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Abstract

The equity variance risk premium is the expected compensation earned for selling variance risk in equity

markets. The variance risk premium is positive and shows only moderate persistence. High variance risk

premiums coincide with the left tail of the consumption growth distribution shifting down. These facts,

together with risk neutral skewness being substantially more negative than physical return skewness,

refute the bulk of the extant consumption-based asset pricing models. We introduce a tractable habit

model that does fit the data. In the model, the variance risk premium depends positively (negatively)

on “bad” (“good”) consumption growth uncertainty.
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1. Introduction

Consumption-based asset pricing models are typically confronted with a set of salient fea-

tures regarding the first and second moments of interest rates, equity returns, and in some

cases, bond returns including a low risk free rate, a high equity premium and high stock mar-

ket volatility. The main paradigms, Campbell and Cochrane (1999)’s habit model, Bansal and

Yaron (2004)’s long run risk model and Rietz (1988)’s disaster risk model can all match these

stylized facts. A small subset of the vast literature on consumption-based asset pricing has

started to explore equity option prices to discipline models and uncover what mechanisms best

fit the data. These articles include, inter alia, Du (2011) and Bekaert and Engstrom (2017) for

habit models; Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2011) for long

run risk models; Gabaix (2012) and Wachter and Seo (2019) for disaster risk models. Option

prices are powerful financial instruments for this purpose, because they reflect at each point

in time the conditional expectation of market participants on the equity return distribution,

combining their preferences and views on the physical distribution of the underlying returns.

In this article, we explore how these models fit salient facts regarding the variance risk

premium and where they fail. The variance risk premium is the expected compensation earned

for selling variance in equity markets. While it can be measured from variance swaps, it can

also be measured as the difference between the famous VIX index and an estimate of the

conditional variance of equity returns, which is the approach we follow here. Well-known as

a “fear index” for asset markets (Whaley, 2000), the VIX uses a weighted average of option

prices to approximate the risk neutral (option-implied) variance and is usually higher than the

“physical” expected stock market variance. Essentially, this premium reflects out of the money

options being more expensive than near the money option prices (Britten-Jones and Neuberger,

2000; Bakshi, Kapadia, and Madan, 2003; Martin 2017).

Importantly, we also document a strong relation between tails in the variance risk premium

and consumption growth distributions. Mimicking the general lack of correlation between as-

set returns and consumption growth, the correlation between the variance risk premium and

consumption growth of non-durables and services is negligible. During 1990:M1-2017:M12, the

monthly correlation between the variance premium at time t and monthly consumption growth

is -0.13 using “future” consumption growth between time t and t+ 1; and -0.05 using consump-

tion growth between time t− 1 and t. However, there is a strong correlation in the tails of the

1

Electronic copy available at: https://ssrn.com/abstract=3553547



distribution. We construct two distributions for consumption growth, conditioning on low and

high variance risk premiums, respectively. The consumption growth distribution conditioning

on high variance risk premiums is more negatively skewed than the distribution conditioning on

the low variance risk premiums. The quantile shifts for the consumption growth distribution

when conditioning on low versus high variance risk premiums are statistically and economically

significant for the left tail, but not for the right tail. In contrast to most of the literature focusing

largely on either pure macro or pure financial moments, this novel statistic directly links macro

and financial data. This asymmetric quantile shift in the consumption growth distribution per-

sists in quarterly consumption data and is, if anything, stronger when using annual data going

back to 1929. This empirical fact poses a challenge for most of the models we examine, and

our results are therefore informative for guiding the literature towards successful macro-finance

models.

The variance risk premium also shows surprisingly low persistence: around 50% at the

monthly frequency. We show that this low persistence is a robust feature of the data. Finally,

any option pricing model must replicate the risk neutral skewness being substantially more

negative than estimates of the physical return skewness, which likely reflects the insurance-like

features of some options.

We formally confront several prominent models in the literature with these stylized facts

regarding the variance risk premium and find that they reject all models. These rejections are

true at the parameters used in the original models, but we argue are also true under more general

parameterizations as well. Therefore, we introduce a new model in the habit class, which can

actually fit the data. The model uses a variant of the “Bad Environment Good Environment”

(BEGE henceforth) framework of Bekaert and Engstrom (2017), but the preference specification

is different. In particular, while Bekaert and Engstrom (2017) utilizes the highly non-linear price

of risk specification of Campbell and Cochrane (1999), the new model features a constant price

of risk, but a non-linear specification for the quantity of risk, which drives both consumption

growth and the surplus ratio. We also do not impose that the shocks to the consumption and

the surplus ratio are perfectly correlated. All risk premiums are driven by “good” (positively

skewed) and “bad” (negatively skewed) consumption growth volatility state variables, which also

drive the variation in stochastic risk aversion (“habit”). Importantly, the model can be solved

in (quasi) closed-form, generating a variance risk premium that loads positively (negatively)
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on bad (good) volatility. Because the risk-neutral variance loads much more heavily on “bad”

volatility, than does the physical variance, the model produces a sizable variance risk premium.

The low persistence of the variance premium is an extremely challenging moment for all

asset pricing models, because they tend to require highly persistent state variables to generate

sufficiently variable equity returns and price-dividend ratios. While different parameter config-

urations of our basic model can fit the variance risk premium persistence, the fit with respect

to other moments then deteriorates slightly when we force the model to do so. The model can

fit the variance risk premium persistence well without affecting its ability to fit other moments,

if we allow for a small pure sentiment shock.

Our non-linear model for consumption growth fits into a long literature in macro on non-

Gaussian models to fit asymmetries in real activity dynamics, including Hamilton (1989),

Adrian, Boyarchenko and Giannone (2019), and Bekaert, Engstrom, and Ermolov (2021). Ace-

moglu, Ozdaglar, and Tahbaz-Salehi (2017) and Baqaee and Farhi (2019) provide models to

endogenize asymmetries in aggregate real activity from microeconomic shocks.

The remainder of the article is organized as follows. Section 2 establishes the stylized facts

in the data. Section 3 outlines the various existing consumption-based models we examine

and how they fit the stylized facts. Section 4 describes our new model and its fit with the

data, including additional option pricing puzzles, such as the volatility smirk, negative straddle

returns (see, e.g, Bakshi, Crosby, and Gao, 2021) and the flat term-structure of forward variance

claims (Dew-Becker et al., 2017). Section 5 concludes.

2. The Variance Risk Premium in the Data

2.1 The Variance Risk Premium

The variance risk premium is usually defined as the difference between the risk neutral

and physical conditional variance of stock returns. The risk-neutral variance can be computed

using option prices or variance swaps (see Bakshi and Madan, 2000; Martin 2017, and Ait-

Sahalia, Karaman, and Mancini, 2018). For now, we simply use the square of the well-known

VIX index, as published by the CBOE, the implied option volatility of the S&P500 index for

contracts with a maturity of one month.1 Mechanically, the VIX is computed as a weighted

average of call and put option prices. Because the weights are proportional to the inverse of the

1Jiang and Tian (2005) show that the actual computation of the VIX index also introduces errors relative to
the theoretical concept.
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squared strike price (see Bakshi and Madan, 2000, and Britten-Jones and Neuberger, 2000), out

of the money put prices receive relatively more weight. The risk-adjusted measure thus shifts

weight to states with higher marginal utility (bad states) and this implies that in many realistic

economic settings, the variance risk premium is increasing in aggregate risk aversion (see, e.g.,

Bakshi and Madan, 2006, for illuminating examples). Martin (2017) shows that the V IX2 can

be interpreted as twice the risk-neutral entropy of the simple return (the entropy for a variable

X is 2 · (ln[E(X)]− E[ln(X)])), whereas the actual risk neutral variance can be approximated

using equally weighted call and option prices.2 All of our results are robust to using the actual

risk-neutral variance instead of the VIX2, but that would postpone the start of our data sample.

Our data start on January 02, 1990 (the start of the model-free VIX series)3 and covers the

period until the end of 2017. The panel of option prices that are required to calculate Martin’s

measure is available to us beginning in only 1996.

We collect high-frequency (5 minute) returns on the S&P500 index to compute the monthly

physical conditional variance, Vt, as:

Vt = Et[RV
(22)
t+1 ]. (1)

Here RV
(22)
t+1 is the S&P500 realized variance measured as the sum of squared 5 minute returns

and close-to-open overnight returns over the next month (22 trading days). This computation

is only correct under certain assumptions on the data generating process for returns (see An-

dersen et al., 2003, for a theoretical justification, and Barndorff-Nielsen and Shephard, 2002, for

some exceptions). Equation (1) obviously ignores time-variation in conditional means during

the month. Also, we use actual simple returns in these computations, whereas some articles

suggest using logarithmic returns. We find that realized variances using the two methods are

indistinguishable from each other, which is not surprising given the high frequency nature of the

returns. Thus, under this definition the conditional variances of log returns and simple returns

are actually identical.

The common approach to estimate the conditional variance in (1) uses empirical projections

2Martin (2017) denotes the square root of the risk-neutral variance as the “SVIX”. While empirically SVIX
and VIX are typically close to one another, the VIX is always higher than SVIX.

3The CBOE changed the methodology for calculating the VIX, initially measuring implied volatility for the
S&P100 index, to be measured in a model-free manner from a panel of option prices (see Bakshi, Madan and
Kapadia, 2003, for details) only in September 2003. It then backdated the new model-free index to 1990 using
historical option prices.
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of the realized variance onto variables in some information set. Hence, the problem is reduced

to one of variance forecasting. Building on Corsi (2009) and Bekaert and Hoerova (2014), we

use the one period lagged realized monthly variance, realized variances of the last and last 5

trading days (computed using high-frequency data) and the squared VIX, as predictors. While

Bekaert and Hoerova (2014) show that alternative, more complicated models sometimes provide

a slightly better fit, this model typically provides a very good fit. For robustness, we also

consider an AR(1) model for realized variances and fit a GJR-GARCH(1,1) model (Glosten,

Jagannathan, and Runkle, 1993) on stock returns to extract the conditional variance, with

no meaningful differences in results. Note that the data strongly reject treating the realized

variance as a martingale.

We graph the annualized end-of-month variance risk premium in the top panel of Figure 1.

The variance risk premium is counter-cyclical peaking in all three recessions but also in 1998

and 2011. The variance risk premium as defined above has unintuitive economic units: for

instance, the annualized mean is 0.0196. In some of our empirical work, we therefore employ

the “volatility risk premium”, the conditional risk neutral minus physical conditional volatility,

that is V IXt − V
1
2
t . These numbers, in annualized percent, are easy to interpret. For example,

for our sample, the unconditional stock market volatility is 14.64%, the average conditional

volatility is 14.42%, and the average volatility premium is 5.36%. We graph the end-of-month

volatility risk premium in the bottom panel of Figure 1. To avoid any confusion, we always refer

to V IX2
t − Vt as the variance risk premium and to V IXt − V

1
2
t as the volatility risk premium.

2.2 Consumption Growth and the Variance Risk Premium

2.2.1 Monthly Data

To link the variance risk premium to consumption growth, we obtain U.S. monthly con-

sumption growth for non-durables and services from NIPA from 1990:M1 to 2017:M12. The

data are real and per capita. We aggregate real growth rates in non-durables and services at

time t using averages of their nominal expenditure shares at time t and time t−1 (this is the so

called Tornqvist adjustment, suggested by Whelan, 2002).4 Our goal is to verify the shape of the

consumption distribution as a function of variance risk premium realizations. To deal with the

relative paucity of data, we contrast just two conditional distributions for consumption growth,

depending on either “low” or “high” variance risk premiums, measured one period earlier.

4Note that using nominal expenditure shares at time t−1, leads to a consumption series that is 0.99 correlated
with the series we use.
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In Table 1, Panel A, we show the 10th and 90th percentiles of the consumption growth

distribution (at t+ 1) together with the median, conditional on observing either a high or low

variance risk premium (at t). We define a high (low) variance premium as one above (below) the

80th (20th) unconditional percentile in the data over the sample period. Given the scant number

of available monthly observations, conditioning on more extreme tails is not feasible if we are

to retain a reasonable amount of statistical power. Strikingly, the distribution of consumption

growth is nearly identical at the median and 90th percentile, but the left tail is 0.23% lower

(representing a hefty 2.76 percent lower at an annual rate) in periods of high variance risk

premiums. This difference is statistically significant at the 1% level, where the significance

is based on a block-bootstrap with a block length of 60 months using 10,000 replications of

historical length. These results are robust to the choice of block length and hold even for a

block length of 1. The test proposed by Ibragimov and Mueller (2010) to identify differences in

distributions also rejects the null of no downward shift of the 10% tail at the 1% level.

Figure 2 presents a graphical illustration of what is essentially a quantile shift of the left tail

of the consumption growth distribution. It shows that the entire distribution below the median

shifts down going from low to high variance risk premiums. The shift at the 20th percentile

is also significant (at the 10% level). This downward quantile shift reveals a tantalizing link

between the real economy and option prices. It also immediately suggests that a realistic data

generating process for consumption growth must accommodate a shift in its distribution over

time. Because this empirical fact is an important motivating factor for our analysis, we provide

some robustness checks in Panels B-E of Table 1. In Panels B and C, we show robustness of

the result to an alternative choice of the lower/upper percentile, using the 75/25th and 85/15th

percentiles. In Panel D, we use the conditional variance of a GARCH model to compute the

variance risk premium. The quantile shift is present in this robustness exercise as well, but is

now only statistically significant at the 5% level.

One concern with results regarding tails of a distribution is that they may heavily depend on

some outlier observations or a handful of episodes. Panel E analyzes in detail what observations

drive our results. We have 336 monthly observations in our main sample, so conditional on the

variance risk premium being above its 80th percentile or below its 20th percentile there are 7

observations below the 10th percentile of the consumption growth distribution for each group.

The observations conditional on the high variance risk premium are rather evenly spread across
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recessions in our sample. The observations conditional on the low variance risk premium also

appear randomly spread across the sample. The only “unexpected” observation is perhaps

October 2008 during the Great Recession, when the risk-neutral variance was high, but the

estimated physical variance was also high resulting in a relatively low variance risk premium.

However, removing this one data point from our sample would only strengthen the results, as

the 10th percentile of the consumption growth distribution conditional on the low variance risk

premium would be higher than it is now.

2.2.2 Alternative Consumption Data

Schorfheide, Song, and Yaron (2018) discuss several sources of measurement error in monthly

consumption growth data. We therefore consider several robustness checks to the use of monthly

consumption data.

