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Abstract. One measure of the ex ante cost of disasters is the welfare gain from shorten
ing their expected duration. We introduce a stochastic clock into a standard disaster 
model that summarizes information about progress (positive or negative) toward disas
ter resolution. We show that the stock market response to duration news is essentially a 
sufficient statistic to identify the welfare gain to interventions that alter the state. Using 
information on clinical trial progress during 2020, we build contemporaneous forecasts 
of the time to vaccine deployment, which provide a measure of the anticipated length of 
the COVID-19 pandemic. The model can thus be calibrated from market reactions to 
vaccine news, which we estimate. The estimates imply that ending the pandemic would 
have been worth from 5% to 15% of total wealth as the expected duration varied in this 
period.
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1. Introduction
Quantifying the economic consequences of disasters is 
a crucial step in assessing policy responses along social, 
medical, fiscal, and monetary dimensions. One mea
sure of the ex ante cost of a disaster is the welfare gain 
from shortening its expected duration. This paper pre
sents estimates of that quantity for the COVID-19 pan
demic during 2020. In the context of a standard disaster 
model with uncertain duration, we show that the stock 
market response to duration news effectively identifies 
the welfare implications of state transitions. We com
bine this observation with novel data on the progress 
of vaccine development during 2020, which we use to 
construct a real-time forecast series for the expected 
time until successful vaccine deployment. Based on the 
stock market sensitivity to changes in these expecta
tions, we estimate that ending the pandemic would 
have been worth 5%–15% of total wealth over the sam
ple period. This finding is robust to a wide range of 
parameter values and model variations.

Global health planners have recently issued several 
detailed proposals for preparing for future pandemics 
(see Craven et al. 2021, Lander and Sullivan 2021, Sum
mers et al. 2021, Gates 2022). Prominent in each of 

these have been recommendations for shortening the 
anticipated time for future vaccine development and 
deployment, for example, to within six months of an 
infectious outbreak. Our paper contributes a novel 
measurement strategy that can speak to the economic 
benefits of proposed infrastructure investments to 
achieve such targets. Our exercise can be viewed as 
complementary to the standard approach in health eco
nomics of computing the cost/benefits of interventions 
such as vaccines via combining their forecasted effects 
on infections and deaths with some estimates of (or 
assumptions about) the monetary value of these out
comes. We compare our results to some of these esti
mates in Section 5.

The welfare calculation we undertake is directly 
analogous to the seminal work of Lucas (1987) in asses
sing the ex ante costs associated with business cycle 
risk. Just as that paper provides a framework for asses
sing the consequences of policy responses to mitigate 
consumption volatility, our work speaks to the cost- 
benefit analysis in alleviating the threat of current and 
future pandemics.1 The paper thus contributes to the 
literature that assesses the welfare costs of disaster risk 
(see Martin 2008; Barro 2009; Pindyck and Wang 2013; 
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Martin and Pindyck 2015, 2021; Hong et al. 2022; Jordà 
et al. 2024). Uniquely to this literature, we exploit novel 
information within the crisis itself to identify key quan
tities in the model: a measure of the expected duration 
of the pandemic and estimates of the stock market sen
sitivity to changes in that expectation.

The paper’s analysis proceeds as follows.
We start with a standard regime-switching model of 

repeated disasters. In keeping with a common model
ing assumption in the rare disaster literature (see 
Barro 2006, Gabaix 2012, Gourio 2012, Tsai and Wach
ter 2015), the nature of a disaster is that agents are 
exposed to a shock that destroys part of the economy’s 
stock of wealth. Within the disaster, we model subre
gimes corresponding to observable progress toward 
resolution of the episode. The current state thus pro
vides a stochastic clock within the crisis. The value of 
a claim to the economy’s output responds to the clock 
transitions because progress out of the disaster regime 
lowers both the expected wealth losses and uncer
tainty. Our central analytical result shows that the 
magnitude of this response imposes bounds on the 
disaster parameters, which, in turn, bound the possi
ble welfare effects.

The exercise thus benefits from a degree of structural 
robustness in the sense that variations in the para
meters that affect either the welfare cost of a disaster or 
the effect of the disaster state on the stock market may 
not strongly alter the implied relationship between the 
two quantities. To illustrate, we numerically compute 
the theoretical welfare bounds for a collection of para
meter values for preferences, output, and disaster 
timing, drawn from the literature. The results show 
remarkable consistency across specifications. Hence, 

our main results are not driven by the baseline assump
tions about the course of the pandemic or about agents’ 
preferences.

