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 JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS
 December 1974

 UTILITY ANALYSIS OF CHANCE-CONSTRAINED PORTFOLIO SELECTION

 Enrique R. Arzac*

 I. Introduction

 Single-period portfolio selection deals with the allocation of an in-

 vestor's initial wealth to a finite number of risky assets according to his

 preferences over random final wealth. The purpose of this paper is to study

 chance-constrained portfolio selection from the point of view of utility theory.

 According to utility theory, the investor maximizes the expected utility

 of final wealth and the portfolio problem is [15], (26]:

 (1) max EU(E y.X.), subject to E.y. = 1, y. > 0, j = n,

 where U is the utility function, y. is the fraction of the initial wealth in-

 vested in asset j, and X. is the random monetary outcome corresponding to the

 investment of all the initial wealth in asset j.

 The chance-constrained approach assumes that the investor's preferences

 are representable by the expected value of final wealth and the probabi-

 lity that final wealth will fall below a certain "survival" or safety level

 S. The chance-constrained problem is [17], [1]:

 (2) max E.y E(X.), subject to Pr(? y X. < s) < a, E y =l,y. > O, V j,

 where a is the maximum admissible probability of "ruin." If multiple maxima

 correspond to a given a, the solution with the lower probability of ruin is

 selected. Both (1) and (2) assume that random returns per unit of investment

 *

 Columbia University. The author would like to acknowledge the helpful

 comments of Professors Howard Kunreuther, Gordon Pye, and a referee. Research

 support was provided by the faculty research fund of the Graduate School of
 Business, Columbia University.

 1It is assumed that the investor is forced to change drastically his
 usual pattern of consumption or operations below the survival level. This is
 the case of bankruptcy, for instance (see Roy [23, pp. 432-433]).
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 are independent of the scale of the investment.

 The second section of this paper relates the chance-constrained model

 to utility theory and shows that some of its solutions may be inefficient,

 that is, nonoptimal for all utility functions in the class implied by its for-

 mulation. It also shows how to exclude inefficient solutions. The third

 section relates the efficiency analysis of chance-constrained choices to the

 stochastic dominance literature. The fourth section studies the characteris-

 tics of chance-constrained solutions when the assets follow a multinormal dis-

 tribution. The appendix presents some of the properties of the class of

 utility functions related to the chance-constrained model.2

 II. Efficient portfolio selection According to the
 Expected Wealth-P of Ruin Criterion

 A chance-constrained problem with a fixed confidence level a does not

 admit compensation of a small increase in a by any increase in expected wealth.

 It is easy to verify that this contradicts the continuity and independence

 axioms of utility theory [3]. Therefore, as Borch [5, p. 42] has already ob-

 served, no utility function can represent the preference ordering of chance-

 constrained programming with fixed a. The proponents of chance-constrained

 models admit, however, that the final choice of a may depend on its possible

 trade-off with expected wealth (see [17]). Therefore, it seems convenient to

 generate the chance-constrained solutions for all ac[0,1] and then make the

 final choice. These solutions will form a pairwise undominated locus in the

 expected wealth-probability of ruin plane. A portfolio (probability distri-

 bution of final wealth W) F will be included in such a locus if and only if

 there is no portfolio G such that the following inequalities hold and at

 least one is strict:

 (3) EG (W) > EF(W), and G(s) < F(s)

 2The literature on chance-constrained programminq has not discussed
 the choice-theoretic foundation of the model or has wrongly assumed the exis-

 tence of an unrestricted utility function (18]. Recent analyses of safety-

 first criteria complement the present paper: Pyle and Turnovsky (20 and 21]
 have presented a graphical analysis of the relationship between the chance-

 constrained and expected-utility maximization models in the case of normal

 assets and Chipman (6] has considered the relationship between safety-first

 and lexicographic utility. A detailed analysis of safety-first criteria and

 their implications is made in (3].
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 where s is the survival point, E is the expectation operator, and G(s) and

 F(s) are the probabilities that W < s under G and F, respectively.

 Having removed the first source of inconsistency, we pass to the study

 of the pairwise undominated locus from the point of view of utility theory.

 For that we use the following result due to Markowitz (15, p. 2361:

 If an investor orders risky assets solely on the basis of expected

 wealth E(W) and probability of ruin F(S) and accepts the axioms supporting the

 expected utility theorem, his preference ordering over the F(W), F(s) combina-

 tions is uniquely represented by the positive linear transformations of the

 function E(W) + cF(s).3

 This function uniquely implies the following utility function:

 W, for W > s,

 (4) tU (W) =
 W+c, for W < s,

 where we restrict the constant c to negative values in order to get an in-

 creasing function. It is shown in the appendix that (4) has a number of desir-

 able properties, for instance: it implies risk aversion whenever the initial

 capital is above s; it results in the maximization of the expected monetary

 value for negligible risks (consistently with management science practice);

 and it exhibits decreasing absolute risk aversion in the sense that the amount

 invested in risky assets increases with wealth. Furthermore, this utility

 function is consistent with the level of aspiration theory developed by Lewin

 and other psychologists (see Siegel (25]).

