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Abstract

We introduce a “bad environment-good environment” (BEGE) technology for consump-

tion growth in a consumption-based asset pricing model with external habit formation. The

model generates realistic non-Gaussian features of consumption growth and fits standard

salient features of asset prices including the means and volatilities of equity returns and

a low risk free rate. BEGE dynamics additionally allow the model to generate realistic

properties of equity index options prices, and their comovements with the macroeconomic

outlook. In particular, when option-implied volatility is high, as measured for instance by

the VIX index, the distribution of consumption growth is more negatively skewed.

2



I Introduction

A number of consumption-based asset pricing models have emerged that can claim

empirical success in matching salient features of macroeconomic and asset return data. For

example, Campbell and Cochrane (1999) develop an external habit framework in which a

representative agent’s counter-cyclical risk aversion is the driver of asset return dynamics.

Campbell and Cochrane keep the exogenous process for consumption growth deliberately

simple, yet the model fits well the means of the equity risk premium and the risk free short-

term interest rate, the variability of equity returns and price-dividend ratios, and long horizon

return predictability. These feats are accomplished by assuming that habit moves slowly

in response to consumption shocks, which are assumed to follow a time-invariant Gaussian

distribution.

However, as shown in Figure 1, data for post-WWII U.S. consumption growth contradict

the assumption of a time-invariant Gaussian distribution The top panel plots estimated

values for the conditional variance of consumption growth from a standard GARCH-type

model. Sharp peaks are witnessed periodically, usually around the time of NBER reces-

sions. Moreover, estimates of the conditional skewness of consumption growth from a

reduced-form model, shown in the bottom panel, also vary significantly over time, and the

conditional skewness, especially unscaled skewness, appears to be negatively correlated with

the conditional variance. For a risk-averse investor, the prospect that the skewness of con-

sumption may become more negative at the same time that its volatility increases represents

a risk that may have substantial implications for asset prices. (We will return to the details

and statistical significance of these features in Section IV).

Moreover, the Great Recession of 2008 and 2009 witnessed stress in financial markets

that was particularly evident in option markets. For example, the CBOE’s VIX index, a

measure of option-implied volatility, showed extreme variation and rose to unprecedented

heights. The VIX index measures the option-implied expected stock market variance for

the U.S. S&P 500 stock price index, and it is computed from a panel of options prices
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across different strikes. Well-known as a “fear index” for asset markets (Whaley, 2000),

the VIX is a positive function of uncertainty regarding stock market returns (the “physical”

expected volatility) and a“variance premium,” which is also the expected premium from

selling a claim with a payoff equal to the realized future stock market variance (see Bollerslev,

Gibson and Zhou (2011), Carr and Wu (2008)). Because during periods of stress the

realized stock market variance generally increases, the variance premium tends to be positive.

As depicted in Figure 2, movements in the VIX are empirically related to the conditional

distribution of consumption growth. Displayed are shifts in the distribution of one-quarter

ahead consumption growth depending on prior realizations of the VIX. Specifically, the “high

VIX” (“low VIX”) symbols indicate the consumption growth quantiles when the lagged value

of VIX is in the highest (lowest) decile of its distribution over the sample period. When the

VIX is relatively high, the consumption growth distribution becomes more negatively skewed,

and in the left tail the quantile shifts are statistically significant. These empirical facts pose

a challenge for the standard formulation of the Campbell and Cochrane model. While the

standard model generates time-variation in risk aversion that may potentially propel the

VIX to high values following bad shocks, the informativeness of the level of the VIX for the

macroeconomic outlook is precluded by the assumption of a time-invariant distribution for

consumption growth.

In this article, we propose a simple extension to the model of Campbell and Cochrane

by assuming a stochastic process for consumption growth that has a time-varying and non-

Gaussian distribution, following what we call a “Bad Environment-Good Environment”

process, or “BEGE” for short. Each period, consumption growth receives two types of

shocks, both drawn from potentially fat-tailed, skewed distributions. While one shock has

positive skewness, the other shock has negative skewness. Because the relative importance of

these two types of shocks varies through time, there are “good times” where the positively-

skewed distribution dominates, and “bad times” where the negatively-skewed distribution

dominates and recession risk is high.
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We show that appending the Campbell and Cochrane model with BEGE dynamics for

consumption and dividend growth allows it to match the evidence in Figures 1 and 2 as

well as several other features of macro economic data and data for asset and option prices.

Regarding the latter, one can derive the option-implied higher order moments for stock

returns from option prices across a range of strike prices. A prominent feature of these

data is that the conditional moments of returns show time-varying (but generally negative)

skewness and time-varying, but reliably fatter-than-Gaussian, kurtosis (see Figlewski, 2008).

Our extension allows the model of Campbell and Cochrane to match these empirical features

relatively well. The model also endogenously generates realistic asymmetric volatility, the

tendency for equity returns to be negatively correlated with return variance.

As we discuss in Section V, our model combines stochastic risk aversion with a time-

varying non-Gaussian distribution for consumption growth to fit salient features of asset

returns and options data. Alternative mechanisms have been proposed in the literature.

Within a long-run risk model, attempting to fit features of the VIX and the variance pre-

mium, Drechsler and Yaron (2011) introduce jumps in the conditional mean of consumption

growth whereas Bollerslev, Tauchen and Zhou (2011) let volatility of the stochastic volatility

process for consumption growth follows a separate stochastic process. Because these models

are both conditionally Gaussian, they cannot generate the non-Gaussian consumption dy-

namics documented in Figures 1 and 2.1 Another recent strand of the literature that also

focuses on the technology rather than preferences has rekindled the idea in Rietz (1988) that

fear of a large catastrophic event may induce a large equity premium (see Barro (2006)).

Importantly, in such “disaster risk” frameworks, there is no time variation in risk premiums

unless the probability of the crash is assumed to vary through time, see Wachter (2013).

Because the BEGE model delivers a flexible conditional distribution of consumption growth,

it can potentially accommodate disaster risk. However, our estimation using U.S. data

delivers a process that is consistent with persistent recession behavior rather than extreme

1However, it is possible for these models to generate non-Gaussian dynamics for consumption growth over

longer horizons than the frequency at which the models are specified.
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but transitory disaster shocks as in most disaster risk articles.

The remainder of the article is organized as follows. Section II introduces the model and

Section III discusses the implied asset price solutions. Section IV outlines the calibration and

estimation of the model parameters. As part of this exercise, we confront the BEGE model

with actual consumption data, showing that it matches time-varying non-Gaussianities in

the consumption growth process. Section V analyzes the fit of the model with respect to

asset prices. The final section offers some concluding remarks.

II The Bad Environment-Good Environment (BEGE)

Habit Model

In this section, we introduce the representative agent model. We begin with a discussion

of the assumed data generating process for consumption and dividend growth, and then

describe our assumptions regarding the preferences of the agent.

II.A The BEGE distribution for consumption growth

Our model for consumption growth is specified at the monthly frequency and is described

by the following equation:

∆+1 =  + +1 − +1 (1)

where ∆ = ln ()− ln (−1) is the logarithmic change in real, per-capita consumption of

nondurables and services, and  is the mean rate of consumption growth, which is assumed

to be constant. The parameters  and  are both positive. The key point of departure

for our model from the formulation of Campbell and Cochrane is that the shocks, +1

and +1, do not follow invariant Gaussian distributions, but instead are assumed to be

drawn from distributions that are non-Gaussian with potentially time-varying moments.

Specifically, we assume that the two shocks are independent and governed by centered gamma
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distributions. We use the notation,

+1 ∼ eΓ ( 1) (2)

+1 ∼ eΓ ( 1)
to denote that +1 follows a centered gamma distribution with shape parameter  (using a

subscript to denote that  may vary over time) and a unit scale parameter. The probability

density function for +1, denoted  (+1), is given by the formula:

 (+1) =
1

Γ ()
(+1 + )

−1 exp (−+1 − ) (3)

for +1  − and with Γ (·) representing the gamma function. Unlike the standard

gamma distribution, the centered gamma distribution has a mean of zero. Similar results

hold for the distribution of +1, with  governing the shape of the distribution. The

conditional moments of the two shocks are easily derived, for instance, by using the moment

generating function (see the Appendix A) to obtain:



−1 · +1 +1 · +1

  

 −2√ +2
√


 6 6

(4)

Consider again the +1 shock. The conditional variance of the distribution is equal to

the shape parameter, , but both conditional skewness () and excess kurtosis (),

while positive, are declining in . Moreover, the distribution approaches the Gaussian

distribution as  tends towards infinity. This is visibly apparent in the top right panel of

Figure 3, in which the distribution of +1 is plotted for various values of . In each case,

the distribution starts at − and then has a long right hand side tail. As  increases, the
distribution appears more and more Gaussian. As can be seen in the upper left panel of

Figure 3, the distribution for −1 · +1 is the mirror image of that for +1.

To flesh out the properties of consumption growth that are implied by these two com-
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ponent shocks, we begin by noting that the shape parameters,  and , together govern

the higher-order moments for consumption growth:

 (∆+1) = 2 + 2

 (∆+1) = 2
¡
3 − 3

¢
 (∆+1)

32

 (∆+1) = 6
¡
4 + 4

¢
 (∆+1)

42

(5)

The table shows that both  and  contribute positively to the conditional variance

of consumption. They differ, however, in their implications for the conditional skewness of

consumption. The numerator in the expression for skewness is positive when  is relatively

large, and negative when  is large. This is the essence of the BEGE model: the bad

environment refers to an environment in which the +1 shocks dominate; in the good

environment the +1 shocks dominate. Of course, the shocks are always zero in expectation,

but there is a higher probability of large positive shocks in a “good environment” and vice

versa. Whether good or bad shocks dominate depends on the relative values of  and 

given values for  and . For the conditional excess kurtosis of consumption growth, both

 and  contribute positively to both the numerator and denominator of the expression,

so that the dependence of excess kurtosis on  and  depends on their respective levels as

well as on  and . However, both skewness and excess kurtosis for ∆+1 eventually

tend towards zero for larger values of  and .

The bottom panel of Figure 3 plots four examples of BEGE densities under various

combinations for , , , and . For ease of comparison of the higher order moments,

the mean and variance of all the distributions are the same and  = . The black line

plots the density under large, equal values for  and . This distribution very closely

approximates the Gaussian distribution. The blue line plots a BEGE density with smaller,

but still equal values for  and . This density is more peaked and has fatter tails than the

Gaussian distribution. The red line plots a BEGE density with large  but small  and is

duly right-skewed. Finally, the green line plots a density with large  and small , and is

left-skewed. This demonstrates the flexibility of the BEGE distribution and illustrates the
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role of  as the “good environment” variable and  as the “bad environment” variable. In

essence, the BEGE model is a stochastic volatility model with “good” and ”bad” volatilities

in which changes in volatility also change the shape of the distribution.

An astute reader may note that the mode of the “good environment” (“bad environ-

ment”) distribution is shifted to the left (right), and that the total probability of negative

shocks is actually higher in the good environment than in the bad environment distribution.