Next, we exploit the fact that, during 2020, it was 
widely believed that deployment of an efficacious vac
cine for COVID-19 was both a necessary and sufficient 
condition for a robust economic recovery.2 During this 
period, there was little progress on alternative mecha
nisms to resolve the pandemic (e.g., treatments or herd 
immunity). Moreover, views at the time were optimis
tic about distribution and uptake of an efficacious vac
cine, and the emergence of variants was not yet widely 
anticipated. Hence, during our sample period, forecasts 
about vaccine deployment could be viewed as forecasts 
for the duration of the crisis.3

We therefore construct a time-series of forecasts for 
the expected time to the widespread deployment of a 
successful vaccine that we call the vaccine progress 
indicator (VPI). The forecasts are based on the chro
nology of stage-by-stage progress of individual vac
cine candidates (obtained from the Vaccine Centre at 
the London School of Hygiene & Tropical Medicine 
(LSHTM)) and related news (obtained from FactSet). 
Each day, we assign probabilities to each active candi
date’s future transition across developmental phases, 
or to failure. We then simulate these future transitions 
for all of the candidates, and each run of the simula
tion produces a first-to-succeed candidate.4 Averaging 
across runs of the simulation gives us that day’s fore
cast for the expected time remaining until vaccine 
deployment. The evolution of our forecast during 
2020 is shown in Figure 1. We compare its levels to 
those of some published contemporaneous survey 
forecasts in Section 3.2.

Figure 1. (Color online) Expected Time to Vaccine Deployment 

Notes. The figure shows our estimate of the expected time to widespread deployment of a COVID-19 vaccine in years. Construction of the fore
casts is described in Section 3.

Acharya et al.: The Value of Ending the Pandemic 
2 Management Science, Articles in Advance, pp. 1–19, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

23
6.

16
7.

13
7]

 o
n 

18
 D

ec
em

be
r 

20
24

, a
t 1

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



We then relate stock market valuations to the 
expected time to vaccine deployment by regressing 
market returns on changes in our forecast series. Con
trolling for large market moves attributable to release 
of other macroeconomic and policy-related news, we 
estimate that a reduction in the expected time to 
deployment of a vaccine by one year results in an 
aggregate stock market return of approximately 5%.5
The joint relationship exhibits the right cross-sectional 
properties, with the comovement between returns and 
changes in the vaccine expectation series being stron
ger for sectors most affected by the onset of COVID- 
19. This lends support to the conclusion that our series 
is indeed measuring changes in beliefs about the dura
tion of the pandemic.

Armed with these estimates, we return to the mod
el’s theoretical bounds on welfare effects. We illustrate 
that, under a range of plausible parameter values, the 
identification of the benefit of curtailing the pandemic 
is tight. A 5% stock market response implies a welfare 
gain of between 4.5% and 5.2% per year of pandemic 
duration. That is, in late April 2020, when our forecasts 
imply an expected remaining duration of about one 
year, the welfare value of ending the pandemic was 
approximately 5% of total wealth. At the beginning of 
March, the analogous number is approximately 15%. 
We discuss interpretation and ramifications of these 
magnitudes in Section 5.

We further illustrate the structural robustness of 
our results via several extensions in the Online Ap
pendix. First, we consider endowing the economy 
with the real option to invest in vaccine research so 
that the speed of progress is an equilibrium outcome. 
Naturally, given any fixed parameters, the ability to 
alleviate the pandemic lowers its welfare cost. Yet, 
conditional on the observed market response to the pan
demic state, we show there is no net effect on the con
clusions. A second generalization links the pandemic 
severity to output via endogenizing households’ labor 
choice in the face of exposure risk at work. We show 
that this linkage further tightens the identification of 
welfare effects. Finally, we consider the welfare bene
fit to agents who may be outside the stock market. We 
show that, with preference parameters for nonpartici
pants taken from the literature, if these agents face the 
same level of pandemic risk as participants, their will
ingness to pay is only slightly less than our baseline 
estimates.

To summarize, the contribution of the paper is to 
bring novel data observed during 2020 to bear on the 
important question of the ex ante cost of such pan
demics. We show that two key quantities that we 
estimate—the expected duration of the crisis and the 
stock market response to vaccine progress—are effec
tively sufficient to identify the welfare gain to interven
tions curtailing the pandemic.