First, we verify whether the result holds up for a much longer sample by obtaining annual

real per capita consumption growth of non-durables and services for the 1929-2017 period. This

period has fewer time series observations than our monthly sample, but witnessed multiple,

often severe, recessions. In order to obtain estimates of the variance risk premium for the 1929-

1989 period, for which it is not directly observable, we regress the variance risk premium during

1990-2017 on the sum of squared realized daily returns (including dividends) for the past week,

month, and quarter and the price-to-earnings ratio5. We then use these projection coefficients

to construct estimates of the variance premium for the early part of the sample. Note that high-

frequency realized returns are not available then, which is why we use daily returns instead for

the full period. We save the regression coefficients and standard deviation of the residuals. We

then conduct a block-bootstrap analysis, as follows:

1. We block-bootstrap the annual 1929-2017 data on consumption growth and the indepen-

dent variables in the variance premium regression, using a block length of 5 years.

2. Inside the bootstrap, for observations falling in between 1929 and 1989, we input the fitted

variance risk premium from the OLS regression using the independent variables at that point

of time, plus a randomly sampled Gaussian shock with zero-mean and the standard deviation

equal to the standard deviation of the regression residuals above.

3. For the block-bootstrapped data, we compute percentiles of the consumption growth

distribution conditional on a high variance risk premium realization, defined as above the 80th

5We prefer this measure to the price-dividend ratio, which exhibits a pronounced time trend during the sample.
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percentile of the sampled variance risk premium distribution, and the low variance risk premium,

defined as below the 20th percentile of the sampled variance risk premium distribution.

The point estimates for the conditional consumption growth percentiles are medians across

10,000 block-bootstrap runs. The statistical significance of the difference between consumption

growth percentiles conditional on high and low variance risk premium values is computed as

the percentage of block-bootstrap runs where the difference is below/above 0. Figure 3 (Panel

A) shows the results. The downward shift of the consumption growth distribution when the

variance risk premium is high is very similar to what we observe for the most recent monthly

data. The shifts are statistically significant at the 5% level for the 10th and 20th percentiles. The

10th percentile shifts from slightly positive consumption growth when the variance premium is

low to -4% when the variance premium is high. Generally, the shift is a bit more extreme than

with monthly data and starts to be already visible around the 60th percentile.

Second, Panels B and C of Figure 3 show analogous results for two alternative data sets.

In Panel B, we confirm the results in a sample of quarterly consumption growth data, for a

1947:Q1-2017:Q4 sample and Panel C uses monthly data but over a longer 1959:M1-2017:M12

sample. The beginning of the samples is determined by data availability, and we use the

block-bootstrap procedure described above to extend our variance risk premium estimates to

the pre-1990 period. The downward quantile shift for the 10th percentile is again statistically

significant at the 5% level for both the quarterly and monthly samples and for the 20th percentile

it is significant at the 10% level for the quarterly sample.

2.2.3 Alternative Tail Measures

The quantile shift evidence suggests that the conditional skewness of consumption growth

is lower when the variance risk premium is high. We start by investigating Kelly’s skewness,

which is also defined in terms of percentiles of a distribution, namely the 90th percentile+10th

percentile-2×50th percentile. An attractive feature of Kelly’s skewness is that it has units equal

to the original series. If we again define the high variance risk premium as being above its 80th

unconditional percentile, the Kelly’s skewness of the next month’s consumption growth condi-

tional on the high variance risk premium is -0.11% in the US 1990-2017 data, or -1.32 percent

at an annual rate. The block-bootstrap standard error computed by re-sampling 10,000 time

series of historical length with a block length of 5 years is 0.08%. If we define the low variance

risk premium again as being below its 20th unconditional percentile, the Kelly’s skewness of the
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next month’s consumption growth conditional on the low variance risk premium is 0.08% with

a block-bootstrap standard error of 0.05%. The difference between the two Kelly’s skewness

estimates is -0.18% (-2.1 percent at an annual rate) with a block-bootstrap standard error of

0.09%, which is statistically significant at the 5% level.

We also investigate the relationship between the variance risk premium and the standard

scaled skewness coefficient of consumption growth. To infer a conditional scaled skewness se-

ries for monthly consumption growth, we estimate two empirical models which can capture

conditional non-Gaussianities. The first model is a regime-switching model of the Hamilton

(1989)-type (with regime dependent drifts, regime dependent volatilities and constant transi-

tion probabilities). We assume that the within-regime shock distributions are Gaussian, but

because the model is essentially a time-varying mixture of normals, it can generate conditional

non-Gaussianities. The second model is the BEGE-GARCH model proposed in Bekaert, En-

gstrom and Ermolov (2015).

Both models are estimated using the standard maximum likelihood procedure for the 1959:M1-

2017:M12 sample for which monthly consumption growth data is available. For the regime

switching model, the Bayesian information criterion (BIC) picks a 2-regime model specifica-

tion. The standard scaled conditional consumption growth skewness series is available in closed

form (see, e.g., Timmermann, 2000). For the BEGE GARCH model, the optimal specifica-

tion in terms of BIC imposes a constant “good volatility” parameter, but a time-varying “bad

volatility” process. Further details on the models and estimation can be obtained from the

authors.

For the regime-switching model, the correlation between the variance risk premium and

conditional consumption growth skewness (computed using ex-ante regime probabilities) in the

US monthly 1990-2017 sample (where the variance risk premium is directly observed) is -0.27.

The block-bootstrap standard error computed by re-sampling 10,000 time series of historical

length (the variance risk premium and conditional scaled skewness at each point of time are

resampled as pairs) with a block length of 60 months is 0.05. If smoothed regime probabilities

are used to compute the conditional consumption growth series skewness, the correlation is

-0.32 with a standard error of 0.04. For the 1959:M1-2017:M12 sample, where the variance risk

premium values for the pre-1990 period are extrapolated as described above, the correlation

with consumption growth skewness is -0.25 with a block-bootstrap standard error of 0.07.
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The results are similar for the BEGE-GARCH model. The correlation between the variance

risk premium and scaled skewness in the 1990:M1-2017:M12 sample is -0.33 with a block-

bootstrap standard error of 0.06. For the 1959:M1-2017:M12 sample the correlation is -0.31

with a block-bootstrap standard error of 0.11. We conclude that there is a statistically strong

and robust relationship between the negative tail of the consumption growth distribution and

the variance risk premium in financial markets.

2.3 Other Moments

To further assess the fit of the various models, we consider a number of statistics reported in

Table 2 (right hand side column). As indicated before, the variance risk premium is measured

by the difference between V IX2 and the expected physical return variance, where the physical

variance is obtained using a projection model for variances. The variance premium has a mean

of 0.0195, which is rather precisely estimated. For ease of economic interpretation, Panel B of

Table 2 also reports the volatility premium fit, which simply replaces the variances by volatilities.

We also report the autocorrelation of the variance risk premium. The premium’s autocorre-

lation is only 0.52 in the monthly data, with a block-bootstrap standard error of only 0.09 (see

Panel A).6 The autocorrelation of the volatility risk premium is even lower at 0.45 (see Panel

B). This low value does not reflect measurement error, even though we require an empirical

model to measure the physical variance. To justify this claim, we conducted the following ex-

ercise. The regression coefficients in this model are asymptotically normally distributed, with

the covariance matrix estimated using a Newey-West (1987) procedure with 12 lags. We sample

10,000 possible regression coefficients and reconstruct the conditional physical variance using

these resampled coefficients. With this, we recreate 10,000 different sample paths to the vari-

ance risk premium time series, keeping the risk-neutral component at its data value. We then

construct the distribution of the variance risk premium persistence by computing the autocor-

relation in each sample. In 97.5% (99.5%) of the samples the monthly variance risk premium

autocorrelation is lower than 0.65 (0.69).

We conduct two further robustness checks for the veracity of our measure of the variance risk

premium’s persistence. First, Figure 1 illustrates that the variance risk premium is particularly

6Note that these autocorrelation block-bootstrap standard errors are computed without breaking up the time
dependencies. For example, if the block-bootstrapped time series is observation1, observation2, observation1,
observation2, we construct the series observation2, observation3, observation2, observation3 to compute the cor-
relation with it in that bootstrap sample.
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volatile during the Great Recession, when financial markets were in turmoil, potentially leading

to imprecise measurement. Moreover, we see some negative variance risk premium values,

which are implausible from the perspective of some, albeit not all, theoretical models. However,

even during the pre-Great Recession period (January 1990-November 2007), the variance risk

premium autocorrelation is only 0.49; whereas it is 0.57 over the full sample, excluding negative

observations. Second, alternative models of the conditional physical variance, such as using an

AR(1) realized variance process or a martingale model also deliver autocorrelations of around

0.50 or even lower.

A final powerful implication of options prices is that the risk neutral skewness of equity

returns should be lower (or more negative) than the physical skewness, reflecting preferences

for insuring against stock market crashes. We report the physical and risk neutral skewness in

Panel C of Table 3. Our statistics are based on daily time series estimates for the conditional

risk -neutral skewness of non-logged S&P5 returns provided by Bakshi, Crosby, Gao and Zhou

(2020). Because they target the middle of the month as the option maturity date, their data

reflect maturities between one month and just a few days. Therefore, we create two data

series from these data, one using middle-of-the month data, reflecting a 30-day horizon (or the

maturity closest to 30 days if unavailable, choosing the shortest maturity on ties), and one

extracting the end-of-month data, reflecting a 14/15-day horizon. The two series are over 80%

correlated, and their means are not too different. We use the first series for our empirical work,

which has a mean of -1.31 (See Panel C of Table 3) for our sample (the mean of the end-of-month

series is -1.46).7 We also report the physical skewness of returns which is indeed much higher

at -0.87.

3. The Variance Risk Premium and the Consumption-based As-

set Pricing Literature

We now survey various models in the consumption-based asset pricing literature, focusing

on the mechanism they use to generate a meaningful volatility premium. We then show that

no model can actually fit our stylized facts.

7It would be preferable to compute the risk neutral skewness from logged returns, and we did so, relying on
the methodology in Bakshi, Kapadia and Madan (2003), but our data set here is only available from 1996 to
2014. Over this period, risk neutral skewness is somewhat more severe for logged versus non-logged returns.
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3.1 The Variance Risk Premium in Existing Consumption-based Asset Pricing Models

Various results in the extant literature (see, among others, Bakshi and Madan, 2006, Chabi-

Yo, 2008, and Bekaert and Hoerova, 2014) suggest non-Gaussianities in the data generating

process for returns are necessary to produce a positive variance risk premium. Drechsler and

Yaron (2011) and Martin (2017) prove a more general result, indicating that when returns and

the pricing kernel are jointly log-normally distributed, the variance risk premium is exactly

zero.8 Therefore, empirical results described above immediately refute the original formulations

of Campbell and Cochrane’s (1999) habit model and the first-order approximation to Bansal

and Yaron’s (2004) long-run risk model which are conditionally Gaussian.9 An important caveat

to this refutation is that it holds because, consistent with the bulk of the consumption-based

pricing literature, these models are formulated in discrete time with the decision interval equal

to the data frequency (e.g., monthly). In contrast, many option pricing models are formulated

in continuous time, and in such a setting, variance risk premiums can arise in conditionally

Gaussian models, as temporal aggregation can generate a positive variance risk premium.

We, thus, consider four different macro-finance models which have explicitly sought to ex-

plain option prices. Technical details are relegated to Online Appendix II. The first model is

the “vol-of-vol” model of Bollerslev, Tauchen, and Zhou (2009), henceforth BTZ. It is impor-

tant to mention that this paper is one of the first to show that, empirically, the variance risk

premium predicts stock returns. They consider a representative agent with Epstein-Zin (1989)

preferences and consumption (and dividend) growth featuring stochastic volatility. A second

state variable drives time-variation in the volatility of the volatility shocks (“vol-of-vol”). It is

the latter variable that drives variance risk premium variation in this article.

The second model, Drechsler and Yaron (2011), DY henceforth, is an extension of the long-

run risk model meant to fit variance risk premium features. DY add several components to

the long-run model including a slow moving component of the volatility and importantly jumps

to the long-run risk variable (the conditional mean of consumption growth) and to volatility.

8Online Appendix I proves a related result using conditional variances taken from simple returns (not log-
returns): log-normal models can not generate simultaneously a positive variance risk premium and a positive
equity premium.

9In the long-run risk literature, it is customary to assume that endogenous variables are linear functions
of the state variables. Pohl, Schmedders, and Wilms (2018) show that this approximation is actually rather
poor in many settings. However, there are almost no published long-run risk papers that use more accurate
solution techniques. The solution method for the habit model in Campbell and Cochrane (1999) was shown to
be inaccurate by Wachter (2005). In the Campbell and Cochrane-type models below, we use Wachter’s more
accurate solution method to solve the model.
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These jump variables deliver the potential non-Gaussianities driving variation in the variance

risk premium. However, consumption growth itself is conditionally Gaussian in this model.

We use the model in Wachter (2013) as the representative of the disaster risk paradigm. The

model features Epstein-Zin preferences, and (disaster) jumps to the consumption and dividend

shocks, which probability of occurrence varies through time. While the model was not designed

to fit options data, Wachter and Seo (2019) show that this particular specification fits option

prices rather well.10 Importantly, the disaster parameters are inferred from international data,

because the U.S. data feature no consumption disaster post the Great Depression.

Finally, we consider the habit model of Bekaert and Engstrom (2017). They add a “bad

environment-good environment” structure for consumption growth to Campbell and Cochrane

(1999) setup. In this model, consumption growth features “bad” and “good” volatility, with

shocks to bad (good) volatility decreasing (increasing) skewness in consumption growth. The

modeling of the consumption surplus ratio is analogous to the original Campbell and Cochrane

(1999) specification with its shock perfectly correlated with consumption growth, and a non-

linear price of risk variable, adjusted for the presence of consumption heteroskedasticity.

The various models’ fit of standard salient asset features, such as equity returns, and the

risk-free rate, is in Online Appendix II. All the moments shown are annualized monthly val-

ues. The sample is 1990 to 2017 corresponding to the available data for the variance risk

premium. The real risk-free rate is measured as the difference between the monthly nominal

risk-free rate from Ibbotson Associates and the monthly counterpart to expected inflation for

the corresponding quarter drawn from the Survey of Professional Forecasters (Federal Reserve

Bank of Philadelphia); specifically, with π the quarterly inflation forecast, we use (1 + π)
1
3 − 1.

