI). Richer risk adjustment (15-factor model) leads to lower performance than

simpler risk adjustment (PME and two-factor models). The large standard deviation con-

firms the wide dispersion in fund performance. The 15-factor model tends to result in

a tighter distribution than the two-factor model, which in turn has a smaller dispersion

than TVPI. While there is wide dispersion in performance, at least some of that dispersion

is accounted for by risk.

— Table II goes about here —

Figure 15 plots the average RAP by vintage for both the two-factor (left panels) and 15-

factor elastic net (right panels) models. Figure IA.12 plots these estimates for alternative

fund categories. Consistent with our earlier results, average RAP by vintage in the 15-

factor model is shifted down from average RAP in the two-factor model. While the time-

series for RAP show commonality across both models, there are also notable differences.

For instance, in the Buyout category, we observe substantial positive profits continuing

through the 2000s in the two-factor model. By contrast, the elastic net model estimates

mildly negative average profits for most vintages in the 2000s.

— Figure 15 goes about here —

Similarly, while we observe extremely high profits for FF originated before 1994, these

profits fall by a factor of two in the elastic net model. Recent FF vintages have generated

positive RAP according to the two-factor model but consistently negative RAP according

to the full model. RE funds launched before the Great Recession (vintages 2002 to 2006)

have performed reasonably according to the two-factor model, but poorly according to

distorts IRR measurement in the PE context.
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the full model. The only category that sees its performance improve in the 15-factor model

is VC. That said, VC has generated negative average RAP in each of the last 14 vintage

years.

E. Model Comparison

It is instructive to benchmark our results against other approaches used in the lit-

erature. Figure 16 graphically compares the results from the elastic net model for our

main PE categories against two commonly used PE fund performance metrics: IRR and

PME. Figure IA.13 repeats this analysis for the additional categories. The left panels plot

fund-level IRR against our fund-level RAP measure; the right panels plot fund-level PME

(subtracting the initial investment) against fund-level RAP. The key takeaway from this

comparison is a broadly similar ranking of fund performance. Our measure of RAP cor-

relates between 83% to 87% with our IRR measure and between 66% to 87% with the

PME measures in the cross-section of funds. The broad similarity lends credibility to our

measure of RAP. The measures are not identical, however, so there exist funds that con-

ventional measures assess to be high-performing but that our estimates suggest offer only

fair or even too little compensation given their factor risk exposure, and vice versa.

— Figure 16 goes about here —

F. Performance Persistence

While we find that about one-third of funds deliver meaningfully positive RAP, these

may not be the same funds that consistently outperform. We therefore examine the persis-

tence of the various performance metrics. Specifically, we look at the relationship between

the performance of every pair of adjacent funds by the same GP in the same fund cate-

gory. For example, we compare Blackstone’s Real Estate Partners fund I with Blackstone’s

Real Estate Partners fund II, REP fund II with REP fund III, etc. We only study the four
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main fund categories since there are insufficiently many fund pairs in the remaining four

categories for a reliable analysis.

We consider three performance metrics in Table III: (i) the pairwise correlation be-

tween the RAP of the two funds in each pair (labeled “Persistence”), (ii) the likelihood

that the second fund in the pair is in the top quartile of the RAP distribution given that

the first fund was in the top quartile (“Top Quart.”), and (iii) the likelihood that the sec-

ond fund in the pair is in the bottom quartile of the RAP distribution given that the first

fund was in the bottom quartile (“Bottom Quart”). The last two measures are based on

rankings and are inspired by Korteweg and Sorensen (2017), who also study performance

at the top and bottom of the fund distribution. We compare the persistence of our two-

and 15-factor models to the persistence of the traditional performance metrics TVPI, IRR,

and PME.

— Table III goes about here —

Consistent with prior research (Harris et al. (2014b), Korteweg and Sorensen (2017)),

we find modest persistence in performance across funds managed by the same GP. The

persistence metric for the two-factor model is between 0.16 for RE and 0.35 for VC. For

the 15-factor model, it is between 0.14 for VC and 0.31 for Buyout. For PME, persistence

tends to be higher, for example, 0.47 for VC and 0.35 for RE. These results illustrate that

the additional risk adjustment makes a difference for the assessment of fund persistence.