1.1. Related Literature
As noted above, our approach to quantifying the cost 
of the pandemic parallels that of the literature assessing 
the cost of business cycles. Whereas Lucas (1987) finds 
small welfare improvements to reducing consumption 
uncertainty, Barlevy (2004) shows the welfare costs of 
productivity fluctuations can be substantial in a model 
with concave capital adjustment costs because con
sumption becomes endogenously procyclical. Tallarini 
(2000) shows that the Lucas conclusion is also over
turned in models with recursive utility when calibrated 
to match asset pricing moments. Echoing this finding 
and foreshadowing our own, Barro (2009) reports that, 
in a model with rare disasters, moderate risk aversion, 
and an elasticity of intertemporal substitution (EIS) 
greater than one, society would willingly pay up to 
20% of permanent income to eliminate disaster risk. A 
number of papers, including Pindyck and Wang (2013), 
explore the welfare costs associated with climate risk. 
The latter work addresses the issue of how much 
should society be willing to pay to reduce the probabil
ity or impact of a catastrophe.

A related topic concerns the welfare benefit of 
resolving disaster uncertainty. Collin-Dufresne et al. 
(2016) show that, measured by the one-period utility 
loss compared with an adaptive expectations bench
mark, uncertainty about the persistence of states is an 
order of magnitude more important than uncertainty 
about other parameters, for example, growth rates and 
volatilities. Acharya et al. (2023) study the welfare and 
incentive effects of such parameter uncertainty both 
during and prior to disasters. The literature has also 
considered the welfare benefit of resolving disaster 
risk, that is, making consumption deterministic while 
not altering the occurrence of the disasters. Epstein 
et al. (2014) present a critique based upon introspection 
of models in which the welfare gain from having con
sumption become deterministic in the “next period” is 
large.6

A different approach to determining an agent’s valu
ation of alternative consumption paths is presented by 
Alvarez and Jermann (2004), who define the “marginal 
cost” of business cycles as the ratio of a market price of 
a claim to the true consumption process to that of an 
alternative path with the same mean but lower uncer
tainty. Although this approach has the advantage of 
being preference free, it is not obvious how to attain 
the required market prices. (It may well be applicable 
in the future if pandemic insurance becomes widely 
traded.)

Our model is related to Ai (2010) and Gourio (2012). 
We share many of the features of each, but differ by 
offering a setting that allows us to connect to our unique 
empirical data. Both of those papers feature shocks to 
the stock of productive capital, with endogenous con
sumption. Like Ai (2010), our model is in continuous 
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time and allows for frictionless adjustment to capital. 
That paper also studies the effect of parameter uncer
tainty, although not in a setting with rare disasters. We 
differ from Gourio (2012) in modeling extended disasters, 
like pandemics, whose expected duration is a crucial and 
evolving feature of the economy.

Although the literature studying the economic impact 
of COVID-19 has exploded in a short period of time, 
there is relatively little focus on the role played by vac
cine development and its progress.

Hong et al. (2021b) study the effect of pandemics on 
firm valuation by embedding an asset pricing frame
work with disease dynamics and a stochastic transmis
sion rate, equipping firms with pandemic mitigation 
technologies. Similar to our paper, they model vaccine 
arrival as a Poisson jump process between pandemic 
and nonpandemic states. Hong et al. (2021a) combine 
the model of Hong et al. (2021b) with pre- and post- 
COVID-19 analyst forecasts to infer market expecta
tions regarding the arrival rate of an effective vaccine 
and to estimate the direct effect of infections on growth 
rates of earnings. In particular, they develop a regime- 
switching model of sector-level earnings with shifts in 
their first and second moments across regimes.

In both of these papers, the pricing kernel is exoge
nously specified for the pandemic and the nonpandemic 
states. In contrast, our model is general equilibrium in 
nature with the representative agent optimally choosing 
labor and consumption (and, in turn, investment in capi
tal) to mitigate health risk.