The risk-free rate is low on average (0.64%) and has a variability of around 2%. For the stock

market, we use logarithmic returns on the S&P500 index in excess of the risk-free rate. The

equity premium is 4.92% with a volatility of about 15%. We also report the mean and variance

of the price-dividend ratio, noting that this variable has been subject to trending behavior due

to tax policy changes in the U.S. (Boudoukh et al., 2007).

Because we use the calibrations/estimations provided in the various original papers, which

did not use exactly our data sample, we do not expect the various models to fit all these moments

10Another popular rare disasters model is Gabaix (2012). However, in its main specification consumption
growth is i.i.d. and, thus, cannot fit the link between consumption growth and variance risk premiums. Gourieroux
et al. (2020) features a consumption growth process with gamma-distributed distress, induced by credit defaults.
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exactly and we relegate a detailed discussion of the models’ fit with respect to traditional

moments to Online Appendix II. We note that the the fit of the BTZ model, however, is

particularly poor, because their calibration focused on the levels of the unconditional equity

premium and risk-free rate. In addition, the zero lower bound on both the consumption growth

variance and the variance of consumption growth variance is hit in more than 10% of the

simulated time points under the BTZ calibation, leading to significant deviations of simulated

asset prices from their theoretical counterparts. Overall, statistically all models are strongly

rejected by the data, but we argue that DY, Wachter (2013), and BEGE fit general asset prices

reasonably well.

3.2 Fitting Variance Premium Statistics

We now turn to the fit of the models with respect to variance risk premium statistics,

which we report in Table 2. To compute the variance risk premium in the models, our first

set of statistics use the risk-neutral minus physical annualized variance of the log-return on the

aggregate stock market. Following most of the macro-finance literature, we report the statistics

for log instead of gross returns, but the differences between the two concepts are economically

negligible. As mentioned before, the VIX2 actually represents the risk-neutral entropy and

always exceeds the risk neutral variance in the data (see Martin, 2017). We return to this issue

separately below.

Table 2, Panel A, reveals that the variance risk premium is identically equal to zero in the

BTZ model, as it is a log-normal model. Both the DY and BEGE models generate meaningful

variance risk premiums, but they are still too small relative to the data. Wachter’s model

generates a much too high average level for the volatility risk premium of 15%.

Our definition of the variance risk premium is different than the way it is defined in the

original BTZ and DY articles. To illustrate the difference, let rt+1 be the aggregate equity

log-return between time t and t+ 1 while rt+2 is the aggregate equity log-return between time

t + 1 and t + 2. BTZ define the variance risk premium as the difference between the risk-

neutral and physical variance skipping one period (month): V arQt (rt+2) − V art(rt+2), instead

of V arQt (rt+1) − V art(rt+1). The latter is the definition that we use; it is also what is actu-

ally priced by the VIX and variance swaps. This “skipping ahead” allows BTZ and DY to

generate a positive variance risk premium instead of the zero value under log-normality, be-

cause returns skipping one period are not log-normal in their model. DY define the variance
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risk premium as the sum of the difference between the next month’s risk-neutral and physical

variance, V arQt (rt+1) − V art(rt+1) (which they call the “level difference”), and the difference

between the risk-neutral and physical variance skipping one month, V arQt (rt+2) − V art(rt+2)

(which they call the “drift difference”). This additional “drift difference” component allows DY

to generate a much higher average volatility risk premium: 12.62% instead of 2.35% in Table 2

(which only takes into the account the “level difference”, the V arQt (rt+1) − V art(rt+1) term).

These “drift terms” would naturally arise if the model were specified at a frequency higher than

monthly, but the BTZ and DY articles use monthly specifications and data (see section 1.4 in

BTZ and section 5.2 in DY), under which such terms do not arise naturally. Importantly, while

our results for the DY model mimic the linear approximation of the equilibrium functions the

authors employ, properly accommodating non-linearities does not salvage the model: Lorenz,

Schmedders, and Schumacher (2020) show explicitly that when solved properly the variance

risk premium in the DY model becomes much smaller and behaves procyclically, which is also

counterfactual.

All the models also fail to generate a realistic autocorrelation for the variance premium,

delivering autocorrelations of 0.90 or higher. The main reason for this is that the models’ state

variables, which determine all asset prices, including the variance risk premium, are all very

persistent. This persistence is required, so that realistically small shocks to the state variables

generate realistically large asset pricing implications.

Panel C of Table 2 shows that matching skewness in return data is difficult for our 4 rep-

resentative models. The BTZ model in fact generates slight positive skewness, due to the

volatility-of-volatility state variable hitting the zero lower bound too often. The disaster model,

perhaps not surprisingly, generates far too severe negative physical and risk neutral skewness.

The BEGE model also overshoots, but more modestly so, whereas the DY model does not

generate sufficiently negative skewness.

The shape of the risk-neutral return distribution is also reflected in the VIX/SVIX puzzle

stressed by Martin (2017). As explained by Martin (2017), the VIX2 can be viewed as a risk-

neutral return entropy while SVIX2 is a measure of the risk-neutral return variance; viewed as

a portfolio of options, the VIX weights option prices by the inverse of squared strike prices,

whereas the SVIX uses equal weighting. Therefore, the VIX2 is more sensitive to left-tail events

(relative to SVIX2), while SVIX2 is more sensitive to right tail events (relative to VIX2). As a
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result, the disaster model generates a VIX much higher than the SVIX indicates that left-tail

return outcomes are too severe compared to right-tail outcomes in the model. Nonetheless,

we find that matching risk neutral skewness is more challenging than the VIX-SVIX moment

stressed in Martin (2017).

3.3 Consumption Growth Quantile Shifts and the Variance Risk Premium

The essence of a consumption-based asset pricing model is to link actual consumption data

to asset returns. In Section 2, we showed that in the data there is indeed a significant link

between the downward shifts in the left tail of consumption growth and the incidence of high

variance risk premiums. Here we examine which of the existing models can fit this data pattern.

We collect the results in Table 3, reporting the results replicating the data results of Table 1

for samples of 1,000,000 months simulated from the various models. We show the 10th, 50th,

and 90th percentile of the consumption growth distribution, conditioning on either the variance

premium being above its 80th unconditional percentile or below its 20th percentile. We also

report the difference in the furthermost right column. Note that we do not include the BTZ

model in this analysis, because its variance risk premium is always zero (see Table 2 and the

corresponding discussion in section 3.1). Thus, it is not possible to condition on the variance

risk premium.11

Panel B of Table 3 shows that the DY model also cannot match the asymmetric percentile

shifts documented before. Instead, the higher variance risk premium is associated with a higher

“symmetric” volatility of consumption growth next period: that is left-tail percentiles shift to

the left and right-tail percentiles shift to the right by the same amount. This occurs because

in the model the variance risk premium is linearly proportional to the consumption growth

volatility and to the intensity of jumps in long-run consumption growth (the predictable part

of consumption growth) and volatility (see equation (22) in DY). However, jumps in long-run

consumption growth only affect the conditional distribution of consumption growth between

time t + 1 and t + 2: consumption growth between t and t + 1 is conditionally Gaussian and,

thus, symmetric at time t, making asymmetric percentile shifts impossible. In principle, the DY

model can generate the percentile shift in the left tail of consumption growth distribution by

skipping one month (that is, for consumption growth between t+1 and t+2) through the higher

11Furthermore, even if we condition on the variance risk premium as defined by BTZ (that is, including the
drift term), the model does not generate the time-varying left-tail distribution along with a constant right tail
distribution, because its conditional consumption growth distribution is symmetric at all horizons.
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probability of a left-skewed jump in long-run consumption growth. However, Panel C of Table

3 documents that this is not the case: while the shift happens, it is economically negligible.

The magnitude is small because in long-run risk models, variation in the predictable part of

consumption growth contributes little to the total variation in consumption growth.

Panel D of Table 3 shows that Wachter’s model generates a minuscule shift in the left

conditional percentiles of the consumption growth distribution. The shift is much smaller than

the one observed in the data. This is because the disasters are very extreme and, thus, affect

percentiles of the distribution that are more extreme than the 10th percentile on which we

condition. This mismatch between the assumptions regarding consumption data in disaster risk

models and option prices is reminiscent of but different than the evidence in Backus, Chernov,

and Martin (2011), who show that options data imply less extreme disasters than those implied

by disaster consumption models.

Panel E of Table 3 shows that the BEGE model replicates the left-tail percentile shifts con-

ditioned on the high variance risk premium reasonably well, although the shifts are of somewhat

smaller magnitude than observed in the data. BEGE is able to replicate these shifts, through

its “bad environment shock.” A large bad environment shock increases the shape parameter

of the bad consumption shock, shifting the left-tail percentiles of the conditional consumption

growth distribution down. Simultaneously, the shock decreases the surplus ratio increasing risk-

aversion. These increases in the shape parameter of the bad consumption shock together with

the increasing risk aversion then increase the variance risk premium (see Figure 8 in Bekaert and

Engstrom, 2017). Note that the BEGE model also generates a small increase in the right-tail

percentiles of the conditional consumption growth distribution following a high variance risk

premium. This occurs because increasing the “bad” shape parameter also increases the magni-

tude of the right tail realizations from the bad environment component, although the magnitude

is not nearly as strong as for the left tail because the right tail of the bad environment distribu-

tion component is finite (see Figure 3 in Bekaert and Engstrom, 2017). The evidence for such

a right-tail shift in the data is mixed however (see Table 1).

If we compare directly the asymmetry of the quantile shifts in the left and right tails of

the distribution (adding the 10th and 90th percentile shifts), the DY and Wachter models fail

to generate asymmetry. The BEGE model does produce asymmetry, but still misses the data

shift by a large margin. To investigate this formally, Panel F of Table 3 shows model-implied
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differences between Kelly’s skewnesses of consumption growth conditional on the high and low

variance risk premium. Computed as in section 2.2.3, the difference is -0.18% and statistically

significantly different from zero in the data. With respect to this metric, the DY model is

rejected at the 5% level, Wachter’s model at the 10% level, while the BEGE model is not

rejected, generating a shift of -0.08%.

To summarize, the DY and BTZ models are not able to reproduce the link between the

downward shifts in the left tail of consumption growth and the incidence of high variance risk

premiums even theoretically, because these models feature conditionally Gaussian one period

ahead consumption growth (although the DY model features non-Gaussian jumps in the variance

of future consumption growth and expected consumption growth). The Wachter (2013) model

is not able to replicate the link quantitatively, because the model requires negative consumption

growth realizations which are too severe to fit key asset pricing moments. However, Bekaert

and Engstrom’s BEGE model does fit the conditional quantile shifts in consumption growth

(although the magnitude of the shift is somewhat smaller than in the data). At the same time,

Table 2 shows that the model faces other challenges such as a relatively low implied variance risk

premium and risk-neutral return skewness. In Online Appendix II, we use formal estimation

exercises to show that the disaster and BEGE models cannot quantitatively fit the variance risk

premium statistics of Section 3.2 and the conditional consumption growth distribution dynamics

as a function of the variance risk premium, under any parameterization.

4. A New Model

Given that extant models cannot fully fit the empirical facts, we develop an alternative

model, which is related to but quite different from the BEGE-habit model in Bekaert and

Engstrom (2017). The BEGE model comes closest to fitting the stylized facts, but it requires

a time-consuming numerical solution procedure, greatly decreasing its practical appeal. We

therefore propose a considerably more tractable variant of the habit-BEGE model, which allows

for intuitive quasi closed-form asset pricing solutions, but nonetheless fits the data better.

Economically, the main innovation of our model relative to Campbell and Cochrane (1999) and

Bekaert and Engstrom (2017) is to have both consumption and risk aversion shocks depend on

non-Gaussian (BEGE) shocks with time-varying higher order moments but constant prices of

risk.

In Section 4.1, we outline the model and derive expressions for the risk-neutral and physical
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variances and the variance risk premium. In Section 4.2, we provide estimation results for the

model parameters and consider its fit with the data. In section 4.3 we consider a variant of

the model incorporating a preference shock. Section 4.4 verifies whether the model fits several

additional stylized facts regarding options data.

4.1 A Tractable BEGE-habit Model

The utility function is standard and given by:

Et

∞∑
j=t

βj−t
(Cj −Hj)

1−γ − 1

1− γ
, (2)

where β is the discount rate, Cj is consumption and Hj is the habit stock with Cj > Hj .

Log-consumption growth, gt+1, has a constant conditional mean but BEGE shocks:

gt+1 = ḡ + σcpωp,t+1 − σcnωn,t+1, (3)

where σcp > 0 and σcn > 0 and

ωp,t+1 ∼ Γ(pt, 1)− pt,

ωn,t+1 ∼ Γ(nt, 1)− nt,
(4)

where Γ(x, y) is a gamma distribution with shape parameter x and scale parameter y. Given

that the mean value of a Γ(x, y)-distributed variable is x · y, ωp,t+1 and ωn,t+1 are zero-mean.

Maintaining the Campbell and Cochrane (1999) assumption of a constant consumption growth

mean is actually consistent with the data. The monthly consumption growth autocorrelation

is -0.09 in the data with a standard error of 0.10. Schorfheide, Song, and Yaron (2018) argue

that the quarterly and lower frequency autocorrelation is robustly positive, while the monthly

autocorrelation is negative due to measurement errors in monthly consumption data. There-

fore, maintaining a zero correlation is appropriate, and positive serial correlation for quarterly

consumption growth automatically ensues from temporally aggregating consumption to lower

frequencies.

The top plot of Figure 4, Panel A illustrates that the probability density function of ωp,t+1,

the “good” component, is bounded from the left and has a long right tail. Similarly, the middle

plot of Figure 4, Panel A shows that the probability density function of −ωn,t+1 (the “bad”
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component) is bounded from the right and has a long left tail. Finally, the bottom plot of

Figure 4, Panel A plots the component model which has both tails.

We assume that the shape parameters follow autoregressive processes with the same shocks

as the shocks driving consumption growth (see also Gourieroux and Jasiak, 2006):

pt+1 = p̄+ ρp(pt − p̄) + σppωp,t+1,

nt+1 = n̄+ ρn(nt − n̄) + σnnωn,t+1.