Yet, the monikers “good and bad environment” are economically well-founded insofar as a

typical risk averse agent should prefer facing an  shock (which has a bounded left tail

and unbounded upside) to an  shock of equal variance (which has an unbounded left tail

and a bounded upside).

The following example illustrates that a risk averse investor in a simple static setting

would dislike exposure to bad-environment shocks more than she would Gaussian shocks with

the same variance, and that she would prefer the good-environment shocks to the Gaussian

case. For this example, we assume the agent’s utility function has constant relative risk

aversion over one-period ahead wealth:


³f´ = f 1− − 1

1− 
(6)

where f is the stochastic value of one-period ahead wealth. We consider three different

distributions for ln
³f´. All three distributions have a common variance, 2, but they

differ in their means and distributions of shocks:

distribution mean variance skewness

  2 0

−1 ·   +∆ 2 −2√
+1 ·   +∆ 2 +2

√


(7)

where we have dropped the time subscripts for this static example. We find values for ∆

and ∆ such that the expected utility of all three distributions is the same, that is, equal

to the expected utility under the log-Gaussian distribution for wealth. An exact formula
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for these “certainty equivalent” losses or gains is derived in the appendix, but a third order

Taylor series approximation yields the following intuitive expressions:

∆ ≈ +
1

312
3 (1− )2 (8)

∆ ≈ − 1

312
3 (1− )2

The expression for∆ is unambiguously positive, indicating that the agent requires a positive

boost to the mean of the −1 · distribution to be equally willing to bear the disutility of its

long left tail and finite right tail. The certainty equivalent mean shift declines proportionately

to 12 because the distribution approaches a Gaussian distribution for larger values of 

and it is unsurprisingly increasing in both 2 and  (assuming   1). The certainty

equivalent mean shift for the good-environment distribution, ∆, is unambiguously negative,

so that the agent is willing to accept a lower level of expected gains in exchange for the long

right tail, and it declines with 12.

For illustrative purposes, Figure 4 plots the exact functions for ∆ and ∆ for  = 5

and 2 = 015
2,2 consistent with features of a US stock market gamble. At low values of ,

the risk averse agent requires an 8 percent risk premium to be as happy with the BE shock

as she is with the Gaussian shock. The equivalent reduction in premium she is willing to

accept to face a GE shock is only 2 percent for low values of . The asymmetry is due to

the higher order terms not present in the Taylor approximation in Equation (8). (For the

BE-shock all the higher order terms are positive, but for the GE shock the signs of the terms

alternate, mitigating the total effect.)

II.B The BEGE distribution for dividend growth

For monthly dividend growth, ∆, we follow Campbell and Cochrane’s specification in

which dividend growth follows a process symmetric to that for consumption growth:

∆+1 =  + +1 − +1 (9)

2The mean  is irrelevant to these calculations and can be set to 0 without loss of generality.
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where∆ is real logarithmic dividend growth per capita. Note that the same shocks that af-

fect consumption growth also drive dividend growth, as is true in the model of Campbell and

Cochrane. As in Longstaff and Piazzesi (2004), the dividend process may exhibit stronger

non-Gaussianity than consumption growth. Moreover, consumption and dividends follow

two different unit root processes. An alternative assumption would be that consumption

and dividends are cointegrated.

II.C Time variation in the BEGE distribution

For parsimony  is assumed to be constant at a level denoted by , but  varies over

time, according to a simple, autoregressive process:

+1 = (1− )+  + +1 (10)

where  is the unconditional mean of the process,  is the autocorrelation coefficient, and

  0 governs the conditional volatility of the process. Therefore  is a state variable

that the representative agent observes for the purposes of calculating asset prices. Note

that the shock to +1, +1, is the same as the bad-environment shock for consumption,

but it enters with a different sign; positive +1, shocks raise +1 and simultaneously lower

∆+1. The conditional volatility of the shock to +1 is 
√
 so that our specification is

similar to other models in which the conditional volatility of the variable is proportional to

the square root of its level.3

3The minimum possible value of +1 is −, an artifact of the one-sided nature of the gamma distrib-
ution. This implies that under the additional technical assumption that   , the  process can never
become negative, even in a discrete time setting. This is a desirable property for a volatility process, which

is not shared by standard Gaussian stochastic volatility processes.

9



II.D Preferences

We adhere to the preference structure of the representative agent in Campbell and

Cochrane (1999) in which the agent maximizes the utility function,



∞X
=0


( −)

1− − 1
1− 

 (11)

where  is aggregate consumption and  is the habit stock with   . The parameter

 is the subjective time discount factor. We also define the consumption surplus ratio  as,

 =
 −



 (12)

In Campbell and Cochrane,  is an external subsistence or habit level. Hence, the local

curvature of the utility function, denoted , is given by

 ≡ −

2

2







= 


 −

=



(13)

As the surplus ratio goes to zero, local curvature, and thus the risk aversion of the

representative agent, both go to infinity.

The intertemporal marginal rate of substitution in this model determines the real pricing

kernel, which we denote by . Taking the ratio of marginal utilities at time  + 1 and ,

we obtain:

+1 = ln  − ∆+1 −  (+1 − ) (14)

where  = ln() and +1 = ln (+1).

The process for  is specified as:

+1 = (1− ) +  +  (∆+1 − ) (15)

where , and  are scalar parameters. The variable  is the so-called sensitivity function.

The function is positive so that negative shocks to consumption growth decrease the surplus

ratio and increase risk aversion, which generates countercyclical risk premiums. Campbell

and Cochrane choose the functional form of the sensitivity function to control the volatility

of interest rates. We proceed similarly and defer a full characterization of the sensitivity

function in our framework until our derivation of the short term interest rate in the next
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section.

III Asset Prices

In this section, we present various features of asset prices implied by the model. We

begin by defining two useful parameters which capture the sensitivity of the pricing kernel

to the two shocks in the model. (A table in the Appendix catalogs the main variables and

parameters to which we refer in the text.)

 ≡ +1

+1
= − (1 + )

 ≡ +1

+1
=  (1 + )  (16)

Because positive +1 shocks raise consumption growth and surplus consumption, their

contribution to marginal utility is negative so   0. Conversely, because +1 shocks

lower both consumption and the surplus ratio, they raise marginal utility so that   0.

III.A The risk free rate and the sensitivity function

To solve for the real risk free short rate, , we use the usual first order condition for

the consumption-saving choice,

exp () =  [exp (+1)]
−1

(17)

Under the above BEGE dynamics and habit preference structure, this simplifies to

 =
− ln  +  +  (1− ) (− )

+  () +   ()
(18)

where we use the notation-simplifying function,  () =  + ln (1− ). In evaluating

the conditional expectation in (17), we use the moment generating function of demeaned

gamma distributions, which is a power function (See Appendix A for details). The solution

is isomorphic to the well-known result for log-normally distributed variables. The first line

in (18) simply represents the negative of the conditional mean of +1 and the second line
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is a non-Gaussian equivalent of one-half times its conditional variance.

Economically, the first line in the solution for  reflects the usual consumption and

utility smoothing effects: to the extent that marginal utility is expected to be lower in the

future (that is, when   ), investors desire to borrow to smooth marginal utility, and so risk

free rates must be higher in equilibrium to dissuade them from doing so (short term bonds

having zero net supply). The terms on the second line capture precautionary savings effects:

Higher uncertainty exerts downward pressure on risk free rates. Because the function  ()

is always negative, the precautionary savings effects are also always negative. A third-

order Taylor expansion of the log function helps with the interpretation of the precautionary

savings terms:

 ≈

⎛⎜⎜⎜⎜⎝
− ln  +  +  (1− ) (− )

+
¡−1

2
2 − 1

3
3
¢


+
¡−1

2
2 − 1

3
3
¢


⎞⎟⎟⎟⎟⎠ (19)

The second order terms capture the usual precautionary savings effects: higher volatility

generally leads to increased savings demand, depressing interest rates. Under a Gaussian

distribution all terms of order higher than two are zero. The cubic terms above repre-

sent a novel feature of the BEGE model. The third order term for  is positive (recall

that   0), so that it mitigates the precautionary savings effect. Economically, when

good environment shocks are dominant, the probability of large positive shocks is relatively

large, and the probability of large negative shocks is small, decreasing precautionary sav-

ings demand. Conversely, both the second and third order (and all higher order) terms

premultiplying  are negative (recall that   0) indicating that precautionary savings

demands are exacerbated when  is large. That is, when consumption growth is likely

to be impacted by large, negative shocks, risk free rates are depressed over and above the

usual precautionary savings effects attributable to volatility. Through this mechanism our

model may generate the kind of extremely low risk free rates witnessed in the 2007-2009

crisis period.
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In Campbell and Cochrane,  is modeled as a shifted square root function:

 =

⎧⎪⎨⎪⎩
1


p
1− 2 ( − )− 1   max

0  ≥ max

⎫⎪⎬⎪⎭ (20)

where max is simply defined as the value of  at which  runs into zero. With this specifica-

tion, negative consumption shocks increase . Campbell and Cochrane then parameterize

the function to impose conditions consistent with an interpretation of habit persistence (see

below) and to control the volatility of the short rate. The parameter  is chosen as

 =

r
2



1− − 
(21)

where  = ln
¡

¢
and 2 is the variance of the consumption shock. The specifications for 

and  produce a short rate that follows:

 = − ln  +  −  (1− )− 

2
+  (− )  (22)

In their main specification, Campbell and Cochrane further impose  = 0 so that the utility-

smoothing and precautionary savings demands cancel out and the short rate is rendered

constant. Wachter (2006) and Campbell and Cochrane (1995) demonstrate how having a

nonzero value for  enables habit models to fit some salient features of the term structure of

interest rates.

We proceed with an analogous specification of the sensitivity function. We first define

an analog to , which we denote by  to signify that it is a time-varying function of .

 =

r¡
2+ 2

¢ 

1− − 
(23)

Note that this specification merely inserts the time-varying variance of consumption growth

under the BEGE model into Campbell and Cochrane’s formulation of  in Equation (21).

Our sensitivity function is then defined as,

 =

⎧⎪⎨⎪⎩
1


p
1− 2 ( − )− 1   max

0  ≥ max

⎫⎪⎬⎪⎭ (24)

where  is the unconditional mean of  (see below) and noting, with some abuse of notation,
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that the maximum level of  that keeps  positive, max, is time-varying under our model.

That is, max = + 1
2

³
1− 2

´
In addition, , the unconditional mean of , is set to ln

¡

¢
where  is  when evaluated

at  = . As in Campbell and Cochrane, this restriction ensures that the parameterization

obeys two conditions they set out as necessary for a habit interpretation of the preference

specification.4 We note that because  depends on  through the specification of , 

cannot be written purely as a function of past consumption shocks but also depends on the

history of . From that perspective, the model is not a pure habit model.

Using again the third order approximation in Equation (19) to gain intuition (we use

the exact solution in our empirical work), the risk free rate simplifies to

 = − ln  +  −  (1− )− 

2
+  (− )− 1

3
3−

1

3
3 (25)

Except for the final two terms, this expression is identical to that of Campbell and Cochrane

in which the short rate is a linear function of  and if  is positive, a lower surplus ratio

(higher risk aversion) increases the short rate. In the model of Wachter (2006) , this

mechanism ensures that the intertemporal smoothing effect of  on interest rates dominates

the precautionary savings effect. This, in turn, generates an upward sloping real yield curve

and positive bond risk premiums.