Elenev et al. (2022) incorporate a pandemic state 
with low, disperse firm productivity that recurs with 
low probability for studying government intervention 
in corporate credit markets. Hong et al. (2021b) fix 
expected pandemic duration around one year but 
show in comparative statics that asset prices can have 
considerable sensitivity to the arrival rate of the vac
cine. Hong et al. (2021a) use their model to infer the 
arrival rate of the vaccine. In contrast, we construct an 
estimated time to vaccine deployment using news on 
the progress of clinical trials of vaccines for COVID- 
19. We infer the loss in economic wealth in the pan
demic from stock market reactions to changes in these 
forecasts

On the empirical side, Baker et al. (2020a) deploy 
transaction-level data to study consumption responses 
to COVID-19, finding an increase in the beginning in 
an attempt to stockpile home goods, followed by a 
sharp decrease as the virus spread and stay-at-home 
orders were enforced. Using customized survey data, 
Coibion et al. (2020) find lockdowns decreased con
sumer spending by 30%, with the largest drops in 
travel and clothing. Bachas et al. (2020) find a rebound 
in spending, especially for low-income households, 
since mid-April. Chetty et al. (2020) further find high- 
income households significantly reduced spending, 

especially on services that require in-person interac
tions, leading to business losses and layoffs in the most 
affluent neighborhoods. Outside the United States, 
Sheridan et al. (2020) and Andersen et al. (2020) find 
aggregate spending decreased 27% in the first seven 
weeks following Denmark’s shutdown, with the major
ity of the decline caused by the virus itself regardless of 
social distancing laws. Chen et al. (2020) use daily 
transaction data in China and find severe declines 
in spending, especially in dining, entertainment, and 
travel sectors. In Section 5 we relate our estimates and 
methodology to the broader literature attempting to 
measure the costs associated with COVID-19. Like us, 
Del Angel et al. (2021) measure stock market sensitivity 
to pandemic-related news. They find a strong nega
tive correlation between reported fatalities and market 
returns during the 1918 flu outbreak.

2. Disasters with News About Duration
To begin, we modify a standard rare-disaster frame
work to incorporate news about the expected duration 
of disaster episodes. We show how to compute welfare 
in terms of the economy’s state. Then we price a claim 
to output, which is a function of the expected duration. 
The key finding is that that functional relationship 
effectively restricts the magnitude of welfare effects. 
This lowers the effective dimensionality of the model, 
enabling a feasible calibration whose conclusions are 
largely insensitive to the particular parameters govern
ing the disaster dynamics and household preferences.

2.1. Disaster Dynamics
Our underlying building block is a general equilib
rium regime-switching model of disasters (following 
Nakamura et al. 2013 and Collin-Dufresne et al. 2016) 
where the economy is alternately in “normal times” 
and in a “disaster” regime. The regimes differ in their 
state-specific stochastic process for the accumulation 
of wealth. Fundamentally, the model depicts disasters 
as destroying or degrading that stock of wealth, as in 
Gourio (2012), with consumption and other policies 
potentially responding endogenously. For this reason, 
we work with a production-based framework rather 
than an endowment economy.

Specifically, let q denote the quantity of productive 
capital of an individual household (which could be 
viewed as both physical and human capital). We assume 
that the stock of q is freely convertible into a flow of con
sumption goods at rate C per unit time. Then, our speci
fication is that, in state s, q evolves according to the 
process

dq � µ(s)qdt� C(s)dt + σ(s)qdBt � χ(s)qdJt (1) 

where Bt is a standard Brownian motion and Jt is a 
Poisson process with intensity ζ(s). We set χ(s) � 0 in 
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normal times and χ(s) > 0 within the disaster. Hence, 
we interpret the Poisson shock as capturing the risk of 
an economic loss due to being in a disaster regime.

Next, we augment the disaster regime to include sub
regimes that correspond to observable progress to 
returning to normal life. Now let the state s take values 
in {0, 1, : : : , S� 1, S}, where both s � 0 and s � S are the 
same normal time regime, and the others are the disas
ter substates. We assume that the economy switches 
between these states based on a Markov-switching 
or transition matrix. The transition probabilities are as 
follows:

Pr(st+dt � 1 |st � 0 or S) � ηdt (2) 

Pr(st+dt � st |st � 0 or S) � 1� ηdt (3) 

Pr(st+dt � s� 1 |st � s ∈ [1, S� 1]) � λd(s)dt (4) 

Pr(st+dt � s+ 1 |st � s ∈ [1, S� 1]) � λu(s)dt (5) 

Pr(st+dt � st |st � s ∈ [1, S� 1]) � 1�λd(s)dt�λu(s)dt:
(6) 

That is, η is the intensity of disaster arrivals, and λd 
and λu are the respective intensities within a disaster 
for transitions “down” or “up” to the adjacent states. 
Given this specification, a straightforward Markov 
chain calculation yields Et[T? |s], where T? is the time 
at which the state S is attained and the current disaster 
is terminated.