(5)

Panel B of Figure 4 illustrates possible conditional distributions of consumption growth

shocks which could arise as a result of the time variation in the shape parameters in (5). In

particular, the probability density function in the top plot of Figure 4 Panel B characterizes the

situation where pt is relatively large and the component distribution has a pronounced right

tail, while the probability density function in the bottom plot of Figure 4 corresponds to the

case where nt is relatively large and the component distribution exhibits a pronounced left tail.

Consequently, pt (nt) acts as good (bad) variance that is associated with positive (negative)

unscaled skewness in consumption growth.12 To ensure the positivity of pt (nt), it must be the

case that σpp < ρp (σnn < ρn). These conditions are always satisfied in our estimation.

Following much of the recent habit literature, we model Qt = Ct
Ct−Ht , which can be inter-

preted as an inverse consumption surplus ratio. Denoting qt = ln(Qt), we assume:

qt+1 = q̄ + ρq(qt − q̄) + σqpωp,t+1 + σqnωn,t+1. (6)

The qt-process drives time-variation in the effective risk aversion of the representative agent.

While we assume the process to be AR(1), the shocks depend on the same shocks as consumption

growth does. Economically, we expect σqn > 0 and σqp < 0. Unlike the models in Campbell

and Cochrane (1999) and Bekaert and Engstrom (2017), consumption growth and risk aversion

are not perfectly correlated.

Note that the economic mechanism through which this model operates is quite different

from Campbell and Cochrane (1999) and Bekaert and Engstrom (2017). While qt still measures

risk aversion, the key drivers of time-variation in risk premiums are pt and nt which drive the

12Because an increase in nt also increases the variance, the effect on the scaled skewness coefficient cannot
be generally signed. Nonetheless, Bekaert and Engstrom (2017) show in their Appendix C that a risk-averse
investor would dislike (prefer) exposure to bad (good) environment shocks relative to Gaussian shocks with the
same variance.
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correlation between returns and the pricing kernel. Compared to Bekaert and Engstrom (2017),

there is no non-linearity emanating from a price of risk process, but the non-Gaussian features

of kernel shocks are entirely driven by the BEGE shocks.

The log-pricing kernel, mt+1, can be written as:

mt+1 = m0 +mqqt +mω,pωp,t+1 +mω,nωn,t+1, (7)

where:

m0 = lnβ − γḡ + γq̄(1− ρq),

mq = −γ(1− ρq),

mω,p = γ(σqp − σcp),

mω,n = γ(σqn + σcn).

(8)

In all our estimations we find mω,p < 0 and mω,n > 0, that is, good environment shocks decrease

marginal utility and bad environment shocks increase marginal utility, and this is guaranteed

when σqp (σqn) is negative (positive), as expected.

The key formula to derive most of the analytical results is that for a demeaned gamma

random variable X ∼ Γ(k, θ)− kθ, where k is the shape and θ is the scale parameter, E(eX) =

e−g(θ)k, where the function g(x) is defined as g(x) = x + ln(1 − x). g(θ) is always negative

assuming θ < 1. Note that while our fundamental shocks ωp,t+1 and ωn,t+1 in (4) formally

have θ = 1, in the model they are always premultiplied by σ-coefficients which are less than 1,

making the effective scale of these shocks less than 1, because the scale of a gamma distributed

variable with unit scale multiplied by σ is σ.

The risk-free rate

The continuously compounded log-risk-free rate, rft, can be determined the usual way as

the negative of the logarithm of the conditional expectation of the exponentiated pricing kernel

in (7):

rft = f0 + fqqt + fppt + fnnt, (9)

where coefficients are in the Online Appendix III. Here qt represents an intertemporal smoothing
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effect and is positively associated with the short rate (fq > 0), whereas pt and nt represent

precautionary savings effects and are negatively associated with the short rate (fn < 0 and

fp < 0).

Equity pricing

We assume a simple log-dividend growth to price equities:

dt+1 = ḡ + γg(σcpωp,t+1 − σcnωn,t+1) (10)

The price-dividend ratio can be computed as:

Pt
Dt

= Et

∞∑
i=1

e
∑i
j=1 mt+j+dt+j . (11)

By recursively plugging the dividend dynamics from (10) and the stochastic discount factor

from (7) into (11), we obtain an expression for the price-dividend ratio of the following form:

Pt
Dt

=
∞∑
i=1

eAi+Bipt+Cint+Diqt , (12)

where the A, B, C, and D coefficients follow difference equations described in Online Appendix

III. With pdt = ln( PtDt ), we log-linearize equation (12) using a Taylor series approximation to

find:

pdt ≈ K1
0 +K1

ppt +K1
nnt +K1

q qt, (13)

where we again relegate the actual expressions for the K1-coefficients to Online Appendix III.

Note that we approximate the actual closed-form solution to the model. This differs greatly

from Campbell-Shiller (1987) return linearizations or first-order approximations to solve the

equilibrium in non-linear models.

The aggregate logged market return is defined as:

rt+1 = ln(Rt+1) = ln(
Pt+1 +Dt+1

Pt
) = ln(

Dt+1

Dt

1 + Pt+1

Dt+1

Pt
Dt

) = dt+1 + ln(1 +
Pt+1

Dt+1
)− pdt. (14)
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Analogously to pdt, we can linearize ln(1 + Pt+1

Dt+1
) via a Taylor series approximation as:

ln(1 +
Pt+1

Dt+1
) ≈ K2

0 +K2
ppt+1 +K2

nnt+1 +K2
q qt+1, (15)

where the K2 coefficients are reported in Online Appendix III.

By plugging (10), (13), and (15) into (14) we obtain the following expression for the log-

return:

rt+1 ≈ r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1, (16)

where the exact expressions for the coefficients r0, rp, rn, rω,p, and rω,n are once again in

Online Appendix III. In all our estimations we find rω,p > 0 and rω,n < 0, that is, good (bad)

environment shock realizations increase (decrease) equity returns.

Combining (9) and (16), we get the following expression for the equity premium:

Et(rt+1 − rf,t) ≈ (r0 − f0) + (rp − fp)pt + (rn − fn)nt + (rq − fq)qt, (17)

where in all our estimations (rp − fp) > 0 and (rn − fn) > 0. This makes economic sense,

because both ωp,t+1 (which conditional variance is pt) and ωn,t+1 (which conditional variance is

nt) move the pricing kernel in (7) and the aggregate equity return in (16) in opposite directions.

In contrast, (rq−fq) is 0 up to approximation error, as qt does not affect the moments of shocks

to the pricing kernel.

The variance risk premium

Following most of the extant literature, we first define the variance risk premium in the

model as the difference between risk-neutral and physical variances of log-returns. From (16) it

follows that the conditional physical variance of the aggregate market return is:

V art(rt+1) = r2
ω,ppt + r2

ω,nnt. (18)

The risk-neutral (Q-measure) variance of the log-return can be computed by evaluating the
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first and second derivative of the risk-neutral moment-generating function:

EQt (rt+1) =
d

dν

[
Ete

mt+1+νrt+1

Etemt+1

]
ν=0

,

EQt (r2
t+1) =

d2

dν2

[
Ete

mt+1+νrt+1

Etemt+1

]
ν=0

.

(19)

Plugging mt+1 from (7) and rt+1 from (16) into (19) results in:

V arQt (rt+1) = (
rω,p

1−mω,p
)2pt + (

rω,n
1−mω,n

)2nt. (20)

Bringing (18) and (20) together, we obtain the expression for the variance risk premium:

V arQt (rt+1)− V art(rt+1) = r2
ω,p

[
1

(1−mω,p)2
− 1

]
pt + r2

ω,n

[
1

(1−mω,n)2
− 1

]
nt. (21)

The premium in (21) is affected by both bad and good uncertainty. However, as we argued

before, good environment shocks decrease the pricing kernel (marginal utility), that is mω,p < 0.

Therefore, the coefficient on pt is negative. Analogously, bad environment shocks increase the

pricing kernel (marginal utility), that is mω,n > 0. Therefore, bad uncertainty has a larger effect

on the risk neutral than on the physical volatility and the reverse is true for good uncertainty,

consistent with the intuition that risk neutral pricing shifts mass to high marginal utility states.

As a result, bad (good) uncertainty shocks increase (decrease) the variance risk premium. Thus,

theoretically, the model can accommodate negative variance risk premiums, as observed in

Figure 1, although in practice the nt component tends to dominate.13

VIX2 and SVIX2, as studied by Martin (2017) and which use simple return moments, are,

in fact, also available in closed-form in the model. We relegate the derivations and expressions

to Online Appendix III. It turns out that SVIX2 delivers model-implied values very close to the

risk-neutral variance for log returns computed as in (20).

4.2 Estimation and Empirical Fit

We estimate the model using the classical minimum distance methodology (Wooldridge,

2002). We match unconditional moments of monthly US real per-capita consumption growth

13Given that the equity premium in equation (17) loads positively on both pt and nt, the model can also
potentially explain the negative coefficient of the “good”/right-tail part of the variance risk premium in excess
equity return predictability regressions in Feunou et al. (2019), Kilic and Shaliastovich (2019), and Londono and
Xu (2021).
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of non-durables and services, annual dividend growth, and the financial series used before for

the 1990-2017 period. The following unconditional moments are used in the classical minimum

distance estimation: consumption growth mean, standard deviation, scaled skewness and excess

kurtosis, the standard deviation of annual dividend growth, real risk-free rate mean, real risk-free

rate standard deviation, the first lag autocorrelation of the real risk-free rate, the average equity

premium, physical standard deviation and skewness of equity returns, the log-price-dividend

ratio mean, standard deviation of the log-price-dividend ratio, the first lag autocorrelation

of the log-price-dividend ratio, the mean of the variance risk premium (defined as the risk-

neutral variance minus the physical variance of the log-return in the model and VIX2 minus

the physical variance in the data), and the risk-neutral skewness of equity returns. To simplify

the estimation, we set β = 1.00 and pt = p̄.14 We also set q̄ = 1, because it always enters asset

pricing equations multiplied by γ, rendering it unidentified. We use a diagonal weighting matrix

to avoid collinearity issues and achieve a more balanced moment fit. The weighting matrix is

the diagonal of the inverse of the covariance matrix estimated from re-sampling 10,000 time

series of historical length with a block length of 60 months.

The first column of Table 4 shows the parameter estimates. In terms of preferences, γ is

close to 4.0, but, of course, this coefficient no longer represents risk aversion.15 The qt process

is very persistent, as is typical in habit models; ρq is the main determinant of the risk-free rate

and price-dividend ratio autocorrelation. As expected, ωp,t shocks decrease risk aversion, that

is σqp < 0, whereas ωn,t shocks increase risk aversion, that is σqn > 0. The latter coefficient is of

a much larger magnitude than the former. Unconditionally, the bad environment process only

accounts for 11.1% of the consumption growth variance ( σ2
cnn̄

σ2
cpp̄+σ

2
cnn̄

), but, because pt is constant,

nt drives all of its time variation. Therefore, this ratio increases substantially during recessions.

Given that p̄, the unconditional shape parameter of the good environment shock, is greater

than 10, it follows from the properties of the gamma distribution that good environment shocks

show only mild non-Gaussianities. In contrast, as n̄ is less than 1, bad environment shocks are

very skewed and non-Gaussian. The nt process is highly persistent. The leverage coefficient for

dividend growth (γg) is close to 11.00.

The first column of Table 5 shows how the model fits the data moments. On the right hand

14Figure 2 suggests that the right-tail of the conditional consumption growth distribution is largely constant.
ωp,t+1 also enters the aggregate portfolio return expression in (16). Bakshi, Crosby, and Gao (2021) document
that the right tail of the conditional S&P500 return distribution is relatively stable at the monthly frequency.

15The median of the local risk aversion process (γeqt) is 9.80 and its 95th percentile value is 16.82.
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side, we show the data moments and the corresponding standard errors. The bottom lines show

the test of the over-identifying restrictions.16 It is well-known that Wald tests over-reject in

small samples. We therefore run a bootstrap, simulating the model at the estimated parameters

10,000 times, re-estimating the model starting from the “true” parameters and recording the

test values. There is indeed substantial finite sample bias, with the true p-value for a 5% test

being 10.19%. What we report in Table 5 is the empirical p-value. The test does not reject the

model at the 5% level. In fact, the model moments are always within one standard error band

around the data moments.

Taking a closer look at the various moments, the model does generate an equity premium

that is economically smaller than the one observed in the data (but falls within one standard

error around it). This is mainly driven by the large data standard error associated with the

equity premium, which results in a relatively low weight for this moment in the estimation.

Importantly, the model fits both the mean of the variance risk premium, and average risk-neutral

skewness. The model provides such a good fit while being consistent with the consumption

growth moments. This includes generating moderately positive unconditional skewness for

consumption growth (it is an insignificant -0.06 in the data). Recall that the nt process is very

skewed and leptokurtic but unconditionally this process only accounts for a modest fraction of

the total consumption variance and helps fit the data during recessions, especially the Great

Recession.

To further test the model, we consider two moments not used in the estimation: consumption

growth percentile shifts conditional on the variance risk premium and the autocorrelation of

the variance risk premium. Table 6, Panel B, reveals that the model somewhat underestimates

the downward shift in the 10th consumption growth percentile going from low to high variance

risk premiums, but it is within two standard errors of the data moment.17

The first column of Table 5 shows that the model implied persistence of the variance risk

premium is 0.99, much higher than in the data. The difference is both statistically and eco-

nomically large. The model’s failure in fitting the low persistence of the variance risk premium

16Under the null, the objective function value follows the distribution Z′(W−1 −W−1J(J ′W−1J)−1J ′W−1)Z,
where Z is a random vector following a multivariate zero-mean Gaussian distribution with the covariance matrix
representing the actual covariance matrix of orthogonality conditions, W is the weighting matrix, and J is the
Jacobian of the orthogonality conditions (see Jagannathan and Wang, 1996, and Wooldridge, 2002). We estimate
the actual covariance matrix by block-bootstrapping 10,000 samples of historical length using a block length of
60 months.

17We also verify that the shift is significant when we simulate 10,000 samples of historical length from the
model, with the 99% confidence interval for the quantile shift not including zero.
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is easily understood. Both state variables driving asset price dynamics (nt and qt) are highly

persistent. The variance risk premium computed using log returns in (21) in fact only depends

on nt and thus inherits its persistence.