For Buyout and VC, we find substantial persistence both at the top and at the bottom

of the fund distribution. Buyout funds that have a fund in the top quartile of the RAP

distribution according to our 15-factor model have a 36% probability of the next fund

also being in the top quartile of the distribution; a 25% transition probability denotes

no persistence. The corresponding number is 39% for VC. Bottom performance is also

persistent, especially among RE funds where the likelihood of the next fund in the series

also being a bottom performer is 40%. For Buyout and VC, there is more persistence in

the top than in the bottom of the distribution. Compared to risk-unadjusted performance
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(TVPI), our benchmark 15-factor model tends to show less persistence. Thus, at least

some of the persistence in the traditional metrics can be ascribed to persistent risk factor

exposure.

G. Importance of Calls

In our baseline results, we subtract the NPV of all calls discounted at the Treasury yield

curve, Ct, in the RAP measure (5). This implicitly assumes that the LP has perfect foresight

over the call schedule and invests the capital committed but not called in the quarter of

the first call in the right portfolio of Treasury bonds of various maturities. The LP sells the

Treasuries when the GP calls in the remaining committed capital in the ensuing quarters

and this liquidation does not incur transaction costs. This investment strategy requires a

fairly sophisticated understanding of the future call schedule on the part of the LP. This

treatment of calls also omits from consideration any committed capital that was never

called. Implicitly, the LP is assumed to earn the same return on calls never made as on

calls made. We make this assumption because it is conservative - it results in the lowest

call amount Ct and hence the highest possible risk-adjusted performance. It does not

penalize the GP for delays in calling some of the committed capital or for never calling

some of the capital at all.

We now entertain two alternative and equally defensible assumptions on the calls. The

first is that the LP earns a zero return on the capital committed but not called on the first

call date. The corresponding call amount Ct in the RAP calculation (5) is the undiscounted

sum of all calls. Since this call amount is larger than the benchmark one (unless all calls

are made on the first call date), the RAP is lower. Intuitively, the replicating portfolio,

which is the benchmark for the PE investment, invests an amount equal to the sum of all

calls on the first date. The GP is penalized for delaying to call some of the capital until

after the first call date. Table II reports this case with the label “Sum Call.” These RAPs are

about 4-9 cents lower per dollar of committed capital than our benchmark RAP results.
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The second alternative is to assume that the benchmark for the GP is a replicating

portfolio that invests the full $1 of committed capital. Equivalently, the LP gives $1 to

the GP. If the GP delays to deploy some of the capital or decides not to invest some of the

capital at all, this hurts the PE fund’s performance relative to the benchmark. Any amount

never invested is returned to the LP at the end of the fund’s life. This is equivalent to an

initial call amount of $1 minus a return of the never-invested capital at the end of the life

of the investment, that is, discounted at the 64-quarter Treasury bond price. This case has

the highest call amount and therefore the lowest RAP. Table II reports this case with the

label “Residual Call.” The resulting RAPs are another 1-3 cents lower.

In sum, when we assume that the LP does not earn a return on the committed but

never-called capital or on the capital that is not yet but eventually called, the RAP is

about 10 cents lower. The difference with the benchmark RAP ranges from 4 to 11 cents

across categories. Average RAP is now solidly in negative territory in every investment

category for the main 15-factor model. RS remains the best PE category, but still loses 6.5

cents on a risk-adjusted basis for every $1 of committed capital. Buyout loses 16 cents,

VC loses 19 cents, and RE loses 22 cents. FF is the worst category with a 30 cent loss.