Although the specification allows for arbitrary param
eter differences across the substates, our intention is 
rather to interpret them as differing only insofar as 
advances in the state reduce the expected time to exit the 
disaster. Hence, for 0 < s < S, we will take µ(s) � µ(1), 
σ(s) � σ(1), and χ(s) � χ,ζ(s) � ζ, and λu(s) � λu,λd(s) �
λd to all be constants. We can thus interpret the state 
index s as a probabilistic clock. As such, within a disas
ter, agents are subject to an additional source of risk: sto
chastic duration.7

It is worth highlighting the implicit assumptions in 
the model about long-run effects. Our specification is 
pessimistic in the sense that loss of wealth due to the 
disaster shocks is permanent. Productive capital q does 
not get restored when the disaster ends. On the other 
hand, the model is optimistic in the sense that the pro
ductive process, dq, does fully revert to predisaster 
dynamics. After the disaster, the world looks stochasti
cally the same as it did before. Agents know that the 
disaster will eventually end, and there will be no scar
ring effects, for example, on the economy’s normal 
growth rate, µ(0).

2.2. Agents
We assume the economy has a unit mass of identical 
agents (households). Each agent has stochastic differential 

utility or Epstein-Zin preferences (Duffie and Epstein 
1992, Duffie and Skiadas 1994) based on consumption 
flow rate C, given as

Jt � Et

Z ∞

t
f (Ct′ , Jt′ )dt′

� �

(7) 

and aggregator

f (C, J) �
ρ

1� ψ�1
C1�ψ�1

� [(1� γ)J]
1
θ

[(1� γ)J]
1
θ�1

" #

(8) 

where 0 < ρ < 1 is the temporal discount factor, γ ≥ 0 
is the coefficient of relative risk aversion (RRA), ψ ≥ 0 is 
the EIS, and

θ�1 ≡
1�ψ�1

1� γ : (9) 

The use of recursive preferences is standard in macro
finance models because of their ability to match finan
cial moments. We recognize the limitations of using a 
utility specification driven by consumption goods, 
particularly within a crisis when other considerations 
(e.g., health, social interaction, the safety of others) so 
strongly affect well-being. However, using a familiar 
formulation ensures that our findings are not driven 
by nonstandard assumptions about utility. The repre
sentative agent’s problem is, in each state s, to choose 
optimal consumption C(s) that maximizes the objec
tive function J(s).

2.3. Solution
We now characterize the solution to the optimization 
problem.

Proposition 1. Assume all state parameters are constant 
for 0 < s < S. Denote

g(s) ≡ (1� γ)ρ
(1�ψ�1)

� (1� γ) µ(s)� 1
2γσ(s)

2
� �

� ([1�χ(s)]1�γ� 1) (10) 

Let H(s)’s denote the solution to the following system of S 
recursive equations:

g0 ≡ g(0) � (1� γ)
(ψ� 1)ρ

ψ(H(0))�ψθ
�1
+ η

H(1)
H(0)� 1
� �

(11) 

g1 ≡ g(1) � (1� γ)
(ψ� 1)ρ

ψ(H(s))�ψθ
�1
+λd

H(s� 1)
H(s)

� 1
� �

+λu
H(s+ 1)

H(s) � 1
� �

, (12) 

for s ∈ {1, : : : , S� 1}:
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Assuming the solutions are positive, optimal consumption 
in state s is

C(s, q) � (H(s))
�ψθ�1

q
ρ�ψ

, (13) 

and the value function of the representative agent is

J(s, q) ≡ H(s)q1�γ

1� γ (14) 

Note: All proofs appear in the Online Appendix.

The recursive system is straightforward to solve numer
ically. Henceforth, we implicitly assume the parameters 
are such that a unique solution vector H(s) exists and is 
strictly positive.

2.4. Welfare Across States
The certainty equivalent change in the representative 
agent’s lifetime value function upon a transition from 
state s to state 0 (or to state S) is given by

V(s) ≡ 1� H(s)
H(0)

� � 1
1�γ

: (15) 

This is the percentage of the agent’s stock of wealth q 
that, if surrendered, would be fully compensated by 
the utility gain of reverting to the nondisaster state. 
This willingness-to-pay definition is standard in the lit
erature. Using the optimal consumption characterized 
above, we also obtain Proposition 2.

