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a b s t r a c t

We decompose the squared VIX index, derived from US S&P500 options prices, into the conditional vari-
ance of stock returns and the equity variance premium.We evaluate a plethora of state-of-the-art volatil-
ity forecasting models to produce an accurate measure of the conditional variance. We then examine the
predictive power of the VIX and its two components for stockmarket returns, economic activity and finan-
cial instability. The variance premium predicts stock returns while the conditional stock market variance
predicts economic activity and has a relatively higher predictive power for financial instability than does
the variance premium.
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1. Introduction

The 2007–2009 crisis has intensified the need for indicators of
the risk aversion ofmarket participants. It has also become increas-
ingly commonplace to assume that changes in risk appetites are
an important determinant of asset prices. Not surprisingly, the be-
havioral finance literature (see e.g. Baker and Wurgler, 2007) has
developed ‘‘sentiment indices’’, and financial institutions have cre-
ated a wide variety of ‘‘risk aversion’’ indicators (see Coudert and
Gex, 2008, for a survey).

One simple candidate indicator is the equity variance premium,
the difference between the squared VIX index and an estimate
of the conditional variance of the stock market. The VIX index
is the ‘‘risk-neutral’’ expected stock market variance for the US
S&P500 contract and is computed from a panel of options prices.
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Well-known as a ‘‘fear index’’ (Whaley, 2000) for asset markets,
it reflects both stock market uncertainty (the ‘‘physical’’ expected
volatility), and a variance risk premium, which is also the expected
premium from selling stock market variance in a swap contract.
Bollerslev et al. (2009) show that an estimate of this variance
premium predicts stock returns; Bekaert et al. (2013) show that
there are strong interactions between monetary policy and the
variance premium, suggesting that monetary policy may actually
affect risk aversion in themarket place. The variance premiumuses
objective financial market information and naturally ‘‘cleanses’’
option-implied volatility from the effect of physical volatility
dynamics and uncertainty, leaving a measure correlated with risk
aversion.

How to measure the variance premium is not without contro-
versy, however, because it relies on an estimate of the conditional
variance of stock returns. For example, the measure proposed in
Bollerslev et al. (2009), BTZ, henceforth, assumes that the condi-
tional variance of stockmarket returns is a martingale, an assump-
tion which is not supported by the data, leading to potentially
biased variance premiums. In this paper, we tackle several mea-
surement issues for the variance premium, assessing a plethora of
state-of-the-art volatility models and making full use of overlap-
ping daily data, rather than sparse end-of-month data, which is
standard.

http://dx.doi.org/10.1016/j.jeconom.2014.05.008
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The conditional variance measure is of interest in its own right.
First, there is a long literature on the trade-off between risk, as
measured by the conditional variance of stock market returns, and
the aggregate risk premium on the market (see e.g. French et al.,
1987, for a seminal contribution). This long line of research has
mostly failed to uncover a strongpositive relationship between risk
and return (see Bali, 2008, for a summary). Second, stock market
volatility can also be viewed as a market-based measure of eco-
nomic uncertainty. For example, Bloom (2009) shows that height-
ened ‘‘economic uncertainty’’ decreases employment and output.
Interestingly, he uses the VIX index tomeasure uncertainty, so that
his results may actually be driven by the variance premium rather
than uncertainty per se.

Using more plausible estimates of the variance premium and
stock market volatility, we then assess whether they predict stock
returns, economic activity, as well as financial instability, an eco-
nomic outcome whose monitoring is of considerable policy inter-
est.We find that thewell-known results in BTZ exaggerate the pre-
dictive power of the variance premium for stock returns. However,
the equity variance risk premium remains a reliable predictor of
stock returns. Stock market volatility does not predict the stock
market, but it is a much better predictor of economic activity than
is the equity variance premium. It also predicts financial instabil-
ity more strongly than does the variance premium, especially at
longer horizons.

The remainder of the paper is organized as follows. Section 2
discusses the econometric framework that we use to forecast
volatility, and lays out ourmodel selection procedure. Section 3 re-
ports the results of our specification analysis and forecasting per-
formance comparison. Section 4 uses the preferred estimates of
the variance premium and stock market volatility to predict stock
returns, economic activity and financial instability. Section 5 con-
cludes.

2. Econometric framework

We define the variance risk premium as:

VPt = VIX2
t − Et


RV (22)

t+1


. (1)

Here the VIX is the implied option volatility of the S&P500 index for
contracts with a maturity of one month, and RV (22)

t+1 is the S&P500
realized variance measured over the next month (22 trading days)
using five-minute returns. Note that RV (22)

t+1 − VIX2
t is the return to

buying variance in a variance swap contract. Therefore, technically
speaking, the variance risk premium refers to the negative of VP
(see Carr andWu, 2009). Since that number is mostly negative, we
prefer to define it as we did in Eq. (1).

Economically, the squared VIX is the conditional return vari-
ance using a ‘‘risk-neutral’’ probability measure, whereas the con-
ditional variance uses the actual ‘‘physical’’ probability measure.
The risk-adjusted measure shifts probability mass to states with
higher marginal utility (bad states) and this implies that in many
realistic economic settings, the variance premium will be increas-
ing in the economy’s risk aversion.

The unconditional mean of the variance premium is easy to
compute by simply computing the average of VIX2

t − RV (22)
t+1 . How-

ever, we are interested in the conditional variance premium as de-
scribed in Eq. (1), which relies on the physical conditional expected
value of the future realized variance. The common approach to es-
timate this uses empirical projections of the realized variance on
variables in the information set, and subtracts this estimated ex-
pected variance from the VIX2 to arrive at VP. Hence, the problem
is reduced to one of variance forecasting.
Our data start on January 02, 1990 (the start of the model-free
VIX series)1 and covers the period until October 01, 2010. We have
a total of 5208 daily, overlapping observations. The recent crisis pe-
riod presents special challenges as stockmarket volatilities peaked
at unprecedented levels, but at the same time the crisis represents
an informative period during which uncertainty and risk aversion
may have been particularly pronounced. Nevertheless, if we de-
compose the sample variance of the implied and realized volatility
series in contributions by crisis andnon-crisis observations, the cri-
sis observations dominate despite representing a relatively small
part of the sample. We deal with the crisis-induced challenges by
considering both models that predict the level and the logarithm
of realized variances, and by puttingmuch emphasis on parameter
stability in our model selection procedure. In addition, we focus
on out-of-sample forecasting exercises where we conduct the in-
sample estimations mostly on non-crisis observations, so that the
influence of the crisis on the parameter estimates andmodel selec-
tion is mitigated.