H. Discussion

Our pervasive finding of negative average RAP stands in contrast to previous litera-

ture on PE, which generally finds evidence of fund outperformance (Brown et al. (2015),

Kaplan and Sensoy (2015), Harris, Jenkinson, and Kaplan (2014a)). The difference is made

apparent when comparing standard performance metrics in the first three rows of Table

II, which tend to show more favorable performance, to our risk adjusted metrics. Even

the two-factor model generally shows positive risk-adjusted profits. Our more negative

conclusion about outperformance in the PE industry is a natural consequence of richer

risk-adjustment due to cross-sectional factor exposure. Similar risk adjustments in the

mutual fund (Fama and French (2010)) or hedge fund (Fung et al. (2008)) literatures like-
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wise point to lower outperformance.

We also find evidence for substantial cross-sectional dispersion in RAPs, as well as siz-

able persistence in risk-adjusted performance over time. This suggests that a subset of PE

managers consistently deliver outsized returns. This finding is consistent with Kacper-

czyk, Van Nieuwerburgh, and Veldkamp (2014, 2016), who find that a small right tail of

mutual fund managers consistently outperform, although the earlier mutual fund liter-

ature has been skeptical of skill in any part of the fund distribution (Fama and French

(2010)). Decomposing PE performance into market timing and asset selection compo-

nents is left for future study.

Similar findings of limited excess returns across categories of delegated asset man-

agers are suggestive of similar economic forces at work. First, investors may find it dif-

ficult to replicate complex factor strategies on their own, and hence may be willing to

pay PE managers to generate factor strategies. Second, superior performance tends to be

associated with higher fund flows, leading to increased capital commitments that reduce

returns in the presence of decreasing returns to scale, along the lines of Berk and Green

(2004). As the PE industry has grown substantially, there may be insufficient economies of

scale to adequately manage a growing asset base to generate the same outsize returns of

previous decades. Our finding of declining RAPs over time is consistent with this conjec-

ture. Finally, delegated asset managers charge sizable management and performance fees

especially when financial products are more opaque and complex (Célérier and Vallée

(2015)) as they are in PE. This reduces after-fee returns for investors further. We have a

deeper analysis of before-fee performance for future work.

IV. Conclusion

We provide a novel valuation method for PE cash flows that decomposes the cash flow

at each horizon into a systematic component that reflects exposure to multiple sources of

aggregate risk, captured by the cross section of listed securities, and a component that re-
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flects the risk-adjusted profit to the PE investor. The systematic component represents

a portfolio of stock and bond strips paying safe or risky cash flows at horizons over

which PE funds make cash-flow distributions. A state-of-the-art no-arbitrage asset pric-

ing model estimates prices and expected returns for these strips by closely fitting the time

series of bond yields and stock prices, including dividend strips. The asset pricing model

provides the first estimates of the term structure of risk and return in the cross-section of

equity factors.

Using a two-factor OLS and 15-factor elastic net approach, we estimate rich hetero-

geneity in PE fund risk exposures across horizons, in the cross-section, and in the time

series. PE funds’ risk exposure is best modeled using not only bonds and the aggregate

stock market, but also sector-specific equity factor exposures. The estimated exposures

are sensible given the underlying nature of PE assets, and indicate an important role for

growth stocks in VC and for REITs in real estate funds. In the time series, we find that

expected returns on PE funds have been declining substantially since the 1980s and espe-

cially since the Great Recession, reflecting declining risk premia in public markets.

On average, PE funds tend to underperform their replicating portfolio benchmark,

suggesting that while PE funds offer investors access to complex risk exposures, they do

so at a cost that is higher than that offered in public markets. While our resulting profit

measures correlate well with existing measures of outperformance in the cross-section

of funds, they imply substantially lower average performance than traditional measures.

Performance deteriorates further if we penalize the fund manager for not calling all com-

mitted capital or for calling some of it with a delay. Under this alternative assumption, all

PE fund categories underperform substantially on a risk-adjusted basis. One potential in-

terpretation of this underperformance is that investors such as pension funds may be will-

ing to pay an illiquidity premium for the convenience of not having to mark-to-market

investments that display much of the same risk characteristics as a portfolio of stocks

and bonds. Exploring this conjecture more thoroughly represents interesting ground for
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future research.

