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Stablecoin Runs and the Centralization of Arbitrage
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Abstract

We analyze the run risk of USD-backed stablecoins. Stablecoin issuers aim to keep the stablecoin

price at $1 by holding a portfolio of US dollar assets like bank deposits, Treasuries, and corporate

bonds while promising to exchange stablecoins for $1 in cash with arbitrageurs. We show that asset

illiquidity coupled with fixed redemption values reinstates panic runs among investors that only trade

stablecoins in secondary markets with flexible prices. Importantly, run risk is exacerbated by more

efficient arbitrage, implying a tradeoff between price stability and run risk. This is why stablecoin

issuers only authorize a concentrated set of arbitrageurs despite the cost to price stability. Our findings

are based on a model calibrated with a novel dataset on stablecoin arbitrage and trading activity. Our

model predicts economically significant run risk for Tether (USDT) due to its liquidity transformation.

But run risk is also sizeable for Circle (USDC) due to its less concentrated arbitrage. Finally, we show

that issuing dividends to investors would effectively reduce run risk at both USDT and USDC, which

points to a potential benefit of regulating stablecoins as securities.
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1 Introduction

Stablecoins are blockchain assets whose value is claimed to be stable at $1. The largest stablecoins are

fiat-backed. They attempt to achieve price stability by promising to back each stablecoin token with at

least $1 in US dollar-denominated assets, which range from bank deposits and Treasuries to corporate

bonds and loans. The potential for stablecoins to become a safe asset and a means of payment has

contributed to their meteoric rise. The six largest US dollar-backed stablecoins have grown from $5.6

billion in asset size at the beginning of 2020 to exceed $130 billion at the beginning of 2022.

The rapid expansion of fiat-backed stablecoins has raised financial stability concerns because of the

potential spillover effects on the traditional financial system.1 In March 2023, for example, Circle’s

USDC, the second largest fiat-backed stablecoin, saw its price plummet by more than 15% within a

few hours amid the collapse of Silicon Valley Bank. Distinct from defaults of other crypto assets, a

run on fiat-backed stablecoins like USDC would not only lead to losses for stablecoin investors but

may also strain important asset markets for deposit funding, Treasuries, and corporate bonds. These

ramifications have led to widespread discussions about how stablecoins should be regulated.

In this paper, we analyze the economics of US dollar fiat-backed stablecoins to understand whether

runs could materialize in the future and what design features of stablecoins could affect their occur-

rence. Stablecoins have features of both money market funds (MMFs) and exchange-traded funds

(ETFs). The majority of stablecoin investors can only buy and sell stablecoins in competitive sec-

ondary markets, similar to investors trading ETF shares on exchanges. Only a small set of arbitrageurs

are also approved to redeem and create stablecoins with the issuer in primary markets. Like MMFs,

stablecoin issuers meet arbitrageurs’ redemption requests with $1 in cash, which is raised from selling

the underlying reserve assets. For example, if selling pressure from investors pushes stablecoin prices

below $1, arbitrageurs can buy stablecoins in secondary markets and redeem them for $1. Efficient

arbitrage is thus key to maintaining stablecoins’ price stability in secondary markets.

1For example, see, G7 Working Group and others, 2019, “Investigating the Impact of Global Stablecoins”; ECB, 2020,
“Stablecoins: Implications for monetary policy, financial stability, market infrastructure and payments, and banking super-
vision in the euro area”; BIS, 2020, “Stablecoins: potential, risks and regulation”; and IMF, 2021, “The Crypto Ecosystem
and Financial Stability Challenges”.
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Although arbitrage is conducive to price stability, we discover that stablecoin issuers maintain a

surprisingly concentrated arbitrage sector. This is because efficient arbitrage exacerbates run risk. Sta-

blecoins remain vulnerable to panic runs despite their tradability in competitive secondary markets.

The fixed $1 redemption price in the primary market reinstates run incentives among secondary mar-

ket investors, who fear that arbitrageurs will retract from providing liquidity to them if the stablecoin

issuer can no longer honor the $1 redemption value. When arbitrage is more efficient, the same selling

or buying pressure would have a smaller price impact. However, precisely because sellers in secondary

markets would receive better prices, they are more incentivized to sell during a run. In other words,

approving more arbitrageurs for more efficient arbitrage would improve price stability at the cost of

higher run risk, and thus lower financial stability.

We further show that regulation may affect the run risk and price stability of stablecoins. Stablecoin

issuers currently do not distribute dividends to investors, in part because doing so would likely lead

stablecoins to be classified as securities. We show that allowing positive dividend payments could ef-

fectively reduce run risk and improve price stability for USDT and USDC. Thus, providing stablecoins

a path to registering as securities and paying out dividends may have benefits for financial stability.

Our empirical findings are based on a novel dataset of fiat-backed stablecoins. From the Ethereum,

Avalanche, and Tron blockchains, we collect transaction-level data on each stablecoin creation and re-

demption event for the 6 largest fiat-backed stablecoins: Tether (USDT), Circle USD Coin (USDC),

Binance USD (BUSD), Paxos (USDP), TrueUSD (TUSD), and Gemini dollar (GUSD). We obtain this

data from each blockchain by converting transaction-level blockchain data into a usable format. For

each stablecoin, we also extract average trading prices in secondary markets from the main exchanges.

Further, we obtain the composition of reserve assets for USDT and USDC, which reported these break-

downs at various points in 2021 and 2022.

From our novel data, we observe that the concentration of arbitrageurs in the primary market, where

stablecoins are directly redeemed and created with issuers, varies across stablecoins. For example,

USDT only has 6 arbitrageurs redeeming tokens during the average month, and the largest arbitrageur

accounts for 66% of the total redemption activity. In contrast, arbitrage at USDC is more competitive

with 521 redeeming arbitrageurs in an average month. We also find that trading prices in the secondary

market frequently deviate from $1. We note that these price deviations are not analogous to MMFs’

2
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“breaking the buck” nor are they an indicator of runs. Rather, stablecoin prices fall below $1 when

selling pressure in the secondary market is not fully absorbed by arbitrageurs. Similarly, stablecoin

prices could exceed $1 if buying pressure is not fully absorbed by arbitrageurs. In this sense, stablecoin

price fluctuations resemble ETF shares trading at a premium or discount to their NAVs.2

Stablecoins with fewer arbitrageurs have higher average price deviations in secondary markets.

For example, the average price deviation at USDT is 41.9 bps, while the average price deviation at

USDC is only 1.7 bps. At the same time, USDT also has more illiquid assets, like corporate bonds

and loans, as part of their reserve assets than USDC. These observations leave open the question of

how stablecoin issuers choose the arbitrage concentration they allow, and how their choice relates

to the liquidity of their reserve asset portfolios. After all, if approving more arbitrageurs improves

price stability in secondary markets, why don’t all stablecoin issuers allow for free entry and perfectly

efficient arbitrage?

We develop a model to show how the issuer’s choice of arbitrage efficiency reflects an inherent

tradeoff between financial stability and price stability. There are four types of agents: stablecoin in-

vestors, arbitrageurs, noise traders, and a stablecoin issuer. Investors decide whether to stablecoins by

comparing their expected benefits and costs. Holding stablecoins becomes less attractive when price

fluctuations induced by noise traders are larger, and when there is a greater probability of runs that

destroy the long-term benefit and recovery value of stablecoins. Investors can also prematurely sell

the stablecoins they hold in the secondary market, but they cannot directly redeem stablecoins from

the issuer. Instead, they sell to arbitrageurs, who can redeem and create stablecoins with the issuer in

the primary market at a fixed price of $1. Arbitrageurs trade stablecoins in the direction of equalizing

prices in primary and secondary markets, but leave a wedge depending on their inventory costs. The

issuer meets arbitrageur redemptions by prematurely liquidating illiquid reserve assets at a discount,

until the point at which the issuer defaults.

Our model shows that panic runs by investors on stablecoins can occur. Stablecoin investors are

limited to selling in the secondary exchange at market prices like investors trading ETF shares. The

conventional view may imply that they are less runnable like ETF shares because the trading price in

2The parallel to “breaking the buck” at money market funds would be a failure by stablecoin issuers to honor the $1
redemption value in primary markets, which has not yet materialized thus far.
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secondary markets falls as more investors sell, creating a natural strategic substitutability. However,

in the case of stablecoins, arbitrageurs are promised a fixed redemption price by the issuer. As a

result, investors who hold stablecoins may end up with less valuable stablecoins in the future due

to the costs from the issuer’s forced sales of illiquid assets to meet arbitrageurs’ redemptions at $1.

Consequently, stablecoins’ fixed primary market price reintroduces strategic complementarity among

secondary market investors.

Endogenizing the probability of runs using a global games approach, we arrive at our core result

that decreasing the efficiency of arbitrage can actually lower run risk. This is because more efficient

arbitrage lowers the price impact for investors who sell in the secondary market. A more favorable sell-

ing price incentivizes selling and amplifies investors’ first-mover advantage when they expect others to

sell. In contrast, more concentrated arbitrage increases price impact in secondary markets, discourages

panic selling, and mitigates run risk. Nevertheless, this mitigation of run risk comes at the expense of

secondary market price stability, which suggests that arbitrage concentration is a double-edged sword.

Since stablecoin investors care about both run risk and price stability, the stablecoin issuer optimally

chooses arbitrage efficiency to trade off its benefits for price stability with its costs for run risk.

Further, our model shows that distributing some of the reserve asset returns to investors as dividends

could impact both run risk and price stability. The prospect of receiving dividends discourages investors

from selling in the short run and thereby reduces run risk. The reduced incentive to sell also allows

the issuer to opt for arbitrage efficiency to improve price stability. At the same time, however, the

stablecoin issuer has less skin in the game to prevent runs after distributing some of their revenue to

investors. This channel further encourages efficient arbitrage but counteracts the reduction in run risk

from investors. Thus, dividend payments unambiguously improve stablecoin price stability while their

overall effect on financial stability remains an empirical question.

We then calibrate our model to quantify the run risk of the two largest stablecoins, USDT and

USDC. We first measure the overall illiquidity of USDT and USDC’s reserve portfolios using collateral

haircuts. On average, the reserve assets of USDT are more illiquid than those of USDC, but both shift

towards holding more liquid assets over time. We then estimate the probability at which the reserve

asset payoff does not materialize using CDS spreads. We further proxy for the long-term benefit of

holding the stablecoin using the return to lending out the stablecoin. This lending rate captures the
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compensation to investors for not being able to use the stablecoin while it is on loan. Finally, we obtain

the remaining two parameters using moment matching. Specifically, we choose the slope of investors’

stablecoin demand and the cost of price variance to most closely match the slope of investors’ demand

and the slope of arbitrageurs’ demand, K, in the data. Intuitively, when the cost of price instability is

high, the stablecoin issuer chooses a more efficient arbitrage sector, i.e., a lower K, to better arbitrage

away price fluctuations. In the data, the K estimate for USDT is larger than that for USDC, consistent

with USDT maintaining a more concentrated arbitrage sector.

Our model estimates imply an economically significant risk of runs at both USDT and USDC.

USDT’s fragility stems from its higher liquidity transformation, while USDC is vulnerable due to less

concentrated arbitrage. USDC is also exposed to default risk in the banking sector because of its

concentrated deposit holdings. The run risk at both stablecoins has decreased over our sample period.

Nevertheless, they remain elevated at 3.927% in March 2022 for USDT and 3.336% in October 2021

for USDC.

Our calibrated model further shows that the run risk at both USDT and USDC could be meaning-

fully reduced if they started paying dividends to investors. As dividends increase from 0% to 4%, for

example, we estimate that run probabilities would be lowered by 1.81% and 1.63%, respectively. The

stabilizing effect of dividend payments for US dollar stablecoins is thus amplified in a high-interest-rate

environment where the higher yields of reserve assets could be distributed to investors. At the same

time, the cost from price instability decreases, as issuers increase the efficiency of arbitrage in response

to lower run risk. Thus, changes in regulation that make it easier for stablecoin issuers to pay out div-

idends to investors could contribute to improving the financial stability and price stability of the two

largest fiat-backed stablecoins going forward.

Our paper contributes to a large literature on bank runs and liquidity transformation (e.g., Diamond

and Dybvig, 1983, Allen and Gale, 1998, Bernardo and Welch, 2004, Goldstein and Pauzner, 2005). It

has also been shown that MMFs are subject to panic runs because their shares are redeemed by investors

at a fixed price (Kacperczyk and Schnabl, 2013, Sunderam, 2015, Parlatore, 2016, Schmidt, Timmer-

mann and Wermers, 2016), while closed-end funds and ETFs are typically viewed as less runnable

because their shares are tradable at market prices (Jacklin, 1987, Allen and Gale, 2004, Farhi, Golosov

and Tsyvinski, 2009, Koont, Ma, Pastor and Zeng, 2021). By carefully modeling the unique combina-
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tion of ETFs and MMFs in the design of stablecoins, we show that panic runs may still happen despite

their trading on competitive secondary markets and investors’ inability to access primary markets.

Our focus on arbitrage capacity for stablecoins is related to the limits to arbitrage literature (e.g.,

Shleifer and Vishny, 1997, Gromb and Vayanos, 2002). Several papers have shown that non-competitive

arbitrage hurts price efficiency (e.g., Oehmke, 2010, Du and Zhu, 2017, Davila, Graves and Parlatore,

2022). Our work generalizes this finding to the stablecoin context, where a more concentrated arbitrage

sector hurts stablecoins’ price stability. We further find the novel result that arbitrage concentration can

be a double-edged sword: arbitrage concentration hurts price stability, but is beneficial for improving

financial stability.

We also contribute to the fast-growing stablecoin literature by analyzing and quantifying the run

risk of US dollar reserve-backed stablecoins. Closely related to us is Gorton, Klee, Ross, Ross, and

Vardoulakis (2023), who also focus on the run risk of reserve-backed stablecoins. They show that the

use of stablecoins in facilitating leveraged trading of other crypto-assets can help maintain stablecoins’

price stability despite the run risk. We also examine stablecoin run risk and price stability but focus

on how arbitrage capacity determines an inherent tradeoff between the two and how the tradeoff can

be eased by distributing dividends to investors. Our model captures the interaction between the pri-

mary and secondary markets for stablecoins to show that they resemble a combination between ETFs

and MMFs. Relatedly, Frost, Shin, Wierts (2020), Gorton and Zhang (2021), and Gorton, Ross and

Ross (2022) compare stablecoins to deposits issued by the banking sector pre-deposit-insurance. Sta-

blecoin price stability has also been compared to exchange rate pegs by Lyons and Viswanath-Natraj

(2021), who show that USDT’s creation and redemption activity respond to secondary market price

deviations. Uhlig (2022) and Liu, Makarov and Schoar (2023) provide comprehensive analysis on runs

on algorithmic stablecoins during the Terra-Luna crash in 2022, which was an important event leading

to the “crypto winter.” Adams and Ibert (2022) analyze earlier algorithmic stablecoins, and Kozhan and

Viswanath-Natraj (2021) analyze DAI, which is a stablecoin overcollateralized by risky crypto assets.