Variance forecasting

There is an extensive econometric literature on volatility fore-
casting. It is now generally accepted thatmodels based on high fre-
quency realized variances dominate standardmodels in theGARCH
class (see e.g. Chen and Ghysels, 2012) and we therefore examine
the state-of-the-art models in that class. These models stress the
importance of persistence (using lagged realized variances as pre-
dictors), additional information content in the most recent return
variances (Corsi, 2009), asymmetry between positive and negative
return shocks (the classic volatility asymmetry, see e.g. Engle and
Ng, 1993) and potentially differing predictive information present
in jump versus continuous volatility components (Andersen et al.,
2007). We accommodate all of these elements in our model.

In the finance literature, it has been pointed out as early as in
Christensen and Prabhala (1998) that option prices as reflected in
implied volatility should have information about future stockmar-
ket volatility. This motivates using the VIX as a predictive vari-
able. Recent articles using the VIX in similar forecasting exercises
include Busch et al. (2011) who examine a number of variance
forecasting models embedding option-implied volatility for bond,
currency and stockmarkets, and Andersen and Bondarenko (2007)
who mostly focus on measurement issues with the officially pub-
lished VIX index. Of course, because the VIX also embeds a risk
premium, it will not be an unbiased predictor of future realized
volatility. Chernov (2007) argues that spot volatility is likely to
have additional information about future volatility.

Finally, it is well-known that estimation noise hurts out-of-
sample forecasting performance. Simple models such as the mar-
tingale model may therefore outperform more complex models.
We therefore also consider a number of non-estimatedmodels that
are special cases of our general framework.

Our most general forecasting model can be represented as
follows:

RV (22)
t = c + αVIX2

t−22 + βmC (22)
t−22 + βwC (5)

t−22 + βdC (1)
t−22

+ γ mJ (22)t−22 + γ wJ (5)t−22 + γ dJ (1)t−22 + δmr (22)−
t−22

+ δwr (5)−
t−22 + δdr (1)−

t−22 + εt . (2)

1 The CBOE changed the methodology for calculating the VIX, initially measuring
implied volatility for the S&P100 index, to be measured in a model-free manner
from a panel of option prices (see Bakshi et al., 2003, for details) only in September
2003. It then backdated the new model-free index to 1990 using historical option
prices (see CBOE, 2004, for more details).
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Table 1
Models considered.

Variables VIX2 C (22) C (5), C (1) J (22) J (5), J (1) r (22)− r (5)−, r (1)−

Estimated models

(Log) Model 1 X
(Log) Model 2 X
(Log) Model 3 X X
(Log) Model 4 X X X
(Log) Model 5 X X
(Log) Model 6 X X X X
(Log) Model 7 X X X
(Log) Model 8 X X X
(Log) Model 9 X X
(Log) Model 10 X X X X X
(Log) Model 11 X X X X
(Log) Model 12 X X X X X X X
(Log) Model 13 X X X X X X
(Log) Model 14 Outcome of the general-to-specific (Gets) model selection — see Table 2

Non-estimated models

Model 29 X
Model 30 X
Model 31 0.5 * X 0.5 * X

Notes: Summary of variables included in estimated and non-estimated models. In models without jumps, the relevant realized variances (RV (22) , RV (5) and RV (1)) are used
instead of the continuous variations (C (22) , C (5) and C (1)); i.e., in estimated (log) models 2, 3, 8, 9, and non-estimated models 30 and 31.
We want to forecast the monthly (22 trading days) S&P500 re-
alized variance, denoted by RV (22)

t , and defined as the sum of daily
realized variances RV over the 22 days, RV (22)

t =
22

j=1 RVt−j+1. The
daily realized variance sums squared five-minute intraday returns
and the squared close-to-open return, with returns expressed
in percentage form.2 Our first independent variable is the VIX2

(expressed in monthly percentages squared, i.e. VIX2/12 where
VIX is the quoted VIX index level in annualized percent), and we
expect α to be positive. The next six variables separate the real-
ized variance into a continuous and a discontinuous (‘‘jump’’) com-
ponent (at the monthly, weekly and daily frequencies), following
Andersen et al. (2007). To isolate the jumps contribution to daily
quadratic variation, we use threshold bipower variation proposed
by Corsi et al. (2010). Corsi et al. (2010) show that this threshold
measure substantially reduces the small-sample bias that the stan-
dard bipower variation (Barndorff-Nielsen and Shepherd, 2004) es-
timates exhibit.3 The daily jump, denoted as Jt , is defined as:

Jt = max [(RVt − TBPVt) , 0] (3)

where TBPVt stands for threshold bipower variation defined in
Corsi et al. (2010), equation 2.14. The continuous component of the
daily quadratic variation is given by:

Ct = RVt − Jt . (4)

Weekly (h = 5) andmonthly (h = 22) variables are averaged, and
we express all variables in monthly units so that: J (h)t =

22
h

h
j=1

Jt−j+1 and C (h)
t =

22
h

h
j=1 Ct−j+1.

Finally, following Corsi and Renò (2012), we add negative re-
turns over the past day, week and month, to incorporate a po-
tential leverage effect (see Campbell and Hentschel, 1992; Bekaert

2 Weuse actual S&P500 returns. Other papers in the literature focused on S&P500
futures including, e.g., Andersen et al. (2007) and Corsi et al. (2010).
3 The upward bias in bipower variation leads to a continuous variation that is

too large and a jump component that is too small, and thus potentially also biases
estimates of the jumps coefficients in models such as (2). To obtain threshold
bipower variation, we use equation 2.14 in Corsi et al. (2010), with the threshold
function as defined in their equation 2.15 and the scale-free constant set to 3. The
construction of the estimator of the local variance is described in Appendix B of their
paper.
and Wu, 2000). To model the leverage effect at different frequen-
cies, we define r (h)−

t = min

r (h)
t , 0


where r (h)

t =
22
h

h
j=1

rt−j+1.
In addition to forecasting realized variance in levels, we also

considermodels that predict the logarithmof the realized variance.
The logarithmic counterpart of the model in (2) reads:

ln RV (22)
t = c + α ln VIX2

t−22 + βm ln C (22)
t−22 + βw ln C (5)

t−22

+ βd ln C (1)
t−22 + γ m ln


1 + J (22)t−22


+ γ w ln


1 + J (5)t−22


+ γ d ln


1 + J (1)t−22


+ δmr (22)−

t−22 + δwr (5)−
t−22 + δdr (1)−

t−22 + εt . (5)

Because variances have right-skewed distributions, but logarith-
mic variances tend to have near Gaussian distributions, it may be
easier to predict logarithmic variances with linear models. How-
ever, ultimately, we still need to identify the model that best fore-
casts the level of the realized variance. To this end, when we
consider a logarithmic model, we assume log-normality to predict
levels of monthly realized variances:

Et

RV (22)

t+1


= exp


Et


rv(22)

t+1


+

1
2
var


rv(22)

t+1


(6)

where rv(22)
t+1 = ln


RV (22)

t+1


. We use the logarithmicmodel to com-

pute the conditional expectation of rv(22)
t+1 and the sample variance

of rv(22)
t+1 to compute the variance term.