We next investigate if the model is flexible enough to match this moment by explicitly

including it into the classical minimum distance estimation. In terms of the parameters, Table

4 shows that the autoregressive coefficient for nt drops from over 0.99 to less than 0.64. Other

parameters that change considerably in relative terms are n’s innovation standard deviation that

drops by more than 25%; p̄, which increases more than five-fold rendering the good environment

shocks essentially Gaussian, and the “leverage variable” for dividend growth which increases by

more than 35%. The second column of Table 5 shows that the model now replicates the low

persistence of the variance risk premium, delivering an autocorrelation of about 0.64 versus 0.52

in the data. While the model is statistically rejected at the 1% significance level, economically

the overall fit is rather adequate. For example, while the standard deviation of the log-price-

dividend ratio in the model is more than 2 standard deviations above the data counterpart,

the model-implied value of 0.45 would be consistent with the data if the payout is computed

as in Boudoukh et al. (2007) and would be lower than the data if the payout is computed

as in Longstaff and Piazzesi (2004). Overall, of the 17 moments used in the estimation, only

two moments are outside a two standard error band around the data moments, the other one

being the standard deviation of dividend growth. Table 6 (Panel C) indicates that the model

again matches the left tail consumption growth percentile shifts conditional on the variance risk

premium observed in the data, although these moments are not used in the estimation.

4.3 Model with a Preference Shock

To resolve the trade-off introduced by fitting the variance risk premium persistence, we

now augment the model with a pure preference shock. There are at least two requirements

for the preference shock. First, it needs to be non-Gaussian, because, as we have shown, a

Gaussian shock does not affect the variance risk premium. Second, the preference shock variance

should vary through time and have relatively low persistence, because the variance risk premium

persistence is low in the data. This follows from the variance risk premium being a linear

function of model’s shocks variances in equations (18) and (20). Fortunately, such rapidly mean-

reverting dynamics is consistent with direct and indirect evidence in the recent asset pricing

literature (e.g., Martin, 2017, Eraker and Yang, 2020, and Bekaert, Engstrom, and Xu, 2021).
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We do not micro-found this preference shock and it could arise through various mechanisms.

For example, Martin and Papadimitriou (2020) show how aggregate risk aversion varies with

respect to news shocks in an economy with log-utility agents, which have heterogenous beliefs.

We keep the macroeconomic dynamics as in the benchmark model and introduce a new

preference shock, ωq,t+1, into the log-inverse consumption surplus ratio equation (6):

qt+1 = q̄ + ρq(qt − q̄) + σqpωp,t+1 + σqnωn,t+1 + σqqωq,t+1. (22)

In line with the rest of our model, ωq,t+1 follows a demeaned gamma distribution:

ωq,t+1 ∼ Γ(st, 1)− st,

st+1 = s̄+ ρs(st − s̄) + σsqωq,t+1.

(23)

The model is solved in closed form exactly as before except that there is one more state

variable, st. We again estimate the model via the classical minimum distance methodology,

but also explicitly include the variance risk premium autocorrelation at lag 1 as a moment to

match.18

Going back to Table 4, the estimated model parameters are in the last column. The pure

preference shock is strongly non-Gaussian (s̄ is clearly less than 1), which is required for the

shock to have a notable impact on the variance risk premium. Its persistence is low (ρs =

0.4713), which helps to fit the low variance risk premium persistence. The parameters imply

that unconditionally only 21.35% of the qt process, which also measures stochastic risk aversion,

is driven by a “sentiment” shock not correlated with fundamentals. While many of the other

parameters are similar to the ones obtained for the full model before (e.g. qt and nt are still

highly persistent), there are also some distinct changes. For example, the qt process loads less

heavily on ωn,t and the nt process is now estimated to be less non-Gaussian with its mean 10

times higher than in the benchmark model. The dependence of the consumption process on nt

(pt) has also decreased (increased). This is logical given that the preference shock now helps

account partly for asset price variation.

Table 5 shows that, while the model is statistically rejected at the 5% significance level, it

fits the various moments rather well: the vast majority of the model-implied moments is within

18We did experiment with a model where qt is also the shape parameter of the ωq,t+1 shock, limiting the
number of state variables to 2. However, in such estimations qt invariably hits its lower boundary of zero.
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one standard deviation of the data counterparts. There is not a single moment outside a two

standard deviation band around the data counterpart.

Table 6 (Panel D) indicates that this model also matches the left tail consumption growth

percentile shifts conditional on the variance risk premium observed in the data. The model-

implied shift is now slightly larger than it was in the benchmark model, and close to within

one standard error of the data moment. In sum, the model with a preference shock fits all the

salient features of the data. Note that while a preference shock could be introduced in the other

models as well to help fit the variance risk premium persistence, none of the other models has

the mechanisms in place to fit all the other salient stylized facts we study in this article.

4.4 Additional Results on Option Prices

While the variance risk premium has received a lot of attention, the literature has generated

a number of additional option pricing puzzles. We now verify whether our benchmark model

(see the estimation in Table 4) can match these additional stylized facts, including the volatility

smirk (Rubinstein, 1994), highly negative straddle returns (Coval and Shumway, 2001; Bakshi,

Crosby, and Gao, 2021, for more recent and detailed evidence), and a very flat term structure

of forward variance claims (Dew-Becker et al., 2017; Eraker and Wu, 2017). Our procedure to

compute option prices is described in Online Appendix IV.

First, Panel A of Figure 5 plots Black-Scholes-implied volatilities for 1 month put options

against their strike prices. The data values are from OptionMetrics.19 Unfortunately, the

coverage only starts in 1996. The model replicates the slope of the implied volatility well,

but slightly underestimates the implied volatility level. This is likely due to the fact that

OptionMetrics data covers 1996-2017, while the model is estimated for the 1990-2017 sample

where the unconditional stock market volatility is lower.

Second, we compute the returns to the strategy of buying 1 month at-the-money puts and

calls (a so called straddle). The annualized return for this strategy in the model is -160.48%

with a corresponding data value of -187.30%.

19To construct the implied volatility pattern in the data, each month we look for the date closest to the end of
month on which prices for options with maturities between 28 and 31 days are available (each month all options
used to compute the implied volatility curve have the same maturity, but this maturity can vary between 28 and
31 days across the months). We then linearly interpolate the implied volatilities as a function of the strike to the
current price ratio for the [0.9;1] strike-to-price ratio interval with a step size of 0.01. The [0.9;1] interval is due
to data availability. Plotted data values are averages over monthly interpolated values.
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Third, we study the term structure of forward variance claims.20 An n-period time t forward

variance claim is an asset which pays the realized variance between time t + n and t + n + 1.

We express forward variance prices as annualized volatilities. Panel B of Figure 5 illustrates

the term structure of 1 month forward variance claims. Data values are from Dew-Becker et

al. (2017) (Eraker and Wu, 2017, also document a similar pattern). Unfortunately, the data is

only available 1995:M12-2013:M9. The model replicates the shape of the forward variance claim

term structure well, but again slightly underestimates its level. This is once more likely due to

the fact that the unconditional stock market volatility is lower during 1990:M1-2017:M12 than

during 1995:M12-2013:M9.

Lastly, the annual VIX-SVIX difference produced by the model is 1.29%, whereas Martin

(2017) reports a 1.41% value. None of the extant models we analyzed before produces values

that close (see Online Appendix II).

5. Conclusion

In this article, we use properties of the variance risk premium, the premium for selling vari-

ance risk in the equity market, to discipline and refute existing consumption-based asset pricing

models. The main result from our exercise is that extant models fail to match simultaneously

even simple features of asset returns such as the equity premium with features of options prices

as reflected in the properties of the variance risk premium and risk-neutral skewness. Impor-

tantly, they also cannot match the strong link between the left tail of the consumption growth

distribution and the magnitude of the variance risk premium. We therefore introduce a new and

tractable model that does fit these facts. The model features a “BEGE” structure with “good”

and “bad” volatility driving consumption growth and risk aversion shocks, with bad (good)

volatility decreasing (increasing) unscaled skewness of these shocks. The variance premium in

this model intuitively loads positively on bad and negatively on good uncertainty. The model

fits the data even better when a small sentiment shock is allowed. The model also fits volatility

smirks in options, highly negative straddle returns, a slight upward slope in forward variances,

and Martin’s (2017) VIX-SVIX puzzle.

While we examine models representing the various main asset paradigms, research is con-

tinually evolving and alternative models may likewise be successful. For instance, Schreindorfer

20Dew-Becker et al. (2017) show that this term structure is informative about different mechanisms of risk
premia, as many equilibrium models fail to generate it. Drechsler (2015) argues that the Dew-Becker et al. (2017)
results are not robust in more recent sample periods with more active variance swap trading.
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(2019) combines a non-linear data-generating process for consumption growth (a special case

of the BEGE fundamentals), with generalized disappointment aversion preferences as in Rout-

ledge and Zin (2010) and is able to match several of the data features we consider. However,

Drechsler (2018) shows that disappointment aversion preferences imply counterfactual option

price dynamics once the disappointment threshold is passed. Our model is not subject to this

critique. Schreindorfer (2019) also matches a decomposition of the equity premium in compo-

nents driven by tail risks and normal risks stressed by Bollerslev and Todorov (2011). Beason

and Schreindorfer (2021) show that extant representative agent models fare poorly in matching

this evidence. Interestingly, Chabi-Yo and Loudis (2021) show that the new BEGE model we

propose in this paper does well in this exercise reproducing the equity premium composition

both unconditionally and conditionally.

There are alternative empirical approaches to discipline and refute models that may prove

useful for further testing of the new BEGE model. For example, Zviadadze (2021) shows that

the term structure of risk in expected returns and cash flow growth is challenging to a number

of standard equilibrium models (including disaster risk and long-run risk models). She assigns a

large role to the dynamics of consumption variances in matching stock return dynamics. Because

time-varying consumption variances play a large role in the BEGE model we introduce, even in

the variant with preference shocks, it is potentially consistent with her findings.
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Figure 1: Variance and Volatility Risk Premia. Data is monthly from January 1990 to December
2017. The variance risk premium is the difference between annualized V IX2 and expected
physical variance of the S&P500 return from Corsi (2009)-type model. The volatility risk
premium is the difference between annualized VIX and expected physical standard deviation of
the S&P500 return from Corsi (2009)-type model. NBER recessions are shaded.
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Figure 2: Percentiles of Next Month Consumption Growth Conditional on the Current Variance Risk
Premium in the US data. Data is monthly from January 1990 to December 2017. Green up-pointing
triangles correspond to quantiles conditional on the low variance risk premium, and red down-pointing
triangles correspond to quantiles conditional on the high variance risk premium. The variance risk
premium is the difference between V IX2 and expected physical variance of the market return obtained
from a Corsi (2009)-type model. High variance risk premium is defined as the variance risk premium
above the 80th unconditional percentile in the data and low variance risk premium as the variance
risk premium below the 20th unconditional percentile in the data. *** and * correspond to statistical
significance at the 1% and 10% levels, respectively. Statistical significance is determined based on block-
bootstrap standard errors computed by re-sampling 10,000 time series of historical length with a block
length of 60 months.
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Figure 3: Percentiles of Next Period Consumption Growth Conditional on the Current Variance Risk
Premium in the US Data: Alternative Samples. Green up-pointing triangles correspond to quantiles
conditional on the low variance risk premium, and red down-pointing triangles correspond to quantiles
conditional on the high variance risk premium. High variance risk premium is defined as the variance
risk premium above the 80th unconditional percentile in the data and low variance risk premium as
the variance risk premium below the 20th unconditional percentile in the data. ** and * correspond to
statistical significance at the 5% and 10% level. Statistical significance is determined based on block-
bootstrap computed by re-sampling 10,000 time series of historical length with a block length of 60
months.
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Figure 4: Bad Environment - Good Environment Distribution. Graphs are probability density
functions.
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Figure 5: Out-of-sample Option Moments Fit. Panel A plots Black-Scholes-implied volatilities
for 1 month put options against the strike price. Volatilities are annualized. The model values
are computed from 10,000 monthly observations simulated under the estimated model parame-
ters. Data 1996:M1-2017:M12 averages are from OptionMetrics. Panel B plots 1 month forward
realized variance claim prices expressed as annualized volatilities. Data 1995:M12-2013:M9 av-
erages are from Dew-Becker et al. (2017).
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Table 1: Percentiles of Next Month Consumption Growth Conditional on the Current Variance
Risk Premium in the US data. Data is monthly from January 1990 to December 2017. In Panels
A, B, and C the variance risk premium is the difference between VIX2 and the expected physical
variance from a Corsi (2009)-type model. In Panel D the variance risk premium is computed
using conditional physical variance from GJR-GARCH model of Glosten, Jagannathan and
Runkle (1993). In Panels D and E, the high variance risk premium is defined as the variance
risk premium above the 80th unconditional percentile in the data and low variance risk premium
as the variance risk premium below the 20th unconditional percentile in the data. In Panel E, the
consumption growth is for the month after the variance risk premium month. Standard errors in
parentheses are block-bootstrap standard errors computed from 10,000 re-samples of historical
length with a block length of 60 months. *** and ** correspond to statistical significance at
the 1% and 5% levels, respectively.