The final two terms are novel features of our model The term, −1
3
3, is positive,

and increasing in . In economic terms, the presence of the positively skewed shock raises

the risk free rate, more so when sensitivity is high (large ). The term, −1
3
3, is

unambiguously negative and its magnitude increases with both  and . Intuitively, the

risk free rate falls when the variance of the negatively skewed shock is high (large ) and

4These conditions are as follows. At  =  and  = 




= 0

and




∙



¸
= 0

where  = ln () is the logarithm of the habit stock.
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when the sensitivity of risk aversion to shocks is high (large ). In our model  and  are

correlated, with positive  shocks increasing both variables. (Positive  shocks decrease

 and do not affect .)

III.B Equity prices

To solve for the price of the equity claim, we rely on the no-arbitrage condition that

any asset return, +1, must satisfy,

1 =  [+1+1] (26)

For equity returns, which we model as a claim to the real dividend stream, let  denote the

ex-dividend price of the claim. In this case, Equation (26) can be written as

 =  [+1 (+1 ++1)] (27)

One can solve forward for  and after applying a transversality condition, arrive at the

expression

 = 

∞X
=1

exp

"
X

=1

(+ +∆+)

#
(28)

where  is the price-to-dividend ratio. Let  ( ) denote 
 term in the inner sum-

mation above,

 ( ) =  exp

"
X

=1

+ +∆+

#
(29)

Then substitution yields the recursion,

 ( ) =  [exp (+1 +∆+1)−1 (+1 +1)] (30)

Iterating on Equation (30) produces  ( ) for all  and we then sum terms in Equation

(28) (see the “series” method in Wachter (2005)). We are not aware of a closed-form solution

for the price-dividend ratio in either the case of Gaussian- or BEGE-distributed innovations,

so we solve the system numerically for a grid of values for  and . We chose a grid of 100

equally spaced points for both  and  (10,000 points in total), with the grid edges chosen

as the minimum and maximum values for  and  from a single simulation of the system for
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100,000 periods. Adding points to the grid or expanding the grid area does not materially

alter our solution. At each step of the recursion, we must evaluate −1 (+1 +1) at points

(+1 +1) that are, in general, not on the grid. These points are then approximated by

interpolating between grid points.

Solving for expectations such as in Equation (30) requires numerical integration. We

use standard numerical quadrature techniques to accomplish the integration. In particular,

we replace the continuous conditional distributions for +1 and +1 with discrete dis-

tributions having 10 points each with the discrete points and their associated probabilities

chosen to exactly match the first 10 moments of their continuous counterparts (see, for in-

stance, Miller and Rice, 1983). The moments of the distribution for +1 depend on the

values for  on the grid.

We define log equity returns, , in the usual manner

+1 = ∆+1 + ln (1 + +1)− ln () (31)

Log excess returns are defined as

+1 = +1 −  (32)

and the equity risk premium is defined as the one-period ahead conditional expectation of

log excess returns,  [+1].

The model must not only generate a sizable equity premium, but also a sizable Sharpe

ratio for equity. In the Campbell and Cochrane model, the pricing kernel is log normal

and there exists a closed form solution for the maximum possible Sharpe ratio, which is the

coefficient of variation of the pricing kernel:

max
{all assets}



£
 

+1

¤

£
 

+1

¤ =  [+1]

 [+1]
≈
q
2 (33)

where  
+1 is the excess return of a generic asset, and  = − (1 + ) is the

derivative of the pricing kernel with respect to the consumption shock under the Campbell

and Cochrane model. The Sharpe ratio is also easy to compute in our framework, given

the presence of two independent gamma processes, and we derive an approximation to the
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Sharpe ratio under the BEGE-habit model in the Appendix:

 [+1]

 [+1]
=

vuutexp(2 ln" 1− 

(1− 2)12
#
+ 2 ln

"
1− 

(1− 2)12
#)
− 1

≈
q

£
2 + 2

3


¤
+ 

£
2 + 2

3


¤
(34)

Absent the third order terms, this expression looks very much like Equation (33) except

with two sources of uncertainty. Intuitively, the third order effect of  is to raise the

Sharpe ratio (recall that   0). This further highlights the role of  as governing “bad”

volatility.

III.C The variance premium

We follow the common approach of defining the variance premium as the difference be-

tween the conditional variance of logged equity returns under the “risk neutral” and physical

measures. Specifically,

 =  −  (35)

where

 = 

£
2+1

¤− [+1]
2

 = 

£
+1

2
+1

¤
 [+1]− [+1+1]

2
 [+1]

2
(36)

Intuitively, in a discrete state economy, the physical variance is computed using the

actual state probabilities whereas the risk-neutral variance makes use of probabilities that

are adjusted for the pricing of risk using the pricing kernel. It therefore assigns more weight

to high marginal utility states.

The square of the CBOE’s VIX index essentially provides a direct reading on the risk

neutral variance. The VIX calculation measures 30-day expected option-implied volatility of

the S&P 500 Index. It reflects a weighted average of the prices of near- and next-term put

and call options over a range of strike prices, with maturities of more than 23 days and less

than 37 days to expiration (see CBOE (2014) for more details). Importantly, this estimate
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is model free and does not rely on an option pricing model. The computation of the actual

VIX index relies on theoretical results showing that option prices can be used to replicate

any bounded payoff pattern; in fact, they can be used to replicate Arrow-Debreu securities

(Breeden and Litzenberger (1978), Bakshi and Madan (2000)). Britten-Jones and Neuberger

(2000) and Bakshi, Kapadia and Madan (2003) show how to infer the “risk-neutral” expected

variance for a stock index from option prices. We rely on their results to similarly infer risk

neutral skewness and kurtosis from a panel of option prices as well.

While the risk neutral variance can be measured from option prices, the variance pre-

mium also requires an estimate of the physical expected variance. It is typical in the literature

to do so by projecting future “realized” monthly variances (computed using high frequency

returns) onto a set of current instruments (see Bekaert and Hoerova, 2014, for a discussion).

The variance premium can also be viewed as the expected payoff to selling variance in a

variance swap. A variance swap is a financial derivative in which the buyer of the swap pays

an amount based upon the realized variance of the price changes of the underlying product.

Conventionally, the realized variance is computed as the sum of squared daily log returns,

based upon the closing price. The seller of the swap pays a fixed amount, quoted at the

deal’s inception, the variance swap rate. A return variance swap has zero net market value

at inception. At maturity, the payoff to the short side of the swap is equal to the differ-

ence between the variance swap rate and the realized variance over the life of the contract.

No-arbitrage conditions dictate that the variance swap rate equals the risk-neutral expected

value of the realized variance, that is, , or the squared value of the VIX. The expected

premium on such a contract varies through time but is reliably positive. This is economically

logical, as the buyer in the swap receives a positive pay-off when the variance spikes, which

tends to happen in bad times. Moreover, during periods of stress, put option prices tend rise

more than call option prices of equal “moneyness” (that is, having a strike price with the

same distance from the contemporaneous futures price), an asymmetry that leads the VIX

to be higher than the physical expected volatility.
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In equilibrium, this asymmetry can be achieved through risk aversion and/or an asym-

metric distribution for returns. Bakshi and Madan (2006), for example, study the deter-

mination of volatility spreads (which is our variance premium expressed as a percent of the

physical variance) in a dynamic economy with general preferences that however only depend

on the stock market return. Using a second order Taylor series expansion of the utility func-

tion, they show that the volatility spread is related to risk aversion, and the skewness and

excess kurtosis of the physical distribution of returns. If the distribution of (log) returns

distribution is Gaussian, then the volatility spread is zero. Analogously, the habit mecha-

nism in Campbell and Cochrane (1999) will only succeed in generating a meaningful variance

premium if it induces non-Gaussianities in endogenous returns. This occurs in the BEGE

version of the Campbell — Cochrane model because returns “inherit” the non-Gaussianities

from the fundamentals. We evaluate this conjecture quantitatively in Section V.

IV Parameter Calibration and Estimation

In this section, we estimate the model in Equations (1)-(10) using consumption data.

Given the presence of an unobserved state variable () this is a non-trivial undertaking.

Section IV.A describes the data, Section IV.B describes the estimation methodology, and

Section IV.C reports the parameter estimates and their implications for consumption growth

dynamics. We also discuss the calibration of the dividend growth process. Section IV.D

describes the calibration of the preference parameters.

IV.A Data

We use U.S. post-WWII consumption growth data from the U.S. National Income and

Product Accounts (published by the Bureau of Economic Analysis (BEA)). We first add

together quarterly, nominal, seasonally adjusted consumption expenditures for nondurables

and services over the period 1958Q1-2013Q4. According to the BEA, data before 1958
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was subject to substantially higher measurement error, which could spuriously affect our

estimates of the conditional volatility of consumption growth.5 We deflate the resulting

series using a weighted average of the deflators for nondurables and services, also available

from the BEA, where the weights are determined by the respective real expenditure shares.

Finally, we further deflate the resulting series using the growth rate of the U.S. population

from the U.S. Census. The consumption based asset pricing literature often uses annual data

going back to the Great Depression. The non-Gaussianities in these (annual) consumption

data are much stronger than in our sample, but consumption growth is substantially more

variable in the pre-WWII data. A dramatic downshift in volatility could lead the model

estimates to indicate spurious non-Gaussian behavior. We therefore focus attention on post-

1958 data to present a conservative view of potential non-Gaussianities in the consumption

data.

Quarterly consumption growth data features a relatively high first-order autocorrelation

coefficient (036 with a standard error of 009), which is inconsistent with the model in

Equation (1). Such autocorrelation may well be due, in part, to temporal aggregation bias

(see Working, 1960). We therefore formulate the model at the monthly frequency (as is also

done in Campbell and Cochrane, 1999), assuming monthly consumption growth to be serially

uncorrelated. This implies that quarterly consumption growth will have an autocorrelation

coefficient of 021, which is within 2 standard errors of the moment in the data.

IV.B Estimation methodology

To estimate the model parameters, we use the simulated Classical Minimum Distance

(CMD) technique described in Wooldridge (2002), which relies on the matching of sample

statistics. A first set of statistics to be matched comprises the unconditional moments of

consumption growth, which are reported in Table 1, Panel A, with bootstrapped standard

5See "Reliability and Accuracy of the Quarterly Estimates of GDP" in the October 1993 edition of the

BEA publication, Survey of Consumer Business.
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errors in parentheses.6 Note that unconditional skewness () is negative but not sta-

tistically significant, but excess kurtosis (), at 075, is highly statistically significant.

When we aggregate to the annual frequency (Panel B), that situation is reversed: skewness

is significantly negative, but excess kurtosis is not significant. However, we do not use the

annual statistics in the estimation of the model.