Model selection procedure

Our model selection procedure consists of comparing the out-
of-sample forecasting performance of a set of 31 estimated and
non-estimated models and examining their stability. The models
are summarized in Table 1. For estimated models, we consider 14
variants of the encompassing model in levels (Eq. (2)) and in log-
arithms (Eq. (5)), respectively (i.e., we estimate 28 models in to-
tal). We estimate the models using OLS. Models 1 through 13 have
fixed combinations of predictors. Models 14 for the level and the
logarithmic specification, respectively, are models with a set of
predictors selected by a general-to-specific (Gets) model selection
procedure (using the full sample). While sequential Wald tests
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Table 2
General-to-specific (Gets) model selection.

Model (1) (2)

VIX2 0.456***

[0.019]

C (22)
−0.265 0.215***

[0.267] [0.040]
C (5) 0.282*** 0.184***

[0.094] [0.039]
C (1) 0.126*** 0.093***

[0.047] [0.014]
J (22) 2.052***

[0.635]
J (5)

J (1)

r (22)−
−0.955*

[0.536]
r (5)−

−0.318**

[0.138]
r (1)−

−0.211***
−0.002***

[0.072] [0.0006]
# daily observations 5208 5208

Notes: Sample period January 02, 1990–October 01, 2010. Column 1 reports
estimates for the level model while column 2 reports estimates for the
logarithmic model. The standard errors reported in brackets are computed using
44 Newey–West lags.

* Significance at the 0.10-level.
** Significance at the 0.05-level.
*** Significance at the 0.01-level.

present problems in terms of selecting the size of tests (see e.g.
Bhargava, 1987), we rely on the large body of work onmodel selec-
tion by David Hendry and co-authors, see e.g. Campos et al. (2003)
and Hendry and Krolzig (2005).We use the recent implementation
by Autometrics in the econometrics software package OxMetrics
(see Doornik, 2009, for details). In terms of practical implementa-
tion, we use 5% as the target size for our tests, the default value in
the software; we also do not use indicator saturation techniques,
but test for parameter instability separately. We use PcGive, ver-
sion 13 (see Doornik et al., 2009).

In Table 2, we discuss the level and logarithmic models chosen
by the Gets model selection analysis. The standard errors below
the parameters are computed using 44 Newey and West (1987)
lags. The model selection yields models with monthly, weekly and
daily continuous variation in both cases. In the level regression
model, the Getsmodel selection procedure retainsmonthly jumps,
in addition to negative returns at all three frequencies. In the
logarithmic model, the squared VIX is chosen, along with the daily
negative returns.

In addition, we consider 3 non-estimated models: the lagged
squared VIX (model 29); the lagged realized variance (model 30;
this is the model used in BTZ); and 0.5 times the lagged squared
VIX plus 0.5 times the lagged realized variance (model 31).

We estimate the models using daily data between January 1,
1990 and July 15, 2005 (representing about 75% of the full sample)
and use the rest of the sample (till October 01, 2010) to measure
forecasting performance. The parameters are not updated.

We examine five different criteria.We compute the root-mean-
squared error (RMSE), mean absolute error (MAE), andmean abso-
lute percentage error (MAPE; the absolute error in percent of the
actual realized variance). We evaluate whether the forecast error
measures are significantly different among competing forecasting
models through the Diebold and Mariano (1995) test (with stan-
dard errors computed using 44 Newey–West lags), using a 10% sig-
nificance level.4 We also compute the R2 of Mincer and Zarnowitz
(1969) forecasting regressions, that is, we compute the R2 in a re-
gression of actual data on their forecasted values. The final criterion
we examine is a simple joint Chow test for parameter stability over
the last part of the sample versus the estimation part of the sam-
ple. Ericsson (1992) discusses formally how mean-squared-error
minimization andparameter constancy are bothnecessary (but not
sufficient) conditions to obtain a good forecasting model. We also
produce the average correlation of the forecasts generated by a
particular model with the forecasts generated by the winning
model on each of the first 4 criteria. This gives a sense of how close
different forecast models are economically.

3. Model selection results

Table 3 produces the statistics and the average ranking of our 31
considered models according to the criteria discussed above. Re-
call that for the logarithmic models, we are predicting the level of
the realized variance as discussed in Section 2. The first column re-
ports whether the model is stable according to the Chow test (us-
ing 10% significance level). Stable models are bolded. In the second
column, we report the in-sample RMSE (denoted RMSE*). In the
next three columns, we report the out-of-sample RMSE, MAE and
MAPE criteria.5 We note that the out-of-sample RMSE is consid-
erably larger than its in-sample counterpart. This is also true for
the MAE criterion, but it is not true for the MAPE criterion, where
out-of-sample errors are often smaller than in-sample errors (not
reported). Because the realized variance became very large during
the crisis, which constitutes a substantial part of the out sample,
it is not surprising to see larger (absolute) errors out of sample.
However, the results for theMAPE criterion suggest that, in relative
terms, the errors did not increase. We test for each model whether
it generates a statistic significantly different from the statistic gen-
erated by the best ranked model (i.e., model 14 for RMSE, model 8
for MAE, and model 4 for MAPE; all models in levels). When such
a test fails to reject, the statistic is bolded. We view such tests as
critical inmodel selection. Amodelmay rank relatively low, but the
criterionmay have little power to distinguish differentmodels and
generate very similar forecast errors. For example, a quick glance
at the table reveals that the RMSE criterion has little power to dis-
tinguish alternativemodels, whileMAPE is themost distinguishing
one. For the R2 criterion (in the 5th column), we view a difference
of more than 5% with the winning model (model 14) as a signifi-
cant difference in economic terms. Model statistics similar in R2 to
the winning model are bolded. The 6th column produces an aver-
age correlation, averaging the correlation of eachmodel’s forecasts
with the forecasts of the winning models in all four out-of-sample
quantitative criteria (RMSE, MAE, MAPE, and R2). If a model were
to be the top model on each criterion, it would get a correlation of
1. Finally, we rank models in each of the four categories (from 1,
best, to 31, worst) and produce the average ranking score for each
model in the last column of Table 3.

4 We also computed two other statistics; the heteroskedasticity adjusted root-
mean-squared error suggested in Bollerslev and Ghysels (1996) and the QLIKE loss
function (see Patton, 2011). However, these statistics produce rankings very similar
to theMAPE-criterion, sowe do not discuss them further. Also note that the Diebold
and Mariano test only uses the forecast errors and ignores the underlying model
structure and estimation. While we could in principle use more complex statistics
that take the model structure and estimation into account (see e.g. West, 2006),
recent research suggests that the Diebold and Mariano test works well even in
model-based out-of-sample forecasting comparisons (see Clark and McCracken,
2011; Diebold, 2013).
5 Although the Diebold–Mariano test uses the mean-squared error (MSE) rather

than RMSE, we report the RMSE so that RMSE and MAE criteria have a comparable
scale (both are in the realized variance units, monthly percentages squared). MAPE
is expressed in percent of the realized variance and is thus scale-free.
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Table 3
Model statistics and ranking.