Panel A: High and low variance risk premia are defined as 80th and 20th unconditional percentiles, respectively

High variance risk premium Low variance risk premium High-low Difference

10th percentile -0.24% -0.01% -0.23%***
(0.07%) (0.04%) (0.08%)

50th percentile 0.19% 0.20% -0.01%
(0.04%) (0.03%) (0.05%)

90th percentile 0.51% 0.50% 0.01%
(0.05%) (0.04%) (0.06%)

Panel B: High and low variance risk premia are defined as 75th and 25th unconditional percentiles, respectively

High variance risk premium Low variance risk premium High-low Difference

10th percentile -0.25% -0.04% -0.20%***
(0.06%) (0.03%) (0.04%)

50th percentile 0.18% 0.20% -0.02%
(0.03%) (0.03%) (0.04%)

90th percentile 0.51% 0.50% 0.01%
(0.06%) (0.02%) (0.06%)

Panel C: High and low variance risk premia are defined as 85th and 15th unconditional percentiles, respectively

High variance risk premium Low variance risk premium High-low Difference

10th percentile -0.27% -0.02% -0.26%***
(0.08%) (0.05%) (0.09)

50th percentile 0.15% 0.21% -0.06%
(0.05%) (0.04%) (0.07)

90th percentile 0.46% 0.51% -0.05%
(0.07%) (0.04%) (0.08%)

Panel D: Variance risk premium is defined as VIX-GJR-GARCH conditional variance

High variance risk premium Low variance risk premium High-low Difference

10th percentile -0.23% -0.06% -0.18%**
(0.07%) (0.07%) (0.09%)

50th percentile 0.21% 0.18% 0.02%
(0.03%) (0.03%) (0.04%)

90th percentile 0.55% 0.49% 0.06%
(0.09%) (0.04%) (0.09%)

Panel E: Below the 10th percentile consumption growth observations

Conditional on the high variance risk premium Conditional on the low variance risk premium

Variance risk premium month Consumption growth Variance risk premium month Consumption growth

August 2001 -0.98% September 2016 -0.12%
December 2000 -0.60% October 2008 -0.11%
September 1990 -0.33% August 2005 -0.10%
December 1990 -0.30% March 2013 -0.07%
November 2008 -0.28% June 1995 -0.05%
January 2009 -0.27% November 2011 -0.03%
February 2009 -0.24% August 2014 -0.01%
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Table 2: Variance and Volatility Risk Premium Moments Fit. Values are computed from
monthly data and annualized. The model variance risk premium is defined as the difference
between the conditional risk-neutral and physical variances of the next month’s log-market
return. The model volatility risk premium is defined as the difference between the conditional
risk-neutral and physical standard deviations of the next month’s log-market return. In data
the risk-neutral log-return variance is proxied by VIX2 and the physical log-return variance by
the value implied by a Corsi (2009)-type model using high-frequency data. In data the risk-
neutral log-return volatility is proxied by VIX and the physical log-return standard deviation
by the value implied by a Corsi (2009)-type model using high-frequency data. Model values are
obtained by simulating 100,000 monthly observations for each model. The data block-bootstrap
standard error in parentheses are obtained by re-sampling 10,000 time series of historical length
with a block length of 60 months. BTZ refers to Bollerslev, Tauchen, and Zhou (2009), DY to
Drechsler and Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert and Engstrom
(2017).

Panel A: Variance Risk Premium Moments Fit

BTZ DY Wachter BEGE Data

Mean 0.0000 0.0093 0.1208 0.0064 0.0195
(0.0026)

Lag 1 autocorrelation 1.00 0.90 0.99 0.95 0.52
(0.09)

Panel B: Volatility Risk Premium Moments Fit

BTZ DY Wachter BEGE Data

Mean 0.00% 2.35% 15.08% 1.87% 5.36%
(0.58%)

Lag 1 autocorrelation 1.00 0.89 0.99 0.97 0.45
(0.10)

Panel C: Skewness

BTZ DY Wachter BEGE Data

Skw(rt) 0.1698 -0.3998 -20.3167 -1.5060 -0.8680
(0.2558)

SkwQ(Rt) 0.1147 -0.6907 -26.4401 -1.7739 -1.3075
(0.1213)
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Table 3: Percentiles of Next Month Consumption Growth Conditional on the Current Variance
Risk Premium Fit: Extant Model Implications. In models the variance risk premium is defined
as the difference between the conditional risk-neutral and physical variances of log-market re-
turns. In data the risk-neutral log-return variance is proxied by VIX2 and the physical log-return
variance by the value implied by a Corsi (2009)-type model using high-frequency data. High
variance risk premium is defined as the variance risk premium above the 80th unconditional per-
centile and low variance risk premium as the variance risk premium below the 20th unconditional
percentile. Values are computed numerically by simulating time series of 1,000,000 months un-
der each model. BTZ refers to Bollerslev, Tauchen, and Zhou (2009), DY to Drechsler and
Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert and Engstrom (2017). Data
block-bootstrap standard errors in parentheses are obtained by re-sampling 10,000 time series
of historical length with a block length of 60 months. *** indicates the statistical significance
of the data value at the 1% level. For model-implied values, ***, **, and * indicate that the
value is more than 2.58, 1.96, and 1.65 standard deviations away from the data counterpart,
respectively.

Panel A: US 1990-2017
High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.24% -0.01% -0.23%***
(0.07%) (0.04%) (0.08%)

50th percentile 0.19% 0.20% -0.01%
(0.04%) (0.03%) (0.05%)

90th percentile 0.51% 0.50% 0.01%
(0.05%) (0.04%) (0.06%)

Panel B: DY
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -1.06% -0.47% −0.59%∗∗∗

50th percentile 0.16% 0.16% 0.00%
90th percentile 1.38% 0.79% 0.59%∗∗∗

Panel C: DY skipping forward one month
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -1.03% -0.47% −0.56%∗∗∗

50th percentile 0.16% 0.16% 0.00%
90th percentile 1.34% 0.79% 0.55%∗∗∗

Panel D: Wachter
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.55% -0.53% −0.01%∗∗∗

50th percentile 0.20% 0.21% -0.01%
90th percentile 0.94% 0.94% 0.00%

Panel E: BEGE
High variance risk premium Low variance risk premium High-Low Difference

10th percentile -0.31% -0.20% -0.11%
50th percentile 0.17% 0.16% 0.01%
90th percentile 0.56% 0.51% 0.05%

Panel F: Difference between Kelly’s skewnesses of consumption growth
conditional on the high and low variance risk premium

US: 1990-2017 DY Wachter BEGE
-0.18%** 0.00%** -0.01%* -0.08%
(0.09%)
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Table 4: Classical Minimum Distance Parameter Estimates. Values are monthly. The weighting
matrix is the inverse of the covariance matrix estimated from re-sampling 10,000 time series of
the historical length with a block length of 60 months. A diagonal weighting matrix is used.
Standard errors are in parentheses.

Benchmark model Fitting variance risk premium persistence
Benchmark model Preference shock model

Preferences
β 1.0000 1.0000 1.0000

(fixed) (fixed) (fixed)
γ 3.8746 3.1110 3.4381

(0.8003) (0.6958) (0.7914)
q̄ 1.0000 1.0000 1.0000

(fixed) (fixed) (fixed)
ρq 0.9940 0.9995 0.9991

(0.0139) (0.0131) (0.0172)
σqp -0.0013 -0.0014 -0.0029

(0.0006) (0.0006) (0.0012)
σqn 0.1067 0.1129 0.0300

(0.0350) (0.0306) (0.0129)
σqq 0.1984

(0.0471)
s̄ 0.0042

(0.0016)
ρs 0.4713

(0.0214)
σsq 0.0116

(0.0072)
Macroeconomic dynamics

ḡ 0.0021 0.0016 0.0020
(0.0002) (0.0002) (0.0002)

σcp 0.0008 0.0003 0.0013
(0.0003) (0.0002) (0.0003)

σcn 0.0033 0.0041 0.0019
(0.0005) (0.0005) (0.0005)

p̄ 8.0410 44.5781 2.3726
(3.2068) (7.9504) (0.8219)

n̄ 0.0600 0.0459 0.6450
(0.0241) (0.0206) (0.1753)

ρn 0.9915 0.6405 0.9992
(0.0183) (0.0327) (0.0196)

σnn 0.0271 0.0200 0.0236
(0.0106) (0.0085) (0.0104)

γg 10.9229 14.9282 13.0802
(2.9444) (3.5109) (3.3853)
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Table 5: Classical Minimum Distance Moments Fit. Values are monthly. AC1 is lag 1 autocorre-
lation. The weighting matrix is the inverse of the covariance matrix estimated from re-sampling
10,000 time series of the historical length with a block length of 60 months. The diagonal
weighting matrix is used. In data the risk-neutral log-return variance is proxied by VIX2 and
the physical log-return variance by the value implied by a Corsi (2009)-type model using high-
frequency data. p-values for the overidentification test-statistics are computed by simulating
10,000 time series of historical length under the estimated parameters, re-estimating the model
on each simulated time series and obtaining the corresponding overidentification statistic, and
using critical values from this distribution. *, ** and *** correspond to a rejection at the 10%,
5%, and 1% significance levels, respectively.

Moment Benchmark model Fitting variance risk premium persistence Data Data standard error
Benchmark model Preference shock model

Macroeconomic dynamics
E(gt) 0.0021 0.0016 0.0020 0.0020 0.0002
Std(gt) 0.0024 0.0024 0.0025 0.0025 0.0002
Skw(gt) 0.2920 -0.1914 0.0228 -0.0638 0.3654
ExKur(gt) 1.8104 2.2923 2.3479 2.2779 1.0635
Std(dt) (annual) 0.0926 0.1278 0.1116 0.0771 0.0202

Risk-free rate
E(rft) 0.0001 0.0004 0.0005 0.0005 0.0004
Std(rft) 0.0017 0.0014 0.0016 0.0016 0.0001
AC1[rft] 0.9874 0.9604 0.9738 0.9735 0.0093

Equity
E(rt − rft) 0.0038 0.0031 0.0032 0.0057 0.0027
Std(rt) 0.0429 0.0477 0.0391 0.0426 0.0039
Skw(rt) -1.0295 -1.2684 -0.9323 -0.8680 0.2258
E(pdt) 6.3722 6.2982 6.3920 6.3969 0.0644
Std(pdt) 0.2582 0.4497 0.3249 0.2796 0.0377
AC1[pdt] 0.9975 0.9995 0.9991 0.9917 0.0079

Options

V arQ(rt)− V ar(rt) 0.0012 0.0010 0.0015 0.0016 0.0004
SkwQ(Rt) -1.3095 -1.3892 -1.3015 -1.3075 0.1213
AC1[V arQ(rt)− V ar(rt)] 0.9915 0.6405 0.5152 0.5197 0.0943

(not in the estimation)
Overidentification test-statistic 11.5829* 55.5514*** 7.1334**
p-value 9.91% 0.00% 1.17%
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Table 6: Percentiles of Next Month Consumption Growth Conditional on the Current Variance
Risk Premium: Model Implications. The model variance risk premium is defined as the dif-
ference between the conditional risk-neutral and physical variances of next month’s log-market
return. In data the risk-neutral log-return variance is proxied by VIX2 and physical log-return
variance by the value implied by a Corsi (2009)-type model using high-frequency data. High
variance risk premium is defined as the variance risk premium above the 80th unconditional per-
centile and low variance risk premium as the variance risk premium below the 20th unconditional
percentile. Values are computed numerically by simulating time series of 100,000 months under
each model. Data block-bootstrap standard errors in parentheses are obtained by re-sampling
10,000 time series of the historical length with a block length of 60 months. *** indicates the
statistical significance of the data value at the 1% level.

Panel A: US data 1990M1-2017M12

High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.24% -0.01% -0.23%***
(0.08%)

50th percentile 0.19% 0.20% -0.01%
(0.05%)

90th percentile 0.51% 0.50% 0.01%
(0.06%)

Panel B: Benchmark model

High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.11% -0.05% -0.07%

50th percentile 0.19% 0.19% 0.00%

90th percentile 0.53% 0.52% 0.01%

Panel C: Benchmark model fitting the variance risk premium persistence

High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.23% -0.10% -0.12%

50th percentile 0.14% 0.17% -0.03%

90th percentile 0.47% 0.49% -0.02%

Panel D: Preference shock model

High variance risk premium Low variance risk premium High-Low difference

10th percentile -0.17% -0.04% -0.14%

50th percentile 0.20% 0.17% 0.03%

90th percentile 0.53% 0.49% 0.04%
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Online Appendix I: The Variance Risk Premium under Log-

Normality

Denote by Mt+1 the gross pricing kernel at time t+ 1, and Rt+1 the gross equity return at

time t + 1. In no arbitrage economies, the usual pricing condition implies Et[Mt+1Rt+1] = 1.

We use lowercase letters to indicate the natural logarithms of upper case variables.

Proposition. If Mt+1 and Rt+1 are conditionally log-normal, then the conditional equity

premium and the conditional variance risk premium can not simultaneously be positive.

Proof: Given that Mt+1 and Rt+1 are conditionally log-normal:

mt+1

rt+1

 ∼ N (

m̄t

r̄t

 ,

σ2
m,t σmr,t

σmr,t σ2
r,t

),

the physical return variance can be computed as:

V art(Rt+1) = Et(R
2
t+1)− Et(Rt+1)2 = e2r̄t+2σ2

r,t − e2r̄t+σ2
r,t = e2r̄t+σ2

r,t(eσ
2
r,t − 1). (24)

The risk-neutral expectation is:

EQt (Rt+1) =
Et(Mt+1Rt+1)

Et(Mt+1)
.

The risk-neutral variance can now be computed as:

Et(Mt+1) = Et(e
mt+1) = em̄t+0.5σ2

m,t ,

Et(Mt+1Rt+1) = Et(e
mt+1+rt+1) = em̄t+r̄t+0.5σ2

m,t+0.5σ2
r,t+σmr,t ,

EQt (Rt+1) = er̄t+0.5σ2
r,t+σmr,t ,

Et(Mt+1R
2
t+1) = Et(e

mt+1+2rt+1) = em̄t+2r̄t+0.5σ2
m,t+2σmr,t+2σ2

r,t ,

EQt (R2
t+1) = e2r̄t+2σmr,t+2σ2

r,t ,

V arQt (Rt+1) = EQt (R2
t+1)− EQt (Rt+1)2 = e2r̄t+2σmr,t+2σ2

r,t − e2r̄t+σ2
r,t+2σmr,t =

e2r̄t+σ2
r,t+2σmr,t(eσ

2
r,t − 1).

(25)

Comparing the final line of (25) to the final line of (24), we can see that in order for the
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variance risk premium to be positive (V arQt (Rt+1) > V art(Rt+1)) as in the data, it must be

the case that σmr,t > 0.

However, note that σmr,t > 0 implies (counterfactually) a negative equity premium. This

can be seen from the typical Euler equation using properties of the log-normal distribution:

Et(Mt+1Rt+1) = 1,

em̄t+r̄t+0.5σ2
r,t+0.5σ2

m,t+σmr,t = 1,

em̄t+r̄t+0.5σ2
r,t+0.5σ2

m,t = e−σmr,t ,

Et(Rt+1)Et(Mt+1) = e−σmr,t ,

lnEt(Rt+1)− rf,t = −σmr,t,

(26)

where rf,t is the log-risk-free rate.

Online Appendix II: Extant Models

Bollerslev, Tauchen, and Zhou (2009)

The utility function is:

Ut =
[
(1− δ)C

1−γ
θ

t + δ(Et
[
U1−γ
t+1

]
)

1
θ
]
, (27)

where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preferences, γ is the

coefficient of relative risk-aversion, θ = 1−γ
1− 1

ψ

and ψ is the intertemporal elasticity of substitution.