Proposition 2. The value of ending the disaster in state s 
is determined by the ratio of marginal propensity to con
sume (c ≡ dC=dq) in the disaster state s relative to that in 
the nondisaster state, adjusted by the agent’s EIS:

V(s) � 1� c(s)
c(0)

� �� 1
ψ�1

� 1� C(s)
C(0)

� �� 1
ψ�1

: (16) 

The definition above naturally generalizes to the 
willingness-to-pay to alter the clock from any given s to 
another s′, as

V(s, s′) ≡ 1� H(s)
H(s′)

� � 1
1�γ

: (17) 

This is the relevant quantity when assessing mitiga
tions that, although not ending the disaster, shorten its 
remaining expected duration.

2.5. Asset Pricing
We interpret “the market portfolio” within the model as 
a claim to the economy’s output.8 Output is the net new 
resources per unit time, which is implicitly defined by 
two endogenous quantities: the change in the cumula
tive wealth plus consumption, or dq+Cdt. Denote the 
price of the output claim as P � P(s, q). By the fundamen
tal theorem of asset pricing, the instantaneous expected 

excess return to holding this claim is equal to minus the 
covariance of its returns with the pricing kernel. Under 
stochastic differential utility, and with the value function 
solution above, the pricing kernel in our economy is 
given by

Λt � exp
Z t

0
[ρψ(θ=ψ)H(su)

�ψ=θ
]du

� �

q�γt H(st):

From this, we derive the value of the market portfolio 
in the following proposition.

Proposition 3. The price of the output claim is P � p(s)q 
where the constants p(s) solve a matrix system Y � Xp where 
X is an S+ 1-by-S+ 1 matrix and Y is an S+ 1 vector, both 
of whose elements are given in the Online Appendix.

The behavior of the price-capital ratio, p(s), accords 
with economic intuition: it declines sharply on a move 
from state s � 0 to s � 1, and then gradually (and ap
proximately linearly) recovers as s advances. Thus, the 
quantity ∆log P � log p(s+ 1)� log p(s) is positive for 
s > 0, as desired.9 An alternative way of achieving this 
response is to assume equity dividends are a procyclical 
share of consumption (as in Longstaff and Piazzesi 
2004, Santos and Veronesi 2006, and Kilic and Wachter 
2018), that is, decreasing in a disaster, or an implicit 
labor share that is partially insured against pandemic 
losses. (We show the correspondence in the Online 
Appendix.) Note that impounding less disaster expo
sure in dividends will decrease the market response to 
changes in the state. Hence, matching observed market 
responses will require more severe pandemics, with 
greater welfare costs. Thus, our assumptions are conser
vative from the perspective of inferring those costs.

2.6. Welfare and Stock Market Sensitivity to 
Duration News

Now, define T? as the time at which the state S is 
attained and the disaster is terminated. In the next sec
tion, we construct an empirical counterpart to its time t 
expectation, Et[T?], during 2020. It is straightforward 
to show that this expectation is again given by a linear 
system, which we omit for brevity. Moreover, for large 
S, the difference

∆E[T?] � E[T? |s+ 1]�E[T? |s] ~ 1
λu

(18) 

is effectively constant as well. Given P(s) and E[T?], we 
can readily compute the sensitivity

∆log P
∆E[T?]

: (19) 

This corresponds to the second quantity we attempt to 
measure empirically.

Acharya et al.: The Value of Ending the Pandemic 
6 Management Science, Articles in Advance, pp. 1–19, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

23
6.

16
7.

13
7]

 o
n 

18
 D

ec
em

be
r 

20
24

, a
t 1

1:
52

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



The goal of the paper is to estimate the quantities 
(15) and (17), which clearly depend on how the model 
is calibrated. An important insight, however, is that 
the model counterpart to the stock market sensitivity 
restricts the parameters governing the severity of the 
disaster: µ(1),σ(1),χ, and ζ. More precisely, sets of 
parameters consistent with an observed value of (19) 
all have welfare costs, V, within an admissible range. 
We formalize this result as follows.

Proposition 4. Given a set of nondisaster parameters (e.g., 
those given in Table 1) and subject to regularity conditions 
given in the proof, a particular fixed value of A ≡ ∆log P

∆E[T?]
restricts the disaster parameters such that the quantity B ≡

V
E[T?] must lie in a finite range [B, B]. For large, S, the limits 
of the range are determined by the solution to a three- 
equation system given in the proof.

The economic logic underpinning the proposition is 
straightforward. Although the household’s value func
tion and the stock price are different constructs, the 
effect of a disaster on each is largely driven by the same 
two things: the decrease in expected rate of wealth 
accumulation (or, the severity of the disaster), and the 
expected time until a return to normal conditions (the 
expected duration of the disaster).