Several other papers have explored the financial stability risks associated with stablecoins other than

panic runs. Li and Mayer (2021) develop a dynamic model to characterize the endogenous transition

between stable and unstable price regimes, focusing on the feedback between debasement and the

collapse of demand for stablecoins as money. d’Avernas, Maurin, and Vandeweyer (2022) provide a
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framework to analyze how price stability can be maintained depending on the issuer’s commitment to

stablecoin supply. Routledge and Zetlin-Jones (2022) consider the design of exchange rate policies in

maintaining price stability. Barthelemy, Gardin and Nguyen (2021), Liao and Caramichael (2022), and

Kim (2022) analyze the potential impact of fiat-backed stablecoin activities on the real economy, while

Baughman and Flemming (2023) argue that the competitive pressure of stablecoins on USD assets is

limited. Complementary to these papers, we focus on stablecoins as financial intermediaries engaged

in liquidity transformation, the arbitrage efficiency between primary and secondary markets, and the

resulting run risks.

Our paper also fits more broadly into the literature on cryptocurrencies and decentralized finance,

discussed and surveyed in Harvey, Ramachandran and Santoro (2021), John, Kogan and Saleh (2022),

and Makarov and Schoar (2022).

The rest of the paper proceeds as follows. Section 2 describes institutional details of the stablecoin

market and Section 3 explains the data we use. Section 4 documents several empirical facts that moti-

vate our model in Section 5. Section 6 explains the model calibration and results. Section 7 shows the

counterfactual results of issuing dividends to investors. Finally, Section 8 concludes.

2 Institutional Details

Stablecoins are blockchain assets whose value is claimed to be stable at $1. Blockchain assets can be

self-custodial: a user can use crypto wallet software, such as Metamask, to hold, send, and receive

stablecoins directly. These tokens are not stored with any trusted intermediary: rather, a “private key”

– a long numeric code, generally kept only on the user’s hardware device – is used to prove to the

blockchain network that the user owns her tokens, and to direct the network to take actions such as

transferring tokens to other wallets. Others have no access to individuals’ private keys so they have no

ability to take funds from individuals’ wallets.

Relative to other blockchain assets like bitcoins, the defining feature of stablecoins is (relative)

price stability. The largest stablecoin issuers attempt to achieve price stability by promising to back

each stablecoin token by at least $1 in off-blockchain US dollar assets. These fiat-backed stablecoins
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have experienced a rapid expansion over the last few years. Within two years , the total asset size of

the six largest fiat-biased stablecoins has grown from $5.6 billion at the beginning of 2020 to exceed

$130 billion at the beginning of 2022 (Figure 3). The largest stablecoin is Tether (USDT), which made

up more than 50% of the total market size at $76.4 billion in January 2022. Circle USD Coin (USDC)

and Binance USD (BUSD) are second and third at $37.7 and $14.4 billion. Paxos, (PUSD), TrueUSD

(TUSD), and Gemini dollar (GUSD) are significantly smaller with a market size of around or below $1

billion. The asset size of fiat-backed stablecoins has experienced ups and downs in 2022 but remains

high at $136 billion in June 2022.

2.1 Uses of Stablecoins

Stablecoins are a fairly low-cost way to transact and hold US-dollar assets. Suppose, for example, a

sender in country A wishes to send funds to a receiver in country B. The sender can purchase stablecoins

on a crypto exchange using fiat currency in country A, withdraw these stablecoins to her personal crypto

wallet, and send them to the wallet of the receiver in country B. The receiver can then deposit these

funds to a crypto exchange in her country, sell the stablecoins for fiat, and then withdraw the fiat

currency. The first and third steps in this process may incur fees and delays from converting fiat to and

from crypto using local crypto exchanges, which may vary across exchanges and countries. However,

the second step – sending stablecoins from one crypto wallet to another – is relatively fast and low-cost.

As of January 2023, sending tokens on the Ethereum blockchain finalize in under a minute and cost

around $1 USD per transaction, independent of the amount of stablecoins sent. Stablecoins can also be

used as a store of value; to this end, stablecoins can be held in crypto wallets indefinitely at no cost.

As a result, while stablecoins are costlier to use than well-functioning banking services in developed

countries, they are competitive when traditional financial infrastructure functions poorly. For example,

stablecoins are being used in settings where transactions must cross national borders, capital controls

and financial repression are prevalent, inflation is high, or trust in financial intermediaries is low.3

3Humanitarian organizations have used stablecoins to make cross-border remittance payments, circumventing banking
fees and regulatory frictions. See Fortune.com. Some firms in Africa have begun using stablecoins for international pay-
ments to suppliers in Asia. See Rest Of World. In settings with high inflation, such as Lebanon and Argentina, individuals
have begun storing value and transacting using stablecoins. See Rest Of World for a discussion of the case of Africa, CNBC
and Rest Of World for the case of Lebanon, and Coindesk, EconTalk, and Memo for the case of Argentina. Some merchants

8

Electronic copy available at: https://ssrn.com/abstract=4398546

https://fortune.com/crypto/2022/12/15/un-crypto-aid-ukrainian-refugees-stablecoin-usdc-stellar/amp/
https://restofworld.org/2021/stablecoins-find-a-use-case-in-africas-most-volatile-markets/
https://restofworld.org/2021/stablecoins-find-a-use-case-in-africas-most-volatile-markets/
https://www.cnbc.com/2022/11/05/-in-bankrupt-lebanon-locals-mine-bitcoin-and-buy-groceries-with-tether.html
https://restofworld.org/2021/the-cryptocurrency-dons-of-beirut/
https://www.coindesk.com/business/2022/07/04/argentines-take-refuge-in-stablecoins-after-economy-minister-resignation/
https://www.econtalk.org/devon-zuegel-on-inflation-argentina-and-crypto/
https://www.memo.com.ar/economia/argentinos-compraron-mas-criptomonedas-durante-2022/


Stablecoins are also used to transact with other blockchain smart contracts within the space of

“decentralized finance.” For example, market participants can use stablecoin tokens to purchase other

blockchain tokens, such as ETH, MKR, or UNI, using an automated market maker protocol such as

Uniswap. Market participants can also lend stablecoin tokens on lending and borrowing protocols,

such as Aave and Maker, allowing them to receive positive interest rates, and also to use these assets as

collateral to borrow other assets. In a way, stablecoins provide a safe store of value and a medium of

exchange resemble for the blockchain ecosystem.

2.2 Market Structure

Stablecoin tokens are created (“minted”) or redeemed (“burned”) in the primary market with US dollar

cash as shown on the left-hand side of Figure 4. To create a stablecoin token, an arbitrageur sends $1

to the issuer, and the issuer then sends a stablecoin token into the market participant’s crypto wallet.

Analogously, to redeem a stablecoin token, for each stablecoin token that the market participant sends

to the issuer’s crypto wallet, the issuer sends $1, for example through a bank transfer, into the market

participant’s bank account. The primary market for stablecoins resembles a money market fund in the

traditional financial system. Please see Appendix A for further details.

Importantly, not all market participants can freely become arbitrageurs to participate in the redemp-

tion and creation of stablecoin tokens in the primary market. Stablecoin issuers differ in how easily

and costly market participants can access primary markets. According to market participants, USDC

allows general businesses to register as arbitrageurs, while USDT requires a lengthy due-diligence

process and imposes restrictions on where arbitrageurs can be domiciled. Further, USDT imposes a

minimum transaction size of $100,000, and charges the greater of 0.1% and $1000 per redemption.

USDT also requires a lengthy due-diligence process and imposes restrictions on where arbitrageurs

can be domiciled.

The majority of market participants trade existing stablecoins for fiat currencies in secondary mar-

kets, as shown on the right-hand side of Figure 4. Crypto exchanges allow investors to make US dollar

in these areas have begun accepting stablecoins as a form of payment. For example, the Unicorn Coffee House in Beirut,
Lebanon accepts USDT (Tether) as a form of payment.
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deposits, and then trade US dollars for stablecoins with other market participants.4 The price of stable-

coin tokens in the secondary market is thus driven by the demand from stablecoin buyers and the supply

from stablecoin sellers. When there is a surge in stablecoin sales on the secondary market, secondary

market prices will drop, but the closed-ended nature of stablecoins implies that sales do not directly

cause liquidations of reserve assets. In this way, the buying and selling of stablecoins on secondary

markets resemble the trading of ETF shares on competitive exchanges.

Selling pressure in the secondary market for stablecoins can spill over to affect the primary mar-

ket through arbitrageurs. When investor selling pressure in the secondary market depresses stablecoin

prices to be below $1, arbitrageurs can profit from purchasing stablecoin tokens for below $1 in sec-

ondary markets, and redeeming them one-for-one for $1 with the stablecoin issuer in primary markets,

as long as the issuer does not default. Analogously, if positive demand shocks in secondary markets

causes stablecoins to trade above $1, arbitrageurs could profit from creating stablecoin tokens in pri-

mary markets and then selling them at higher prices in secondary markets. Thus, the $1 redemption

value of stablecoins in primary markets pulls the trading price of stablecoins towards $1 in secondary

markets through the trading incentive of arbitrageurs.

At the same time, this arbitrage process implies that investor selling pressure in secondary mar-

kets eventually triggers sales of reserve assets when stablecoin issuers liquidate reserves to meet arbi-

trageurs’ $1 redemption in cash. These fire sales can be especially costly if illiquid reserve assets can

only be converted to cash at a discount.

2.3 Dividend Payments to Investors

For fiat-backed stablecoins, returns from reserve assets are fully accrued to the issuer and no dividends

are issued to investors holding stablecoins. One potential reason why stablecoin issuers currently do

not retain and attract investors by distributing dividends is regulation. US regulators have deemed many

programs which take funds from users, and return funds with dividend or interest payments, to be se-

curities that fall under the SEC’s jurisdiction. For example, the June 2023 SEC case against Coinbase

argued that Coinbase’s Staking Program is a security. The June 2023 SEC case against Binance argued

4Please see Appendix A for details regarding the use of different crypto exchanges.
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that Binance’s BNB Vault and Simple Earn programs, and the BAM Trading Staking Program, con-

stituted securities under US law. In our conversations with market participants, many believed that a

stablecoin that offered to pay accrued interest on reserves as dividends would be classified as securi-

ties.5 Nevertheless, there could be other reasons for not paying dividends to investors. For example,

stablecoins issuers could simply have enough monopoly power to maximize their own profits without

paying anything to investors. In the counterfactual analysis, we will analyze the hypothetical scenario

in which issuers pay dividends to investors and demonstrate the effect on price and financial stability.

3 Data

We compile a novel and comprehensive dataset that sheds light on stablecoins’ on-chain primary market

activity, secondary market prices, and reserve assets.

3.1 Primary Market Data

The core dataset used in our analysis is data on each stablecoin creation and redemption event for the

6 largest fiat-backed stablecoins: Tether (USDT), Circle USD Coin (USDC), Binance USD (BUSD),

Paxos (USDP), TrueUSD (TUSD), and Gemini dollar (GUSD), on the Ethereum, Avalanche, and Tron

blockchains. We obtain this data from each blockchain based on “chain explorer” websites, which pro-

cess transaction-level blockchain data into a usable format. We use Etherscan for Ethereum, Snowtrace

for Avalanche, and Tronscan for Tron.

As described in Section 2, there are two ways that stablecoin tokens can be minted or redeemed.

First, the stablecoin’s “mint” or “burn” functions can be called directly to the primary market partici-

pant’s wallet. To capture this category of actions, we query Etherscan for all cases in which the “mint”

and “burn” functions are called for each stablecoin. Second, the stablecoin issuer can send or receive

stablecoins from their “treasury” address. To capture this category, we identify the treasury address or

addresses for each stablecoin, and then query Etherscan for every send or receive transaction involving
5A number of online sources concur with this opinion. Web3 University states: “If you want to organize payouts to

your token holders, it is safer to structure them as bonus points instead of paying out what could be considered dividends.”
Unblock states: “In the U.S. dividend-bearing cryptocurrencies are classified as securities.”
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the treasury address. Logistically, some issuers, such as Tether, tend to mint a large quantity of sta-

blecoin tokens into “treasury” addresses they control, then issue tokens to market participants simply

by transferring tokens out of their treasury wallet; whereas other issuers, such as TrueUSD, occasion-

ally directly mint stablecoin tokens into the wallet addresses of market participants. On the other hand,

most issuers handle redemptions by having market participants send tokens to a treasury wallet address.

If the treasury wallet has a large balance of redeemed stablecoins, the issuer will occasionally “burn”

quantities of the stablecoin, removing them from the technical outstanding balance of the token.6

Using our data extraction process, we see, for each stablecoin creation and redemption event, the

precise timestamp of the event; the amount of the stablecoin redeemed or created; and the wallet address

of the entity involved in stablecoin creation or redemptions. We also observe the “gas” fee – that is,

the transaction fee paid to Ethereum miners for including the transaction in the blockchain – paid for

each transaction. Some wallet addresses are tagged on Etherscan, as they are known to belong to large

entities such as crypto exchanges. Using Etherscan wallet tags, we can group some wallets that are

known to belong to the same economic entity.

We calculate the total issued market capitalization of a given stablecoin at any point in time, as

the total technical market capitalization of the stablecoin, minus the amount of the stablecoin held in

“treasury” addresses. This is because tokens held in treasury wallets need not be backed one-to-one

by US dollars, and thus should not count as part of the total market capitalization of stablecoins in

circulation.

3.2 Secondary Market Data

For each of the 6 stablecoins in our data, we extract the hourly closing prices for trades from a number of

large exchanges, including Binance, Bitfinex, Bitstamp, Bittrex, Gemini, Kraken, Coinbase, Alterdice,

Bequant, and Cexio. In our main analysis, we calculate daily prices for each stablecoin as the weighted

average of hourly closing prices across these exchanges, where the weights are by trading volume.

6The exception to this rule is that TrueUSD occasionally handles redemptions by “burning” tokens directly from market
participants’ wallets, rather than the treasury.
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Differences in stablecoin prices across the main exchanges are generally negligible, hence the price

series are not substantially affected by the weights we put on different exchanges.