The dynamics for log consumption and dividend growth, gt+1 and dt+1, respectively, are:

gt+1 = dt+1 = µg + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1,

zg,t+1 ∼ N (0, 1), zσ,t+1 ∼ N (0, 1), zq,t+1 ∼ N (0, 1),

(28)

where µg is the consumption growth mean, σ2
g,t the conditional variance of the consumption

growth, and qt is the conditional variance of the consumption growth variance.

The model is calibrated monthly to fit reasonable unconditional levels of the equity premium

and risk-free rate and the slope coefficient from regressing excess equity returns on the variance
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of the risk premium. However, for this calibration exercise the authors do not refer to any

particular time period.

Drechsler and Yaron (2011)

The utility function is:

Ut =
[
(1− δ)C

1−γ
θ

t + δ(Et
[
U1−γ
t+1

]
)

1
θ
]
. (29)

There are 5 macroeconomic variables, which dynamics follow:



gt+1

xt+1

σ̄2
t+1

σ2
t+1

dt+1


=



g0

x0

σ̄2
0

σ2
0

d0


+



0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ̄2 0 0

0 0 (1− ρσ2) ρσ2 0

0 φ 0 0 0





gt

xt

σ̄2
t

σ2
t

dt


+Gtzt+1 + J̃t+1, (30)

where gt is logarithmic consumption growth, xt is the persistent component of consumption

growth and dt denotes dividend growth. The volatility dynamics is governed by two factors: σ2
t

represents the conditional volatility and σ̄2
t is the long-run mean component of σ2

t .

The vector zt+1 represents Gaussian innovations with Gt capturing time-variation in volatil-

ity:

zt+1 ∼ N (05×1, I5×5), (31)

GtG
′
t = diag(ϕ •

√
1− ω) Ω diag(ϕ •

√
1− ω)′ + diag(ϕ •

√
ω) Ω diag(ϕ •

√
ω)′σ2

t ,

ϕ =



ϕg

ϕx

ϕσ̄2

ϕσ2

ϕd


, ω =



ωg

ωx

ωσ̄2

ωσ2

ωd


,Ω =



1 0 0 0 Ωcd

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Ωcd 0 0 0 1


,

where diag is the vector-to-diagonal matrix operator and • is the element-wise multiplication

operator.

J̃t+1 is a 5×1 vector of demeaned jump shocks: J̃t+1 = Jt+1−EtJt+1. Jt+1 is a 5×1 vector
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of compound-Poisson jumps: Jt+1,i =
∑N i

t+1

j=1 ξji , where N i
t+1 is the Poisson counting process

for the ith jump component and ξji is the size of the jump that occurs upon the jth increment

of N i
t+1. The intensity process for Nt+1 is l1σ

2
t , where l1 =

(
0 l1,x 0 l1,σ2 0

)′
: there

are only jumps in the variance and the persistent component of consumption growth.21 The

persistent component of the expected consumption growth jump size follows an i.i.d. demeaned

Gamma distribution multiplied by -1 (that is, the distribution is negatively skewed with limited

right and unlimited left tails): ξx ∼ −Γ(νx,
µx
νx

) + µx. The variance jump size follows an i.i.d.

Gamma distribution: ξσ2 ∼ Γ(νσ2 ,
µσ2

νσ2
). Here, νi is the shape and µi

νi
, (i = x, σ2) are the scale

parameters, respectively.

The model is calibrated monthly to match a wide set of unconditional macroeconomic and

financial moments of quarterly US data 1930-2006. A related model is Drechsler (2013), who

adds model uncertainty to the framework of DY. The additional layer of uncertainty allows the

model to have smaller and less frequent jumps. Because the model analyzed in the paper features

qualitatively exactly the same fundamentals dynamics as DY with jumps to the volatility and

expected consumption growth, we do not consider it further.

Wachter (2013)

Wachter’s model is formulated in continuous time. The utility function is:

Ut = Et

∫ ∞
t

β(1− γ)Us(lnCs −
1

1− γ
ln((1− γ)Us)ds. (32)

Consumption (Ct) and dividends (Dt) follow:

dCt = µCt−dt+ σCt−dBt + (eZ − 1)Ct−dNt,

dDt = (φµ+
1

2
φ(φ− 1)σ2)Dt−dt+ φσDt−dBt + (eφZ − 1)Dt−dNt,

(33)

where Bt is a Brownian motion and Nt is a Poisson process with a time-varying intensity λt:

dλt = κ(λ̄−λt)dt+σλ
√
λtdBλ,t with Bλ,t also a Brownian motion. Z is a random variable with

a time-invariant distribution, which determines the jump (disaster) size. Bt, Bλ,t, Nt, and Z are

independent. All processes are assumed to be right continuous with left limits. For process x,

xt− denotes lims↑t xs (intuitively, this corresponds to approaching from s < t), and xt denotes

lims↓t xs (intuitively, this corresponds to approaching from s > t).

21There are no jumps in the long-run mean of the volatility.
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Parameters are chosen through a combination of estimation and calibration. First, the

distribution of jumps in consumption (eZ − 1) is estimated from a set of 17 OECD and 5 non-

OECD countries between 1870 and 2006. The unconditional jump (disaster) probability, λ̄, is

taken from Barro and Ursua (2008). Second, the remaining parameters are calibrated to match

a set of unconditional macroeconomic and financial moments of quarterly US data for the 1947-

2010 period. Importantly, the moments are matched for the sample conditional on no disasters,

since there have been no consumption disasters in 1947-2010 US data. For this purpose, the

model is Euler-discretized and sampled at the monthly frequency and months with no disasters

are picked to compute model-implied moments.

Bekaert and Engstrom (2017)

The utility function falls into the external habit class:

Et

∞∑
j=t

δj−t
(Cj −Hj)

1−γ − 1

1− γ
, (34)

where Cj is consumption and Hj is the habit stock with Cj > Hj .

Log-consumption and dividend growth (gt+1 and dt+1, respectively) follow:

gt+1 = ḡ + σcpωp,t+1 − σcnωn,t+1,

dt+1 = ḡ + σdpωp,t+1 − σdnωn,t+1,

ωp,t+1 ∼ Γ(p̄, 1)− p̄,

ωn,t+1 ∼ Γ(nt, 1)− nt,

nt+1 = n̄+ ρn(nt − n̄) + σnnωn,t+1,

(35)

where Γ(x, y) is a gamma distribution with shape parameter x and scale parameter y.

Following Campbell and Cochrane (1999), St = Ct−Ht
Ct

, which can be interpreted as the

consumption surplus ratio, is modeled in logs as an autoregressive process:

st+1 = s̄+ φ(st − s̄) + λt(gt+1 − ḡ),

λt =


1
st

√
1− 2(st − s̄)− 1, if st < st,max

0, otherwise

, (36)

st,max = s̄+
1

2
(1− S̄2

t ),
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S̄t =

√
(σ2
cpp̄+ σ2

cnnt)
γ

1− φ− b
γ

.

The model is estimated in 3 steps. First, the consumption growth parameters (ḡ, σcp, σcn, p̄,

n̄, ρn, and σnn) are estimated via classical minimum distance to match unconditional moments

of quarterly US consumption growth for the 1958-2013 period. Second, dividend growth param-

eters (σdp and σdn) are estimated to match unconditional dividend growth volatility and the

correlation between consumption and dividend growth. Third, the preference parameters (δ, γ,

s̄, φ, and b) are estimated to minimize the distance between the model-implied and 1958-2013

US unconditional asset pricing moments.
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Model Parameters

Model Parameters. The notation follows original articles. Parameterizations are monthly except
for the annual parameterization in Wachter (2013). For Bollerslev, Tauchen, and Zhou (2009)
κ1 is the constant in Campbell and Shiller (1988) log-linearization of the aggregate market
return: rt+1 = κ0 + κ1ωt+1 − ωt + dt+1.

Panel A: Bollerslev, Tauchen, and Zhou (2009)

Preferences δ γ ψ κ1

0.997 10 1.5 0.9

gt µg
0.0015

σ2
g,t aσ ρσ

1.34 · 10−6 0.978

qt aq ρq φq
2 · 10−7 0.8 0.0010

Panel B: Drechsler and Yaron (2011)

Preferences δ γ ψ
0.999 9.5 2.0

gt g0 ϕc ωc
0.0016 0.0066 0.5

xt x0 ρx ϕx ωx l1,x µx νx
0 0.976 0.0002 1 0.0667 0.0008 1

σ̄2
t σ̄2

0 ρσ̄2 ϕσ̄2 ωσ̄2

0.015 0.985 0.1 0

σ2
t σ2

0 ρσ2 ϕσ2 ωσ2 l1,σ2 µσ2 νσ2

0 0.87 0.35 1 0.0667 2.55 1

dt d0 φ ϕd ωd Ωcd
0.0016 2.5 0.0376 0.125 0.2

Panel C: Wachter (2013)

Preferences β γ
0.012 3

Ct µ σ Z (jump size)
0.0252 0.02 Barro and Ursua (2008) - OECD countries

Dt φ
2.6

λt λ̄ κ σλ
0.0355 0.08 0.067

Panel D: Bekaert and Engstrom (2017)

Preferences δ γ s̄ φ b
0.9999 11.43 -1.5585 0.9963 0.0099

gt ḡ σcp σcn p̄ n̄ ρn σnn
0.0014 0.0007 0.0019 11.43 1.56 0.91 0.32

dt σdp σdn
-0.0055 0.0217
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General Asset Pricing Fit. Values are unconditional moments. The data is 1990:M1-2017:M12.
Moments are annualized monthly values. In data, the aggregate stock market is approximated
by S&P500 index. Real risk-free rate is approximated as the difference between monthly nominal
risk-free rate from Ibbotson Associates and the monthly counterpart of Survey of Professional
Forecasters expected inflation for the corresponding quarter. Block-bootstrap standard errors
in parentheses are obtained by re-sampling 10,000 time series of the historical length with a
block length of 60 months. ** and *** correspond to a rejection of the model at the 5% and
1% significance levels, respectively. BTZ refers to Bollerslev, Tauchen, and Zhou (2009), DY to
Drechsler and Yaron (2011), Wachter to Wachter (2013), and BEGE to Bekaert and Engstrom
(2017).

BTZ DY Wachter BEGE Data
E(rf,t) 0.69% 0.95% 0.47% 1.24% 0.64%

(0.60%)
Std(rft) 9.86% 2.12% 2.73% 1.46% 1.92%

(0.18%)
E(rt − rft) 7.79% 6.04% 7.53% 5.99% 4.92%

(2.69%)
Std(rt) 5.70% 18.10% 21.31% 16.81% 14.64%

(1.33%)
E( Pt

Dt
) 2.04 19.96 93.77 19.53 51.95

(4.69)
Std( Pt

Dt
) 0.09 2.96 26.72 5.35 14.30

(2.61)
χ2-test 3468∗∗∗ 190∗∗∗ 130∗∗∗ 144∗∗∗

χ2-test: no P
D stats 2645∗∗∗ 12∗∗ 43∗∗∗ 20∗∗∗

We now discuss models’ general asset pricing fit in the table above in more details. Recall

that the fit of the BTZ model is poor, because their calibration focused on the unconditional

equity premium and risk-free levels, and the zero lower bound on both the consumption growth

variance and the variance of consumption growth variance is hit in more than 10% of the

simulated time points, leading to significant deviations from their theoretical counterparts. For

instance, the average annualized physical variance of the equity return obtained by plugging

the values into equation (12) in the paper is 5.70%, which is about one third of the data

counterpart. As another example, plugging the numbers into equation (6) in the paper results

in an average annual price-dividend ratio of 2.04, compared to its data counterpart of over 40.

The model parameters also imply that the consumption growth variance (σ2
g,t) and the variance

of consumption growth variance (qt) both hit the zero-lower bound in more than 10% of the

simulations. This results in significant deviations of simulated asset prices from their theoretical

counterparts. For instance, theoretically, the unconditional equity premium in Table ?? is

7.79%, but the population mean from sampling 100,000 observations is 14.12%. The population

value is much higher, because the equity premium is increasing in consumption growth volatility

and the volatility of volatility variables, and simulated values for these volatilities are higher than
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implied by the theoretical model, because the left tails of their distributions are cut due to the

zero-lower bound. Analogously, sampling 100,000 observations to infer the population mean for

the interest rate delivers an average risk-free rate of −2.95% compared to the theoretical value of

0.69%. The population value is much lower for the same reason as before, but now the risk-free

rate is decreasing in the consumption growth volatility and the volatility of volatility variable.

Apparently, the theoretical asset pricing formulas are unreliable when zero-lower bounds are

violated so frequently.

The DY model generally does very well with respect to the risk-free rate and equity return

moments generating values for the means of both variables within a two standard deviation

band around the data moments. It slightly overshoots equity return volatility, but it also

underestimates the variability of the price-dividend ratio by an order of magnitude.

The asset pricing statistics for Wachter’s model are computed for the population including

disasters. Asset pricing statistics for the sample excluding disasters (which Wachter argues to be

the best comparison for the post-war US data) are not very different (for instance, the average

equity premium is slightly higher and less volatile), because the intensity of the disaster (λt) and

shocks to it, not the disaster realization itself, are the key variables driving return dynamics. The

sample including realized disasters, unlike the sample excluding disasters, implies rather extreme

consumption and dividend growth statistics: for instance, the annualized consumption growth

volatility in the sample with disasters is 6.22% versus 2.00% in the sample without disasters.

However, a consumption growth model without disasters would have no chance to fit the link

between consumption growth and variance risk premiums. The table above reports the “true”

(default-free) risk-free rate in Wachter (2013), whereas Wachter (2013) defines a government

bond rate assuming the bond defaults with a probability of 40% when a consumption disaster

occurs. This results in a substantially higher “risk-free” rate of 1.00% versus 0.47% in the table

above. Wachter’s model generally fits the salient asset return features very well, producing

average risk free rates and an equity premium close to the data moments. It does generate

excessive risk-free rate and equity return volatility, and also overshoots both the mean and

volatility of the price-dividend ratio.

The BEGE model fits the risk-free rate and equity return moments, with the exception of

generating interest rate volatility that is slightly too low. While doing better than the BTZ and

DY models, it still undershoots the mean and the variability of the price-dividend ratio.
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Martin (2017) Bound Fit. Values are computed from monthly data and annualized. Model
values are obtained by simulating 100,000 monthly observations for each model. The data
block-bootstrap standard error in parentheses are obtained by re-sampling 10,000 time series
of the historical length with a block length of 60 months. BTZ refers to Bollerslev, Tauchen,
and Zhou (2009), DY to Drechsler and Yaron (2011), Wachter to Wachter (2013), and BEGE
to Bekaert and Engstrom (2017).