Model RMSE* RMSE MAE MAPE R2 Correlations Average score

Estimated level models

Model 1 11.462 52.978 18.653 0.342 0.411 0.954 15.50
Model 2 11.618 49.610 19.089 0.494 0.484 0.956 14.50
Model 3 10.909 49.267 17.650 0.354 0.491 0.974 9.50
Model 4 10.458 55.336 19.047 0.318 0.358 0.945 17.75
Model 5 11.485 52.059 19.190 0.498 0.432 0.951 19.75
Model 6 10.147 53.171 18.785 0.344 0.407 0.964 16.50
Model 7 10.600 50.150 18.798 0.468 0.472 0.967 14.50
Model 8 10.508 46.077 16.856 0.347 0.555 0.976 4.00
Model 9 10.822 45.450 17.523 0.445 0.567 0.969 4.75
Model 10 10.196 50.635 17.603 0.324 0.462 0.974 12.00
Model 11 10.658 46.614 17.400 0.446 0.544 0.975 6.50
Model 12 9.988 50.261 17.863 0.348 0.470 0.978 12.50
Model 13 10.237 46.970 17.512 0.435 0.537 0.981 6.75
Model 14 10.592 45.147 17.537 0.403 0.572 0.978 3.75

Estimated logarithmic models

Log Model 1 13.137 49.853 19.059 0.406 0.479 0.957 13.50
Log Model 2 13.531 49.590 22.605 0.706 0.484 0.957 20.50
Log Model 3 12.985 50.729 21.762 0.562 0.460 0.974 22.00
Log Model 4 12.293 50.794 19.699 0.498 0.459 0.963 19.00
Log Model 5 13.225 49.066 22.066 0.730 0.495 0.957 19.25
Log Model 6 12.457 50.590 19.887 0.505 0.463 0.970 18.50
Log Model 7 13.226 61.642 25.194 0.723 0.203 0.932 30.25
Log Model 8 12.680 48.004 20.981 0.571 0.517 0.981 15.00
Log Model 9 12.852 45.996 21.072 0.662 0.556 0.977 13.50
Log Model 10 12.191 48.031 19.661 0.529 0.516 0.977 13.25
Log Model 11 12.485 45.538 21.077 0.694 0.565 0.977 13.50
Log Model 12 12.263 49.271 20.375 0.537 0.491 0.969 16.50
Log Model 13 12.792 54.713 23.452 0.695 0.372 0.942 27.50
Log Model 14 12.322 48.248 19.989 0.541 0.512 0.971 15.00

Non-estimated models

Model 29 25.774 55.359 29.940 1.055 0.357 0.954 30.50
Model 30 12.548 53.276 22.254 0.500 0.405 0.956 24.25
Model 31 16.265 52.051 24.310 0.717 0.432 0.974 25.75

Notes: Selected model statistics based on the out-of-sample performance. Parameters are estimated
using data between January 1, 1990 and July 15, 2005; the rest of the sample is used to assess forecasting
performance. The 1st column reports the Chow stability test results (stable models bolded). The 2nd
column shows the in-sample RMSE (RMSE*). The next four columns show the out-of-sample RMSE, MAE,
MAPE, and Mincer–Zarnowitz R2 (see Section 3 for the ‘‘bolding’’ criteria). The 7th column produces the
average correlation of each model with the best models in the RMSE, MAE, MAPE, R2 categories. The 8th
column produces the average ranking score of each model in the RMSE, MAE, MAPE, R2 categories.
Using this information, we winnow down our set of models by
requiring a good model to be bolded in at least 3 out of 4 quanti-
tative criteria. This leaves us with only 7 models: level models 1,
4, 8, 10, 11, 13 and 14. Model 14 produces the best average rank-
ing score (3.75) but is not stable. Indeed, only three of these seven
models are stable: models 1, 8 and 11. Model 8 has the second
best average score (4). It is also the only model which gets four
bolds.Model 11 has the fourth best average score (6.5).Meanwhile,
model 1 ranks only 16 in the average score. We therefore select
models 8 and 11 as the winning models. Model 8 is Corsi’s HAR
model, supplemented with the squared VIX. Model 11 features
continuous and jump variations at all three frequencies. More
generally, the presence of realized variances (or their continuous
components) at all three frequencies is important in delivering
lower error statistics. In terms of R2, more complex models (level
models 8, 9, 11, 13, 14 and logarithmic models 9 and 11) yield sub-
stantially higher values than the other models.

Over the full sample, the resulting coefficients for models 8 and
11 (with heteroskedasticity–robust standard errors in brackets)
are:

RV (22)
t = 3.730 + 0.108 VIX2

t−22 + 0.199 RV (22)
t−22

(1.903) (0.072) (0.096)

+ 0.330 RV (5)
t−22 + 0.107 RV (1)

t−22
(0.117) (0.026)

(7)
RV (22)
t = 3.855 − 0.212 C (22)

t−22 + 0.237 C (5)
t−22 + 0.223 C (1)

t−22
(1.164) (0.237) (0.064) (0.064)

+ 1.742 J (22)t−22+ 0.327 J (5)t−22− 0.016 J (1)t−22
(0.702) (0.262) (0.056)

(8)

Table 3 also shows statistics of some popular simple models
used in the literature: the squared VIX — realized variance model
used in Bekaert et al. (2013, our model 3), the martingale model
of BTZ (model 30) and the AR(1) model of Londono (2011, model
2). Compared to the top models, the martingale and simple au-
toregressive models perform an order of magnitude worse but
the squared VIX — realized variance model delivers quite similar
performance. Of the simpler models, Model 3 is the best on all four
criteria (onlyModel 1 does better onMAPE). It also has the best av-
erage score among the simpler models, and the sixth best average
score overall.