3.3 Reserves

We use the breakdowns of reserve assets that USDT and USDC report at various points in 2021 and

2022 as part of their balance sheets posted online. The other four stablecoins have not released break-

downs of their reserve asset composition but state the broad categories of their reserves. We note that

reserve assets are not recorded on the blockchain so we cannot independently verify the reported in-

formation. Griffin and Shams (2020), for example, have pointed out that USDT at times issues tokens

insufficiently backed by reserve assets. We think of the reported reserve asset information as the most

optimistic estimate of the actual reserve assets that stablecoins hold. Thus, our estimates of run risk

may be interpreted as a best-case scenario.

4 Facts

In this section, we present a set of new facts about stablecoins, which informs our model and calibration

to quantify the run risk of stablecoins.

4.1 Secondary Market Prices

Fact 1. The trading price of stablecoins in the secondary market commonly deviates from $1. This

price deviation per se does not constitute a run by investors.

Figure 5 shows the price at which different stablecoins trade on the secondary market over time. We

observe that the secondary market price rarely stays fixed at $1. Rather, stablecoins trade at a discount

to $1 27.2% to 41.6% of the time and trade at a premium to $1 57.3% to 72.8% of the time for our

sample of stablecoins (see Table 2).
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The extent of these price deviations varies by stablecoin. While the average discount at USDT is

55bps, the average discount at USDC is only 1bps. The average discounts of BUSD, TUSD, and USDP

are also below that of USDT at 1bps, 11bps, and 18bps, respectively, while that of GUSD is the highest

at 78bps. The median discounts are generally smaller in magnitude than the average discounts, but the

variation in the cross-section remains similar. The average and median premia also show significant

variation in the cross-section.

The trading of stablecoins at a discount to $1 has been commonly associated with “breaking the

buck” as in the case of money market funds and even as evidence for panic runs.7 We note that these

are misconceptions. Stablecoins maintaining a “stable value” of $1 refers to the amount that primary

market participants receive or pay when they redeem existing stablecoins or create new stablecoins

with the stablecoin issuer. The notion of “breaking the buck” thus corresponds to primary market

participants not receiving a full $1. This scenario has not yet occurred at any of the stablecoins in

our sample despite their secondary market price frequently deviating below $1. The secondary market

price is the trading price of stablecoins on exchanges. It is essentially the share price of a closed-end

fund and analogous to the share price of an ETF. Just like ETF prices can deviate from the NAV of

the underlying portfolio, stablecoin prices can deviate from $1. This stablecoin price falling below $1

simply captures the selling pressure of stablecoins in the secondary market and is not a direct indicator

of “breaking the buck” or panic runs.

4.2 Primary Market Concentration

Fact 2. The redemption and creation of stablecoins in the primary market is performed by a set of

arbitrageurs, whose concentration varies by stablecoin.

Table 3 shows the characteristics of daily primary market redemption and creation activity on the

Ethereum blockchain for different stablecoins. We observe that on an average day, USDT only has 1

arbitrageur engaged in redemptions, whereas USDC has 33. The concentration of arbitrageurs’ market

shares also varies. The largest arbitrageur at USDT performs 94% of all redemption activity, while

7For example, see https://www.nytimes.com/2022/06/17/technology/tether-stablecoin-cryptocurrency.html and
https://www.cnbc.com/2022/05/17/tether-usdt-redemptions-fuel-fears-about-stablecoins-backing.html
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the largest arbitrageur at USDC performs 54%. There are relatively more creations than redemptions

and creations have slightly more arbitrageurs, but the trends across stablecoins and the high arbitrage

concentration remain.

We repeat the analysis at the monthly level in Table 4. The monthly snapshot may better capture the

market structure of the primary market than the daily snapshot if not all arbitrageurs are active every

day. Indeed, we observe that the number of arbitrageurs is larger at the monthly level. However, the

arbitrageur market remains highly concentrated for USDT, with only 6 arbitrageurs redeeming shares

during the average month and the largest arbitrageur accounting for 64% of the total redemption activity.

In contrast, USDC has 521 active redeeming arbitrageurs in an average month but the top 1 and top 5

arbitrageurs make up 45% and 85% of all redemption activity. As before, there is a larger volume of

creations and relatively more arbitrageurs engaged in creations but the trends across stablecoins and the

arbitrage concentration remain similar.

In terms of transaction volumes, notice that in the average month, the volume of redemptions at

USDT is $577 million, while that at USDC is $2976 million. In comparison, the total volume of

outstanding tokens at USDT was 1.5 to 2 times that of USDC. Thus, the larger number and lower

concentration of arbitrageurs at USDC are correlated with a higher volume of redemptions relative to

the total asset size as well.

In comparison, most other stablecoins lie between USDT and USDC in terms of the number of

arbitrageurs and arbitrageur concentration. One exception is GUSD, which has the most concentrated

arbitrageur market for redemptions. In Appendix Tables 7 to 10, we repeat Tables 3 and 4 for the Tron

and Avalanche blockchains and obtain similar variations in arbitrageur concentration across stablecoins.

4.3 Secondary Market Price and Primary Market Concentration

Fact 3. Stablecoins with a more concentrated set of arbitrageurs experience more pronounced price

deviations in the secondary market.

We proceed to analyze the potential effects of arbitrageur concentration. We calculate the average

monthly price deviation from one and the average monthly number of arbitrageurs for each stablecoin
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and plot them in Figure 6a. A clear negative trend emerges: stablecoins with fewer arbitrageurs, like

USDT, have higher average price deviations from one in their secondary market prices than stablecoins

with more arbitrageurs, like USDC. Another way to capture arbitrageur concentration is through the

market share of the largest arbitrageurs. In Figure 6b, we repeat the analysis with the market share of

the top 5 arbitrageurs. The relationship is positive. Stablecoins whose top 5 arbitrageurs consistently

perform a larger share of total redemptions and creations have higher average price deviations than

other stablecoins with lower arbitrageur concentration. In other words, it seems that higher arbitrage

competition is associated with reduced price dislocations in secondary markets.

One question arising from this trend is why some stablecoins choose to have a more concentrated

arbitrageur sector. If arbitrageur competition can indeed stabilize secondary market prices, all stable-

coins should be incentivized to open up arbitrageur access and encourage the entry of new arbitrageurs.

In our model, we show that a counteracting force is the presence of panic runs by investors, which are

more likely with a more competitive arbitrageur sector.

4.4 Liquidity Transformation

Fact 4. Stablecoins engage in varying degrees of liquidity transformation by investing in illiquid assets.

Stablecoins are not literally backed by US dollars in the form of cash. Rather, stablecoin issuers hold

USD-denominated assets with varying degrees of illiquidity as reserves. Table 1 shows the composition

of reserve assets for USDT and USDC on reporting dates. Overall, reserve assets of both USDT and

USDC are far from being fully liquid, with those of USDT being more illiquid.

A significant portion of reserve assets is in the form of deposits and money market instruments. In

June 2021, these two asset classes took up 60.7% and 59.5% of reserve assets at USDT and USDC,

respectively. Money market instruments include commercial paper and certificates of deposits. For

USDT, deposits include “cash deposits at financial institutions and call deposits, i.e., deposits that may

be withdrawn with two days’ notice or less; fiduciary deposits, i.e., deposits made by banks on behalf

of and for the benefit of members of the consolidated group; and, term deposits, i.e., deposits placed

by members of the consolidated group at its banks for a fixed term.” For USDC, deposits include “US
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dollar deposits at banks and short-term, highly liquid investments that are readily convertible to known

amounts of cash and have a maturity of less than or equal to 90 days from purchase.” Thus, except

for deposits in checking accounts, money market instruments and other types of deposits are not fully

liquid, i.e., they can not be freely converted to cash at short notice. For example, time deposits and

certificates of deposit experience a discount when demanded before their maturity date.

USDT also holds a significant portion of reserves in the form of Treasury bills, which increased

from 24.3% in June to 47.6% in March 2022. In contrast, USDC reduced its Treasury holdings from

15.0% in July 2021 to 0% in August 2021. USDC states that their Treasuries include “US government

treasury bills, notes and bonds with a maximum maturity of 3 years”. While Treasuries are generally

liquid and safe security, the extent of their liquidity varies by type and over time. For example, on-the-

run Treasuries and Treasury bills are much more liquid than off-the-run Treasuries and non-bills.

The remaining reserve assets are comprised of more illiquid assets, including municipal and agency

securities, foreign securities, corporate bonds, corporate loans, and other securities. USDT still held a

sizable amount of these illiquid assets in March 2022, with 4.5%, 3.8%, and 6.0% in corporate bonds,

corporate loans, and other assets, respectively. While the exact identity of other assets is not disclosed,

it is mentioned that they do include crypto investments. In June 2021, USDC held 0.4%, 15.9%, and

9.5% in municipal and agency securities, foreign securities, and corporate bonds respectively. USDC’s

holding of these assets is reported to have dropped to zero starting in September 2021, with all assets

held in the form of the deposits described above.

The other four stablecoins report that their assets are limited to deposits, Treasuries, and money

market instruments. For example, a statement issued by BUSD and USDP in July 2021 claims that

they hold 96% of cash equivalents and 4% of Treasury bills. GUSD states that their reserves are “held

and maintained at State Street Bank and Trust Company, Signature Bank, and within a money market

fund managed by Goldman Sachs Asset Management, invested only in U.S. Treasury Obligations.”

TUSD also claims that their US dollar balance is held by “U.S. depository institutions and Hong Kong

depository institutions” and that they “include US dollar cash and cash equivalents that include short-

term, highly liquid investments of sufficient credit quality that are readily convertible to know amounts

of cash.”
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5 Model

We build a model to analyze the potential for runs in the context of the bifurcated primary-secondary

market structure of fiat-backed stablecoins. We first show how run risk is linked to the level of liq-

uidity transformation performed and the concentration of the arbitrage sector. We then analyze how

the stablecoin issuer’s choice of efficient arbitrage faces an inherent tradeoff between price stability

and financial stability. Finally, we analyze the issuers’ incentives in choosing arbitrage efficiency to

maximize profits and the effect of distributing dividends to investors.

5.1 Setup

The economy has four dates, t = 0, 1, 2, 3, with no time discounting. There are four groups of risk-

neutral players, 1) a competitive group of infinitesimal investors indexed by i, 2) noise traders, 3) a

sector of n arbitrageurs, and 4) a stablecoin issuer. There are two types of assets: 1) the dollar, which is

riskless, liquid, and serves as the numeraire, and 2) an illiquid and potentially productive reserve asset.

At t = 0, the stablecoin issuer designs the primary market. Specifically, the issuer chooses n at

t = 0, that is, how concentrated it primary market is, to maximize its expected profit. The issuer also

holds the stablecoin that is initially backed by the reserve asset. The initial value of the reserve asset is

normalized to one dollar.

At t = 0, investors also make participation decisions. If an investor chooses to participate in the

stablecoin market, she incurs a cost of ci, which follows a distribution function G(c), and receives one

stablecoin. The investor, therefore, participates only when her participation cost is smaller than the

expected utility from participation, which will be determined in equilibrium and specified below. Noise

traders are automatically endowed with a stablecoin. We will formalize investors’ participation decision

and issuer’s profit maximization in Section 5.3. Until then, we take n as exogenous and normalize the

population of participating investors to one.

In stage t = 1 of our model, noise traders trade stablecoins, creating variance in stablecoin prices,

which lowers convenience yields to investors. At t = 1, with equal probability, noise traders either buy

a fraction δ of the total stablecoin market cap, and then resell them at the end of t = 1; or sell a fraction
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δ of stablecoin market cap, and then rebuy them at the end of the period. Hence, letting ω denote order

flow from noise traders, ω is equal to δ or −δ with equal probability. Intuitively, we can think of noise

traders as individuals who attempt to use stablecoins for remittances. As we describe in Subsection

2.1, this involves buying stablecoins with fiat, sending stablecoins, and then selling stablecoins. The

specification that noise trader order flow perfectly reverts is convenient because, as we will show, it

implies that noise trading ω affects stablecoin price but does not directly generate fire sales by the

issuer. This allows us to focus on the trade-off in price and financial stability in stablecoin design while

ruling out the uninteresting case of noise trading itself leading to runs. Consistent with the observations

in Section 4, we assume noise traders cannot directly trade with the issuer; instead, they exchange fiat

for stablecoins by trading with arbitrageurs in secondary markets.

Also at t = 1, n arbitragers trade stablecoins in secondary and primary markets to profit from price

deviations. We assume arbitrageurs cannot hold net inventory, so they must on net redeem as much on

primary markets as they purchase in secondary markets. Arbitrageurs face quadratic inventory costs

for arbitrage: arbitrageur j incurs a cost
z2j
2χ

for arbitraging zj units of the asset from secondary to

primary markets, where χ scales proportionally with the stablecoin’s market cap. The parameter χ

can be thought of as capturing arbitrageurs’ balance sheet capacity: when χ is higher, inventory costs

are lower. Arbitrageurs submit bid curves in secondary markets to trade stablecoins in a uniform-

price multi-unit double auction. We characterize the solution to the double auction in Appendix B.

Essentially, arbitrageurs’ bids produce a downwards-sloping demand curve in secondary markets for

the stablecoin; the slope of demand is higher, so stablecoin sales have less price impact, when n is

larger and there are more arbitrageurs, and when χ is larger so arbitrageurs have more balance sheet

capacity.

Also at t = 1, arbitrageurs can redeem or create the stablecoins with the issuer in the primary market

at a fixed price of one dollar per stablecoin if the issuer is solvent. Expecting the amount of dollars to

be redeemed from or to be delivered to the issuer, the n arbitrageurs bid in a double auction (e.g., in the

manner of Kyle (1989) and Du and Zhu (2017)) to absorb the ω stablecoin orders from noise traders,

determining p1. As standard in the double auction literature, we let each arbitrageur’s balance sheet

capacity be χ, where χ scales with the stablecoin market cap. The reciprocal of χ can be understood as

a given arbitrageur’s per unit balance sheet cost. When the arbitrageurs are better-capitalized or when
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the stablecoin sector is bigger, χ will be larger. Consistent with the observations in Section 4, noise

traders cannot directly trade with the issuer. Appendix B provides a more detailed description of the

double auction and its solution.

Fluctuations in the stablecoin price p1 induced by noise trader order flow matter because they lower

stablecoin investors’ convenience yields from holding stablecoins. Following Gorton and Pennacchi

(1990), we let investors enjoy a short-term convenience of −αV ar(p1) per stablecoin at t = 1, where

α > 0. This captures the idea that stablecoins are less valuable to users, both as a transaction medium

and as a store of value, if their prices are more volatile.