Our next set of moments captures time variation in the conditional variance of consump-

tion growth. To generate such moments, we estimate an auxiliary model with the quarterly

data. The model is a well-known asymmetric volatility model in the GARCH class (see

Glosten, Jagannathan and Runkle, 1993), where we assume quarterly consumption growth

to follow an MA(1) process, consistent with the temporal aggregation of the serially uncorre-

lated consumption growth process at the monthly frequency. The model can be consistently

estimated using maximum likelihood assuming Gaussian error terms, even though the error

terms are not Gaussian under the BEGE model. We describe the GARCH model and the

estimation results in the Appendix. The advantage of the GARCH model is that it delivers

an estimate of the conditional variance of consumption growth at each point in time (which

is graphed in Figure 1). The GARCH model delivers three additional statistics to match:

the standard deviation of the conditional variance of consumption growth (the “vol of vol”

in finance parlance) which Table 1, Panel C, shows to be statistically significantly different

from zero; the autocorrelation of quarterly consumption volatility (which is 060), and the

correlation between consumption growth and its conditional volatility, which is significantly

negative. The joint significance of the latter three statistics is very strong, with a p value

of less than 00001.

Our final set of moments concern time-varying skewness in the conditional distribution of

consumption growth. To generate these statistics, we again estimate a reduced-form model

6The block-bootstrap method draws samples of length 40 quarters with replacement which can start from

any point in the sample. In each bootstrap, six such blocks are drawn to approximately match our sample

length of 224 quarters. For every bootstrapped sample, we calculate the statistics in Panels A, B, and C of

Table 1 exactly as we do for the data sample, including estimating the required auxiliary models. We use

10,000 bootstrapped samples.
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using the quarterly consumption data that allows for time-variation in the conditional third

moment. The conditional third moment is specified as a function of past innovations in

a fashion analogous to that of the GARCH model. To avoid imposing any distributional

assumptions, we estimate this model by least squares. The exact methodology is described

in the Appendix. This model provides five statistics: the unconditional mean, volatility, and

autocorrelation of the conditional third moment, and its correlations with the conditional

volatility of consumption (from the GARCH estimation) and consumption growth itself.

If consumption growth were conditionally Gaussian, all of these moments would be zero.

Results from this estimation are reported in Panel D of Table 1. We find that although the

unconditional mean of the third moment is not statistically different from zero, its volatility,

autocorrelation and correlation with consumption growth are significantly positive. The

correlation between the volatility and third moment is estimated to be negative, but not

significantly so. A joint test for the significance of these five moments strongly rejects that

they are all zero, with a p-value of 00016. A time series for the conditional third moment

(and for scaled skewness) are plotted in Figure 1.

Panels A, C, and D of Table 1 (excluding the annual statistics) provide 13 statistics,

denoted by , which serve to identify seven parameters in the model. Denote the true model

parameters by the vector, 0; the 7 parameters to be estimated are,

 = [      ]
0
 (37)

Under the null hypothesis that our model is true,

0 =  (0) (38)

where  () is a vector-valued function that maps the structural parameters into the reduced-

form statistics. The  () statistics are computed using a long (100,000 months long)

simulation of the model. Given the simulated monthly series, we first aggregate the data

to the quarterly frequency. We then calculate all the fitted statistics,  (), including those

from the auxiliary models (which we also re-estimate in the simulated data). To calculate
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estimates for the parameters, b, we minimize an objective function of the form,
min
∈Θ

{b −  ()}0c {b −  ()} (39)

wherec is a symmetric, positive semi-definite, data-based weighting matrix. Efficient CMD

suggests setting c = b −1, where b is the estimated covariance matrix of 0. However, we

use a diagonal weighting matrix, c = 
³b −1´, because some of the statistics are nearly

linearly dependent, rendering b nearly singular. Standard asymptotic arguments lead to a

Gaussian limiting distribution of b, even under our nonstandard weighting matrix (which is
further described in the appendix).

IV.C Parameter Estimates

The parameter estimates (with standard errors in parentheses) are reported in Table 2.

The annual average growth rate of consumption is 18 percent (00015 times 1200). The shape

parameter for the good environment variable is estimated to be 1143 At this value for , the

“good environment” shock is only mildly non-Gaussian (with skewness and excess kurtosis

both around 06). The  process is persistent (with an autocorrelation coefficient of 09) and

its unconditional mean is much lower than that of the good environment shock. Therefore,

the bad environment shock is much more non-Gaussian, with unconditional skewness equal to

−160 and excess kurtosis equaling 385. Despite the very different magnitudes of the shape
parameters, the relative size of the scale parameters is such that the relative contribution

of “bad” variance (coming from the  shock) and “good” variance (attributed to ) is,

unconditionally, about even, with  accounting for about 50 percent of the total variance.

To assess how well the estimated model fits the data, re-consider Table 1, where we

report the BEGE model-implied statistics for the moments in rows labeled “BEGE.” When

they are bolded, they are within 1.96 standard errors of the data moment (relevant for a 5

percent two-sided test) and when they are under-scored they are only within 2.58 standard

errors of the data statistic (relevant for a 1 percent two-sided test). The table reveals that for

12 of the 13 moments, the BEGEmodel delivers statistics that are within 1.96 standard errors
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of their counterparts in the data, but the model under-predicts the volatility of the GARCH-

derived volatility series, being slightly over 2 standard errors away from the data moment.

A model in which monthly consumption growth follows an i.i.d Gaussian distribution (the

rows labeled “Gaussian”) generates some realistic correlation statistics for the conditional

volatility and third moment of time-aggregated quarterly consumption growth. However,

it generates no meaningful volatility in either the conditional volatility or the conditional

third moment. An overidentification test is available for the CMD estimation, and while

the BEGE model is only marginally rejected at the 5 percent level (with the test producing

a p-value of 0.045), the Gaussian model is very strongly rejected (with a p-value of 0.0005).

For the annual statistics in Panel B, which are not used in the estimation, the BEGE model

produces volatility that is somewhat too low, skewness that is a bit less negative and kurtosis

that is a bit stronger than the point estimates from the data. The Gaussian model fails to

generate nontrivial skewness or kurtosis.

Time-variation in  induces changes in the conditional distribution of monthly con-

sumption growth and Table 3 shows how its conditional volatility, skewness and excess

kurtosis vary with  realizations. The  variable goes from 044 at the 1
 percentile of its

distribution to 464 at its 99 percentile, increasing the annualized volatility of consumption

growth from 090 percent to 162 percent and lowering its skewness from 006 to −055.
As  increases, it accounts for an increasingly larger part of the variance of consumption

growth, reaching 76 percent at the 99th percentile of its distribution.

To better appreciate the differences between our fitted time-varying BEGE distribution

and the static Gaussian distribution, Figure 5 shows the cumulative distribution function

for quarterly consumption growth of our estimated BEGE distribution using a log base 10

scale for better visibility of the left tail. The vertical line is drawn at the minimum quarterly

consumption growth observation, which is −43 percent (at an annual rate). Clearly, the

BEGE model has substantial mass that goes beyond this and there is a 050 percent chance

that consumption growth is lower than this minimum. Also plotted is a Gaussian distribution
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matching the mean and standard deviation of the data. For this distribution, there is only a

001 percent chance that consumption growth is lower than the minimum observation in the

sample. To provide further background on the relative reasonableness of the tail behavior

of both distributions, consider the horizontal line. It indicates the estimated probability of

a “catastrophic” collision of a large asteroid with the Earth in a given year, as computed

by NASA. We view such an event as (hopefully) rare and unlikely. Yet, according to the

Gaussian distribution, having annualized consumption growth of -7 percent is equally rare.

Moreover, a realization of consumption growth of −10 percent (at an annual rate) or worse
is one million times less likely under the Gaussian distribution than such a collision. This

seems economically unreasonable as recessions of that magnitude have occurred multiple

times during modern history. For example, in the US annual real consumption growth

registered −9 percent in 1932, and annual real GDP fell by 7 percent in Greece in 2011. For
the BEGE distribution instead, the likelihood of an asteroid strike is similar to experiencing

(annualized) consumption growth of −135 percent, which would indeed appear unlikely.
We conclude that the BEGE model displays more plausible tail behavior than the Gaussian

model.

As emphasized by Campbell and Cochrane and many others, it is difficult to observe the

properties of dividend growth at a frequency higher than annual due to its strong seasonality

and because such statistics are sensitive to assumptions about timing and time-aggregation.

For comparability to the existing literature, we closely follow Campbell and Cochrane in

setting the parameters for dividend growth. Specifically, we assume that the correlation

in monthly data between consumption growth and dividend growth is 020, and that the

(annualized) volatility of dividend growth is 112 percent. These statistics are in quite good

agreement with those in our data sample7. These two moments, in conjunction with the

7In our quarterly sample from 1953-2013, the correlation between quarterly seasonally adjusted real per

capita dividend growth and real per capita consumption growth is 012 (with a standard error of 010). The
volatlity of dividend growth in our sample is 130 percent at an annual rate (with a bootstrapped standard
error of 30). In our calibration, we are thus assuming that dividends are less volatile than we actually

observe (though well within one standard error). Importantly, our estimated sample volatility is strongly

influenced by a one-time large dividend payment by Microsoft in 2004:Q4, which caused dividend growth to
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parameters for consumption growth and the specification in Equation (9) are sufficient to

identify  and  as −00055 and 00217, respectively.

IV.D Calibration of the Preference Parameters

We have four preference parameters to calibrate: , ,  , and . We choose parameters

that minimize the distance between moments of asset prices as implied by the model, which

are calculated using a 100,000 month long simulation, and their counterparts in the data.

However, because it is computationally expensive to solve for equity prices, it is not feasible

to formally estimate these parameters. Instead, we use grid search and a two-step process.

We begin each iteration of the grid search with [ ], where the superscripts, , denote

elements of the grid. Conditional on [ ], we find the values for [ ] that enable

the BEGE model to match the mean and volatility of the short rate,  [] and  [],

exactly. Because the real short rate is unobserved, we use the results in Ang, Bekaert and

Wei (2008) finding the unconditional mean and volatility of the real short rate to be 124 and

146 percent, respectively. This “inner optimization” is computationally inexpensive and

reduces the dimensionality of the grid search while imposing realistic short rate properties.

Having completed the inner optimization and thus armed with the four-tuple [   ],

we impose the restrictions described above to ensure that our parameterization meets the

conditions for habit,8 and solve for equity prices. We choose the point on the grid that

solves,

min
[]

[ − b]c [ − b]
0

(40)

where b are estimated moments in the data,  are their counterparts under the long

simulation of the BEGE model, and c is a symmetric, positive definite weighting matrix.

The search area is initially set such that  ∈ [2 40] and  ∈ [09900 09999] and we identify
spike to nearly 50 percent (not at an annual rate). If we exclude that observation, the sample volatility of

our dividend series drops to 100 percent. The value for dividend volatility that we use thus lies comfortably
between these two estimates.