Additional exercises

We performed two alternative exercises. First, we repeated our
analysis with two alternative sample splits in the out-of-sample
forecasting exercise. We estimated the models using data until
June 16, 2003 (about 65% of the full sample) and until August 1,
2007 (about 85% of the sample), respectively. Results for the win-
ningmodels 8 and 11 are remarkably robust. For the 65% split, out-
of-sample forecasting performance is uniformly better, with lower
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errors and higher R2, with the best model attaining an R2 of just
over 59%, i.e., 2% higher than in the 75% split. The winning mod-
els are the same as in the 75% split: model 4 on MAPE, model 8 on
MAE, and model 14 on R2 and RMSE. Models that get 3 bolds out
of 4 are models 1, 3, 4, 8, 10, and 14 (all in levels), with models 4,
10 and 14 being unstable (as in the 75% sample split). Model 8 is
again the only model that gets 4 bolds. For the 85% split, where all
out-of-sample predictions are made over the period that includes
the recent financial crisis, all models produce higher errors and
lower R2. Model 8 is again the winning model on the MAE crite-
rion, with level model 10winning onMAPE and logarithmicmodel
11 on RMSE and R2. Models that get 3 bolds out of 4 largely over-
lap with those in the 75% split: models 4, 8, 9, 10, 11, 13 and 14.
Only models 8, 9 and 11 are stable, however. In sum, model 8 is
consistently a top performer across all three sample splits. Model
11 does well in two of three sample splits, including the split that
emphasizes performance during the financial crisis.6

Second, we re-consider our forecasting exercise with end-of-
month data. In most of the existing articles (including BTZ, Lon-
dono, 2011; Busch et al., 2011), end-of-month data are used to
estimate conditional variance models. The use of daily data should
lead to more efficient estimates, but the correlation between daily
and monthly data induced by the overlapping data structure may
make the increase in efficiency minor. We estimated all our mod-
els using end-of-the-month data till mid-2005, mimicking the 75%
sample split used in our main forecasting exercise with daily data.
We then use the obtained regression coefficients to construct daily
out-of-sample realized variance forecasts for the remainder of the
sample. Computing the usual criteria, we check whether we can
accept the various models by looking for three bolds on our four
quantitative criteria (MAPE, MAE, RMSE, and R2), and we verify the
stability criterion.

With end-of-month data, the winning models in the four quan-
titative categories are the same as with the daily data (Model 4 on
MAPE, Model 8 on MAE, and Model 14 on RMSE and R2). The win-
ning models based on daily data beat those based on monthly data
on all statistics with the exception of the MAPE criterion, where
model 4 displays very comparable statistics (0.317 with end-of-
month versus 0.318 with daily data). Models 1, 4 and 8 still get
3 bolds out of 4. However, model 4 is again unstable. Interestingly,
model 8 based on monthly estimates does well relative to the best
models based on the daily information. When estimated using the
full sample, the monthly model puts less weight on the squared
VIX and RV (22), and more weight on RV (5) and RV (1) than the daily
model does. For the simplermodels, model 3 (used in Bekaert et al.,
2013) and model 1 are stable, and get 3 bolds out of 4. However,
model 3 does better on the four quantitative criteria than model
1. The more complex models, like our previously winning model
11, which include jumps and/or asymmetric volatility, are, not sur-
prisingly, more difficult to identify with monthly data. The use of
monthly estimation samples should therefore best be restricted to
relatively simple models, where the loss of efficiency is not very
costly.

4. Economics and predictability

Risk and risk aversion

In Fig. 1, we plot the daily series for the variance risk premium
(VP henceforth; displayed in Panel A), which may potentially

6 We also verified that our winning models are overall stable. That is, using
the monthly data set we conducted the standard unknown breakpoint test
(Quandt–Andrews test; implemented in EViews 6), with 10% trimming, and found
no evidence of instability. The test points to June 2008 as the most likely break for
both models 8 and 11 but it is not statistically significant.
serve as a proxy for risk aversion, and the conditional (physical)
variance of the stock market (CV henceforth; in Panel B), which
may potentially serve as a measure of economic uncertainty. We
show the two series obtained from the winning models 8 and
11 on one graph. The VP and CV series are positively correlated
(correlation of 0.45 for model 8 and 0.27 for model 11) and display
peaks at the expected times. The largest peaks for CV are observed
during the Lehman aftermath in the recent crisis and at the time of
the corporate scandals following the Enron debacle. Interestingly,
the 1998 Russian crisis and the Gulf war did not generate much
uncertainty, but these events do feature substantially elevated
levels of VP. The Lehman event seems to have caused bothmassive
uncertainty and massive risk aversion.

When realized variances show extreme peaks, the VP series
can become negative, which happens more for model 11 than for
model 8. This is a disadvantage of all thesemodels. It is unlikely that
during these periods of stress there was a sudden increase in risk
appetite. Themoremundane explanation is that realized variances
likely have different components with different levels of mean re-
version. In a massive crisis, some of the realized variance move-
ments should probably be allowed to mean-revert more quickly
and not affect the conditional variance as much as they do now.
The models with jumps could theoretically capture this by having
negative coefficients on the jump terms. However, model 11 puts a
large positive coefficient on themonthly andweekly jump compo-
nents, and a very small negative one on the daily jump component.
Overall, it is likely that a non-linear model may be better equipped
to capture the behavior of CV and VP in severe crises.

Predicting stock market returns

The two components of the squared VIX index have been con-
sidered as separate potential predictors of stock market returns.
Starting with French et al. (1987), a large literature focuses on
the relationship between aggregate stockmarket returns and their
conditional variance. In a simple static CAPM model, the coeffi-
cient on the conditional stockmarket variancewould be thewealth
weighted risk aversion coefficient, but such a relationship need
not hold perfectly in a dynamic model. In the literature on the
risk–return relationship, estimates vary from positive to negative
and the relationship is often insignificant. Lundblad (2007) sug-
gests that the samples typically used are too short to uncover a
relationship that is robustly and statistically significantly positive
in the sample of over 150 years that he considers. Yet, the mea-
surement of the conditional variance of stock returns may matter,
too. The bulk of the extant literature has considered GARCH-in-
mean models to measure the conditional stock market variance,
which likely induces substantial measurement error in the regres-
sion. Ghysels et al. (2005) recover a positive risk–return trade-
off measuring the conditional variance with a flexible function
of past returns, applying MIDAS modeling. However, Hedegaard
and Hodrick (2013) dispute these results, mostly finding insignifi-
cant coefficientswith either GARCH or (adjusted)MIDASmodels to
measure the conditional variance.

BTZ recently showed that the variance risk premiumhas predic-
tive power for future stock returns, which is logical since it harbors
information about aggregate risk aversion. As shown above, their
measure implicitly uses a volatility model that is strongly rejected
by the data. We therefore re-consider the predictive power of both
the equity variance risk premium (‘‘risk’’) and the conditional vari-
ance of the stockmarket (‘‘uncertainty’’), using our improvedmea-
sures of the conditional variance of stock market returns.