In stages t = 2 and t = 3, investors decide whether to liquidate stablecoins early, potentially leading

to runs, or hold stablecoins to maturity to capture convenience yields. At t = 2, investors can choose

to sell their stablecoins in the manner of Jacklin (1987) and Farhi, Golosov and Tsyvinski (2009); we

use λ to denote the fraction of investors that sell their stablecoins at the market price p2. This selling of

stablecoins can be interpreted as investors deciding to permanently de-invest in stablecoins in exchange

for dollars, or other unmodeled assets. Like noise traders, investors cannot directly redeem stablecoins

from the issuer; instead, they liquidate by selling stablecoins to arbitrageurs in the secondary market,

who subsequently redeem stablecoins for cash from the issuer. Arbitrageurs, considering the amount

they expect to be able to redeem from the issuer, bid in a double auction to determine the price p2 at

which investors’ sales of λ stablecoins occur.

The issuer, in turn, meets arbitrageur redemptions in cash by liquidating the illiquid reserve asset.

This involves a liquidation cost of ϕ ∈ (0, 1], i.e., liquidating one unit of the asset yields 1− ϕ dollars.

Economically, ϕ captures the level of liquidity transformation as well as the various costs incurred

when transacting illiquid assets (see Duffie, 2010, for a review). Note that the issuer is solvent if and

only if λ < 1− ϕ. When λ ≥ 1− ϕ, the issuer defaults, and arbitrageurs receive the liquidation value

of (1− ϕ)/λ per stablecoin redeemed.

In deciding whether to liquidate their stablecoins early, investors receive private information a t = 2

about the fundamentals of the economy at t = 3. Following the global games literature, each investor i

obtains a private signal θi = θ + εi at t = 2, where the noise term εi are independently and uniformly
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distributed over [−ε, ε]. As usual in the literature (e.g., as in Goldstein and Pauzner (2005)), we focus

on arbitrarily small noise in the sense that ε→ 0, but the model results also hold beyond the limit case.8

Fundamentals θ reflect the level of aggregate risk and determine the stablecoin’s long-term value at

t = 3. With probability 1 − π(θ), the economy enters a bad state: the reserve asset fails and investors

do not receive any nominal return nor any long-term benefits from holding the stablecoin backed by

assets of no value. Essentially, this is when the stablecoin ceases to exist as a means of payment in

transactions. With probability π(θ), the economy enters a good state: the reserve asset yields a positive

value ofR(ϕ) ≥ 1 dollar, the stablecoin continues to operate, and the remaining 1−λ investors consume

a long-term benefit η > 0 per stablecoin and the initial value of 1 per unit of the remaining reserve asset.

η can be understood as the benefits derived from holding and using the stablecoin in the long run. In

the baseline model, we consider stablecoins that do not issue dividends to investors, consistent with the

current state of USD stablecoins in our discussion in Section 2. In this case, the net maturing gain of

the reserve asset in the good state, R(ϕ) − 1, is accrued to the stablecoin issuer but not the investors.

R(ϕ) increases with asset illiquidity ϕ to reflect the liquidity risk premium. In Section 5.2, we consider

the counterfactual case where the stablecoin issuer distributes some of the asset returns as dividends to

investors.

Taken together, our model setup can parsimoniously capture the concepts of price stability and

financial stability by combining features of the Gorton and Pennacchi (1990) and Diamond and Dybvig

(1983) models. At t = 1, the stablecoin is used for transactional purposes but its price fluctuations lead

to transaction costs that hurt its convenience. Between t = 2 and t = 3, investors consider whether

to sell their stablecoins early considering economic fundamentals and the decision of other investors.

This is where the illiquidity of reserve assets may give rise to a first-mover advantage in liquidating the

stablecoin despite the selling price being flexible on the secondary market. This setup thus allows us to

formulate the tension between price and financial stability in the optimal design of stablecoins.9

8Note that we do not impose any restrictions on the distributions of π, θ, or the increasing function π(θ), which allows
us to map the model to any empirical distribution of fundamentals. Also note that the standard assumption in the global
games literature that investors obtain a private signal about fundamentals is relatively plausible for the stablecoin market
because of its opacity: essentially no stablecoin issuers disclose asset-level information about their reserves, and investors
and arbitrageurs infer stablecoins’ value using their private information.

9We note that the separation between t = 1 and t = 2 is not crucial for the model; it simplifies the model by ruling out
the uninteresting case that noise trading itself may lead to fire sales or render the stablecoin issuer default. Considering that
would complicate the model without new economic insights.
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We solve the model by backward induction: we first analyze investors’ run decisions at t = 2, and

link the run risk to the concentration of arbitrage in Section 5.2. Then in Section 5.3, we analyze how

the choice of arbitrage concentration at t = 0 in turn affects stablecoin price and investors’ convenience

at t = 1.

5.2 Stablecoin Runs and the Centralization of Arbitrage

To start, we first consider p2, the price an investor receives from liquidating the stablecoin early:

Lemma 1. The stablecoin’s secondary-market price at t = 2 is given by

p2(λ) =


1−Kλ λ ≤ 1− ϕ ,

1− ϕ

λ
−Kλ λ > 1− ϕ ,

(5.1)

where

K =
1

χ

n− 1

n(n− 2)
. (5.2)

Lemma 1 shows that p2 crucially depends on K, which captures the slope of arbitrageurs’ demand.

Specifically, p2 is decreasing in K and thereby increasing in χ and n. Intuitively, a higher arbitrageur

balance sheet capacity χ implies a lower cost for arbitrageurs to bid to absorb the selling pressure,

leading to a more elastic market and supporting a higher p2. A less concentrated arbitrageur sector,

that is, a larger n, implies that the auction becomes more competitive in the sense that it is harder

for any individual arbitrageur to win the auction. At the same time, more arbitragers also mean that

the total size of the arbitrage sector’s balance sheet becomes larger, potentially absorbing higher selling

pressure. Taken together, arbitrageurs bid more competitively with a larger total balance sheet, resulting

in a more elastic market and a higher p2.

Viewing p2 as a function of λ, we note that p2 is strictly decreasing in λ everywhere due to the stan-

dard effect of excess supply depressing price. Different from classic bank run models (e.g., Diamond

and Dybvig, 1983) in which depositors get a fixed deposit value, this feature of p2(λ) points to strategic

substitutability present in many exchange-based financial markets: the more investors sell, the lower

22

Electronic copy available at: https://ssrn.com/abstract=4398546



the price is, making an investor less likely to sell. All else equal, this feature would thus mitigate any

potential run risk.

We then consider v3, the long-term value an investor may get at t = 3 if λ other investors choose to

liquidate early. It is given by

v3(λ) =


π(θ)

(
1− ϕ− λ

(1− ϕ)(1− λ)
+ η

)
λ ≤ 1− ϕ ,

0 λ > 1− ϕ .

(5.3)

To see why this is the case, notice that the issuer needs to liquidate

l(λ) =


λ

1− ϕ
λ ≤ 1− ϕ ,

1 λ > 1− ϕ .

(5.4)

units of the reserve asset to meet arbitrageur redemptions at t = 2, and only 1 − l(λ) units remain at

t = 3, whose value will be shared by the remaining 1−λ late investors. Combining this financial value

and the long-term benefit of the stablecoin thus yields (5.3).

An important observation from (5.4) is that more investors selling (i.e., larger λ) and a higher

level of liquidity transformation (i.e., larger ϕ) result in more costly liquidations of the reserve asset

(i.e., larger l(λ)). Fundamentally, this arises from the fact that the stablecoin issuer, if solvent, has to

meet stablecoin redemptions at a fixed cash value of one dollar. As we show shortly below, this force

eventually dominates the strategic substitutability shown in (5.1) when λ becomes large, leading to

potential runs.

To pin down an investor’s run incentive at t = 2, we compare the date-3 stablecoin value (5.3) to

the date-2 secondary-market stablecoin price (5.1). Formally, we define a late investor’s payoff gain

from waiting until t = 3 versus selling at t = 2 as

h(λ) = v3(λ)− p2(λ) =


π(θ)

(
1− ϕ− λ

(1− ϕ)(1− λ)
+ η

)
− 1 +Kλ λ ≤ 1− ϕ ,

−1− ϕ

λ
+Kλ λ > 1− ϕ .

(5.5)
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It is easy to see that h(0) ≥ 0 when π(θ) is sufficiently large while h(1) < 0, implying that the model

has multiple equilibria when θ is sufficiently large and if θ is common knowledge.

Figure 1 plots the payoff gain function h(λ). Observe that h(λ) first increases in λ, then decreases,

and then increases in λ again. The first region where h(λ) increases reflects strategic substitutability

arising from the secondary market of stablecoins, as shown in (5.1). Because selling investors’ price

impact depresses the secondary-market price, an investor may find it less appealing to sell at t = 2

if other investors also sell. However, the cost that waiting investors bear increases as more and more

investors choose to sell, issuers’ liquidation costs increase, and arbitrageurs continue to redeem from

the issuer at a fixed price of $1, as shown in (5.3). This force grows as λ becomes larger, counteracting

the secondary-market strategic substitutability and leading to a decreasing h(λ). Eventually, the cost

from waiting dominates as λ becomes sufficiently large, pushing h(λ) to be negative and reinstalling

the first-mover advantage that leads to runs in equilibrium.

Figure 1: Investors’ Payoff Gain from Waiting versus Selling Early
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This figure shows an investor’s payoff gain from waiting until t = 3 relative to selling early at t = 2.
Parameters: π(θ) = 0.97, η = 0.2, ϕ = 0.05, K = 0.3.

Under the global games framework, we have the following result:
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Proposition 1. There exists a unique threshold equilibrium in which investors sell the stablecoins if

they obtain a signal below threshold θ∗ and do not sell otherwise.

Proposition 1 implies that the model with investors’ private and noisy signals has a unique threshold

equilibrium. An investor’s liquidation decision is uniquely determined by her signal: she sells the

stablecoin at t = 2 if and only if her signal is below a certain threshold. Given the existence of the

unique run threshold, we can show that it satisfies the following Laplace equation:

∫ 1−ϕ

0

(1−Kλ) dλ+

∫ 1

1−ϕ

(
1− ϕ

λ
−Kλ

)
dλ =

∫ 1−ϕ

0

π(θ∗)

(
1− ϕ− λ

(1− ϕ)(1− λ)
+ η

)
dλ . (5.6)

Solving the Laplace equation gives an analytical solution of the run threshold and presents intuitive

comparative statics about stablecoin run risk:

Proposition 2. The run threshold is given by

π(θ∗) =
(1− ϕ)(2− 2ϕ− 2(1− ϕ) ln(1− ϕ)−K)

2 ((1 + η(1− ϕ))(1− ϕ) + ϕ lnϕ)
. (5.7)

which satisfies the following properties:

i). The run threshold, that is, run risk, is increasing in ϕ if and only if g(ϕ) > K, where g(ϕ) is

continuous and strictly decreasing in ϕ, and satisfies limϕ→0 g(ϕ) > 0.10

ii). The run threshold, that is, run risk, is decreasing in K (that is, increasing in n and increasing

in χ).

Part i) of Proposition 2 shows that a higher level of stablecoin liquidity transformation leads to a

higher run risk when g(ϕ) > K. This condition may be satisfied when ϕ is not too large for a given

K. Intuitively, when the stablecoin holds more illiquid reserve assets, the first-mover advantage among

investors increases because an investor who chooses not to sell would have to involuntarily bear a higher

liquidation cost induced by selling investors. However, when the reserve asset is too illiquid, run risk

could be dampened. The intuition can be understood from equation (5.5): investors enjoy the first-

mover advantage only when λ ≤ 1− ϕ, that is, only when h(λ) takes the value in the first line of (5.5);
10The function g(ϕ) can be solved in closed form and is given in the proof.
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otherwise, too high a ϕ shrinks the region in which the first-mover advantage can be realized. Thus,

further increasing the level of liquidity transformation when g(ϕ) < K reduces run risk. In Section 6,

we confirm that g(ϕ) > K applies for the major stablecoins during our sample period, suggesting that

increasing liquidity transformation will increase their run risk in practice.

Part ii) of Proposition 2 shows that more efficient arbitrage in terms of a larger number of arbi-

trageurs with better balance sheet capacity exacerbates run risk. This surprising result is an implication

of the way that stablecoin primary and secondary markets are connected. When arbitrage is more effi-

cient, stablecoin sales have a lower price impact. Thus, investors get higher payoffs from selling early,

whereas their payoffs from holding to maturity are unchanged. Investors’ incentives to sell early is

increased, exacerbating run risk. Conversely, when arbitrage is inefficient, sales have more price im-

pact, and investors are discouraged to sell early. Imperfect arbitrage thus reduces run risk essentially by

behaving like a tax on investor redemptions, which is increasing in the number of others that redeem.

Figure 2 illustrates how investors’ payoff gain from waiting increases as the secondary market becomes

less efficient.

Figure 2: Investors’ Payoff Gain from Waiting versus Selling Early: Comparative Statics with respect
to K
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This figure shows an investor’s payoff gain from waiting until t = 3 versus selling at t = 2.
Parameters: π(θ) = 0.97, η = 0.2, ϕ = 0.05, K = 0.3 and K = 0.7.
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In addition, the analytical solution given in Proposition 2 allows us to calibrate the model to the

data to quantify run risk in Section 6. To this end, we translate the run threshold into an ex-ante run

probability with the distribution of fundamentals F (θ). Formally,

Definition 1. The ex-ante run probability of a stablecoin is given by

ρ =

∫
π(θ)<π(θ∗)

dF (θ) , (5.8)

where π(θ∗) is given by (5.7) and F (θ) is the prior distribution of the fundamentals.

Before proceeding, we make two comments about the notion of stablecoin runs in our framework.

We purposefully follow the framework of Diamond and Dybvig (1983) to focus on liquidity transforma-

tion and the resulting first-mover advantage and coordination failure in liquidation. Other conceptions

of coordination motives, and thus other modeling choices, are possible. One possibility is to follow

the idea in the new monetarism framework of Kiyotaki and Wright (1989) and Rocheteau and Wright

(2005), which shows that an agent adopts a good as a medium of exchange only if other agents adopt

and thus accept the same good in transactions. In other words, the value of a medium of exchange be-

comes higher when more investors adopt it. This approach more explicitly highlights the payment role

and network-good feature of stablecoins without capturing liquidity transformation. In fact, that ap-

proach applies to any general form of money or tokens that is not necessarily backed by dollar reserves.

Several recent papers that consider general forms of cryptocurrencies and tokens follow this view (e.g.,

Schilling and Uhlig, 2019, Cong, Li, and Wang, 2021, Li and Mayer, 2021, Baughman and Flemming,

2023, Bertsch, 2023, Sockin, and Xiong, 2023a, Sockin and Xiong, 2023b). In contrast, given our focus

on reserve-backed stablecoins as a financial intermediary, as well as the financial stability implications

for real dollar asset markets, we view Diamond and Dybvig (1983) as the preferred building block for

our model. At the same time, we also capture the payment role of stablecoins by modeling its conve-

nience and linking it to stablecoin price fluctuations, consistent with the micro-foundation provided by

Gorton and Pennacchi (1990).