The negative average performance hides substantial dispersion across funds. A sub-

stantial fraction outperforms, and we find some evidence for persistence in outperfor-

mance. Exploring the characteristics of out-performing funds are also merits further in-

quiry.

Our analysis highlights the value of a methodological advance in the assessment of

risk and return for unlisted assets, which are an increasing component of the total in-

vestable universe for many institutional investors. While PE, given its size, is an espe-

cially important application, our method can be applied more broadly to study the risk

characteristics and risk-adjusted performance of any other cash-flowing asset. Individual

private firms, real estate assets, or infrastructure investment projects are applications left

for future work.
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Figure 1. Dynamics of the nominal term structure of interest rates.

The figure plots the observed and model-implied one-, four-, 20-, 40-quarter nominal
bond yields.
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Figure 2. Dynamics of the real term structure of interest rates.

The figure plots the observed and model-implied 20-, 28-, 40-, and 80-quarter real bond
yields.
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Figure 3. Long-term yields and bond risk premia.

The top panels plot the average bond yield on nominal (left panel) and real (right panel)
bonds for maturities ranging from one quarter to 200 quarters. The bottom left panel plots
the nominal bond risk premium in model and data. The bottom right panel decomposes
the model’s five-year nominal bond yield into the five-year real bond yield, the five-year
inflation risk premium, and the five-year real risk premium.
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Figure 4. Equity risk premia and price-dividend ratios (part 1).

The figure plots the observed and model-implied equity risk premium on the overall
stock market, small stocks, growth stocks, and value stocks in the left panels, as well as
the corresponding price-dividend ratios in the right panels. The model is reported by the
blue lines, while the data are depicted by the red lines.
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Figure 5. Equity risk premia and price-dividend ratios (part 2).

The figure plots the observed and model-implied equity risk premium on REIT stocks,
infrastructure stocks, and natural resource stocks in the left panels, as well as the corre-
sponding price-dividend ratios in the right panels. The model is reported by the blue
lines, while the data are depicted by the red lines.
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Figure 6. Zero-coupon bond prices and dividend strip prices.

The figure plots the model-implied prices on zero-coupon Treasury bonds in the first
panel, and price-dividend ratios for dividend strips on the overall stock market, small
stocks, growth stocks, value stocks, REIT market stocks, infrastructure stocks, and natural
resources stocks in the next seven panels, for maturities of four, 20, and 40 quarters. The
prices/price-dividend ratios are expressed in levels and each claim pays out a single cash
flow.
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Figure 7. Short-run cumulative dividend strips.

The left panel plots the model-implied price-dividend ratio on a claim that pays the next
eight quarters of dividends on the aggregate stock market. The right panel plots the share
that this claim represents in the overall value of the stock market. The data are from van
Binsbergen, Brandt, and Koijen (2012) and are available from 1996 Q1-2009 Q3.
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Figure 8. Strip expected returns by horizon.

The figure plots the model-implied average risk premia on nominal zero-coupon Treasury
bonds in the first panel, and on dividend strips on the overall stock market, small stocks,
growth stocks, value stocks, REITs, infrastructure stocks, and natural resource stocks in
the next seven panels, for maturities ranging from one to 64 quarters.
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Figure 9. Strip expected returns in the time series.

The figure plots the model-implied time series of risk premia on nominal zero-coupon
Treasury bonds in the first panel, and on dividend and capital gain strips on the overall
stock market, small stocks, growth stocks, value stocks, REITs, infrastructure stocks, and
natural resource stocks in the next seven panels. The maturity for each strip that is plotted
is five years (20 quarters).
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Figure 10. Distribution cash-flow profiles.

The figure plots distribution cash flows by PE fund category. Monthly cash flows are
aggregated by year and then averaged across all funds in the category. Year zero is the
year of fund inception, the year in which the first capital call is made. The last bar for year
16 contains not only the cash flows in year 16 but also the discounted cash flows after year
16, discounted back to year 16 at the Treasury yield curve.
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Figure 11. Cash flows by vintage.