We start with regressions using only the variance premium as a
predictor of equity returns. Like BTZ, we rely on end-of-the-month
observations but we consider various estimates of the variance
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Fig. 1. Variance premium and conditional variance.
premium.7 Table 4, Panel A contains the results. The left hand side
variable is always excess stock returns (the S&P500 return in excess
of the three-month T-bill rate; expressed in annualized percent-
ages). We use three different horizons, monthly, quarterly and an-
nual (denoted by1, 3 and12, respectively), averaging returns over a
quarter/year. The overlap in the monthly data creates serial corre-
lation in the error term that must be corrected for in creating stan-
dard errors. We use a relatively large number of Newey–West lags,
namelymax{3, 2*horizon}, to do so, rather than create standard er-
rors under the null of no predictability, as in Hodrick (1992). While

7 We also performed all of our regressions using the BTZ sample, which ends in
December 2007 and therefore conveniently excludes the crisis period. We note any
interesting differences between results with and without the crisis period in the
text.
the Hodrick estimator has very good size properties, selecting a
large number of lags may improve power (see Sun et al., 2008).

In the last specification in Panel A,we show that the squared VIX
itself fails to predict stock returns. Just above, we repeat the BTZ
specification that uses the past realized variance as the estimate
of the conditional variance of stock market returns. The resulting
variance premium proxy predicts stock market returns at all three
horizonswith the predictive power strongest at the quarterly hori-
zon, both in terms of magnitude of the coefficient and the adjusted
R2. The R2 for the martingale model in the quarterly regression in-
creases from 7% in the original BTZ sample to 13% in our sample.
Thus, including the financial crisis actually strengthens BTZ’s re-
sults. Compared to the predictability results when using the two
best models – models 8 and 11 – to estimate the variance pre-
mium, BTZ’s martingale model maximizes the predictive power of
the variance premium for returns. For the bestmodels, there is only
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Table 4
Stock return regressions.

Horizon 1 3 12 1 3 12 1 3 12 1 3 12

Panel A: Monthly, quarterly and annual regressions with variance premium

VP 8 0.311 0.426** 0.241**

[0.293] [0.175] [0.114]
VP 11 0.304 0.289 0.169*

[0.256] [0.184] [0.092]
VP 30 0.527*** 0.575*** 0.168***

[0.121] [0.073] [0.055]
VIX2

−0.030 0.019 0.061
[0.166] [0.139] [0.045]

Constant −1.045 −3.069 0.841 −0.907 −0.574 2.148 −4.633 −5.408* 2.273 5.835 3.954 2.829
[5.285] [4.148] [4.861] [5.434] [4.066] [4.379] [3.439] [3.167] [3.809] [5.538] [4.666] [4.344]

Adj. R2 0.005 0.042 0.045 0.008 0.025 0.029 0.037 0.130 0.034 −0.004 −0.004 0.012

Panel B: Monthly, quarterly and annual regressions with variance premium and conditional variance

VP 8 0.593* 0.688*** 0.287***

[0.330] [0.145] [0.092]

CV 8 −0.358**
−0.333***

−0.058
[0.155] [0.061] [0.062]

VP 11 0.421 0.362** 0.171**

[0.260] [0.180] [0.084]

CV 11 −0.296*
−0.183**

−0.005
[0.177] [0.089] [0.051]

VP 30 0.478*** 0.564*** 0.211***

[0.174] [0.109] [0.080]

CV 30 −0.060 −0.013 0.052
[0.078] [0.054] [0.060]

Constant 1.505 −0.696 1.258 3.324 2.045 2.214 −2.433 −4.918 0.383
[4.760] [3.968] [4.981] [4.637] [4.286] [4.651] [4.434] [3.976] [5.112]

Adj. R2 0.024 0.095 0.046 0.024 0.043 0.025 0.035 0.127 0.042

Horizon 1 3 12 1 3 12 1 3 12

Panel C: Monthly, quarterly and annual regressions with variance premium, conditional variance and other predictors

3MTB 3.618 3.261 3.549 3.141 3.432 3.563 3.641 3.296 3.636
[3.146] [3.344] [3.070] [3.091] [3.765] [3.147] [3.365] [3.440] [3.109]

Log(DY) 19.160 21.023 18.900* 22.876 23.141* 19.578* 19.367 21.236 18.857*

[14.411] [12.904] [10.510] [14.267] [13.490] [10.502] [14.468] [12.951] [10.510]

CS −15.022 −17.702 −6.335 −15.847 −17.936 −6.432 −10.290 −12.540 −5.120
[17.119] [13.153] [4.708] [18.529] [14.901] [5.151] [16.258] [12.602] [4.862]

TS 1.944 2.095 3.983 1.649 2.255 4.004 1.806 1.953 4.008
[3.892] [4.272] [3.554] [3.910] [4.479] [3.599] [3.961] [4.287] [3.563]

VP 8 0.674** 0.796*** 0.304***

[0.276] [0.146] [0.100]

CV 8 −0.153 −0.110 0.054
[0.211] [0.091] [0.051]

VP 11 0.560** 0.515** 0.234***

[0.237] [0.201] [0.075]

CV 11 −0.110 0.025 0.087*

[0.201] [0.085] [0.051]

VP 30 0.533*** 0.639*** 0.238***

[0.174] [0.105] [0.075]

CV 30 0.066 0.130 0.124**

[0.124] [0.096] [0.052]

Constant −10.604 −12.335 −19.198 −10.258 −11.792 −19.057 −16.851 −19.132 −20.682
[16.083] [12.982] [12.433] [17.434] [14.004] [12.265] [15.829] [12.700] [12.530]

Adj. R2 0.039 0.171 0.276 0.041 0.131 0.267 0.046 0.192 0.273
Notes: Sample period January 1990–September 2010. All regressions are based onmonthly observations. The standard errors reported in brackets are computed usingmax[3,
2*horizon] Newey–West lags.

* Significance at the 0.10-level.
** Significance at the 0.05-level.
*** Significance at the 0.01-level.
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statistically significant predictive power at the longer horizons and
the R2 drops from 13% to somewhere between 2.5 and 4.5%.8 In un-
reported results, we find that the realized variance predicts stock
returns with a negative sign at the monthly and quarterly horizon
(significant at the 10% and 5% level, respectively). However, the
coefficients are an order of magnitude smaller than for the BTZ
variance premium, and the R2 is just above 2% in the quarterly re-
gression.