Another possibility for modeling coordination and runs is to follow the idea of market runs in

Bernardo and Welch (2004). There, if an illiquid asset market features a downward-sloping demand

curve, investors fearing future liquidity shocks will have an incentive to front-run each other, fire sell-
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ing the asset earlier to get a higher price. Similarly, Bernardo and Welch (2004) do not feature an

intermediary or liquidity transformation, which is the focus of our paper.

5.3 Price Stability and Optimal Stablecoin Design

Having analyzed the run risk of stablecoins and its relationship with arbitrage concentration, we now

reason backward to analyze how arbitrage affects the stablecoin’s price stability at t = 1, which deter-

mines its convenience value to investors and the issuer’s optimal design choices.

Consider p1 and its variance, which determines the convenience that investors enjoy at t = 1:

Lemma 2. The stablecoin’s secondary-market price at t = 1 is given by

p1 =

1− δK ω = δ ,

1 + δK ω = −δ ,
(5.9)

where K is given in (5.2). The stablecoin’s convenience at t = 1 is thus given by −αδ2K2, which is

decreasing in K, that is, increasing in n and χ.

Lemma 2 shows that the stablecoin’s convenience is decreasing in K. This is intuitive because

as arbitrage becomes less efficient, the secondary market becomes less elastic and noise trading in-

duces larger fluctuations in the secondary market price p1. Investors thus enjoy a lower convenience,

reminiscent of the idea of information sensitivity in Gorton and Pennacchi (1990).

Taken together, Proposition 2 and Lemma 2 point to the trade-off between price and financial stabil-

ity of the stablecoin. To formulate this trade-off, we now consider the stablecoin issuer’s design decision

at t = 0. It involves one key choice variable that determines the elasticity of the stablecoin secondary

market: the number of arbitrageurs n that are allowed to perform primary-market redemptions and cre-

ations.11 We suppose that the stablecoin issuer chooses n to maximize its expected revenues at t = 0,

which in turn depends on how many investors participate at t = 0. We also assume that the magnitude

of noise trading and the total balance sheet capacity of the arbitrage sector grow proportionally to the
11Arbitrage capacity χ also affects arbitrage efficiency, but stablecoin issuers are unlikely to have control over the balance

sheet costs and budget constraints of arbitrageurs, which is why we let the issuer choose n for a given χ.
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population of investors, capturing the idea that investor growth reflects a growth of the entire stablecoin

sector. The issuer’s objective function is thus given by

max
n

E[Π] = G(E[W ])︸ ︷︷ ︸
population of

participating investors

∫
π(θ)≥π(θ∗)

π(θ)(R(ϕ)− 1)dF (θ)︸ ︷︷ ︸
expected issuer revenue per

participating investor

, (5.10)

where each investor’s expected utility of participation is

E[W ] = −αδ2K2︸ ︷︷ ︸
short-term convenience

+

∫
π(θ)<π(θ∗)

(1− ϕ−K) dF (θ)︸ ︷︷ ︸
short-term payoff if runs

+

∫
π(θ)≥π(θ∗)

π (θ) (1 + η) dF (θ)︸ ︷︷ ︸
long-term payoff if no runs

, (5.11)

in which π(θ∗) is given by (5.7) in Proposition 2.

The stablecoin issuer’s objective function (5.10) captures its revenue base. Absent a panic run, the

issuer obtains the expected net long-term return of the remaining reserve asset. At the same time, a

larger population of participating investors allows the issuer to scale up its investment in reserve assets.

Investors’ participation is in turn driven by their expected utility E[W ], which is comprised of three

components as shown in (5.11). The first term denotes investors’ expected convenience loss due to

stablecoin price fluctuations. The second term denotes their expected payoff when a panic run happens,

while the third term corresponds to their expected payoff without a run.

Solving the stablecoin issuer’s problem (5.10), we have the following result about the stablecoin

issuer’s optimal choice of arbitrageur concentration:

Proposition 3. When the stablecoin engages in a higher level of liquidity transformation, the stablecoin

issuer optimally designs a more concentrated arbitrageur sector, that is, n∗ decreases in ϕ when ϕ is

not too large and the cumulative distribution function G is close to linear.

Proposition 3 stems from the trade-off between price stability and financial stability of stablecoins.

Intuitively, when an investor values the convenience of the stablecoin, she prefers smaller price fluc-

tuations as captured by the first term in (5.11). Further, she would like to receive a higher price when

she decides to liquidate the stablecoin for dollars. For both reasons, the stablecoin issuer would like

to maintain an efficient and elastic secondary market to keep the price stable. However, a more elastic
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secondary market at the same time leads to higher run risks, as captured by the second and third terms

in (5.11). This hurts investors’ expected utility and thus their participation incentive as captured by the

first term in (5.10). Further, a higher run risk also cuts into the stablecoin issuer’s expected revenue per

participating investor it only obtains the net long-term return of the reserve asset when no run happens,

as captured by the second term in (5.10). Thus, the issuer accepts some level of price fluctuations to

avoid runs. In particular, when asset illiquidity makes runs more likely, the issuer optimally chooses a

more concentrated arbitrageur sector to reduce the first-mover advantage among investors, as illustrated

in Figure 2.

Finally, we consider a policy counterfactual in which the stablecoin issuer pays dividends to its

long-term investors at t = 3. Recall that under the baseline model, stablecoin investors do not receive

any nominal returns from the reserve asset. In practice, it is perceived that stablecoins do so in part

to avoid being regulates as a security. The choice of paying dividends is particularly relevant given

that many stablecoins engage in liquidity transformation by holding illiquid reserve assets, which earn

higher long-term returns than liquid assets.

To understand the implications of distributing dividends to investors, we formulate a notion of

stablecoin dividends under our framework. Suppose in the good state of the world, the stablecoin issuer

shares τ out of its net long-term value with investors. Each investor’s value at t = 3 thus becomes:

v3(λ; τ) =


π(θ)

(
1− ϕ− λ

(1− ϕ)(1− λ)
(1 + τ) + η

)
λ ≤ 1− ϕ ,

0 λ > 1− ϕ ,

(5.12)

which nests (5.3) as a special case of τ = 0. Accordingly, the stablecoin issuer’s objective function

becomes:

max
n

E[Π] = G(E[W ])

∫
π(θ)≥π(θ∗)

π(θ) (R(ϕ)− 1− τ) dF (θ) , (5.13)

which similarly nests (5.10) as a special case. We have the following result:
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Proposition 4. Suppose ϕ is not too large. When the stablecoin issuer distributes a positive dividend

τ to its long-term investors, the stablecoin issuer optimally designs a less concentrated arbitrageur

sector, that is, n∗
τ > n∗, resulting in higher price stability of the stablecoin.

Proposition 4 arises from two economic forces. First, a higher dividend payment would encour-

age investors to hold the stablecoin in the long-term rather than liquidating them in the short-term,

which can be observed from (5.12). This reduction in investors’ run incentives allows the issuer to

choose a more efficient arbitrage sector without incurring a high run risk. Second, the stablecoin is-

suer’s expected revenue per each participating investor decreases after distributing some of her returns

as dividends, as illustrated in (5.13) compared to (5.10). This channel reduces the issuer’s incentive to

prevent runs for a given level of investor participation, which further encourages more efficient arbi-

trage. Thus, both forces lead to a less concentrated arbitrage sector and improved price stability when

dividends are paid out, unambiguously benefitting investors’ convenience value.

Interestingly, the financial stability implication of dividend payouts is ambiguous in the model. This

is because the aforementioned two forces counteract each other in affecting run risk. The first force

reduces run risk because stablecoin investors expecting dividends are less runnable. The second force,

however, increases run risk because the lower revenue to the issuer reduces her skin in the game to

reduce run risk. Which of the two forces dominates in equilibrium is thus an empirical question. In

Section 5.3, we analyze the effect of issuing dividends on the run risk of USDT and USDC using our

calibrated model.

6 Model Calibration and Results

In this section, we calibrate our model to estimate run probability as defined in Definition 1. Intuitively,

our estimation relies on calculating the global games’ prediction of a unique run threshold that lets

fundamentals coordinate investors selling decision on the secondary market.

We focus our analysis on the largest two fiat-backed stablecoins, USDT and USDC, because of the

availability of their reserve asset breakdowns. We first estimate asset illiquidity ϕ, the distribution of

p (θ), and the long-term benefit η from the data. Using these parameters, we can calculate run thresholds

31

Electronic copy available at: https://ssrn.com/abstract=4398546



for any given value of K, and then investor welfare and issuers’ profits given investor demand G (·).

Second, we choose the investor risk parameter αδ2 and investor demand elasticity to match the model-

predicted K and investor demand elasticity in the data.

6.1 Empirical Moments ϕ, p(θ), and η

Asset Illiquidity ϕ. We proxy asset illiquidity with haircuts following Bai, Krishnamurthy and Wey-

muller (2018) and Ma, Xiao and Zeng (2021). These haircuts measure the discount incurred when

illiquid assets are converted into cash at short notice.12 More liquid assets are more readily pledged to

obtain cash while more illiquid assets incur a higher discount.

To measure the overall illiquidity of USDT and USDC’s reserve portfolios, we calculate the average

discounts of their reserve assets weighted by their portfolio weights. One challenge is that we do not

know the exact liquidity of their deposits, which include both demandable deposits and time deposits

and CDs. In the baseline estimate, we assume that half of the deposits are fully liquid while the other

half is subject to the money market discount. The results are shown in Table 5. Overall, reserve assets

of USDT are more illiquid than those of USDC, but both of them shift towards holding more liquid

assets over the sample period.

Distribution of p(θ). Our model also requires us to take a stance on the distribution of p(θ), which

is the signal of how likely the risky asset held in the issuer’s portfolio is to pay nothing. To estimate p

empirically, we use historical CDS prices to evaluate the daily recovery value of each portfolio com-

ponent and then take a weighted average to obtain the daily expected recovery value of the reserve

portfolio. We construct a distribution of expected recovery values, i.e., CDS spreads, using daily data

from 2008 to 2022 from Markit, calculate the mean and variance of the distributions, and fit a beta

distribution with the same mean and variance for each coin-month. We adjust for the extent of collat-

eralization for each coin based on their reported asset and liability values. The fitted beta distribution

parameters, as well as the mean and variance of the implied beta distributions, are shown in Appendix

Table 11. Please see Appendix E.1 for more details about our construction.

12The New York Fed publishes haircuts on different securities when pledged as collateral in repo loans.
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Long-term Benefit η. To proxy for investors’ long-term benefit from holding and using the sta-

blecoin, we follow Gorton, Klee, Ross, Ross, and Vardoulakis (2023) to use investors’ return from

lending out the stablecoin. Specifically, we focus on the Aave secondary lending market, using data

from aavescan.com. Aave is a smart contract lending platform, which allows market participants to lend

cryptoassets for interest, overcollateralized by other cryptoassets. Intuitively, this lending rate captures

the compensation to the investor for not being able to use the stablecoin herself while it is on loan to

another investor. Table 5 shows the return from lending out USDT and USDC in each reporting period.

6.2 Estimating αδ2 and G (·) using K and ∂ logG(E[W ])
∂η

Having obtained asset illiquidity ϕ, the distribution of fundamentals p(θ), and the long-term benefit η

from the data, the remaining model parameters are αδ2, the utility cost to investors cost of noise trading,

and G (·), investors’ demand function for the stablecoin. We will estimate αδ2 as a single parameter,

based essentially on how much weight issuers’ optimality condition appears to put on lowering K and

thus decreasing price variance. This approach jointly estimates risk aversion α and the size of noise

trading shocks δ.

We parametrize G (·) as:

G (EW ) = 1− γ (1− EW ) .

That is, the issuer has a unit mass of consumers if she produces EW = 1. For any gap between 1

and EW , the issuer loses γ consumers. Thus, γ is simply the elasticity of investor demand. We let

the demand elasticities for USDC and USDT be γCircle and γTether, respectively, accounting for their

different investor bases.13

We then estimate αδ2 and G (·) through moment matching. For each choice of αδ2, γCircle, γTether

and each coin-month combination in our data, we calculate the optimal value of K, by solving the

issuer’s optimization problem (5.10). At the optimal K, we then numerically compute the partial

13We do not let the unobserved αδ2 vary across USDT and USDC to avoid allowing for too many degrees of freedom in
moment matching.
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elasticity of investors’ demand with respect to η in the model:

∂ logG (E [W ])

∂η
.

For each choice of αδ2 and γ, this procedure gives us a model-predicted value of K and ∂ logG(E[W ])
∂η

for each month. We then choose parameters to minimize the sum of squared distances between model-

predicted log values ofK and ∂ logG(E[W ])
∂η

, averaged across months for each coin, and their counterparts

in the data across all reporting periods of USDC and USDT.

To obtain K from the data, we regress daily price deviations against daily redemption or creation

volume for each stablecoin:

Deviationt = βRedemption/Creationt + FEy, (6.1)

where Deviationt is one minus the lowest observed secondary market price on redemption days and

the highest observed secondary market price minus one on creation days, Redemption/Creationt is

the volume of redemptions or creations divided by the total outstanding volume of tokens on day t.

We use the lowest and highest secondary market prices on each day to capture the extent of price

dislocations that demand arbitrage rather than the price dislocations resulting from arbitrage. We nor-

malize the volume of redemptions and creations by the total outstanding volume of tokens to consider

the difference in market sizes across stablecoins. Finally, we include a year fixed effect to capture

potential structural shifts in the arbitrageur sector for each stablecoin. For example, the number and

constraints of arbitrageurs may evolve after some time with the growth of stablecoins. From the results

in Table 6, we observe that the estimated K for USDT is larger in absolute magnitude than for USDC,

which is consistent with the higher arbitrageur concentration of USDT constraining redemption vol-

ume to be less sensitive to price dislocations. That is, a larger price dislocation is required to induce

the same amount of redemptions for USDT than for USDC. Magnitude-wise, a 10 percentage point

higher redemption/creation volume as a fraction of the total volume outstanding corresponds to a 2.09

cent larger price deviation USDT and a 1.56 cent larger price deviation at USDC. For more detailed

regression results, please refer to Table 12.
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To obtain ∂ logG(E[W ])
∂η

from the data, we regress the monthly log change in the number of shares

outstanding against the beginning-of-month long-term benefit, i.e., the lending rate. The results in

Table 6 show that the demand for USDC is more responsive to a given change in the long-term benefit

than the demand for USDT.