8In particular,  =
q¡

2+ 2
¢


1−− and  = ln

¡

¢
where  =  evaluated at  = .
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 to a tolerance of 001, and  to a tolerance of 00001. The unconditional moments of asset

prices that we seek to match are:

b =

½
[]

 []
  []   [ln ()]   [ln ()]   [ln ()]

¾
(41)

where  denotes the first order autocorrelation coefficient. Forc , we begin with the inverse
of b =  (b) as would be optimal in a classical minimum distance estimation setting,

where  (b), is the estimated covariance matrix for the parameters, estimated using

a bootstrap procedure.9 However, following Campbell and Cochrane, we require the model

to match one moment very closely: the unconditional Sharpe ratio for equity. To implement

this within our minimization routine, we effectively divide the volatility of the sampling error

of this moment by a factor of 100. Formally,

c =
h e b ei−1 (42)

where e is a diagonal matrix of the standard deviations of the moments, b, except that

the standard deviation for
[]
[]

is divided by 100, and b is the estimated correlation matrix
of b.

The calibrated parameters are reported in Table 4, Panel A. The calibration procedure

selects parameters that are quite similar across the Gaussian and BEGEmodels. As required

by our procedure, both models fit the mean and volatility of the rate short rate, as estimated

by Ang, Bekaert and Wei (2008), exactly. Because we heavily overweight the Sharpe ratio

in our calibration, both models also match the value in our sample of 035 (at an annual

rate) within 001. The surplus ratio is highly persistent and features an unconditional mean

of about 22 percent (calculated as exp()). The curvature coefficient is high, 1144 (1285)

for the BEGE (Gaussian) model. In Panel B we report characteristics of the distribution of

local curvature,  exp (−). Average curvature is high (around 55), but the BEGE model
features a slightly lower average, standard deviation, and skewness compared to the Gaussian

9The block-bootstrap method draws samples of length 60 months with replacement which can start from

any point in the sample. Each bootstrapped sample consists of 11 such blocks to approximate the length of

our sample. We generate 10,000 bootstrapped samples and calculate statistics for each one. The matrix,b , is estimated as the covariance matrix of the statistics across bootstrapped samples.
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model.

Figure 6 shows the dependence of the sensitivity function  on  and the surplus ratio,

, at our calibrated parameter values. Sensitivity is generally higher when the surplus ratio

is low, consistent with Campbell and Cochrane. However,  falls at higher values of .

This is true because  is decreasing in , which, in turn, is increasing in  (see Equation

(23)). Because  and  are negatively correlated, this mechanism helps to reduce the

volatility of the short rate to be consistent with the level in the data.

V Asset Price Results

In this section we confront the model with the data on asset returns.

V.A Data

Our asset pricing data is monthly, spanning from January 1958 through December 2013.

For log nominal equity returns, , we use the log of returns to the value-weighted index

in CRSP. To measure excess log returns, +1, we subtract the log nominal Treasury

Bill return (using one-month bills). For the price-dividend ratio, , we use the month-

end price for the CRSP index divided by trailing 12-month dividends.10 We calculate the

physical probability measure of the equity return conditional variance, , in two steps.

We begin with the monthly realized variance, 
 , calculated as squared log daily returns

(close-to-close, excluding dividends) over the month, as well as weekly and quarterly realized

variances,  and 

 , defined analogously. Then we project 


 onto one-month

lags of the variables: 
  


 and  using a robust regression.11 The fitted

values from this regression are used to measure . This procedure is similar to that used

10We calculate an analagously defined  ratio using trailing 12-month dividends in the denominator

when comparing our simulated data to our sample data.
11 We find that robust regression techniques produce substantially fewer negative fitted values for the con-

ditional variance. The robust algorithm uses iteratively reweighted least squares with a bisquare weighting

function to underweight outliers. This is the default procedure in the Matlab function "robustfit” (version

7.12.0.634).

28



by Corsi (2009), Drechsler and Yaron (2011) and others.

We calculate the risk-neutral conditional second, third and fourth moments of equity

returns, , , and  respectively, using the method of Bakshi, Kapadia

and Madan (2003). This involves calculating the prices of portfolios of options designed

to have payoffs that are determined by particular higher order moments of returns. We

obtain a panel of option prices across the moneyness spectrum for the S&P 500 index from

1996-2013 from OptionMetrics, and from 1990-1995 from DeltaNeutral. We use the option

contracts that have maturity closest to one month, and filter out options that are likely

to be illiquid as in Figlewski (2008). (See appendix for details.) The late start to the

option price data is potentially problematic because the time period over which option prices

are available may not be representative of our full sample from 1958. While we cannot

observe option prices from the early period, we address this concern by using a simple

algorithm to sample from the conditional distribution of those variables during the early

period. Concretely, we first project (again using a robust regression algorithm), ,

, and  contemporaneously onto the vector
£


  

  


  ln ()

¤
,

which is observable over the entire sample period. To sample , , and 

during the early period, we use the predicted values from this regression plus a disturbance

term that is drawn from a Gaussian distribution with variance equal to the estimated variance

of the regression error term.

To conduct inference on asset price statistics and joint asset price-consumption statistics,

we use a block bootstrap procedure using blocks of length 60 months, jointly sampling asset

price and consumption data. Of course, many blocks have missing options price data. For

bootstrapped samples in which some option price data are missing (which happens whenever

a block is chosen from a period prior to 1990), we use the sampling procedure described for

, , and  inside the bootstrap procedure. For point estimates, we generally

report the statistic from the actual data. However, because we are forced to sample (as

opposed to directly observing) option price data from the early portion of the sample, there is
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no available point estimate pertaining to the full sample. For statistics that are functions of

option price data, we report the medians from the bootstrapped distributions as the “point

estimate.”

V.B Results

We now compare the fit of the BEGE and Gaussian models to a broad array of asset

price statistics, and cross moments between asset prices and consumption growth.

V.B.1 Univariate statistics and model intuition

In Tables 5 and 6, we examine how the model matches univariate equity return statistics,

using the Gaussian Campbell and Cochrane model as a benchmark. Table 5 focuses on the

standard moments of (log) price-dividend ratios and excess equity returns. Both models

generate price-dividend ratios that are somewhat too low, but generate standard deviations

and autocorrelation coefficients that are within a two standard error band (See Panel A).

These price-dividend ratio statistics were also used in the calibration of the two models, so

the good fit is not surprising. In panel B, we focus on the standard moments for equity

excess returns, but we add their skewness and kurtosis. The Gaussian habits model fits

the equity premium of 52 percent observed in the data almost exactly whereas the BEGE

mode overshoots slightly, but the statistic is still within a two standard error band of the

sample moment. For volatility, we observe a similar pattern. Both models generate some

negative serial correlation in equity returns, whereas it is slightly positive in the data, though

not significantly so. The table shows that the standard Campbell and Cochrane model

cannot generate non-Gaussianity in returns. However, the BEGE model overshoots on both

skewness (too negative) and kurtosis (too fat tailed). These results are very sensitive to the

parameter, . Making  slightly larger for example (one standard error larger than the

point estimate) provides a better fit for all moments in Panel B, with skewness and kurtosis

being comfortably within one standard error of the data moments.
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In Table 6, we examine the performance of the models in matching features of the

conditional higher-order moments of returns, both physical and risk-neutral. Because the

Gaussian habit model does not endogenously generate non-Gaussianity in returns, it is no

surprise that the Gaussian habits model fails to generate a variance premium, or meaningful

risk neutral skewness and kurtosis. The BEGEmodel generates realistic levels and variability

of the physical and risk neutral variance. The implied variance premium is only about 70

basis points, whereas it is 2 percent in the data; the variance premium’s variability is also

underestimated. Both moments are within 2.58 standard errors of the moments in the data

however. The BEGE model generates negative risk neutral skewness that is somewhat too

low on average, but its variability is well matched to the data. Similarly, the BEGE model

overshoots the mean of risk neutral kurtosis a bit, but its variability is within a two standard

error band of the data‘s moment.

Overall, the BEGE model can fit both standard salient features of asset return data

and some key characteristics of the risk neutral distribution of equity returns. The fit of the

BEGE model is far from perfect, but recall that none of the higher order moments where

used in the calibration of the model. In Figure 7, we provide some intuition for how the

model works and clarify the different roles of the bad environment and good environment

shocks. We graph impulse responses 100 periods out to a one standard deviation negative

shock to  and a one standard deviation positive shock to . Both shocks, naturally,

drive down consumption and the  shock drives up . A negative consumption shock

lowers the surplus ratio and thus, the habit features of the model apply to both shocks.

However, the graphs overall show that asset prices react much more forcefully to the bad

environment shock.

The short rate increases because the standard intertemporal smoothing effect dominates

the precautionary savings effect (the b-coefficient in Equation (21) is positive, as is true in

Wachter (2006)). The response to a bad-environment shock is, however, weaker because the

precautionary savings effect is stronger (see the discussion above). This effect implies that
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a bad environment shock may decrease equity prices less than a good environment shock;

however, it is counterbalanced by a much sharper increase in the equity premium following

a bad environment shock. Recall that the risk premium associated with bad environment

shocks is larger than the premium associated with good environment shocks (See Figure

4). Moreover, dividend growth loads strongly on bad environment shocks making equity

especially risky. While the equity premium increases sharply following a bad—environment

shock, so does the physical variance of equity returns. Because  is assumed constant, the

physical variance does not react to a good environment shock. Put together, the Sharpe ratio

increases in bad times, whether they are driven by good environment or bad environment

shocks, but the effect is larger following a bad environment shock. Finally, the effect of a

bad environment shock on the risk neutral variance is larger than its effect on the physical

variance implying that the variance premium sharply increases after a bad environment

shock.

To bring home how BEGE dynamics and stochastic risk aversion interact to generate

features of asset prices, Figure 8 shows two heat maps depicting the dependence of the price

dividend ratio and the variance premium on both  and local curvature,  exp (−). As in
Campbell and Cochrane, the price-dividend ratio, the price of a claim to a long-lived asset,

is driven primarily by , which has a relatively high degree of persistence. Deviations of

 from its unconditional mean are more short-lived, and are less important for the price-

dividend ratio. Not surprisingly, the variance premium depends positively on both variables.

Moreover, the apparent curvature in the contour lines indicates an intuitive nonlinearity in

the model. Absent substantial negative skewness from the “bad environment,” (i.e. at low

values of ) even a large amount of risk aversion cannot generate a meaningful variance

premium. Similarly, even at high levels of  the variance premium is small when risk

aversion is low. Given the convexity of the contour lines, variation in the variance premium

is larger when risk aversion and  tend to move up and down together, which is a feature

of the BEGE habit model.
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V.B.2 Consumption growth and asset prices

In Table 7 (Panel A), we focus on the cross-correlation between consumption growth

and asset prices. To do so, we align quarter-end values of our (monthly) asset price series

with our quarterly consumption growth data. For returns, we use cumulative quarterly

values. The correlation between consumption growth and equity excess returns for both

the Gaussian and BEGE models is around 55 percent, whereas the sample correlation is

only 20 percent. The BEGE model therefore does not escape the excessive correlation

between consumption growth and equity returns that is typical for consumption-based asset

pricing models. However, the data do show strong correlations between asset prices and

consumption growth that have not been stressed previously. For example, we also report

the correlation between consumption growth and the physical and risk neutral variance

of equity returns, which is strongly negative in the data. The Gaussian model generates

slightly negative values for these correlations, whereas the BEGE model delivers negative

values within a two standard error band of the data moments.