This generates somewhat of a puzzle regarding the origin of
the strong predictive power of the BTZ-variance premium. If the
realized variance is not a strong predictor of stock market returns
and the VIX itself does not predict them at all, why does their
difference provide strong predictive power? The coefficient on the
variance premium can be decomposed as follows:

βVP = βVIX2
var


VIX2


var [VP]

− βCV
var [RV ]
var [VP]

. (9)

It turns out that the variance of the squared VIX is rather similar
to the variance of RV, which is itself more than three times higher
than the variance of the variance risk premium. Therefore, the
variance premium coefficient at the quarterly frequency scales up
the small positive coefficient on the VIX and the larger negative
coefficient on stock market volatility by a factor of three.9

Economically, it does appear that the variance risk premiumun-
covers a component in the VIX index that is related to future stock
market returns, but the statistical evidence is not very strong. Apart
from the small sample, one possible reason for this is the well-
known fact that equity risk premiums are likely driven by multi-
ple state variables (see Ang and Bekaert, 2007; Menzly et al., 2004)
so that the univariate regressions are necessarily mis-specified. In
the consumption-based asset pricingmodel of Bekaert et al. (2009),
risk aversion and uncertainty are the two state variables driving
time-variation in the equity risk premium.10

We therefore investigate bivariate regressions using both the
variance premium and the conditional variance as predictors. The
results are in Panel B of Table 4. The VP is overall the stronger pre-
dictor over the quarterly and annual horizons. The CV coefficients
are (with one exception) negative and sometimes significantly so
for models 8 and 11.11

These results have implications for the consumption-based as-
set pricing literature,where there is a persistent debate aboutwhat
economic mechanism generates a large equity premium, volatile
stock market returns and long-horizon stock return predictability.
In the Bansal and Yaron (2004) long-run riskmodel, time-variation
in the equity premium comes from time-variation in economic un-
certainty. Recent versions of themodel (see e.g. Bansal et al., 2012)
put more and more emphasis on the role of volatility and argue
that substantial persistence in consumption volatility (which then
generates high persistence in stock return volatility) is necessary
to make the models fit the salient asset return features. However,

8 One possibility is that because we pre-estimate the conditional variance and
BTZ do not, measurement noise affects our estimates. However, our measurement
provides proxies for the variance premium and the conditional stock market
variance closer to the true economic concepts.
9 In the BTZ sample, neither the squared VIX nor the realized variance predict

stock returns, with the VIX getting a positive insignificant coefficient and the
realized variance a zero coefficient in the quarterly regressions. In that sample, the
variance of the squared VIX is more than twice as high as the variance of the BTZ
variance risk premium so that the positive coefficient on the VIX gets scaled up by
a factor of two.
10 Anderson et al. (2009) also examine the impact of ‘‘risk’’ and ‘‘uncertainty’’,
but in their paper risk represents physical volatility and uncertainty disagreement
among forecasters.
11 In the BTZ sample, the CV coefficients are positive at the monthly, and negative
at the quarterly and annual horizons, but mostly insignificant.
our empirical results cast doubt on this economic mechanism. The
persistence of the conditional variance (at the monthly level) is
modest, varying between 0.63 and 0.71 across models. Moreover,
the time-varying risk premiumcomponent in equity returns comes
predominantly from the variance risk premium, not from time-
varying economic uncertainty. The effects of economic uncertainty
on risk premiumswe do document seem short-lived. This suggests
that the alternative class of models (see Campbell and Cochrane,
1999), which relies on counter-cyclical changes in risk aversion to
generate variation in risk premiums, has more chance of being the
true economic mechanism explaining time-variation in equity risk
premiums.12

In Panel C, we consider a multivariate regression including
other well-known predictor-variables, namely the real 3-month
rate (the three-month T-bill minus CPI inflation, denoted 3MTB),
the logarithm of the dividend yield (denoted Log(DY)), the credit
spread (the difference between Moody’s BAA and AAA bond yield
indices, denoted CS) and the term spread (the difference between
the 10-year and the 3-month Treasury yields, denoted TS); all vari-
ables expressed in annualized percentages. The addition of the
other variables strengthens the predictive power of the variance
premium for equity returns, with the coefficients uniformly in-
creasing. However, the uncertainty coefficients are now smaller
and mostly insignificantly different from zero.

As to the other variables, the term structure variables are never
significant. Both the real rate and the term spread have consis-
tently positive coefficients. The credit spread obtains a negative
coefficient that is not significantly different from zero, and the div-
idend yield is at best significant at the 10% level, mostly at the
longer horizons. Here, the crisis adversely affected the predictive
power of these variables. Excluding crisis data, the dividend yield
and the credit spread are highly statistically significantly different
from zero for all specifications (at all horizons in case of the divi-
dend yield and at longer horizons in case of the credit spread), with
the dividend yield having the expected positive coefficient, but the
credit spread negatively affecting the equity premium.13

The adjusted R2’s remain small at the one month horizon, but
now become quite large at the quarterly (13%–19% range) and
annual horizons (around 27%). It is likely that this high explanatory
power may partially reflect statistical bias (see Boudoukh et al.,
2007).

Given that our preferred VP and CV measures are based on
the estimated models 8 and 11, we conduct a robustness check
which accounts for the sampling error in the VP and CV in our re-
gressions. Specifically, we draw 500 alternative VP and CV series
from the distribution of VP and CV estimates. To do so, we retain
the coefficients from the forecasting projection together with their
asymptotic covariance matrix. Then, we draw 500 alternative pa-
rameter coefficients from the distribution of these estimates, gen-
erating alternative VP and CV estimates. We then feed these into
our predictive regressions generating a distribution of coefficients,
standard errors and t-statistics. As the first-stage projections are
tightly estimated, the coefficients and standard errors are not ma-
terially affected, and our main inference regarding stock return
predictability remains intact.

12 Do note that the models we mention fail to generate realistic variance
premiums in equilibrium (see Bekaert and Engstrom, 2013).
13 There is no issue of multi-collinearity in the regression as the dividend
yield–credit spread correlation is low (close to zero over the pre-crisis sample;
and 0.2 over the full sample). While the negative credit spread coefficient may
surprise some readers, BTZ also report negative coefficients for the credit spread
in univariate excess return regressions. It is conceivable that the credit spread is a
good indicator of economic prospects (for example, it is relatively highly correlated
with economic uncertainty) and therefore helps cleanse the dividend yield from
variation driven by cash flows, rather than risk premiums (see Golez, 2012, for a
recent interesting attempt to cleanse the dividend yield of cash flow effects in a
predictability regression).
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Table 5
Industrial production regressions.

Monthly, quarterly and annual regressions with variance premium and conditional variance

Horizon 1 3 12 1 3 12 1 3 12 1 3 12

VP 8 −0.066 −0.028 0.025
[0.052] [0.042] [0.025]

CV 8 −0.088***
−0.113***

−0.060***

[0.020] [0.009] [0.012]

VP 11 −0.084 −0.046 0.007
[0.054] [0.036] [0.018]

CV 11 −0.078***
−0.106***

−0.053***

[0.020] [0.006] [0.013]

VP 30 −0.040 −0.027 0.014
[0.034] [0.030] [0.019]

CV 30 −0.083***
−0.087***

−0.033***

[0.019] [0.010] [0.011]

VIX2
−0.080***

−0.084***
−0.031***

[0.019] [0.018] [0.009]

Constant 5.009*** 4.815*** 2.758** 5.132*** 4.995*** 2.935*** 4.451*** 4.287*** 2.416** 5.109*** 5.204*** 3.145***

[0.884] [0.689] [1.110] [0.892] [0.691] [1.047] [0.856] [0.699] [1.172] [0.817] [0.675] [0.960]