 Since the loci of constant expected utility curves in the E(W), F(S)

 plane are linear, the following efficiency conditions follow for any utility

 function (4) with given s and unknown c: a portfolio F is undominated if and

 only if no pair of portfolios G and H exists such that the following inequali-

 ties hold and at least one is strict:

 (5) yEG(W)+(l-y)EH (W)>EF(W) , and yG(s)+(l-y)H(s) <F(s)

 for some yc[0, 1] .

 The expected value and the probability of ruin on the left-hand sides

 of (5) correspond to the mixture (compound littery) [yG,(l-y)H] , but this mix-

 ture does not necessarily have to be feasible for (5) to apply. These

 3Markowitz's proof assumes that the distributions have a finite number
 of outcomes, but his result is valid for arbitrary distributions with finite
 means.
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 conditions exclude those portfolios lying on the nonconvex and downward-

 sloping parts of the envelope of pairwise undominated portfolios in the E(W),

 F(s) plane. It is easy to see that any portfolio satisfying conditions (5)

 will always satisfy conditions (3) and, therefore, the solution to the port-

 folio problem with utility function (4) will be contained in the solution locus

 generated by the chance-constrained problems for all ac[O,l]. The converse

 is not true since there are distributions for which the chance-constrained

 solution locus includes inefficient portfolios. The following example confirms

 this point: consider two risky assets X1 and X2 with joint probability func-

 tion p(xi,x ) as given in Table 1, and let the survival point s be 2. The l2 gvn2

 chance-constrained problems

 max yE(X )+(l-y)E(X2

 O<Y<l

 subject to Pr(YX +(l-Y)X2< )<aZ

 for all ac[0,1],

 have the solutions given in Table 2. It can be easily verified that the port-

 folio y = .67 does not satisfy conditions (5). Therefore, the chance-

 constrained criterion is a necessary but not sufficient condition for opti-

 mality according to utility theory. Of course, if the investor wants to order

 portfolios based solely on expected wealth and probability of ruin and to be

 TABLE 1

 Values of p(x ,x2

 x2

 0 .25 1 p(x1)

 O O .05 .2 .25

 X1 .25 .2 .1 .2 .5
 4 t.05 .2 .25

 ,X 2 _ 2 ___

 4This can be proved directly by an argument similar to the proof of
 Everett's main theorem on generalized Lagrange multipliers (GLM) [8]. Actu-
 ally, ours is the converse of the GLM problem and our function EU(W) = E(W)

 + c Pr(w<s) is the generalized Lagrangian corresponding to the chance-
 constrained problem. While Everett was interested in generating the solutions

 lying on the nonconvexities, we want to exclude them (see below).
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 TABLE 2

 Pairwise Undominated Portfolios

 a y F (.5) E(W)

 O<ca< .35 no feasible solution

 .35<a< .55 .5 .35 .89

 .55<a< .75 .67 .55 .97

 .75<a<l 1 .75 1.12

 consistent with utility theory, he can generate the pairwise undominated port-

 folios, that is, those satisfying conditions (3), via chance-constrained pro-

 gramming, and then exclude the inefficient portfolios by the use of conditions

 (5). This can be done by a simple numerical or geometric search along the

 chance-constrained solution locus in the E(W), F(s) plane.

 Since the indifference map on the F(W),F(s) plane is a family of paral-

 lel straight lines with positive slope - -, the efficient portfolios are those

 which correspond to the points of tangencv between the chance-constrained solu-

 tion locus and the indifference lines as their slope varies over (o,0'). If

 the locus is strictly concave, only its endpoints will be efficient. For a

 sufficiently high survival level s no feasible solution will usually exist for

 a 0 O. Moreover, no efficient solution will exist for a = 1, at least that

 max E<s for all a. Finally, any indifference map with abscissas E>s is not

 defined at a = 1.