This figure plots average cash-flow profiles by vintage. Only vintages from 1990 onwards
are plotted for Buyout and Venture Capital, and only vintages from 2000 onwards are
plotted for Real Estate and Fund of Fund categories.
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Figure 12. Factor exposure over fund horizon.

64



Two-Factor Elastic Net

Panel A: Buyout

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.085

Expected Return by Vintage

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.095

Expected Return by Vintage

Panel B: Venture Capital

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.058

Expected Return by Vintage

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.084

Expected Return by Vintage

Panel C: Real Estate

0.00

0.05

0.10

0.15

0.20

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.067

Expected Return by Vintage

0.00

0.05

0.10

0.15

0.20

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.088

Expected Return by Vintage

Panel D: Fund of Funds

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.097

Expected Return by Vintage

0.00

0.05

0.10

0.15

0.20

0.25

1980 1990 2000 2010 2020
Vintage

E
x
p

e
c
te

d
 R

e
tu

rn

Average: 0.098

Expected Return by Vintage

Figure 13. Expected returns by vintage.65



Figure 14. Histogram of fund-level profit relative to replicating portfolio.
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Figure 15. Average fund-profits over time.
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Figure 16. Comparing RAP to IRR and PME.
68



Table I
Summary Statistics

This table presents all funds in Preqin that have cash-flow data. Not all funds have AUM
data, particularly in the early years of the sample.

Panel A: Fund Count
Vintage Buyout Venture Capital Real Estate Infrastructure Restructuring Fund of Funds Debt Fund Natural Resources Total PD Ratio
1981 0 1 0 0 0 0 0 0 1 1
1982 0 3 0 0 0 0 0 0 3 1
1983 0 1 0 0 0 1 0 0 2 1
1984 1 3 0 0 0 0 0 0 4 1.25
1985 4 6 0 0 0 1 0 0 11 1.64
1986 1 7 0 0 0 2 0 0 10 1.8
1987 5 5 0 0 0 0 0 0 10 1.7
1988 7 4 0 0 0 1 0 0 12 1.5
1989 3 5 0 0 0 1 0 2 11 2
1990 7 8 0 0 1 2 0 0 18 1.78
1991 3 4 0 0 2 0 0 0 9 2
1992 9 12 1 0 2 0 0 1 25 2
1993 9 11 0 0 0 2 0 0 23 2
1994 16 11 1 1 1 2 0 1 33 2.09
1995 15 17 2 0 0 4 0 1 39 2.82
1996 21 24 4 1 3 1 0 0 56 3.32
1997 23 23 5 0 2 5 0 1 60 4
1998 40 33 3 1 1 12 0 3 93 4
1999 31 50 2 0 3 9 1 1 97 4
2000 35 87 7 0 3 17 1 0 150 4
2001 20 52 2 0 5 19 0 1 99 4
2002 23 30 2 1 4 13 1 2 76 4
2003 18 20 7 1 4 13 1 1 65 3.99
2004 28 34 11 4 2 24 1 2 106 3.99
2005 56 48 20 0 6 35 2 5 172 3.74
2006 76 60 35 5 10 54 0 4 244 3.96
2007 74 69 37 6 14 49 1 7 257 3.55
2008 65 63 39 4 11 72 5 8 268 2.55
2009 31 31 14 6 8 36 2 4 132 2.49
2010 43 41 34 9 9 41 3 8 189 3.5
2011 55 52 50 9 10 70 2 9 260 2.94
2012 64 46 41 8 13 55 4 11 245 3
2013 69 50 60 11 18 70 14 8 302 3
2014 67 65 55 15 16 77 12 15 322 2.99
2015 77 79 83 14 20 75 18 8 375 2.78
2016 96 79 59 16 11 92 13 16 383 3
2017 53 76 65 14 14 49 29 11 312 3
Total: 1,145 1,210 639 126 193 904 110 130 4,474 -