The bounds identified in the proposition are not 
directly expressible in terms of the primitive para
meters of the model. Hence, it remains to verify 
numerically that they are reasonably tight and reason
ably robust to the choice of nondisaster parameters. 
To this end, we present the computed bounds for a 
number of cases whose parameters are collected in 
Table 1. The first case, labeled (a), is the paper’s base
line parameter set.10 The remaining cases, (b) to (f), are 
the parameters used in prominent and influential 
papers in the literature. These provide significant vari
ation along all dimensions.

Longstaff and Piazzesi (2004) assume constant rela
tive risk aversion—and therefore an EIS below one— 
and also much rarer disasters than the baseline. Ai 
(2010), although not a disaster model, includes direct 
shocks to the capital stock and uses a much higher vol
atility to match evidence on the volatility of wealth. 
Gourio (2012), also a production-based model, uses a 
lower risk aversion than our baseline and also a lower 
rate of time preference. Nakamura et al. (2013) and 
Marfè and Pénasse (2024) provide direct estimation of 
disaster processes, and their estimates imply shorter 
and more frequent disasters. Both also use higher risk 
aversion. The former uses a higher rate of time prefer
ence, whereas the latter uses a lower EIS than our 
baseline.

All of these models differ from ours. So, there is not 
a perfect mapping (except in the case of the preference 
parameters) between their parameters and ours. In 
a few cases, we have augmented or modified the 
papers’ parameters to approximate our paper’s depic
tion of output and disasters, or to satisfy the model’s 
assumptions.11

For each of these configurations, we compute the 
admissible range for the welfare value of ending the 
disaster conditional on an observed stock market 
response. Figure 2 plots the results. The first important 
result is that the bounds are indeed reasonably tight— 
around 62% of wealth when the stock market 
response is 4%–6% return per year of reduced dura
tion. Even more important, the bounds are seen to be 
quite robust across the range of parameter configura
tions. As a market response of 4%, the bounds for all 
cases are within about 1% of wealth relative to each 
other. This establishes that our paper’s primary con
clusions are not driven by its baseline assumptions 
about preferences, output, or disaster frequency and 
duration.12

Table 1. Parameters

Parameter categories

(a) (b) (c) (d) (e) (f)

Baseline
Longstaff 

and Piazzesi (2004) Ai (2010)
Gourio 
(2012)

Nakamura 
et al. (2013)

Marfè and 
Pénasse (2024)

Preferences
Coef. of relative risk aversion γ 4.0 5.0 2.0 3.8 6.4 6.5
Elast. of intertemporal substitution ψ 1.5 0.2 2.0 2.0 2.0 1.0
Rate of time preference ρ 0.0125 0.010 0.014 0.004 0.034 0.02

Normal output
Growth rate µ(0) 0.03 0.023 0.035 0.01* 0.05* 0.044
Volatility σ(0) 0.05 0.029 0.099 0.035* 0.023 0.052

Disaster timing
Intensity η 0.02 0.01 0.02* 0.028 0.028 0.041
Duration 1=λ 4.0 1.0* 4.0* 1.6 4.0 1.9

Notes. The table shows the six parameter configurations used in Figure 2 to compute the welfare bounds of disaster severity as a function of the 
stock market response to news about disaster duration. In columns (b) to (f) parameters are taken or interpreted from the papers cited on the 
second line, except where marked by an asterisk (see endnote 11). Coef., coefficient; Elast., elasticity.
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3. Vaccine Progress in 2020
We now turn to the application of our model to the 
COVID-19 pandemic. As discussed in the introduction, 
our maintained hypothesis is that expectations about 
the time remaining to successful deployment of a vac
cine during 2020 map into our model’s expectation for 
the termination of the pandemic and the return to nor
mal economic conditions. We therefore construct an 
estimator of that quantity using a statistical model of 
clinical trial progress.

As described in more detail in Section 3.1 below, each 
day, the model simulates the future progress of each can
didate in order to forecast the time until the first candi
date successfully deploys. Each run of the simulation 
takes the current stage of each candidate, then simulates 
forward the entire clinical timeline through preclinical 
trials, clinical trials, application submission, regulatory 
approval, and vaccine deployment.13 Each clinical stage 
is characterized by an expected duration and a probability 

of failing. We update these probabilities as news arrives 
about individual candidates: preliminary results or 
more complete information about earlier trials may be 
published, released to the press, or leaked. At each sim
ulated stage, each candidate can either fail (and that 
candidate’s run ends) or advance onto the next stage 
(and the simulation continues). The model then records 
the time to deployment among candidates successfully 
reaching deployment, and the average time across a 
large number of runs is that day’s estimate of the 
expected time until a successful deployment.