The key contribution of the BEGE dynamics for the standard habit model is that it al-

lows the conditional distribution of consumption growth to vary with changes in , the shape

parameter of the bad environment shocks. As  increases, consumption growth becomes

more variable and left skewed, as demonstrated in Table 3. Figure 2, as already discussed in

the introduction, shows that shifts in the conditional distribution of consumption growth are

correlated with option prices as measured by the risk neutral conditional variance (“”).

We show the unconditional distribution using squares and two conditional distributions us-

ing arrows. The conditioning uses the risk neutral conditional variance of equity returns

(); down pointing (up pointing ) arrows denote the distribution of consumption growth

for quarters following a quarter in which  was in the upper (lower) decile of its sample

distribution. In the data, it is apparent that the “high ” distribution not only has higher

variance than the “low ” distribution but also much lower skewness. Statistically, we

investigate shifts in the quantiles of the distribution of consumption growth and find that the
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shifts in the lower tail from the high to low  distribution are statistically significant at

the 5 or 10 percent level. The bottom panel of the figure shows that the BEGE model mimics

the shifts in the distribution rather well, with the lower tail shifting more downward than the

upper tail shifts upward. In Table 8, (Panel B), we reproduce the statistics for the 5th and

95th percentiles. Of course, the Gaussian model does not produce any conditional shift in

the distribution of consumption growth following “high ” or “low ” environments,

by assumption. The BEGE model fits the shift in the 5 percent quantile, which amounts to

-2.40 percent in the data, almost exactly. At the 95th percentile, the distribution in the data

shifts downward in an insignificant manner, whereas the BEGE distribution shifts upward

by about 50 basis points. However, this is still within a two standard error band of the data

moment.

V.B.3 Asset price cross-moments

In Table 8, we focus on cross-correlations between different financial variables. First, in

Panel A, we report the contemporaneous correlation between excess equity returns and the

conditional physical and risk neutral equity return variance. This correlation is highly signif-

icantly negative at -0.49, respectively -0.46, reflecting the well-known asymmetric volatility

phenomenon (see e.g. Wu, 2001). The BEGE model generates substantially negative cor-

relations which are within a two standard error band of the data moments, whereas the

Gaussian model generates an economically insignificant negative correlation.

In Panel B of Table 8, we repeat the standard predictability regressions of equity returns,

ranging from one month to 120 month returns, on the log price-dividend ratio observed at

the beginning of the holding period, as conducted in Campbell and Cochrane. The returns

are expressed on a per-month basis. We report the slope coefficients and 2 statistics, with

bootstrapped standard errors. The betas are negative but they are not significantly different

from zero. The 2 increases from less than 0.5 percent at the one month horizon to 24

percent at the 10 year horizon, but even that large 2 is barely statistically significantly
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different from zero. The BEGE model delivers statistics closer to the point estimates and

the observed 2s than the Gaussian model, but the large standard errors in the data make

this a weak test, and none of the statistics are outside of a two standard error band around

the point estimates. We note that the 2 does not increase with horizon in the model

simulation statistics as it does in the data because we use a long simulation devoid of finite

sample biases which are the source of the increases in 2 in the sample.12

VI Conclusion

In this article, we introduce a model for consumption growth, the BEGEmodel, that can

accommodate time-varying uncertainty, tail risk , and flexible time-variation in higher order

moments. After inserting these features into a standard asset pricing model with preferences

determined by habit persistence as in Campbell and Cochrane (1999), the model matches

various salient features of consumption dynamics and asset prices better than versions with

i.i.d. Gaussian shocks. For example, we document substantial time-variation in both the

conditional variance and the conditional skewness of consumption growth, with these mo-

ments being negatively correlated. Moreover, consumption growth exhibits a longer left

tail when risk-neutral equity volatility is high, evidence of a strong link between asset prices

and the conditional distribution of macroeconomic outcomes. The model also delivers an

unconditional left-skewed and leptokurtic distribution where bad consumption growth states

are more likely than under a normal distribution. The BEGE model can accommodate

some aspects of “disaster risk” as specified, for example in Gabaix (2012). However, at our

point estimates, identified using post WWII U.S. data, the bad states that we identify are

more consistent with persistent recession behavior rather than extreme, relatively transitory

disaster shocks.

When coupled with the habit preference structure of Campbell and Cochrane (1999),

12Simulations of the BEGE model do reproduce the pattern of 2 increasing with horizon when the
simulated samples are generated with length equal to that of the data sample.
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the non-Gaussianities in consumption growth deliver substantial, variable, variance risk pre-

miums and help match other features of the risk neutral distribution of stock returns, in

addition to the standard salient features of asset returns. The model also suggests an in-

triguing new fact that links consumption growth to option prices: when the   is high,

the distribution of consumption growth is more left-skewed.

There are many useful directions for future research. Building on Bekaert, Engstrom

and Grenadier (2010), it is straightforward to formulate a BEGE model where risk aversion

is stochastic and heteroskedastic but the price of risk does not vary through time as it

does in Campbell and Cochrane. In such a model, we can derive closed-form solutions for

equity prices and bonds with multi-period maturities, which greatly simplifies the numerical

computation. We defer a full analysis of such a model to future work.
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A Appendix

1. Symbol and variable quick lookup table

In order of first appearance:

parameters...

...governing consumption and dividend growth

 mean of log consumption growth

 loading of consumption growth onto “good environment” shock

 loading of consumption growth onto “bad environment” shock

 loading of dividend growth onto “good environment” shock

 loading of dividend growth onto “bad environment” shock

 unconditional mean of “bad environment” state variable

 autocorrelation coefficient of “bad environment” state variable

 conditional volatility parameter of “bad environment” state variable

 unconditional mean of “good environment” shape parameter

... governing preferences

 subjective discount factor

 curvature parameter for utility function

 mean of log surplus ratio

 autocorrelation coefficient for the surplus ratio

 parameter governing the dependence of the risk free rate on the surplus ratio
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variables...

∆ log consumption growth (real, per capita)

∆ log dividend growth

 “good environment” shock

 “bad environment” shock

 “good environment” state variable

 “bad environment” state variable

 habit stock

 local curvature of the utility function, 
 () level (log) surplus consumption ratio

max maximum conditional level of surplus ratio

 () (log) stochastic discount factor / pricing kernel

 sensitivity function

 loading of pricing kernel on good environment shock

 loading of pricing kernel of bad environment shock

 real (log) short rate

 price-dividend ratio for equity

()  log (excess) equity return

 variance premium for equity returns

 physical conditional variance of returns

 risk-neutral conditional variance of returns

 risk-neutral conditional skewness of returns

 risk-neutral conditional excess kurtosis of returns

2. Moment generating functions for gamma and BEGE distribu-

tions

For a variable, , following a centered gamma distribution with shape and scale para-

meters of  and , respectively, the probability density function,  (;  ) is given by

 (;  ) =
(+ )−1 −

+


Γ ()
(43)

The moment generating function (;  ) is given by

 (;  ) =  [exp ()] = exp (− ln (1− )− ) (44)

for   1

. Our “BEGE” model for consumption growth, ∆, takes the form,

∆ =  +  −  (45)

where  and  each have centered gamma distributions with shape parameters −1 and
−1, unit scale parameters, and are independent. Solutions for asset prices under our model
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generally require evaluation of expectations of the form,

 [exp (+ ∆+1)] (46)

which, using the above result for  (;  ), has the solution

 [exp (+ ∆+1)] = exp (+ ) exp (+1 − +1) (47)

= exp (+ ) exp (− ln (1− )− ) exp (− ln (1 + ) + )

= exp [+  −  ()−  (−)]

where the function  () = + ln (1− ).

3. Certainty-equivalent means for BE/GE distributions

Denote the Gaussian-distributed log-wealth distribution as e and the bad-environment-

distributed version as e. The latter has a mean of ( +∆) and a shock distributed
as a negative centered gamma with shape parameter , and scale parameter, 

√
 (to set

the variance equal to 2). We set the expected utility of the two shocks as equal and solve

for ∆.

 [ (exp (e))] =  [ (exp ( e))] (48)

⇔


"
exp ( e)

1− − 1
1− 

#
= 

"
exp (e)

1− − 1
1− 

#
(49)

⇔

£
exp (e)

1−¤ = 
£
exp (e)

1−¤
(50)

⇔

exp

µ
(1− ) +

1

2
2 (1− )2

¶
= exp

¡
(1− ) ( +∆)−  ·  ¡ (1− ) 12

¢¢
(51)

⇔
∆ =

1

1− 

∙
1

2
2 (1− )2 +  ·  ¡ (1− ) 12

¢¸
(52)

where  (·) is the function defined in the text. A third order approximation of this function
is presented in Equation (8). Results for ∆ are calculated similarly.

4. The Maximum Sharpe Ratio

We start from the general expression for the maximum available Sharpe ratio:
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max
{all assets}



£
 

+1

¤

£
 

+1

¤ =
 [exp (+1)]

 [exp (+1)]
=

s
 [exp (2+1)]

 [exp (+1)]
2 − 1

=

vuut" 1− 

(1− 2)12
#2 "

1− 

(1− 2)12
#2
− 1 (53)

where, as defined above,

 = − (1 + )

 = + (1 + ) (54)

Some approximations are helpful for gaining intuition.

 [exp (+1)]

 [exp (+1)]
=

vuutexp(2 ln" 1− 

(1− 2)12
#
+ 2 ln

"
1− 

(1− 2)12
#)
− 1

≈
vuut2 ln" 1− 

(1− 2)12
#
+ 2 ln

"
1− 

(1− 2)12
#

≈
q

¡
2 + 2

3


¢
+ 

¡
2 + 2

3


¢
(55)

where the second line uses a Taylor approximation for the  () function, and the third
line uses Taylor approximations for the functions in square brackets.

5. Auxiliary models for consumption growth

We estimate a version of the GARCH model due to Glosten Jagannathan and Runkle

(1993). Specifically, for quarterly consumption growth (for both actual and bootstrapped

samples, as well for data simulated under the BEGE model), we begin by demeaning the

process and removing MA(1) variation in the conditional mean that approximates the per-

sistence induced by temporal aggregation of the underlying serially uncorrelated process,

producing an MA(1) autocorrelation of 021. Denote this “pre-whitened” series as . We
then estimate the model,

+1 ∼  (0 )

 = 0 + 0−1 + 1
2
 + 2

2


 =

½
1    0
0   ≥ 0 (56)

Estimation by maximum likelihood using the sample data for consumption growth (multi-

plied by 400 to produce units at and annual rate and in percentage terms) produces the
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following results.