 III. Relationship between the Utilit Analysis of Chance-Constrained
 Portfolio Selection and Stochastic Dominance

 Stochastic dominance deals with the ordering of risky assets under

 rather general conditions. The basic result was presented some time ago by

 Masse and Morlat [16] under the name of principle of absolute preference. It

 says that a distribution G is preferred or indifferent to a distribution F for

 any nondecreasing utility function and strictly preferred for some, if and only

 if G(w) < F(w) for all w c W, and G(w) < F(w) for some w c W, where W is the

 set of possible monetary outcomes. In this case it is said that G stochas-

 tically dominates F. This result has been successively rediscovered by Quirk

 and Saposnik [22], Hadar and Russell [11] and Hanoch and Levy [12]. The last

 two papers also weakened the dominance condition by tightening the requirements

 on the utility function. Specifically, they showed that G dominates F on the

 class of nondecreasing concave utility functions if G # F and the area under

 G is less than or equal to the area under F for all w c W. Hadar and Russell
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 have conveniently called these two conditions stochastic dominance of the

 first degree and stochastic dominance of the second degree, respectively. Ob-

 viously, first-degree stochastic dominance holds for all utility functions in

 the class (4). More interesting is the fact that the pairwise dominance con-

 ditions (3) are weaker than first degree but different from second-degree

 stochastic dominance. Conditions (3) are necessary and sufficient for the

 dominance of G over F on the class of utilities (4) since

 (6) EG(U) - F (U) =f w[dG(w) - dF(w)] + c(G(s) - F(s)],
 o00

 or, integrating by parts,

 00

 (7) EG(U) - EF(U) =f [F(w) - G(w)] dw + c[G(s) - F(s)].
 -00

 That is, G dominates F if and only if the total area under G is less than or

 equal to (is less than) the total area under G, and the probability of ruin

 under G is less than (or equal to) the probability of ruin under F. First-

 degree stochastic dominance implies these conditions but not vice versa.

 In the previous section we showed that conditions (3) are only neces-

 sary and that (5) are necessary and sufficient when more than two assets are

 simultaneously considered. This improvement followed directly from the simple

 nature of (4). In general, the smaller the class of utilities under considera-

 tion, the weaker the efficiency conditions.

 IV. The Case of Normally Distributed Assets

 The nice properties of the normal distribution have made it the stand-

 ard assumpt.ion in the practice of chance-constrained programming. It is well

 known that, under normality, expected utility is always a function of two para-

 meters which, by the implicit function theorem, can be chosen to he E(W) and

 F(s). Then, it follows that the resulting indifference curves in the (E,F)

 plane will not be linear for utility functions other than (4). This does not

 contradict Markowitz's result because, in general, for nonnormal assets and

 preference orderings other than those represented by (4), the investor will

 consider other characteristics of the distribution besides or instead of E(W)

 and F(s). That normal assets can be ordered by nonlinear indifference curves

 in the (E,F) plane is not surprising. Markowitz's theorem is based upon the

 requirements that utility theory imposes on mixtures (the continuity and in-

 dependence axioms) and, under the normality assumption, mixtures are not pos-

 sible since they would result in nonnormal assets.
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 Strictly, utility tleory and our previous results would be irrelevant

 in a world where only normal assets are possible, but the consistency of rank-

 ing criteria with utility theory is a very relevant question when normality is

 only a convenient assumption for a subset of decisions, as is the case in the

 practice of chance-constrained portfolio selection. Thus, we now show that

 the solution locus generated by the chance-constrained problem (2) for all

 act[0,1] is efficient in the sense of conditions (5) if the assets follow a

 mnultinormal distribution with means above the survival level s.

 A direct proof of this result is easy but tedious. Fortunately, it can

 also be established using the familiar (v,a) plane. It is well known that the

 (p,a) opportunity locus is always convex. Moreover, there is a one-to-one

 correspondence between this locus and the chance-constrained solutions under

 the normality assumption (see (20]). This locus will be efficient in the sense

 of conditions (5) if the indifference curves corresponding to utility function

 (4) are strictly concave in the (1,a) plane. This, in fact, can be shown to

 be so. Therefore, we conclude that the (p,a) criterion is a necessary and

 sufficient condition for efficiency when the assets are normally distributed

 and the utility function is linear with a jump discontinuity. This comple-

 ments the well-known result on (v,a) efficiency for normal assets and concave

 utility functions (12].

 It should be noted that, under normality, the chance-constrained ap-

 proach does not provide a truly different alternative to the (v,a) efficiency

 5The last requirement still admits the most relevant cases. Actually,
 it is sufficient to require that at least one mean be greater than s. If all
 the means are below s, the solution set may be concave, but that is not a very
 interesting case.