Adj. R2 0.120 0.276 0.086 0.119 0.272 0.082 0.130 0.296 0.096 0.123 0.258 0.056
Notes: Sample period January 1990–September 2010. All regressions are based onmonthly observations. The standard errors reported in brackets are computed usingmax[3,
2*horizon] Newey–West lags.
* Significance at the 0.10-level.
** Significance at the 0.05-level.
*** Significance at the 0.01-level.
Predicting the real economy and financial instability

In Table 5, we examine the predictive power of the variance risk
premium and stockmarket volatility for economic activity as mea-
sured by industrial production growth (the log-difference of the
total industrial production index expressed in annualized percent-
ages; growth over a quarter/year is averaged). Bloom (2009) shows
that uncertainty shocks lead to a rapid drop and rebound in aggre-
gate output and employment. In a model with adjustment costs
to labor and capital, this occurs because higher uncertainty causes
firms to temporarily pause their investment and hiring. In some of
his empirical work, Bloom actually uses the VIX to help measure
uncertainty shocks. Here, we investigate whether the VIX and/or
its two components predict economic activity in a simple regres-
sion framework.

The last specification shows that the squared VIX itself predicts
economic activity with a negative sign at all horizons (significant
at the 1% level). In terms of economic significance, a 1% (monthly)
move in the VIX near the mean leads approximately to a 1% (an-
nualized) drop in the industrial production growth over the next
quarter. The bivariate regressions with its two components show
that whatever predictive power the VIX has for future output, is
coming from the uncertainty component. The coefficient on VP is
negative at monthly and quarterly horizons, but it is always statis-
tically insignificantly different from zero. The coefficient on CV is
always negative and statistically significant at the 1% level for all
three horizons. As with stock return regressions, we check robust-
ness of our results to accounting for the sampling error in the VP
and CV estimates. Our results are unaltered. We conclude that CV
is a robust and significant predictor of economic activity.

Our results here add to a rapidly growing literature on predict-
ing economic activity with economic uncertainty measures. For
example, Stock and Watson (2012) argue that financial disrup-
tions and heightened uncertainty helped produce the Great Re-
cession. Allen et al. (2012) derive a measure of aggregate systemic
risk using data on stock returns for banks and show that high lev-
els of this measure predict future economic downturns. Bachmann
et al. (2013) use survey expectations data to construct an empirical
proxy for time-varying business-level uncertainty. They show that
surprisemovements in the uncertainty proxy lead to significant re-
ductions in production. Finally, Gilchrist et al. (2010) analyze how
the combination of uncertainty shocks and financialmarket imper-
fections generate fluctuations in economic activity.

One economic outcome whose monitoring is of consider-
able policy interest is financial instability. In Table 6, we ex-
amine whether measures of the variance risk premium and
stock market volatility have predictive power for financial
instability. To measure financial instability, we use a financial
stress indicator created by the European Central Bank (called CISS).
The indicator is based on European Monetary Union (EMU) data,
combining information from the money, equity, bond, and foreign
exchange markets, and some financial intermediaries-related in-
formation. It mostly comprises realized volatilities for various re-
turn, currency or interest rate measures and it does not contain
any implied volatility information (see Holló et al., 2012, for de-
tails). We regress the level of the CISS indicator 1, 3 and 12months
ahead on our VP and CV measures.

The VIX itself has a high predictive power for the one- and
three-months ahead indicators (significant at the 1% level). The R2

is over 40% at the monthly horizon and over 30% at the quarterly
horizon. When both components of the VIX enter the regressions,
the uncertainty component has a higher predictive power than the
variance premium component. Uncertainty is significant at the 1%
level at all three horizons, and the magnitude of its coefficients is
uniformly higher than for the VP, particularly at the quarterly and
annual horizons. The VP coefficient is significant at the monthly
horizon (at the 5%–10% level) but not (with the exception of model
11) at the quarterly or annual frequency. These results are robust
to accounting for the sampling error in the VP and CV estimates.
Overall, a high predictive power of variables based on US data for
a European financial stress indicator is noteworthy.14

14 We also considered three alternative financial stress indicators: a (proprietary)
CISS indicator based on US data, an indicator developed by the Kansas Fed and
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Table 6
Financial instability regressions.

Monthly, quarterly and annual regressions with variance premium and conditional variance

Horizon 1 3 12 1 3 12 1 3 12 1 3 12

VP 8 0.222* 0.176 −0.054
[0.121] [0.137] [0.122]

CV 8 0.301*** 0.288*** 0.200***

[0.048] [0.031] [0.044]

VP 11 0.154* 0.191*
−0.015

[0.080] [0.110] [0.093]

CV 11 0.345*** 0.284*** 0.187***

[0.055] [0.034] [0.036]

VP 30 0.216** 0.134 −0.010
[0.090] [0.092] [0.087]

CV 30 0.277*** 0.256*** 0.119***

[0.042] [0.036] [0.031]

VIX2 0.274*** 0.249*** 0.112***

[0.040] [0.043] [0.037]

Constant 3.816** 5.071** 11.470** 4.121** 4.886** 11.021** 4.400** 6.443*** 12.300** 3.455** 4.562*** 10.317***

[1.744] [2.052] [4.575] [1.682] [1.884] [4.347] [1.927] [2.116] [4.823] [1.401] [1.679] [3.969]

Adj. R2 0.422 0.349 0.090 0.446 0.350 0.093 0.426 0.369 0.092 0.422 0.346 0.067
Notes: Sample period January 1990–September 2010. All regressions are based onmonthly observations. The CISS indicator was scaled by a factor of 100. The standard errors
reported in brackets are computed using max[3, 2*horizon] Newey–West lags.

* Significance at the 0.10-level.
** Significance at the 0.05-level.
*** Significance at the 0.01-level.
5. Conclusions

We decompose the squared VIX, the risk neutral expected stock
market variance, into two components, the conditional (physical)
variance of the stockmarket (CV) and the equity variance premium
(VP), which is the difference between the two (VP = VIX2

− CV).
Because this decomposition critically depends on the accuracy of
the model for CV, we first conduct an extensive analysis of state-
of-the-art variance forecastingmodels,wherewemake sure to also
consider the squared VIX itself as a potential predictor. Indeed, one
of our winning models includes the VIX.

Weuse thesemodels to re-examine and expand the evidence on
the predictive power of VP and CV for stock returns, economic ac-
tivity (as measured by industrial production) and financial stress
indicators (tracked by central banks). We find that the variance
premium is a significant predictor of stock returns, but the con-
ditional variance mostly is not. However, CV robustly and signifi-
cantly predicts economic activity with a negative sign, whereas VP
has no predictive power for future output growth. Lastly, CV has
a relatively higher predictive power for financial instability than
does the variance premium.
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