Panel B: Fund AUM ($m)
Vintage Buyout Venture Capital Real Estate Infrastructure Restructuring Fund of Funds Debt Fund Natural Resources Total
1981 0 0 0 0 0 0 0 0 0
1982 0 55 0 0 0 0 0 0 55
1983 0 0 0 0 0 75 0 0 75
1984 59 189 0 0 0 0 0 0 248
1985 1,580 74 0 0 0 200 0 0 1,854
1986 0 335 0 0 0 1,310 0 0 1,645
1987 1,608 1,061 0 0 0 0 0 0 2,669
1988 2,789 463 0 0 0 0 0 0 3,252
1989 805 305 0 0 0 1,775 0 210 3,095
1990 2,553 1,134 0 0 153 381 0 0 4,221
1991 1,068 450 0 0 329 0 0 0 1,847
1992 1,150 1,320 0 0 59 0 0 184 2,713
1993 3,192 1,433 0 0 0 597 0 0 5,276
1994 7,577 1,189 488 861 93 357 0 658 11,223
1995 10,648 2,645 523 0 0 1,042 0 205 15,063
1996 8,279 4,558 2,681 1,013 1,600 242 0 0 18,474
1997 23,534 5,245 2,812 0 1,700 1,852 0 480 35,623
1998 39,410 9,001 3,461 1,671 52 11,144 0 2,262 67,001
1999 34,418 17,850 2,293 0 3,133 9,323 109 42 67,168
2000 54,995 39,206 7,324 0 3,320 13,540 230 0 118,615
2001 26,870 23,441 3,225 0 7,461 11,607 0 1,375 73,979
2002 23,233 8,065 4,940 950 2,844 8,699 100 845 49,676
2003 32,629 6,670 3,085 734 5,105 9,059 366 150 57,798
2004 34,523 9,702 6,145 2,725 2,580 5,390 215 2,721 64,001
2005 97,698 15,226 25,036 0 5,830 25,103 412 6,353 175,658
2006 218,225 32,407 45,376 8,054 19,728 41,740 0 9,472 375,002
2007 186,374 23,970 44,794 9,773 40,995 42,708 400 11,795 360,809
2008 164,993 31,870 44,285 8,418 26,158 43,258 4,697 20,416 344,345
2009 40,037 11,716 10,396 9,480 11,235 18,282 195 3,450 104,791
2010 33,186 22,030 19,593 10,920 12,955 12,994 1,164 8,637 121,823
2011 104,281 23,608 55,532 8,325 13,453 29,670 1,720 10,152 247,901
2012 93,805 32,067 28,541 13,306 22,828 40,276 1,054 21,646 253,903
2013 94,105 22,975 61,832 21,509 28,020 22,372 14,211 13,177 279,471
2014 123,339 34,146 40,855 31,666 20,996 38,449 5,619 24,060 319,130
2015 126,648 31,464 73,480 14,233 32,970 65,562 17,113 14,584 376,304
2016 194,563 39,640 46,805 45,637 14,803 48,513 11,773 18,400 420,402
2017 99,981 33,041 58,128 12,051 12,741 22,090 33,231 16,692 288,343
Total: 1,888,155 488,551 591,630 201,326 291,141 527,610 92,609 187,966 4,273,45369



Table II
Model Comparison

This table reports the cross-sectional mean and standard deviation of the risk-adjusted profit (RAP) for the main four fund
categories in Panel A and the remaining four categories in Panel B. The benchmark RAP metric is labeled “NPV call.” RAP
metrics for two alternative assumptions on calls are labeled “Sum Call” and “Residual Call.” The first row reports the TVPI
(total distributions minus total calls). The second row reports the IRR, assuming an initial investment equal to all calls
discounted at the Treasury yield curve. The third row reports the PME (public market equivalent), subtracting the initial
investment of $1. All metrics are relative to a $1 capital commitment.