0 0 1 2
11169 03971 01665 02349

(05796) (01916) (01367) (01151)
(57)

with bootstrapped standard errors in parentheses. We also estimate a model for time-

variation of the conditional third moment:

 =  (+1)
3

 = 0 + 0−1 + 1
2
 + 2

2
 (58)

This model is estimated by least squares. Using cubed residuals makes the estima-

tion poorly behaved, so we use squared residuals. Conditional on the parameter vector,hb0 b0 b1 b2i, and an initial value of 0, a sequence {b}=1 is generated, and we calculate a
quadratic loss function,

X
=2

¡
3+1 − b¢2 (59)

The point estimates are chosen to minimize the loss function. The resulting point estimates

are
0 0 1 2

−03905 05824 04370 −09775
(10849) (02626) (03578) (06248)

(60)

where bootstrapped standard errors are reported in parentheses. A joint test that all

four parameters above are equal to zero yields a p-value of 00017 using a Wald test and
a bootstrapped covariance matrix for the parameters. A test for the significance of the

time-variation in b, that is, the hypothesis that [0,1 2] = 0 is rejected with a p-value of
00224

6. CMD Estimation Asymptotics

First note that the first order condition for our CMD optimization, described in Equation

(39), is b 0c nb − 
³b´o = 0. (61)

where b = ∇
³b´ is the Jacobian of  () evaluated at b. Second, using a standard mean

value expansion,


³b´ =  (0) +0

³b − 0

´
. (62)

where 0 = ∇ (0) is the gradient of  () at the true parameter values. Combining

Equations (61) and (62), we have,

b 0c0

³b − 0

´
= b 0c (b −  (0)) (63)
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so that under the usual arguments, the limiting distribution of the structural parameters is,³b − 0

´
∼ 

³
0 b´ (64)

where b = ³c−1 b 0c bc bc−1
´
, c = b 0c b, and b is the variance-covariance matrix

of the statistics, b.
7. Measuring option-implied conditional equity return moments

We follow Bakshi, Kapadia and Madan (2003) to measure the risk-neutral moments of

one-month ahead equity returns.. For each month in the sample, the risk neutral moments

are calculated using a portfolio of options indexed by their strikes. Let the price of the

underlying index at time  be denoted by  , and let the price of a European call (put)

option with one month to expiration and strike price  be a function denoted by  ()
( ()). Under some technical conditions outlined in the paper, the price of a contract

with a stochastic payoff equal to the realized variance of returns is shown to be (Bakshi,

Kapadia and Madan refer to this as a “volatility contract”).

  =

Z ∞

()

2
³
1− ln

³



´´
2

 ()  +

Z ()

0

2
³
1 + ln

³



´´
2

 ()  (65)

Similar expressions are derived for the prices of portfolios of options with payoffs equal to

the realized cubic and quartic variation of returns:

 =

Z ∞

()

6 ln
³



´
− 3

h
ln
³



´i2
2

 ()  −
Z ()

0

6 ln
³



´
+ 3

h
ln
³



´i2
2

 ()  (66)

 =

Z ∞

()

12
h
ln
³



´i2
− 4

h
ln
³



´i3
2

 ()  −
Z ()

0

12
h
ln
³



´i2
+ 4

h
ln
³



´i3
2

 () 

where  and  are the prices of the cubic and quartic contracts. Let the risk free

nominal interest rate with one month maturity be . Risk-neutral skewness and kurtosis

are calculated as

 = exp ()  − 2 (67)

 =
exp () − 3 exp ()  + 23


32


 =
exp () − 4 exp () + 6 exp ()

2
  − 34


42


− 3

where  = exp ()− 1− exp () 2− exp ()6− exp ()24.
To implement this approach, we use a panel of option prices from DeltaNeutral (1990-

1995) and OptionMetrics (1996-2013) with the S&P 500 index as the underlying. We use
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option price observations from dates at month end and with time-to-maturity closest to

one month. We filter out observations for which the reported spot price of the S&P 500

index from DeltaNeutral or OptionMetrics differs from the published value of the S&P 500

index by more than 2.5 percent options or with prices below $0.50 per contract. Given this

set of option prices, we next approximate the functions  () and  () numerically by
interpolation, which we carry out in implied-volatility space. We calculate the Black-Scholes

implied volatility for each call and put option between the minimum and maximum observed

strikes, 
min and 

max, respectively. Then, separately for calls and puts, we interpolate

the implied volatilities on a grid from 
min to 


max at equally spaced at intervals of 5 S&P

500 index points. Because the limits of the integrations in Equations (66) in principle run

from 0 to infinity, we also need option prices with very low and very high strikes. We set

values for implied volatility for strikes from  = 5 to  = 
min (again at intervals of 5) to

the implied volatility at 
min. Similarly, we set the implied volatilities over a range from

from 
max to 2 equal to the implied volatility at 


max. We then convert all options prices

back into price space, yielding values for  () and  () over the entire grid of  = 5 to
 = 2. The integrations in Equations (66) are carried out over the grid of option prices
using trapezoidal numerical integration.
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Table 1: Consumption Growth Statistics

Panel A: Unconditional quarterly statistics

mean std skew xkurt
point est 1.6635 0.9512 −0.3135 0.7475

(0.2422) (0.0530) (0.2266) (0.3027)
BEGE 1.6668 0.9477 −0.3992 1.0403
Gaussian 1.6672 0.9354 −0.0008 −0.0052

Panel B: Unconditional annual statistics

mean std skew xkurt
point est 1.6720 1.2714 −0.5777 0.2244

(0.2458) (0.1207) (0.2228) (0.5923)
BEGE 1.6667 0.9242 −0.5323 1.0481
Gaussian 1.6665 0.9107 −0.0493 0.0689

Panel C: GARCH statistics

(1) (2) (3) (4) (5)

mean h
1/2
t std h

1/2
t ac h

1/2
t ρ ∆ct, h

1/2
t pval (2)− (4)

point est 1.8025 0.4700 0.6019 −0.4311 < 0.0001
(0.0904) (0.1171) (0.1881) (0.2081)

BEGE 1.8430 0.2219 0.7477 −0.4930
Gaussian 1.8275 0.0067 0.0075 −0.4760

Panel D: Conditional third moment statistics

(1) (2) (3) (4) (5) (6)

mean (νt) std (νt) ac (νt) ρ (∆ct, νt) ρ νt, h
1/2
t pval (1)− (5)

point est −1.5950 4.4430 0.7266 0.7574 −0.6079 0.0016
(1.5903) (1.5976) (0.2575) (0.3921) (0.4200)

BEGE −2.1870 1.8672 0.7459 0.7478 −0.9820
Gaussian 0.0286 0.2589 0.5402 0.7044 −0.7058

Panel E: Overidentifying tests

BEGE 0.0453
Gaussian 0.0005
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Table 1 notes. The data are real, per capita, consumption expenditures for nondurables

and services, quarterly, from 1958Q1-2013Q4. We present the same statistics under a BEGE

model of consumption growth, described in Table 2, that is specified at the monthly frequency

and aggregated to the quarterly frequency, and also a monthly i.i.d. Gaussian model. Panel

A reports unconditional univariate statisics. The mean is multiplied by 400 and the standard

deviation is multiplied by 200. Panel B repeats these statistics for annual consumption growth

(not used in estimation). The statistics reported in the Panel C are obtained by fitting a

Gaussian , MA(1), GJR-GARCH(1,1) model to the consumption growth data (multiplied by

400) by maximum likelihood, and those in Panel C are from an auxiliary model to estimate the

conditional skewness of the process. We assume that the MA(1) coefficient is 0.21. The series,

ht, corresponds to the resulting fitted variance series, and νt is the estimated conditional third

moment. The column headings, mean, std, skew, and xkurt refer to unconditional means,

standard deviations, skewness, and excess kurtosis, respectively. The column ρ ∆ct, h
1/2
t

denotes the unconditional correlation between consumption growth and h
1/2
t , and similarly

for the correlations in Panel D. The columns labels pval refer to a chi-squared test that the

statistics in the indicated columns are jointly different from zero. The numbers in parentheses

are bootstrapped standard errors. Bolded figures denote that the model-implied statistics

are a distance of less than 1.96 standard errors from the corresponding point estimate, and

underbars denote a distance of more than 1.96 but less than 2.58 standard errors. The GJR-

GARCH and conditional skewness models are described in detail in the appendix. Panel E

reports the p-value for a test of the over-identifying restrictions.
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Table 2: BEGE Model Parameter Estimates

Parameter Estimate

g 0.0015
(0.0002)

p 11.4314
(1.6125)

n 1.5599
(1.6186)

ρn 0.9051
(0.0733)

σnn 0.3169
(0.3660)

σcp 0.00067
(0.00015)

σcn 0.0019
(0.00010)

Table 2 notes. The BEGE model for consumption growth is described by the equations:

∆ct = g + σcpωp,t−σcnωn,t
ωp,t ∼ Γ (p, 1)

ωp,t ∼ Γ (nt−1, 1)
nt = n+ρn (nt−1−n)+σnnωn,t

where ∆ct iis consumption growth at the monthly frequency. Standard errors are reported

in parentheses. The model is estimated by simulated CMD, where the moments being matched

are those reported in Table 1.
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Table 3: The Conditional Distribution of Consumption Growth

fraction
percentile nt stdt (∆ct+1) skewt (∆ct+1) “bad var”

1 0.44 0.90 0.06 0.24
5 0.55 0.93 −0.02 0.27
10 0.65 0.95 −0.08 0.31
25 0.89 1.00 −0.21 0.38
50 1.33 1.09 −0.35 0.48
75 1.97 1.21 −0.46 0.58
90 2.76 1.35 −0.52 0.65
95 3.33 1.43 −0.54 0.70
99 4.64 1.62 −0.55 0.76

Table 3 notes. This table reports, for the model and parameter estimates described in

Table 2, the conditional distribution of monthly consumption growth conditional on various

values for nt. The column with heading nt corresponds to the unconditional distribution of

nt in a simulation for 100,000 periods. The columns, stdt (∆ct+1) and skewt (∆ct+1) corre-

spond to the conditional standard deviation (percent, annual rate) and skewness of monthly

consumption growth at the corresponding value for nt. The column “fraction bad var”

reports values of σ2cnnt/ σ2cnnt + σ2cpp using the parameters in Table 2.
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Table 4: Asset Pricing Model Calibrations

Panel A: Parameters

Gaussian BEGE
δ 0.9999 0.9999
φ 0.9964 0.9964
γ 12.85 11.42
b 0.0088 0.0099
s −1.5237 −1.5583

Panel B: Distribution of local risk aversion

mean std skew p10 p50 p90 p99 p99.9 p99.99
BEGE 53.17 8.18 0.99 45.89 53.90 65.91 80.34 91.62 97.91
Gaussian 59.91 8.64 1.06 50.26 58.50 71.19 87.18 102.11 106.89

Table 4 notes: In Panel A, for both models, the parameters [δ,φ, γ, b, s] are chosen to match

the mean and volatility of the real short term risk free rate exactly, and the unconditional

Sharpe ratio, and volatility of excess equity returns, and the unconditional mean, volatility,

and autocorrelation of the log price-dividend ratio according to a quadratic loss function. The

model “Gaussian” refers to a model with i.i.d. Gaussian consumption growth. The model

“BEGE” refers to the model for consumption growth described in Table 2. In Panel B, we

report the simulated percentiles of the distribution of γ exp (−st) for each model.
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Table 5: Univariate Equity Price Statistics

Panel A: Price-dividend ratios

moment data Gaussian BEGE
E [ln (PDt)] 3.5517 3.0847 2.9379

(0.1109)
σ [ln (PDt)] 0.3893 0.2689 0.2911

(0.0633)
ac [ln (PDt)] 0.9912 0.9865 0.9851

(0.0071)

Panel B: Equity returns

moment data Gaussian BEGE
E [xrett+1] 5.2051 5.2207 5.9797

(1.8275)
σ [xrett+1] 14.8367 14.9259 16.9997

(0.8386)
ac [xrett+1] 0.0629 −0.0033 −0.0161

(0.0400)
skew [xrett+1] −0.7011 0.0014 −1.5494

(0.2441)
xkurt [xrett+1] 2.5288 0.0157 4.4243

(1.1600)

Table 5 notes: Asset price data are observed monthly, 1958-2013. ln (PDt) is the price-

dividend ratio, defined as the log ratio of quarter-end price per share to 12-month trailing

dividends-per-share for the S&P 500 index, xrett is the monthly log excess return on the S&P

500 index for which the mean is multiplied by 1200, and the standard deviation is multiplied

by sqrt(12)*100 to express statistics in percentage terms at an annual rate. Bootstrapped

standard errors are shown in parentheses. The model “Gaussian” refers to a model with i.i.d.