The parameter estimates are shown in the first two columns of Table 5. We estimate αδ2 to be 12.74

and γ to be 0.38 for Tether and 0.65 for Circle. As is standard in structural models, both parameters

contribute to variation in both moments; however, the intuition behind the identification of model pa-

rameters is as follows. When αδ2 is high, the cost of price variance is high. Thus, issuers will tend

to choose lower values of K, trading off slightly increased run probabilities for lower price variance

and thus lower costs of noise trading. Hence, the level of K in the data, relative to fundamentals, con-

tributes to identifying αδ2. The parameter γ controls investors’ elasticity of demand; when γ is higher,

the stablecoin market size will increase more for any given increase in η.

The fit of our model to the targeted moments is shown in Table 6. The model-predicted arbitrageur

demand slopes K are in the same range but slightly higher than those in the data.14 Note that we are

able to match the stylized fact that the optimal K is higher for USDT than USDC, with approximately

the same magnitude as in the data. In terms of the second moment, we are able to match the elasticity

of investors’ demand for stablecoins fairly well, on average over time within coins. The mapping from

moments to parameters is intuitive: we estimate investors’ demand elasticity to be somewhat higher for

USDC than USDT, which is why we find that γ is slightly higher for USDC.

6.3 Run Probability

Table 5 shows that the implied run probabilities from our estimation range from 3.336% to 7.459%.

Run probabilities depend on input parameters in an intuitive way. For example, USDC substantially

de-risked its asset holdings over 2021, causing illiquidity ϕ to decline. At the same time, the long-term

benefit η trended up. Both forces contributed to a decline in run probabilities over time from 5.713%

in May 2021 to 3.336% in October 2021. Notice that the run risk of USDC remains substantial even

14Technically, the reason for this mismatch is that, under our estimates, K values in the data would imply overly high run
probabilities for Circle, which could not be consistent with issuer optimization under any parameter settings.
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without holding illiquid assets like corporate bonds and corporate loans as USDT. This is because of

USDC’s concentrated exposure to bank deposits, which incur a higher default risk than Treasuries in

the case of uninsured deposits and retain some illiquidity in the case of time deposits. For USDT, both

illiquidity ϕ and the long-term benefit η display less variation over time, resulting in relatively stable

run risk over the reporting period from 4.592% in June 2021 to 3.927% in March 2022.

Our estimates of stablecoin run probability complement the findings in Egan, Hortacsu and Matvos

(2017) and Albertazzi, Burlon, Jankauskas, and Pavanini (2022), who build dynamic structual models

to estimate the run probability of commercial banks. Their focus is on the feedback loop between

a bank’s credit risk and uninsured depositor outflows. We estimate run probabilities derived from a

global games model that captures the unique interaction between the primary and secondary markets

of stablecoins. In this sense, our approach provides a complementary way to quantify the run risk of

tradable assets that are also involved in liquidity transformation.

7 Effect of Dividend Issuance

Finally, we use the estimated model to quantify the effect of dividend payments for different values of

τ . Specifically, we solve the model under different τ and examine the changes to consumer welfare,

firm profits, issuer’s choice of K, price stability, and run probabilities.

The results are shown in Figure 7 for the September 2021 reporting period of USDT and USDC.

Results for other reporting periods follow a similar trend and are shown in Appendix Figure 8. Con-

sistent with our model predictions, panel (a) shows that issuers optimally choose a lower K to make

arbitrage more efficient. As a result, the cost of price variance αδ2K2 is decreased by 43.91% and

68.97%, for USDT and USDC respectively, relative to the costs at τ = 0, as panel (b) shows.

Importantly, we find that the probability of runs declines with the issuance of dividends for both

USDT and USDC. This means that the reduction in investors’ run incentives when dividends make

it more attractive to hold stablecoins dominates the increase in run risk from more efficient arbitrage.

Quantitatively, as dividend issuance increases from 0 to 4%, the run probabilities of USDC and USDT
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are lowered by 1.81% and 1.63%, respectively, as panel (c) shows. Taken together, dividend payments

would be beneficial both for lowering run risk and improving price stability at USDT and USDC.

Our findings on dividend issuance shed light on the broader question of how the design of financial

intermediaries engaged in liquidity transformation can improve their stability. For mitigating bank runs,

Davila and Goldstein (2023) and Kashyap, Tsomocos, and Vardoulakis (2023) explore the optimal

design of deposit insurance and banking regulation, respectively. Empirically, Demirguc-Kunt and

Detragiache (2002) and Iyer and Puri (2012) show that deposit insurance indeed mitigates run risks

by changing the behavior of banks and depositors. In the context of non-banks, Jin, Kacperczyk,

Kahraman and Suntheim (2022) and Ma, Xiao and Zeng (2021) show that swing pricing can prevent

panic-driven runs at open-ended mutual funds. Our results complement these papers by showing that

issuing dividends can also reduce fragility in the context of stablecoins.

8 Conclusion

In this paper, we analyzed the possibility of panic runs on stablecoins. At a high level, stablecoin runs

arise from liquidity transformation. Stablecoin issuers hold illiquid assets while offering arbitrageurs

the option to redeem stablecoins for a fixed $1 in the primary market. This liquidity mismatch spills

over from the primary market to trigger the possibility of runs among investors on the secondary market

despite exchange-trading.

We show, however, that stablecoin run risk is mediated by the market structure of the arbitrageur

sector, which serves as a “firewall” between the secondary and primary markets. When the arbitrageur

sector is more efficient, shocks in the secondary market transmit more effectively to the primary market.

The price stability of stablecoins is thus improved, but the first-mover advantage for sellers is also

higher, increasing run risk. If the arbitrageur sector is less efficient, shocks in secondary markets

transmit less effectively. Price stability suffers, but run risk actually decreases, as the price impact of

stablecoin trades in secondary markets discourages market participants from panic selling. Calibrating

the model to data, we find that the two leading fiat-backed stablecoins by market cap, USDT and USDC,
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have significant run risk. We also showed how requiring stablecoin issuers to pay dividends to token

holders could simultaneously decrease run risk and increase price stability.

Our results have implications for understanding stablecoin issuers’ behavior. Some industry partic-

ipants currently view the difficulty of becoming a stablecoin arbitrageur as essentially a bureaucratic

oversight on behalf of issuers. We posit instead that issuers may be purposefully limiting the efficiency

of primary-secondary market arbitrage, in response to the tension between price stability and run risks

inherent in the design of fiat-backed stablecoins. Our results also have implications for policymakers:

increased regulatory certainty around the legality of paying dividends to investors has the potential to

simultaneously increase price stability and financial stability in the market for fiat-backed stablecoins.
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Figure 3: Asset Size of Fiat-backed Stablecoins

This figure shows the asset size of the six largest fiat-backed stablecoins over time.
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Figure 4: The Design of Fiat-backed Stablecoins

This figure illustrates the design of fiat-backed stablecoins.
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Figure 5: Secondary Market Trading Price

Panels (a) to (f) show the daily secondary market trading price of USDT, USDC, BUSD, USDP, TUSD,
and GUSD, respectively. Secondary market prices are volume-weighted averages of trading prices from
the exchanges listed in Section 2.
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Figure 6: Secondary Market Price Dislocations and Primary Market Structure

This figure shows the relationship between secondary market price dislocations and primary market
structure. In panel (a), each dot indicates the average secondary market price deviation and the average
number of arbitrageurs in a month for a given stablecoin. In panel (b), each dot indicates the average
secondary market price deviation and the average market share of the top five arbitrageurs in a month
for a given stablecoin. We first calculate monthly secondary market price deviations for a given sta-
blecoin by averaging over the absolute values of daily price deviations from one in a given month. We
then average over months to obtain the average secondary market price deviation for that stablecoin.
Similarly, we count the number of unique arbitrageurs and calculate the market share of the largest five
arbitrageurs in each month and then average over time for each coin. For the ease of presentation, we
take the number of arbitrageurs for USDC, which exceeds 5000.
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Figure 7: Effect of Dividend Payments

This figure shows the predicted effect of dividend payments to investors on the issuer’s choice of K,
the cost of price variance Kαδ2, and run probability.

(a) Elasticity K

(b) Price Variance Cost

(c) Run Probability
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Table 1: Asset Composition

This table shows the breakdown of reserves by asset class for USDT and USDC. Data are available for
the dates on which reserve breakdowns are published by USDT and USDC. For USDT, the “Deposit”
category includes bank deposits, while for USDC, the “Deposit” category includes US dollar deposits
at banks and short-term, highly liquid investments.

(a) USDT

Deposits Treas Muni MM Corp Loans Others
2021/06 10.0 24.3 0.0 50.7 7.7 4.0 3.3
2021/09 10.5 28.1 0.0 45.7 5.2 5.0 5.5
2021/12 5.3 43.9 0.0 34.5 4.6 5.3 6.4
2022/03 5.0 47.6 0.0 32.8 4.5 3.8 6.4

(b) USDC

Deposits Treas Muni MM Corp Loans Others
2021/05 60.4 12.2 0.5 22.1 5.0 0.0 0.0
2021/06 46.4 13.1 0.4 24.2 15.9 0.0 0.0
2021/07 47.4 12.4 0.7 23.0 16.4 0.0 0.0
2021/08 92.0 0.0 0.0 6.5 1.5 0.0 0.0
2021/09 100.0 0.0 0.0 0.0 0.0 0.0 0.0
2021/10 100.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2: Secondary Market Price and Volume

This table provides statistics about secondary market trading, including the average daily trading vol-
ume, the proportion of days with discounts and premiums, the average discount and premium, and the
median discount and premium.

USDT USDC BUSD TUSD USDP GUSD

Average Daily Volume 16.4 15.4 13.5 11.4 10.5 7.3
Proportion of Discount Days (%) 30.5 27.2 34.9 38.2 41.6 39.7
Proportion of Premium Days (%) 69.5 72.8 64.4 61.4 57.3 58.9
Average Discount (%) 0.54 0.01 0.01 0.11 0.18 0.78
Average Premium (%) 0.36 0.02 0.02 0.13 0.64 1.17
Median Discount (%) 0.11 0.00 0.00 0.05 0.09 0.63
Median Premium (%) 0.11 0.01 0.01 0.10 0.18 0.82
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Table 3: Primary Market Daily Redemption and Creation Activity

Panels (a) to (f) provide statistics about daily primary market redemption and creation activity on the
Ethereum blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across days in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 1 1 1 2
RD Top 1 Share 94 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 57 2 12 60
CR AP Num 3 1 2 4
CR Top 1 Share 80 60 91 100
CR Top 5 Share 99 100 100 100
CR Vol (mil) 77 3 15 65

(b) USDC

mean p25 p50 p75
RD AP Num 33 8 14 28
RD Top 1 Share 54 45 50 59
RD Top 5 Share 96 95 98 100
RD Vol (mil) 103 2 15 134
CR AP Num 236 11 29 137
CR Top 1 Share 61 41 58 83
CR Top 5 Share 92 87 96 100
CR Vol (mil) 135 3 24 210

(c) BUSD

mean p25 p50 p75
RD AP Num 21 8 15 28
RD Top 1 Share 59 40 56 76
RD Top 5 Share 94 90 96 100
RD Vol (mil) 62 8 27 82
CR AP Num 3 2 2 3
CR Top 1 Share 75 57 76 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 80 9 30 115

(d) USDP

mean p25 p50 p75
RD AP Num 18 8 17 27
RD Top 1 Share 55 37 52 73
RD Top 5 Share 90 85 95 100
RD Vol (mil) 12 3 6 13
CR AP Num 4 2 2 4
CR Top 1 Share 75 59 75 94
CR Top 5 Share 99 100 100 100
CR Vol (mil) 11 2 5 12

(e) TUSD

mean p25 p50 p75
RD AP Num 6 3 6 8
RD Top 1 Share 72 54 73 91
RD Top 5 Share 99 99 100 100
RD Vol (mil) 6 1 2 5
CR AP Num 10 3 9 16
CR Top 1 Share 68 49 67 88
CR Top 5 Share 97 96 99 100
CR Vol (mil) 7 1 3 7

(f) GUSD

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 6 0 1 3
CR AP Num 2 1 1 2
CR Top 1 Share 86 72 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 6 0 2 7
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Table 4: Primary Market Monthly Redemption and Creation Activity

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Ethereum blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 6 3 6 8
RD Top 1 Share 66 42 61 89
RD Top 5 Share 97 98 100 100
RD Vol (mil) 577 46 123 763
CR AP Num 18 9 17 26
CR Top 1 Share 59 35 57 77
CR Top 5 Share 90 84 93 99
CR Vol (mil) 1271 101 470 1800

(b) USDC

mean p25 p50 p75
RD AP Num 521 114 168 262
RD Top 1 Share 45 38 49 50
RD Top 5 Share 85 81 85 90
RD Vol (mil) 2976 160 460 4965
CR AP Num 5067 284 406 13112
CR Top 1 Share 45 31 44 51
CR Top 5 Share 81 70 84 92
CR Vol (mil) 3953 184 680 7448

(c) BUSD

mean p25 p50 p75
RD AP Num 214 157 202 274
RD Top 1 Share 48 30 50 62
RD Top 5 Share 81 74 82 87
RD Vol (mil) 1596 233 1498 2720
CR AP Num 16 8 11 19
CR Top 1 Share 65 53 68 82
CR Top 5 Share 98 97 99 100
CR Vol (mil) 2116 290 1628 3739

(d) USDP

mean p25 p50 p75
RD AP Num 178 71 174 284
RD Top 1 Share 41 24 37 54
RD Top 5 Share 74 62 77 88
RD Vol (mil) 260 94 174 262
CR AP Num 41 5 8 67
CR Top 1 Share 58 48 61 70
CR Top 5 Share 93 94 99 100
CR Vol (mil) 279 107 170 341

(e) TUSD

mean p25 p50 p75
RD AP Num 66 49 74 85
RD Top 1 Share 50 36 46 64
RD Top 5 Share 86 79 91 94
RD Vol (mil) 154 31 85 260
CR AP Num 92 53 106 130
CR Top 1 Share 50 33 46 65
CR Top 5 Share 87 83 87 92
CR Vol (mil) 164 30 77 259

(f) GUSD

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 113 7 17 164
CR AP Num 17 1 12 19
CR Top 1 Share 55 29 40 100
CR Top 5 Share 85 72 82 100
CR Vol (mil) 117 4 13 155
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Table 5: Parameter Estimates

Parameters for asset illiquidity ϕ and the long-term benefit η are estimated as described in Section
6.1. Parameters for the price variance cost αδ2 and the elasticity of demand γ, η, ϕ are estimated as
described in Section 6.2. Run prob is the run probability at the issuer’s optimal choice of K.