Panel A: Main Categories
Buyout VC Real Estate Fund of Funds

Mean St Dev Mean St Dev Mean St Dev Mean St Dev
TVPI 0.62 (0.74) 0.39 (1.69) 0.17 (0.52) 0.23 (0.51)
IRR (%) 0.09 (0.10) 0.03 (0.20) 0.04 (0.11) 0.05 (0.07)
PME-1 0.36 (0.67) 0.22 (1.49) -0.04 (0.44) 0.17 (0.40)
RAP 2-factor (NPV Call) 0.28 (0.53) -0.15 (1.36) 0.09 (0.45) 0.24 (0.50)
RAP 15-factor (NPV Call) -0.06 (0.51) -0.09 (1.27) -0.16 (0.38) -0.19 (0.35)
RAP 2-factor (Sum Call) 0.20 (0.53) -0.25 (1.36) 0.04 (0.45) 0.15 (0.51)
RAP 15-factor (Sum Call) -0.14 (0.51) -0.18 (1.27) -0.20 (0.38) -0.28 (0.36)
RAP 2-factor (Residual Call) 0.18 (0.53) -0.26 (1.36) 0.02 (0.45) 0.13 (0.51)
RAP 15-factor (Residual Call) -0.16 (0.51) -0.19 (1.27) -0.22 (0.38) -0.30 (0.36)

Panel B: Additional Categories
Restructuring Debt Fund Infrastructure Natural Resources

Mean St Dev Mean St Dev Mean St Dev Mean St Dev
TVPI 0.44 (0.57) 0.30 (0.27) 0.17 (0.65) 0.33 (0.91)
IRR (%) 0.09 (0.10) 0.07 (0.04) 0.03 (0.11) 0.02 (0.18)
PME-1 0.20 (0.56) 0.12 (0.17) 0.17 (0.57) 0.28 (0.86)
RAP 2-factor (NPV Call) 0.17 (0.47) 0.34 (0.55) 0.33 (0.65) 0.07 (0.66)
RAP 15-factor (NPV Call) -0.001 (0.46) -0.13 (0.30) -0.06 (0.58) -0.06 (0.62)
RAP 2-factor (Sum Call) 0.13 (0.47) 0.31 (0.56) 0.27 (0.66) 0.00 (0.65)
RAP 15-factor (Sum Call) -0.04 (0.46) -0.16 (0.31) -0.12 (0.59) -0.13 (0.60)
RAP 2-factor (Residual Call) 0.11 (0.47) 0.28 (0.57) 0.24 (0.66) -0.03 (0.66)
RAP 15-factor (Residual Call) -0.07 (0.47) -0.18 (0.31) -0.15 (0.58) -0.16 (0.61)
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Table III
Persistence in Performance

This table reports various fund persistence measures for TVPI, IRR, PME-1, the two-factor OLS model, and the 15-factor
elastic net model under the baseline assumption on calls (NPV of calls). Persistence measures the average correlation of
RAP between successive funds by the same firm in the same PE category. Top Quart is the probability that if the first fund
in the pair is in the top quartile of the distribution of RAP of that vintage-category, the second fund in the pair is also in
the top quartile of RAP in its vintage-category. Bottom Quart is the corresponding probability that if the first fund is in the
bottom quartile, the second fund in the pair is also in the bottom quartile.

Buyout VC

Persistence Top Quart Bottom Quart Persistence Top Quart Bottom Quart

TVPI 0.46 0.36 0.32 0.41 0.45 0.43
IRR 0.40 0.38 0.29 0.41 0.45 0.35
PME-1 0.44 0.29 0.27 0.43 0.41 0.47
RAP 2-factor (NPV Calls) 0.44 0.34 0.25 0.41 0.33 0.35
RAP 15-factor (NPV Calls) 0.42 0.36 0.31 0.39 0.35 0.14

Real Estate Fund of Funds

Persistence Top Quart Bottom Quart Persistence Top Quart Bottom Quart

TVPI 0.33 0.46 0.20 0.34 0.31 0.21
IRR 0.25 0.41 0.20 0.28 0.27 0.22
PME-1 0.27 0.44 0.35 0.30 0.35 0.22
RAP 2-factor (NPV Calls) 0.26 0.44 0.16 0.27 0.24 0.20
RAP 15-factor (NPV Calls) 0.26 0.40 0.22 0.29 0.29 0.17
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