Gaussian consumption growth. The model “BEGE” refers to the model for consumption

growth described in Table 2. Bolded figures denote a distance of less than 1.96 standard

errors from the corresponding point estimate, and underbars denote a distance of more than

1.96 but less than 2.58 standard errors.

51



Table 6: Equity Return Conditional Higher-Order Moments

Panel A: Conditional variance

data Gaussian BEGE
E [pvartt] 0.0186 0.0221 0.0285

(0.0035)
σ [pvart] 0.0231 0.0004 0.0125

(0.0085)
E [qvart] 0.0376 0.0221 0.0351

(0.0073)
σ [qvart] 0.0374 0.0004 0.0146

(0.0144)
E [vpremt] 0.0206 0.0000 0.0066

(0.0057)
σ [vpremt] 0.0223 0.0000 0.0023

(0.0087)

Panel B: Conditional higher-order moments

data Gaussian BEGE
E [qskwt] −1.3534 0.0098 −1.7399

(0.1481)
σ [qskwt] 0.4280 0.0013 0.4834

(0.0980)
E [qxkurtt] 2.7676 0.0006 4.8360

(0.9018)
σ [qxkurtt] 2.1507 0.0001 2.6729

(0.2690)

Table 6 notes: Asset price data are generally monthly, 1958-2013. pvart is the conditional

variance of log equity returns under the physical measure, qvart is the conditional variance of

log returns under the risk-neutral measure, and vpremt is the difference between the two. All

variance measures are reported at an annual rate. The variables qskwt and qxkurtt are risk-

neutral conditional skewness and excess kurtosis, respectively. Bootstrapped standard errors

are shown in parentheses. The model “Gaussian” refers to a model with i.i.d. Gaussian

consumption growth. The model “BEGE” refers to the model for consumption growth

described in Table 2. Bolded figures denote a distance of less than 1.96 standard errors

from the corresponding point estimate, and underbars denote a distance of more than 1.96

but less than 2.58 standard errors.
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Table 7: Cross-moments between asset prices and consumption growth

Panel A: Consumption growth and return volatility

data Gaussian BEGE
[xrett,∆ct] 0.1989 0.5349 0.5538

(0.0540)
[pvart,∆ct] −0.3248 −0.0360 −0.4574

(0.1040)
[qvart,∆ct] −0.2499 −0.0329 −0.4528

(0.0973)

Panel B: Consumption quantile shifts conditional on qvart

data Gaussian BEGE
5% quantile shift −2.4072 −0.1676 −2.5714

(1.1010)
95% quantile shift −0.8675 −0.1425 0.5686

(1.1544)

Table 7 notes: Asset price data are monthly, 1958-2013. xrett is the monthly log excess

return on the S&P 500 index and we use cumulative quarterly returns to compare with the

consumption data, pvart is the conditional variance of log equity returns under the physical

measure, qvart is the conditional variance of log returns under the risk-neutral measure. These

monthly variables are measured at quarter ends to align them with the quarterly consumption

data. Bootstrapped standard errors are shown below in parentheses. The model “Gaussian”

refers to a model with i.i.d. Gaussian consumption growth. The model “BEGE” refers to

the model for consumption growth described in Table 2. Bolded figures denote a distance of

less than 1.96 standard errors from the corresponding point estimate, and underbars denote a

distance of more than 1.96 but less than 2.58 standard errors. In Panel B, we report quantile

shifts, the difference between the 5th (95th) percentile of the distribution of consumption

growth conditional on qvart being “high” (in the upper 10th percentile of its distribution)

less the 5th (95th) percentile for consumption conditional on qvart being “low” (in the lower

10th percentile of its unconditional distribution).
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Table 8: Asset Price Cross Moments

Panel A: Asymmetric volatility correlations

data Gaussian BEGE
[pvart+1, xrett+1] −0.4879 −0.0125 −0.6056

(0.0895)
[qvart+1, xrett+1] −0.4643 −0.0110 −0.5889

(0.1311)

Panel B: Predictability with respect to dividend yield

data Gaussian BEGE
Horizon coef R2 coef R2 coef R2

1 −6.34 0.002 −3.10 0.000 −6.80 0.001
(5.71) (0.004)

3 −6.92 0.008 −3.01 0.001 −6.40 0.003
(5.81) (0.011)

12 −7.44 0.033 −3.04 0.003 −5.62 0.010
(5.67) (0.039)

36 −5.94 0.076 −2.94 0.009 −4.69 0.024
(4.68) (0.092)

60 −5.63 0.131 −2.94 0.015 −4.40 0.036
(4.16) (0.111)

120 −5.48 0.241 −2.70 0.026 −3.86 0.060
(3.18) (0.131)

Table 8 notes: Asset price data are generally monthly, January 1958- December 2013.

xrett is the monthly log excess return on the S&P 500 index pvart is the conditional
variance of log equity returns under the physical measure, qvart is the conditional variance
of log returns under the risk-neutral measure. Bootstrapped standard errors are shown in

parentheses. Panel B reports results from regressions of the form

1

K

K

k=1

xrett+k = a+ b · ln (PDt) + ut,t+k

where ln (PDt) is the log price-dividend ratio. Bootstrapped standard errors are shown in

parentheses.
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Figure 1: Consumption growth conditional moments
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Figure 1 notes: Data are quarterly, real, per-capita consumption growth from 1958-2013.

Data are demeaned prewhitened to remove MA(1) variation in the conditional mean. For the

resulting series, εt, in the top panel we present the conditional variance, ht:

εt+1 ∼ N (0, ht)

ht = h0 + α0h
2
t−1 + α1ε

2
t + α2Itε

2
t

It =
1 if εt < 0
0 if εt ≥ 0

In the middle panel, we show the conditional skewness estimated using the following model

νt = Et (εt+1)
3

νt = ν0 + β0νt−1 + β1ε
2
t + β2Itε

2
t

where νt is the conditional third moment of the residuals. Shading denotes recession periods,

as defined by the NBER.
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Figure 2: Consumption growth quantile shifts conditional on qvart
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Figure 2 notes: Squares denote the unconditional distribution of quarterly consumption

growth. Down-pointing triangles denote the distribution of consumption growth for quarters

following a quarter in which a high level of the qvar, the risk neutral conditional variance

of equity returns, was observed, defined as the qvar being in the upper decile of its sample

distribution. Upward-point triangles denote the distribution of consumption growth condi-

tional on qvar being in the lowest decile of is distribution. The upper panel plots results for

U.S. quarterly consumption growth from 1958-2013. One and two asterisks denote that the

difference between the upward- and downward-point triangles is significant at the 10 and 5

percent levels. The bottom panel plots results for data simulated under the BEGE model..
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Figure 3: The BEGE Distribution

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

+1*ω
p

 

 
p = 1
p = 2
p = 3
p = 5
p = 10

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

−1*ω
n

 

 
n = 1
n = 2
n = 3
n = 5
n = 10

−0.01 −0.005 0 0.005 0.01
0

50

100

150

200
BEGE densities

Figure 3 notes: The top panels display the centered gamma distribution for a range of

values of the shape parameter and a unit scale parameter. The bottom panel displays four

examples of the BEGE distribution. In the bottom panel, the black line plots the density

for [pt, nt] = [40, 40], the blue line, [pt, nt] = [2, 2] ,the green line, [pt, nt] = [0.4, 3] , and the

red line, [pt, nt] = [3, 0.4]. For all four lines, σcp = σcn are both set to maintain a constant

variance for all four distributions.
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Figure 4: Pricing bad- and good-environment shocks
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Figure 4 notes: We assume the agent’s utility function has constant relative risk aversion

over one-period ahead wealth, W :

U W =
W 1−γ−1
1− γ

where W is the stochastic value of one-period ahead wealth. We consider three different

distributions for ln W . All three distributions have a common variance, σ2w, but they

differ in their means and distributions of shocks:

distribution mean variance skewness

Gaussian μw σ2w 0
−1 · ωn μw +∆n σ2w −2/√n
+1 · ωp μw +∆p σ2w +2/

√
p

We plot values for ∆n and ∆p such that the expected utility of all three distributions is the

same, with γ = 5, σ2w = 0.15
2, where the latter is similar to the annual variance of U.S. equity

returns in our sample. An exact formula for ∆n and ∆p is derived in the appendix..
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Figure 5: Consumption growth tail probabilities
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Figure 5 notes: The dashed line plots the cdf of a Gaussian distribution fit to the quarterly

log growth rate of real per capita consumption on nondurables and services from 1958Q1 to

2013Q4. The mean and standard deviation of the series are 1.68 and 0.96 percent respectively

and at an annual rate. The solid line plots a BEGE cdf fit to the same data using the model

and point estimates described in Table 2. The horizontal line is placed at 2 × 10−6, an
estimate of the annual probability of a catastrophic asteroid Earth strike. The vertical line at

−4.3 plots the minimum observed sample value of consumption growth (at an annual rate)...

59



Figure 6: Dependence of the sensitivity function on n and s
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Figure 6 notes: The plot shows a heat map indicating the dependence of the sensitivity

function, λt on st and nt at the parameters values in Tables 2 and 4, (BEGE model).
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Figure 7: Impulse response of asset prices to BEGE shocks
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Figure 7 notes: These panels display the responses of various endogenous variables in the

context of the BEGE model presented in Section 1. For each variable, the system is assumed

to start at steady state so that st = s and nt = n. In period 0, the system is shocked

by either a one standard deviation negative realization of ωp,t or a one standard deviation

positive realization of ωn,t. The units for all asset prices are percent, at an annual rate

(squared, for variances).
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Figure 8: Dependence of asset prices on n and s
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Figure 8 notes: The upper plot is a heat map showing the dependence of the log price-

dividend ratio, ln (PDt) on both nt and local curvature, −γ exp (st) . Dividends in the de-
nominator are measured on a monthly basis, not trailing-twelve months. The units of the

variance premium are percent annual rate, squared. The lower plot similarly depicts the

dependence of the variance premium, vpremt = qvart − pvart.
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