 6The equation of an indifference curve on the (V,a) plane is

 - cF(z) = u, where z = (s - pi)/a and u is a constant. Let (pl'al) and

 (P2'a2 ) be on the same indifference curve and p2>V 1>s. The curve will be
 strictly concave if any convex combination

 PI = Yp1 + (1-Y)p 2 0ay = Y1 + (1-y)a2 , 0 < y <
 belongs to a higher indifference curve. This will be so if

 F(z ) < yF(z1) + (l-y) F(z2),

 where z = (s-PyU)/o , which is true since F(z) is strictly convex over (-co, 01

 and z1 < Z <2
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 analysis, because of the one-to-one correspondence between the chance-

 constrained solutions and the (v,a) opportunity locus.

 V. Conclusion

 We have shown that, if an investor accepts the expected utility theorem,

 he should not use chance-constrained programming with a fixed a. Firstly, there

 is no specific a level which can be said a priori to be optimal for a particu-

 lar investor. That level will result from the simultaneous consideration of

 the locus of efficient solutions and the utility function. Secondly, the

 solution(s) obtained for a specific a (or for a certain set of a values) may

 be inefficient in the sense of being nonoptimal for the class of utility func-

 tions implied by the expected wealth-probability of ruin criterion. There-

 fore, it is necessary to derive the complete chance-constrained solution locus

 in order to obtain efficient portfolios of its convexity cannot be established

 a priori. Finally, we have shown that the chance-constrained solutions are

 always efficient when the assets follow a multinormal distribution but, in

 this case, it is well known that the opportunity locus derived via chance-

 constrained proqramming is the same as the (V,a) opportunity locus.
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 APPENDIX

 Sm rop_rtias ofLinear!i~
 Functions with a um Dcntinuiy_

 Choices based solely on expected wealth and the probability of ruin but

 subject to the consistency requirements of utility theory imply a linear util-

 ity function with a jump discontinuity. We have seen that this type of func-

 tion, henceforth called A-function, permits eliminating those chance-

 constrained solutions that are inefficient according to utility theory and, at

 the same time, provide a choice-theoretic justification to the chance-

 constrained approach.

 In this appendix we show that A- functions are plausible representation

 of preferences according to the theory of risk aversion. We do this by analy-

 sis of the behavioral implications of this tvpe of utility functions rather

 than by the use of direct empirical evidence. This indirect approach was

 started by Bernoulli (4] and is the one followed in the most relevant writings

 on the subject, including those of Markowitz [15], Roy (23], Pratt [19] and

 Arrow [2]. It is also by this method that doubts have been cast on the plausi-

 bility of quadratic utility (see [2] and [19]).

 An individual is said to have global (local) risk aversion if he, being

 in a (some) certain position, would not buy an actuarially fair asset. It is

 a direct consequence of Jensen's inequality that global risk aversion exists

 if and only if the utility function is strictly concave. It follows also that

 there exists local risk aversion in those domains over which the utility func-

 tion is strictly concave. The converse is not true, however, since:

 .ro]2erty 1. An individual with a A-utility function and initial wealth
 W at or above the survival point s will never buy an actuarially fair asset

 with positive probability of ruin.

 This is obvious, since for E(W) = W and Pr(W < s)> 0,

 (P-1) EU(W) = E(W) + c Pr(W < s)< W .

 Notice that, if W < s, the individual will have risk preference. Markowitz

 (15, p. 295] considered this a limitation of A-functions without realizing that

 risk bearing may be better than no change for those aspiring to achieve a mini-

 mum subsistence level or a drastically higher wealth level. Research on the

 Some empirical evidence in favor of this type of utility function has

 been provided by the tests of the Lewinian level of aspiration theory (see

 Siegel [25]).
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 economic behavior of Pakistani farmers [13] and American oil wildcatters [101

 supports this point. At any rate, the W < s case does not apply to the typi-

 cal investor.

 Property 2. An individual with a A-utility function will alwaus buy an

 actuarially favorable asset.

 This is the counterpart of a similar result for concave utility func-

 tions (see Arrow (2, p. 99]). In order to establish it, we have to consider

 the W > s case only (otherwise the individual will have risk preference and,

 a fortiori, will always buy a favorable asset). Suppose that the individual

 can invest the amount k, O<k<W0, in an asset with random return R independent
 of k. Let us assume that the distribution of R has finite mean E(R), and

 either has finite variance V(R) or is stable with infinite variance.8 The

 final capital will be W = W + kR. If R is bounded from below, the probability

 of ruin will be zero for a sufficiently small hut positive k, but for the

 general case it is required that

 EU(W) = W + k E(R) + c Pr(W + kR < s)> w,

 for some k > 0. This will be so if

 (Al) k Pr(R < s- W0)? 0 as k + 0.