Coin Month ασ2
ϵ γ η ϕ Run Prob

USDC 2021m5 12.74 0.65 0.0301 0.0310 5.713%
USDC 2021m6 0.0198 0.0343 7.459%
USDC 2021m7 0.0221 0.0341 7.077%
USDC 2021m8 0.0575 0.0270 3.372%
USDC 2021m9 0.0443 0.0250 3.761%
USDC 2021m10 0.0525 0.0250 3.336%
USDT 2021m6 0.38 0.0301 0.0441 4.592%
USDT 2021m9 0.0292 0.0447 4.711%
USDT 2021m12 0.0250 0.0418 4.594%
USDT 2022m3 0.0365 0.0400 3.927%
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Table 6: Model Fit

Target K is the slope of arbitrageur demand for the stablecoin, estimated from the data, from (6.1).
Model K is the model-predicted slope of arbitrageur demand. Target elas. is the partial elasticity of
investors’ demand for the stablecoin with respect to the long-term benefit η , as described in Subsection
(6.2). Model elas. is the model partial elasticity of investors’ demand for the stablecoin with respect to
η.

Coin Month Target K Model K Target elas. Model elas.

USDC 2021m5 0.156 0.202 2.486 2.726
USDC 2021m6 0.156 0.235 2.486 4.443
USDC 2021m7 0.156 0.230 2.486 4.071
USDC 2021m8 0.156 0.137 2.486 1.345
USDC 2021m9 0.156 0.149 2.486 1.481
USDC 2021m10 0.156 0.135 2.486 1.312
USDT 2021m6 0.209 0.270 1.600 1.746
USDT 2021m9 0.209 0.273 1.600 1.820
USDT 2021m12 0.209 0.268 1.600 1.714
USDT 2022m3 0.209 0.240 1.600 1.319
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A Additional Institutional Details

A.1 Minting of Stablecoins

Technically, stablecoins on Ethereum are ERC-20 tokens, and stablecoins on other blockchains are

implemented as similar token “smart contracts.” The stablecoin “smart contract,” that is, the blockchain

code that governs the behavior of the stablecoin, gives the stablecoin issuer the arbitrary right to create,

or “mint”, new stablecoin tokens, into arbitrary wallet addresses. Stablecoin issuers adopt technically

slightly different strategies to issue and redeem stablecoins in primary markets. Some, like USDC,

directly “mint” new coins using the token smart contract into customers’ wallets. Others, like Tether,

occasionally mint large amounts of stablecoin tokens to “treasury” wallets under their own control, and

then issue stablecoins in primary markets by sending tokens from the “treasury” address to customers’

wallets.15

A.2 Trading on Crypto Exchanges

There are a number of ways individuals can purchase stablecoins with local fiat currency. One method

is to deposit fiat on a custodial centralized crypto exchange (CEX), such as Binance or Coinbase.

Centralized exchanges, like stock brokerages, keep custody of fiat and crypto assets on behalf of users,

and allow users to purchase or sell crypto assets using fiat currencies. After purchasing stablecoins

on a CEX, the user can then “withdraw” the stablecoins, instructing the CEX to send her stablecoins

to a wallet address of her choosing, to self-custody the purchased stablecoins. Another approach is

to use peer-to-peer exchanges, such as Paxful. On these platforms, users list offers to buy or sell

stablecoins or other crypto tokens for other forms of payment. Accepted forms of payment in the US

include Zelle, Paypal, Western Union, ApplePay, and many others. The exchange platform plays an

escrow, insurance, and mediation role in these transactions. When a user buys a stablecoin, she sends

funds to the exchange’s escrow account and the stablecoin seller sends stablecoins to an address of the

buyer’s choosing. Once the buyer confirms receipt of the stablecoins, the exchange sends funds from
15Treasury address tokens technically count towards the market cap of any given stablecoin, but they are not economically

meaningful as part of the market cap, since Tether does not have to hold US dollar assets against tokens it holds in its treasury.
Thus, we will not count tokens held in treasury addresses as part of the stablecoin supply in circulation.
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the escrow account to the seller’s account. In this process, purchased stablecoins are sent directly to the

user’s self-custodial wallet.

B Double Auction

We follow Kyle (1989) and Du and Zhu (2017) to model the arbitrage sector as a double auction. At

t = 1 and t = 2, there are n symmetric arbitrageurs indexed by j. At any given period, arbitrageurs bid

to buy or sell stablecoins from investors and noise traders, incur a per-perid inventory cost if winning

the auction, and then create or redeem the stablecoin at the fixed price of one dollar if the issuer is

solvent. Thus, arbitrageurs always hold zero inventory at the beginning and the end of each period.

Specifically, at any given period, the winning arbitrageurs incur a per-period inventory cost z2j /2χ of

arbitraging zj of the stablecoin, where χ is a parameter. Hence, the expected profit, conditional on

winning the auction, for arbitraging zj of the stablecoin at price p is:

zj (1− p)−
z2j
2χ

.

In the auction, arbitrageurs submit a bid curve, zBj (p), of the amount of stablecoins they are willing

to arbitrage if the secondary-market price is p. We seek an equilibrium in which residual supply facing

any individual arbitrageur j is linear in price:

zRSj (p) = d (p− ψ) + ηj ,

where d and ψ are constants and ηj is a full-support random intercept. Conditional on ηj , arbitrageur j

picks her favorite point on zRSj (p).

According to Proposition 1 in Zhang (2022), the solution to the optimal bidding problem above is

given by:

zBj (p) =
χd

d+ χ
(1− p) . (B.1)
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On the other hand, by symmetry, we must also have that the residual supply slope in equilibrium, that

is, d, is (n− 1) times the individual demand slope as given in (B.1):

d = (n− 1)
χd

d+ χ
. (B.2)

The solution to (B.1) and (B.2) is thus:

d = (n− 2)χ .

Plugging back to (B.1) yields the unique equilibrium bid of arbitrageur j:

zBj (p) =
n− 2

n− 1
χ (1− p) . (B.3)

Aggregating (B.3) then yields the arbitrageurs’ market demand curve:

∑
j

zBj (p) = χ
n(n− 2)

n− 1
(1− p) , (B.4)

and market clearing finally requires: ∑
j

zBj (p) = m, (B.5)

where m is the amount of stablecoins supplied by investors or noise traders.

If the stablecoin issuer facing redemptions is insolvent at t = 2, a similar derivation yields the

adjusted market demand curve:

∑
j

zBj (p) = χ
n(n− 2)

n− 1

(
1− ϕ

m
− p

)
.

Lemmas 1 and 2 immediately follow from applying the market clearing condition (B.5) at t = 2

and t = 1.
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C Omitted Proofs

Proof of Proposition 1. Denote the run threshold as θ′, that is, if investor i observes a private signal

si < θ′ she sells her stablecoin at t = 2; otherwise she waits until t = 3. Then the population of

investors who runs, λ, can be written as

λ (θ, θ′) =


1 if θ ≤ θ′ − ε

θ′−θ+ε
2ε

if θ′ − ε < θ ≤ θ′ + ε

0 if θ > θ′ + ε

. (C.1)

Let h (θ, λ) be the payoff gain from waiting until t = 3 versus selling at t = 2. It is straightforward

that

h(θ, λ) = v3(θ, λ)− p2(θ, λ) =


π(θ)

(
1− ϕ− λ

(1− ϕ)(1− λ)
+ η

)
− 1 +Kλ λ ≤ 1− ϕ ,

−1− ϕ

λ
+Kλ λ > 1− ϕ .

Notice that h(θ, λ) is concave in λ over (0, 1− ϕ) because

∂2h(θ, λ)

∂λ2
= − 2π(θ)ϕ

(1− λ)3(1− ϕ)
< 0 .

If investor i observes signal si, given that other households use the threshold strategy, she will sell

her stablecoin if ∫ si+ε

si−ε

h (θ, λ (θ, θ′)) dθ < 0 ,

or stay otherwise. To prove that there exists a unique run threshold θ∗, we need to prove that there is

a unique θ∗ such that if θ′ = θ∗, the investor who observes signal si = θ′ = θ∗ is indifferent between

selling and waiting. That is,

V (θ∗) ≡
∫ θ∗+ε

θ∗−ε

h (θ, λ (θ, θ∗)) dθ = 0.
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According to Morris and Shin (2003) and Goldstein and Pauzner (2005), it then suffices to show

that h(λ) crosses 0 only once, that is, satisfies the single-crossing property when the upper dominance

region exists. To show this, first note that h(1) = −1+ϕ+K < 0 and that h(λ) increases in (1−ϕ, 1).

It then must be that h(1 − ϕ) < 0. On the other hand, note that h(0) > 0 when θ, and thus π(θ), are

sufficiently large. Because h(λ) is continuous and concave in (0, 1 − ϕ), it then immediately follows

that h(λ) must cross 0 once and only once in (0, 1− ϕ). Since h(λ) does not cross 0 in (1− ϕ, 1), this

implies that h(λ) crosses 0 once and only once in (0, 1), concluding the proof.

Proof of Proposition 2. Based on Proposition 1, we first compute the run threshold π(θ∗) directly. By

construction, an investor with signal θ∗ must be indifferent between selling her stablecoin at t = 2 and

waiting until t = 3. This investor’s posterior belief of θ is uniform over the interval [θ∗ − ε, θ∗ + ε].

On the other hand, she understands that the proportion of investors who sell at t = 2, as a function of

θ, is λ(θ, θ∗), where the function λ(θ, θ′) is given by (C.1) in the proof of Proposition 1. Therefore, her

posterior belief of λ is also uniform over (0, 1). At the limit, this gives the indifference condition as the

Laplace condition:

∫ 1−ϕ

0

(1−Kλ) dλ+

∫ 1

1−ϕ

(
1− ϕ

λ
−Kλ

)
dλ =

∫ 1−ϕ

0

π(θ∗)

(
1− ϕ− λ

(1− ϕ)(1− λ)
+ η

)
dλ , (C.2)

which we also give in the main text as (5.6). Solving this Laplace condition (C.2) yields the run

threshold (5.7).

We then perform comparative statics about the run threshold π(θ∗). With respect to ϕ, we have

∂π(θ∗)

∂ϕ
=

(2− 2ϕ−K)((ϕ− 1)(η(ϕ− 1) + 1)− lnϕ)− 2(ϕ− 1) ln(1− ϕ)(−2ϕ+ (ϕ+ 1) lnϕ+ 2)

2 ((1− ϕ)(1 + η(1− ϕ)) + ϕ lnϕ)2
,

(C.3)

whose denominator is positive. Thus, (C.3) is positive if its numerator is positive. This holds when

g(θ) ≡ 2(ϕ− 1) (ϕ− lnϕ+ ln(1− ϕ)((1 + ϕ) lnϕ+ 2− 2ϕ)− 1)

1− ϕ+ lnϕ
> K , (C.4)
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where g(ϕ) is continuous and strictly decreasing in ϕ, and it satisfies limϕ→0 g(ϕ) = 2 > 0. Thus,

conditions (C.3) and (C.4) hold when ϕ is not too large for any given K ≤ 2, and then the equilibrium

run threshold π(θ∗) increases in ϕ.

With respect to K, we have

∂π(θ∗)

∂K
=

ϕ− 1

2 ((1− ϕ)(1 + η(1− ϕ)) + ϕ lnϕ)
< 0 . (C.5)

To see why (C.5) holds, notice that its numerator is negative. On the other hand, define its denominator

as

ζ(ϕ) ≡ 2 ((1− ϕ)(1 + η(1− ϕ)) + ϕ lnϕ) .

It is straightforward to show that ζ(ϕ) strictly decreases in ϕ while limϕ→1 ζ(ϕ) = 0 when η = 0. Thus,

the denominator of (C.5) is positive. This concludes the proof.

Proof of Proposition 3. Suppose condition (C.4) holds, that is, ϕ is not too large. Under this condition,

we know from condition (C.3) in the proof of Proposition 2 that the equilibrium run threshold π(θ∗)

increases in ϕ. We also consider the limit case of R′(ϕ) = 0 and the general case of R′(ϕ) > 0 follows

by continuity when ϕ is not too large.

We now consider the first-order condition (FOC) for the issuer’s problem (5.10) that determines the

optimal K, the slope of arbitrageurs’ demand. When G(·) is linear, the FOC is:

0 =
∂E[Π]

∂K
=
∂E[W ]

∂K

∫
π(θ)≥π(θ∗)

π(θ)(R− 1)dF (θ)︸ ︷︷ ︸
marginal cost from

reduced investor participation

−E[W ]
∂π(θ∗)

∂K
(f(θ∗)π(θ∗)(R− 1))︸ ︷︷ ︸

marginal benefit from
reduced run risk

, (C.6)

where according to (5.11),

∂E[W ]

∂K
= −2αδ2K︸ ︷︷ ︸

marginal utility cost from
decreasing price stability

+
∂π(θ∗)

∂K
(f(θ∗)(1− ϕ−K − π(θ∗)(1 + η)))︸ ︷︷ ︸

marginal utility benefit from
increasing financial stability

−
∫
π(θ)<π(θ∗)

dF (θ) .

(C.7)
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This first-order condition reveals the various channels through which increasing K affects the sta-

blecoin issuer’s expected revenue. The first part of (C.6) captures the marginal effect of changing the

population of participating investors, which in turn depends on each investor’s expected utility from

participating. The second part of (C.6) captures the marginal benefit that directly results from the

reduced run risk on issuer revenue (since the issuer captures the revenue only if a run is avoided). Fur-

thermore, (C.7) captures the marginal effects of increasing K on an investor’s expected utility: the first

term of (C.7) is the marginal cost that results from a lower convenience due to higher price fluctuations,

while the second term is the marginal benefit from the reduced run risk on investor utility. Notice that

this last marginal benefit then indirectly affects the issuer’s expected revenue. In equilibrium, the issuer

cares about run risk both directly and indirectly, which are captured by the second term of (C.6) and

the second term of (C.7), respectively.

We now compute dK∗/dϕ. Using the FOC (C.6) above:

∂FOCK(K,ϕ)

∂ϕ
=
∂2E[W ]

∂K∂ϕ︸ ︷︷ ︸
+

∫
π(θ)≥π(θ∗)

π(θ)(R− 1)dF (θ)︸ ︷︷ ︸
+

− π(θ∗)f(θ∗)(R− 1)︸ ︷︷ ︸
+

(
∂E[W ]

∂K

∂π(θ∗)

∂ϕ
+
∂E[W ]

∂ϕ

∂π(θ∗)

∂K

)
︸ ︷︷ ︸

−

− E[W ]π(θ∗)f(θ∗)(R− 1)︸ ︷︷ ︸
+

(
∂2π(θ∗)

∂K∂ϕ
π(θ∗) +

∂π(θ∗)

∂K

∂π(θ∗)

∂ϕ

)
︸ ︷︷ ︸

−

> 0 .