BTZ DY Wachter BEGE Data

V IX 19.58% 16.70% 38.79% 17.94% 22.32%
Standard error (0.59%)

SV IX 19.61% 16.62% 32.31% 17.76% 20.91%
Standard error (0.53%)

V IX − SV IX -0.03% 0.07% 6.48% 0.18% 1.41%
Standard error (0.06%)

The Models Fit under Alternative Parameterizations

Sections 3.1-3.3 in the paper show that the extant models do not match the stylized facts

under the authors’ parameterizations. Here, we argue they cannot do so under any parameter-

ization.

First, given that BTZ is a conditionally Gaussian model, it cannot generate a positive vari-

ance risk premium under any parameterization. Second, DY is a conditionally non-Gaussian

model that does generate a positive variance risk premium. However, the consumption growth

process is conditionally Gaussian preventing the model to match the left-tail consumption

growth quantile shifts conditional on the variance risk premium under any parameterization.

Finally, the rare disaster and BEGE models cannot be as easily dismissed and we conduct

several estimation exercises to demonstrate their poor fit.

To check the Wachter’s model’s ability to match the moments of interest we perform a formal

estimation, using the classical minimum distance (CMD) methodology of Wooldridge (2002).

Importantly, the difference between the 10th percentiles of the consumption growth conditional

on the high and low variance risk premium (the first row in Table 1) is one of the moments we

try to match. However, the volatility risk premium is still too high, the risk-neutral skewness

too low, and the consumption growth quantile shift conditional on the variance risk premium

is of much smaller magnitude than in the data.

For the BEGE model, an accurate evaluation of the fit in economically interesting parameter

regions requires iterating on a high precision multi-dimensional grid, making a formal estimation

infeasible. After exploring a combination of calibrations and informal small-scale optimization,
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we fail to substantially improve the overall asset pricing fit for the BEGE model with alternative

parameter choices.

Online Appendix III: Model Solution

The continuously compounded log-risk-free rate, rft, is:

rft = f0 + fqqt + fppt + fnnt,

f0 = − lnβ + γḡ − γq̄(1− ρq),

fq = γ(1− ρq),

fp = g(mω,p),

fn = g(mω,n).

The price-dividend ratio is (see “Equity pricing” subsection of section 4.1 for the derivation

algorithm):

Pt
Dt

=
∞∑
i=1

eAi+Bipt+Cint+Diqt ,

A1 = lnβ + (1− γ)ḡ + γ(1− ρq)q̄,

B1 = −g(mω,p + γgσcp),

C1 = −g(mω,n − γgσcn),

D1 = −γ(1− ρq),

An = An−1 +A1 +Bn−1p̄(1− ρp) + Cn−1n̄(1− ρn) +Dn−1q̄(1− ρq),

Bn = Bn−1ρp − g(mω,p + γgσcp +Bn−1σpp +Dn−1σqp),

Cn = Cn−1ρn − g(mω,n − γgσcn + Cn−1σnn +Dn−1σqn),

Dn = Dn−1ρq +D1.

(37)

Formulas in (37) can be derived starting from equation (11) in the paper. The first term

can be computed by plugging in (7) and (10):

Ete
mt+1+dt+1 = Ete

m0+mqqt+mω,pωp,t+1+mω,nωn,t+1+ḡ+γg(σcpωp,t+1−σcnωn,t+1) =

Ete
m0+ḡ+mqqt+(mω,p+γgσcp)ωp,t+1+(mω,n−γgσcn)ωn,t+1 = em0+ḡ+mqqt−g(mω,p+γgσcp)−g(mω,n−γgσcn),

and plugging in m0, mq, mω,p, and mω,n from (8) yields coefficients A1, B1, C1, and D1 in (37).
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All other terms in (11) can now be computed recursively using the law of iterated expectations:

Ete
∑n
i=1 mt+i+dt+i = Et[e

mt+1+dt+1Et+1e
∑n
i=2mt+i+dt+i ] = Ete

mt+1+dt+1+An−1+Bn−1pt+1+Cn−1nt+1+Dn−1qt+1 =

Ete
m0+mqqt+mω,pωp,t+1+mω,nωn,t+1+ḡ+γg(σcpωp,t+1−σcnωn,t+1)+An−1+Bn−1(p̄+ρp(pt−p̄)+σppωp,t+1)+

Cn−1(n̄+ρn(nt−n̄)+σnnωn,t+1)+Dn−1(q̄+ρq(qt−q̄)+σqpωp,t+1+σqnωn,t+1) =

em0+ḡ+An−1+Bn−1p̄(1−ρp)+Cn−1n̄(1−ρn)+Dn−1q̄(1−ρq)+(mq+Dn−1ρq)qt+

(Bn−1ρp−g(mω,p+γgσcp+Bn−1σpp+Dn−1σqp))pt+(Cn−1ρn−g(mω,n−γgσcn+Cn−1σnn+Dn−1σqn))nt ,

and plugging in m0, mq, mω,p, and mω,n from (8) yields recursive expressions for coefficients

An, Bn, Cn, and Dn in (37).

To compute the first order Taylor approximation of the log-price dividend ratio, we first use

the chain rule to compute the partial derivatives of ln(
∑∞

i=1 e
Ai+Bipt+Cint+Diqt) with respect

to pt (
∑∞
i=1 Bie

Ai+Bipt+Cint+Diqt∑∞
i=1 e

Ai+Bipt+Cint+Diqt
), nt (

∑∞
i=1 Cie

Ai+Bipt+Cint+Diqt∑∞
i=1 e

Ai+Bipt+Cint+Diqt
), and qt (

∑∞
i=1Die

Ai+Bipt+Cint+Diqt∑∞
i=1 e

Ai+Bipt+Cint+Diqt
).

Thus, the Taylor series log-linearization of (37) around the state variables mean values is:

pdt ≈ ln[

∞∑
i=1

eAi+Bip̄+Cin̄+Diq̄] +

∑∞
i=1Bie

Ai+Bip̄+Cin̄+Diq̄∑∞
i=1 e

Ai+Bip̄+Cin̄+Diq̄
(pt − p̄)+∑∞

i=1Cie
Ai+Bip̄+Cin̄+Diq̄∑∞

i=1 e
Ai+Bip̄+Cin̄+Diq̄

(nt − n̄) +

∑∞
i=1Die

Ai+Bip̄+Cin̄+Diq̄∑∞
i=1 e

Ai+Bip̄+Cin̄+Diq̄
(qt − q̄) =

K1
0 +K1

ppt +K1
nnt +K1

q qt,

K1
p =

∑∞
i=1Bie

Ai+Bip̄+Cin̄+Diq̄∑∞
i=1 e

Ai+Bip̄+Cin̄+Diq̄
,

K1
n =

∑∞
i=1Cie

Ai+Bip̄+Cin̄+Diq̄∑∞
i=1 e

Ai+Bip̄+Cin̄+Diq̄
,

K1
q =

∑∞
i=1Die

Ai+Bip̄+Cin̄+Diq̄∑∞
i=1 e

Ai+Bip̄+Cin̄+Diq̄
,

K1
0 = ln[

∞∑
i=1

eAi+Bip̄+Cin̄+Diq̄]−K1
p p̄−K1

nn̄−K1
q q̄.

(38)
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The Taylor series linearization of ln(1 + Pt+1

Dt+1
) is:

ln(1 +
Pt+1

Dt+1
) ≈ K2

0 +K2
ppt+1 +K2

nnt+1 +K2
q qt+1,

K2
p =

∑∞
i=1Bi exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K2
n =

∑∞
i=1Ci exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K2
q =

∑∞
i=1Di exp(Ai +Bip̄+ Cin̄+Diq̄)

1 +
∑∞

i=1 exp(Ai +Bip̄+ Cin̄+Diq̄)
,

K0
2 = ln[1 +

∞∑
i=1

exp(Ai +Bip̄+ Cin̄+Diq̄)]−K2
p p̄−K2

nn̄−K2
q q̄.

(39)

The expression for the log-return is:

rt+1 ≈ r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1,

r0 = ḡ +K2
0 −K1

0 +K2
p p̄(1− ρp) +K2

nn̄(1− ρn) +K2
q q̄(1− ρq),

rp = K2
pρp −K1

p ,

rn = K2
nρn −K1

n,

rq = K2
q ρq −K1

q ,

rω,p = γgσcp +K2
pσpp +K2

qσqp,

rω,n = −γgσcn +K2
nσnn +K2

qσqn.

(40)

SVIX2 can be computed as:

SV IX2 = σ2
Q,t(

Rt+1

Rf,t
) =

1

R2
f,t

σ2
Q,t(Rt+1) =

1

R2
f,t

(EQt (R2
t+1)− (EQt Rt+1)2) =

1

R2
f,t

(Rf,tEt(Mt+1R
2
t+1)− (Rf,tEt(Mt+1Rt+1))2) =

1

R2
f,t

(Rf,tEt(Mt+1R
2
t+1)−R2

f,t) =

Et(Mt+1R
2
t+1)

Rf,t
− 1 = Et[exp(mt+1 + 2rt+1 − rf,t)]− 1.

(41)

By plugging (7), (9) and (16) into (41) we obtain:

SV IX2
t = exp(m0 + 2r0 − f0 + [mq + 2rq − fq]qt+

[2rp − g(mω,p + 2rω,p)− fp]pt + [2rn − g(mω,n + 2rω,n)− fn]nt)− 1.

(42)
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Next we compute VIX2 as the risk neutral entropy:

V IX2
t = 2 · [lnEQt (

Rt+1

Rf,t
)− EQt (ln

Rt+1

Rf,t
)] = 2 · [lnEQt (Rt+1)− EQt (lnRt+1)] =

2 · [rf,t −Rf,tEt(Mt+1 lnRt+1)] = 2 · [rf,t − exp(rf,t)Et(exp(mt+1)rt+1)].

(43)

Obtaining a closed-form expression for (43), requires computing the expectation of X · exp(X),

where X ∼ Γ(k, θ) with k being the shape and θ the scale parameter, respectively:

E[X · exp(X)] =
1

Γ(k)θk

∫ ∞
0

xk−1e−
x
θ xexdx =

1

Γ(k)θk

∫ ∞
0

x(k+1)−1e
− x

θ
1−θ dx =

1

Γ(k)θk
· Γ(k + 1) · ( θ

1− θ
)k+1 · 1

Γ(k + 1) · ( θ
1−θ )k+1

·
∫ ∞

0
x(k+1)−1e

− x
θ

1−θ dx︸ ︷︷ ︸
=1, as pdf of gamma distribution with shape k + 1 and scale θ

1−θ

=

Γ(k + 1) · ( θ
1−θ )k+1

Γ(k)θk
=

kθ

(1− θ)k+1
,

(44)

where the last step uses the property of the gamma function that Γ(k + 1) = k · Γ(k) and

the second line requires θ < 1 in order for 1
Γ(k+1)·( θ

1−θ )k+1
·
∫∞

0 x(k+1)−1e
− x

θ
1−θ dx to be a proper

probability density function. This condition is always satisfied in our estimation. Now VIX2

can be computed by plugging (7), (9), and (16) into (43):

V IX2
t = 2 · [rf,t − erf,t ·

Et{em0+mqqt+mω,pωp,t+1+mω,nωn,t+1 · (r0 + rppt + rnnt + rqqt + rω,pωp,t+1 + rω,nωn,t+1)}] =

2 · [rf,t − erf,t+m0+mqqt · Et{emω,pωp,t+1+mω,nωn,t+1 · (r0 + rppt + rnnt + rqqt)+

emω,pωp,t+1+mω,nωn,t+1 · (rω,pωp,t+1 + rω,nωn,t+1)}] = 2 · [rf,t − erf,t+m0+mqqt ·

{e−g(mω,p)pt−g(mω,n)nt · (r0 + rppt + rnnt + rqqt) + Et[e
mω,pωp,t+1emω,nωn,t+1rω,pωp,t+1]+

Et[e
mω,pωp,t+1emω,nωn,t+1rω,nωn,t+1]}] = 2 · [rf,t − erf,t+m0+mqqt · {e−g(mω,p)pt−g(mω,n)nt ·

(r0 + rppt + rnnt + rqqt) + e−g(mω,n)ntrω,pEt[e
Mω,pωp,t+1ωp,t+1] + e−g(mω,p)ptrω,nEt[e

Mω,nωn,t+1ωn,t+1]}] =

2 · [rf,t − erf,t+m0+mqqt · {e−g(mω,p)pt−g(mω,n)nt · (r0 + rppt + rnnt + rqqt)+

e−g(mω,n)ntrω,p · (−pte−g(mω,p)pt + e−mω,ppt
pt

(1−mω,p)pt+1
)+

e−g(mω,p)ptrω,n · (−nte−g(mω,n)nt + e−mω,nnt
nt

(1−mω,n)nt+1
)}],

(45)

where the last step follows from (44).
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Online Appendix IV: Option Pricing

The option pricing in our model is illustrated below using a put option as an example. The

pricing of call options is similar. The price of a put option with maturity at time T at time t

is:

Xt(Pt,K) = Et[Mt+T · (K − PT )+], (46)

where P is the price of an underlying, K is the strike price, M is the stochastic discount

factor, and the + sign indicates that the expression in the parentheses is 0 if it is negative. For

simplicity, we operate with current price-adjusted option prices:

Xt(Pt,K)

Pt
= Et[Mt+T · (

K

Pt
− PT
Pt

)+]. (47)

The expression for Mt+T can be obtained as a product of one period ahead stochastic

discount factors: Mt+T =
∏T−1
i=0 Mt+i→t+i+1. PT

Pt
can be computed as a function of price-

dividend ratios and dividend growth:
PT
DT
Pt
Dt

· DTDt . Although all components on the right hand-side

of (47) are available in closed-form, the expectation has to be evaluated numerically, because

there is no formula to assess a positive part of a component model of gamma distributions.

To compute 1 month option prices, we evaluate the expectation numerically by sampling 5

million ωp,t+1/ωn,t+1 pairs. To compute unconditional expectations, we sample a path of 10,000

monthly observations under the estimated model parameters.
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