 When V(R) exists, Tchebycheff inequality gives the following upper bound of

 (Al)

 kV(R) +0n k + .
 [s - W - kE(R)]2

 0

 Moreover, for all stable distributions with finite mean and infinite variance,

 (Al) has the following upper bound (see Mandelbrot (14, pp. 398-399]):

 cka-1
 _______ + 0 as k + 0,

 (W -s)a
 0

 where c > 0 and a~c (1,2) are constants.

 See Fama (9] for a discussion of the relevance of stable distributions
 with infinite variance.
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 Property 3. A-functions exhibit decreasinq absolute risk aversion.

 Arrow [2] and Pratt [19] have shown that decreasing absolute risk aver-

 sion is a desirable property. For differentiable functions absolute risk aver-

 sion is measured by the ratio rA = tJ ''(W)/t'(W). According to the Arrow-

 Pratt analysis, if rA is increasing, the amount invested in a favorable risky
 asset will decrease with wealth (it is well known, for instance, that quadra-

 tic utility exhibits this objectionable behavior).

 A-functions are not differentiable. Nevertheless, they imply decreas-

 ing absolute risk aversion in the sense that the amount invested in a favor-

 able asset increases with wealth. In fact, we now show that dw > 0 for any
 0

 twice differentiable distribution F(R). From Property 2 we know that k > 0.

 Consider the nontrivial case where R is not bounded from below and k < W
 0

 the conditions for a maximum of FU(W) are

 (A2) E(R) + (-cz/k) f(z) = 0

 (A3) -z f'(z) -2 f(z) > 0,

 where z = (s - W )/k. Differentiating (A2)with respect to W and solving for

 dk dk we get
 0

 dW [f (z) + I f(z))]/[-zf'(z) - 2f(z)1 > 0,
 0

 by condition (A3).

 Samuelson [241 has shown that, if the utility function is strictly con-

 cave and the assets are identical and independently distributed with finite

 variance, maximum expected utility is obtained by an even allocation of the

 initial wealth among the assets. He has also shown that diversification pays

 if the assets have the same mean and at least one is independently distributed

 from the rest. Properties 4 and 5 show that diversification pays for A-utility

 functions.

 Property 4. If the assets follow independent stable distributions dif-

 fering only in the scale parameter ca > o, j=l,..,n, with characteristic

 exponent a > 1 (that is, with a finite common mean 6 ) and preferences are

 represented by an A-function with survival point s<6, expected utility has a
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 o a/ fl-a)
 unique maximum at y= j _ , i j, where y. is the fraction of the

 J a/fl-a)

 initial capital invested in asset j.

 Property 4 simply says that the amount invested in a given asset is an

 increasing function of the "precision" of its distribution (that is, of the
 a a1

 inverse of its scale parameter). When .j = c , j, yn = -. Moreover, when
 2 -2

 a a.i a. 2
 a = 2, c andy Y = , where a. is the variance of the normal dis-

 E..-2
 1 1

 tribution.

 When the means are equal, the maximum of EU(W) is found by minimizing

 the probability of ruin which, given the stability assumption, is

 aa1/a
 (A4) Pr(W < s) = F jj(s - ) / aiY a1/

 The minimum of (A4) is obtained when the scale of the final portfolio

 .yae. is a minimum. Since y. > 0 and a > 1, the scale is a strictly convex
 333

 function and

 a a
 min E y.j. , subject to E.yj- 1, y. > O, F j,

 ea/ (l-a)

 has a unique solution at y= i_____
 a/(l-a)

 Property 5. If each asset j has an arbitrary independent distribution
 2

 F, with mean v. = v and variance a > 0, and preferences are represented by a

 A-function with survival point s < , yi = 0-2 I -2 , it-j, is the unique

 solution to max min EU(W).
 y F.

 This is an extension of Roy's [23] result on safety-first diversifica-
 2 2 .

 tion. When a. = a(. V j, y; = -. Moreover, if in a set of assets with the
 same maanfii va 3 n

 same mean and finite variances, one asset, say the first, is independently

 For a discussion of the properties of stable distributions, see
 Mandelbrot [14].
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 distributed from the-2 -2 -2 2
 distributed from the rest, Y1= a /(a + S )and O < y1 < 1, where S is the

 variance of the maximin portfolio of assets 2,..., n.

 Since the means are equal, max min EU(W) is found by
 y F.

 J

 2 2

 min max Pr (W < s) = rnin j

 y F. 2 22
 y Fj z.y0.2 + (s -

 according to Cantelli's inequality (see Cramer (7, p. 256]), or by

 min EZ y2 . , subject to ?. y; = 1, y; > O,

 which has the unique solution

 y -2/ C-2 j Y. = 0. /S.a. ' ffj
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