On the other hand, because K∗ is an interior solution, we have the second-order condition:

∂FOCK(K,ϕ)

∂K
< 0 .

Applying the implicit function theorem thus yields:

dK∗

dϕ
= −

∂FOCK(K,ϕ)

∂ϕ
∂FOCK(K,ϕ)

∂K

> 0 ,
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which immediately implies that dn∗/dϕ < 0. This concludes the proof.

Proof of Proposition 4. When the stablecoin issuer pays dividend τ , the run threshold changes to

π(θ∗; τ) =
(1− ϕ)(2− 2ϕ− 2(1− ϕ) ln(1− ϕ)−K)

2 ((1 + τ + η(1− ϕ))(1− ϕ) + (1 + τ)ϕ lnϕ)
, (C.8)

where ∂π(θ∗; τ)/∂K < 0 still holds.

The issuer’s objective function changes to

max
K

Eτ [Π] = G(Eτ [W ])︸ ︷︷ ︸
population of

participating investors

∫
π(θ)≥π(θ∗;τ)

π(θ)(R(ϕ)− 1− τ)dF (θ)︸ ︷︷ ︸
expected issuer revenue per

participating investor

,

where each investor’s expected utility of participation changes to

Eτ [W ] = −αδ2K2︸ ︷︷ ︸
short-term convenience

+(1− ϕ−K)

∫
π(θ)<π(θ∗;τ)

dF (θ)︸ ︷︷ ︸
short-term payoff if runs

+

∫
π(θ)≥π(θ∗;τ)

π (θ) (1 + η + τ) dF (θ)︸ ︷︷ ︸
long-term payoff if no runs

,

in which π(θ∗; τ) is given by (5.7) in Proposition 2.

Similarly, we consider the FOC with respect to K:

0 =
∂Eτ [Π]

∂K
=
∂Eτ [W ]

∂K

∫
π(θ)≥π(θ∗;τ)

π(θ)(R− 1− τ)dF (θ)︸ ︷︷ ︸
marginal cost from

reduced investor participation

−Eτ [W ]
∂π(θ∗; τ)

∂K
(f(θ∗)π(θ∗; τ)(R− 1− τ))︸ ︷︷ ︸

marginal benefit from
reduced run risk

, (C.9)

where

∂Eτ [W ]

∂K
= −2αδ2K︸ ︷︷ ︸

marginal utility cost from
decreasing price stability

+
∂π(θ∗; τ)

∂K
(f(θ∗)(1− ϕ−K − π(θ∗; τ)(1 + η + τ)))︸ ︷︷ ︸

marginal utility benefit from
increasing financial stability

−
∫
π(θ)<π(θ∗;τ)

dF (θ) .
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We first use (C.8) to calculate that

∂2π(θ∗; τ)

∂K∂τ
=

(1− ϕ)(1− ϕ+ ϕ lnϕ)

2 ((1− ϕ)(1 + τ + η(1− ϕ)) + (1 + τ)ϕ lnϕ)2
> 0 ,

and also

∂ [(π(θ∗; τ)(1 + η + τ))]

∂τ
=
η(1− ϕ)ϕ(1− ϕ+ lnϕ)(K + 2ϕ+ 2(1− ϕ) ln(1− ϕ)− 2)

2 ((1− ϕ)(1 + τ + η(1− ϕ)) + (1 + τ)ϕ lnϕ)2

> 0 ,

when ϕ is sufficiently small. Thus, for τ > 0 we have

∂π(θ∗; τ)

∂K

∣∣∣∣
K=K∗

(f(θ∗)(1− ϕ−K∗ − π(θ∗; τ)(1 + η + τ)))

<
∂π(θ∗)

∂K

∣∣∣∣
K=K∗

(f(θ∗)(1− ϕ−K∗ − π(θ∗)(1 + η))) . (C.10)

On the other hand, similar calculation yields:

Eτ [W ]|K=K∗
∂π(θ∗; τ)

∂K

∣∣∣∣
K=K∗

π(θ∗; τ) < E[W ]|K=K∗
∂π(θ∗)

∂K

∣∣∣∣
K=K∗

π(θ∗) . (C.11)

Because R − 1 − τ < R − 1, conditions (C.10) and (C.11) thus joinly imply that the new FOC

(C.9) also evaluated at K∗ is smaller than the old FOC (C.6) evaluated at K∗, which is zero. This

immediately implies that K∗
τ < K∗, and hence n∗

τ > n∗. This concludes the proof.
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D Additional Empirical Results

Table 7: Primary Market Daily Redemption and Creation Activity (Tron)

Panels (a) to (f) provide statistics about daily primary market redemption and creation activity on the
Tron blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5 arbi-
trageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 1 1 1 2
RD Top 1 Share 96 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 450 40 110 460
CR AP Num 3 1 2 3
CR Top 1 Share 81 63 89 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 266 18 66 250

(b) USDC

mean p25 p50 p75
RD AP Num 33 7 17 28
RD Top 1 Share 67 45 67 94
RD Top 5 Share 93 91 98 100
RD Vol (mil) 2 0 0 2
CR AP Num 28 5 24 35
CR Top 1 Share 65 35 71 98
CR Top 5 Share 87 78 96 100
CR Vol (mil) 14 0 0 1

(c) TUSD

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 97 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 10 0 0 2
CR AP Num 1 1 1 1
CR Top 1 Share 100 100 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 20 0 0 24
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Table 8: Primary Market Monthly Redemption and Creation Activity (Tron)

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Tron blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 5 2 4 6
RD Top 1 Share 72 53 68 94
RD Top 5 Share 100 100 100 100
RD Vol (mil) 4625 651 3575 7515
CR AP Num 11 2 12 14
CR Top 1 Share 65 46 54 96
CR Top 5 Share 98 96 99 100
CR Vol (mil) 4991 628 3515 7475

(b) USDC

mean p25 p50 p75
RD AP Num 446 11 317 391
RD Top 1 Share 58 33 51 81
RD Top 5 Share 84 78 85 100
RD Vol (mil) 41 3 24 70
CR AP Num 442 8 493 655
CR Top 1 Share 77 56 92 98
CR Top 5 Share 94 97 99 100
CR Vol (mil) 259 11 70 153

(c) TUSD

mean p25 p50 p75
RD AP Num 4 2 3 7
RD Top 1 Share 87 69 95 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 61 0 21 32
CR AP Num 3 1 2 3
CR Top 1 Share 95 98 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 85 0 24 80
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Table 9: Primary Market Daily Redemption and Creation Activity (Avalanche)

Panels (a) to (f) provide statistics about daily primary market redemption and creation activity on the
Avalanche blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 31 5 30 60
CR AP Num 1 1 1 1
CR Top 1 Share 100 100 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 26 10 30 40

(b) USDC

mean p25 p50 p75
RD AP Num 3 1 2 4
RD Top 1 Share 88 78 99 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 6 0 0 1
CR AP Num 4 2 3 6
CR Top 1 Share 81 70 88 99
CR Top 5 Share 100 100 100 100
CR Vol (mil) 12 0 3 14

(c) BUSD

mean p25 p50 p75
RD AP Num 2 1 1 2
RD Top 1 Share 90 86 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 0 0 0 0
CR AP Num 3 1 2 3
CR Top 1 Share 89 86 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 0 0 0 0

(d) TUSD

mean p25 p50 p75
RD AP Num 6 3 6 8
RD Top 1 Share 72 54 73 91
RD Top 5 Share 99 99 100 100
RD Vol (mil) 6 1 2 5
CR AP Num 10 3 9 16
CR Top 1 Share 68 49 67 88
CR Top 5 Share 97 96 99 100
CR Vol (mil) 7 1 3 7
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Table 10: Primary Market Monthly Redemption and Creation Activity (Avalanche)

Panels (a) to (f) provide statistics about monthly primary market redemption and creation activity on
the Avalanche blockchain, including the number of arbitrageurs, the market share of the top 1 and top 5
arbitrageurs, and the transaction volume. For each variable, we show the average, 25th percentile, 50th

percentile, and 75th percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
RD AP Num 1 1 1 1
RD Top 1 Share 100 100 100 100
RD Top 5 Share 100 100 100 100
RD Vol (mil) 50 1 10 120
CR AP Num 1 1 1 2
CR Top 1 Share 88 93 100 100
CR Top 5 Share 100 100 100 100
CR Vol (mil) 84 1 45 140

(b) USDC

mean p25 p50 p75
RD AP Num 34 18 32 47
RD Top 1 Share 49 31 42 60
RD Top 5 Share 94 87 96 99
RD Vol (mil) 111 3 16 219
CR AP Num 44 34 44 60
CR Top 1 Share 54 43 49 64
CR Top 5 Share 89 83 86 96
CR Vol (mil) 287 20 267 524

(c) BUSD

mean p25 p50 p75
RD AP Num 22 10 18 30
RD Top 1 Share 37 30 40 42
RD Top 5 Share 83 73 82 94
RD Vol (mil) 0 0 0 0
CR AP Num 33 11 18 43
CR Top 1 Share 41 34 38 50
CR Top 5 Share 87 82 94 98
CR Vol (mil) 0 0 0 0

(d) TUSD

mean p25 p50 p75
RD AP Num 66 49 74 85
RD Top 1 Share 50 36 46 64
RD Top 5 Share 86 79 91 94
RD Vol (mil) 154 31 85 260
CR AP Num 92 53 106 130
CR Top 1 Share 50 33 46 65
CR Top 5 Share 87 83 87 92
CR Vol (mil) 164 30 77 259
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E Additional Calibration Details and Results

E.1 Estimating the distribution of p(θ)

The CDS spread sc on an asset class c ∈ {1 . . . C} can be thought of as the probability of default under

a recovery rate of 0. Since we assume 0 recovery rates in our model, for a single asset, sc maps exactly

to p in our model. Now, suppose the issuer holds a fraction qc of her portfolio in asset class c. If each

asset pays off 1 with probability sc and 0 with probability (1− sc), the portfolio as a whole has an

expected recovery value:
C∑
c=1

scqc

We add an adjustment factor to account for the fact that stablecoin issuers tend to be overcollateralized.

If the issuer holds 1+ξ in assets times the total number of stablecoin issued, then the expected recovery

value of assets, for each unit of stablecoin issued, is:

p = (1 + ξ)
C∑
c=1

(1− sc) qc (E.1)

Since p in the model is equal to the expected recovery value of assets per unit stablecoin issued, we

will use (E.1) on each date we observe CDS spreads as one realization of p. We can think of (E.1)

as the price of a composite security, which averages across CDS spreads of different components of a

stablecoin issuer’s portfolio, and accounts for the fact that issuers are slightly overcollateralized. With

any set of CDS spreads on a given day, we can calculate a value of p using (E.1). By plugging CDS

spreads from different dates into (E.1), we can calculate a distribution of signals p. Note that, when

we plug CDS spreads into (E.1), we use spreads from a single day; hence, this method accounts for

correlations between CDS prices of different asset classes.

We implement (E.1) we choose the historical CDS series from Markit that is liquid and that best fits

each reported asset category. For deposits, we assign the average CDS of unsecured debt at the top 6

US banks to capture the riskiness of the banking sector.16 We note that despite stablecoin issuers’ claim

that deposits are riskless in FDIC-insured institutions, they are not riskless or fully insured because

16These include Bank of America, Wells Fargo, JP Morgan Chase, Citigroup, Goldman Sachs, and Morgan Stanley.
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deposit accounts exceeding 250K are not covered by deposit insurance, as evident from the recent

Silicon Valley Bank episode. For Treasuries, we assign the CDS spreads on 3-year US treasuries.

For money market instruments, we use CDX spreads on 1-year investment-grade corporate debt. For

USDC’s corporate bonds, we assign the 10-year investment-grade corporate CDX because they are

stated to be of at least a BBB+ rating. For USDT’s corporate bonds, we assign the average 10-year

corporate CDX. The remaining categories, “foreign” and “other”, do not have a clear mapping to the

existing CDS series. For USDT, for example, assets in the “other” category include cryptocurrency,

which could potentially be very risky. In our baseline results, we use the emerging market CDX spread

as a proxy. We use the 10-year high-yield CDX spread as a robustness check. Our sample period is

from 2008 to 2022.

Using the daily portfolio-level CDS spreads as observations, we fit a beta distribution for each

coin-month by choosing the two beta distribution parameters to match the mean and variance of the

empirical distribution of signals p. We then use this beta distribution as the distribution of p (θ) in the

model. Appendix Table 11 shows the parameters of the beta distributions we estimate.
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Table 11: Distribution of p (θ)

This table shows the fitted beta distributions for p (θ), for each stablecoin and month in our data. α and
β are respectively the two beta distribution parameters. Mean p (θ) and SD p (θ) are the mean and SD
of the estimated beta distributions for p (θ).

Coin Month α β Mean p(θ) SD p(θ)

USDT 2021m6 156.24 1.16 0.9926 0.0068
USDT 2021m9 170.15 1.33 0.9922 0.0067
USDT 2021m12 211.54 1.60 0.9925 0.0059
USDT 2022m3 213.25 1.42 0.9934 0.0055
USDC 2021m5 127.59 0.57 0.9955 0.0059
USDC 2021m6 137.00 0.57 0.9959 0.0054
USDC 2021m7 138.22 0.58 0.9958 0.0055
USDC 2021m8 122.20 0.83 0.9933 0.0073
USDC 2021m9 121.81 0.89 0.9928 0.0076
USDC 2021m10 121.81 0.89 0.9928 0.0076
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Table 12: Secondary Market Price Deviation versus Redemptions/Creations

This table shows the results from regressing daily secondary market price deviations against the daily
volume of redemptions/creations for USDT and USDC. For redemptions, price deviation is one minus
the lowest hourly secondary market price on that day. For creations, price deviation is the highest
hourly secondary market price on that day minus one. The daily volumes of redemptions and creations
are expressed as a proportion of the total outstanding volume of each stablecoin. We include a year
fixed effect to account for structural shifts over time.

USDT USDC

(1) (2)
Redemption/Creation 0.21∗∗∗ 0.16∗∗∗

(0.06) (0.02)
Observations 1,225 1,792
Adjusted R2 0.01 0.05
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Figure 8: Effect of Dividend Payments (Full Sample Period)

This figure shows the predicted effect of dividend payments to investors on the issuer’s choice of K,
the cost of price variance Kαδ2, and run probability.

(a) Elasticity K

(b) Price Variance Cost

(c) Run Probability
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