Note that vaccine deployment is a final stage with a 
nonzero probability of failure. That is, an approved vac
cine possibly still could not attain widespread deploy
ment, for example, because of manufacturing and 
distribution difficulty, emergence of serious safety con
cerns, mutation of the virus, or adoption hesitancy. In 
other words, observers at the time were aware that the 
approval of a vaccine would not necessarily correspond 

Figure 2. Welfare Gain Implied by Market Response to Duration News 

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(a)

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(b)

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(c)

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(d)

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(e)

0 0.02 0.04 0.06 0.08
  -d log P / d E[ T ]  

0

0.05

 V
 / 

E
[ T

 ] 

(f)

Notes. The figure shows the minimum and maximum allowable welfare gain to ending a disaster given an observed stock market response to 
disaster timing news. The welfare gain must lie in the plotted range for any choice of the disaster severity parameters. Cases (a) to (f) correspond 
to the parameter configurations listed in Table 1.
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to a “magic bullet” that instantly terminates the spread 
of COVID-19 and ends the pandemic.

The forecast incorporates the expectation that the 
success and failure of candidates are positively corre
lated. This positive dependence arises most obviously 
because all vaccines were targeting the same pathogen, 
and would succeed or fail largely because of its inher
ent biological strengths and weaknesses. Candidates 
also shared one of a handful of strategies (or platforms) 
for stimulating immunological response14 and relied 
on common technological components, resources, or 
abilities, and some research teams concurrently devel
oped several candidate vaccines. The model incorpo
rates correlation among candidates by assuming the 
stochastic durations of each stage are generated by a 
Gaussian copula with positive correlation matrix.

The next subsection provides details on the data and 
each step in the construction of the forecast time-series 
and discusses some of the underlying assumptions. 
Further details on specific assumptions are provided in 
the Online Appendix.

3.1. Forecast Construction
Each day, we start with N positively correlated vaccine 
candidates, with correlation matrix R. Each candidate 
n is in a state s ∈ S, where

S � {failure, preclinical, phase 1, phase 2, phase 3,
application,approval, deployment}

and each state has expected duration τs and baseline 
probability of success Πbase

s .15

Next, we augment the state-level, baseline probability 
of successes with candidate-specific news. Let ωn, t ∈Ω

denote news published at time t about candidate n. For 
example, Ω could span positive data releases, negative 
data releases, next-state announcements, etc. Then let 
∆π :→ [�1, 1] be a mapping from news to changes in 
probabilities. For each candidate, we cumulate the 
changes in probabilities from all news from the begin
ning of our sample t0 up to time t,

∆πnews
n, t �

Xt

t′�t0

∆π(ωn, t′ ):

Finally, we combine it with the baseline probability of 
success, resulting in a candidate-specific probability of 
success that potentially varies over time, even within 
the same state,

πtotal
n, s, t �

expΥn, s, t

1 + expΥn, s, t 

where Υn, s, t � log πbase
s

1�πbase
s
+ 2∆πnews

n, t .
We simulate stage-by-stage progress of each candi

date and generate the expected time to first vaccine 
deployment, similar to a first-to-default credit model. 

Specifically, on each day, one run of the simulation 
repeats steps one and two until candidates have all 
failed or deployed.16

1. We model each state transition as a two-state Mar
kov chain with exponentially distributed times. Draw 
an N-dimensional multivariate normal random vari
able

zt � [z1, t, : : : , zN, t]
′ ~ N (0, R)

and for each candidate, transform to exponential time 
with intensity λn, s, t �

πn, s, t
τs

tn, s, t ��
log Φ(zn, t)

λn, s, t
:

2. Then draw a success or failure Bernoulli random 
variable with parameter πs. If failure, then that candi
date’s run is over. Else if success, then that candidate 
advances states and the run continues.

3. Calculate each candidate’s time to vaccine deploy
ment as

Tn �

X

s
tn, s, t, if candidate deploys

∞, if candidate fails:

8
<

:

4. Then calculate minimum time to vaccine deploy
ment across candidates, minnTn.

That finishes one run of the simulation. We repeat 
for 50,000 runs and take the cross-run average as TD, 
before advancing to the next day. On each day across 
runs, we calculate the average

E[T∗] � (1�µ)TD
t +µTND, 

where some fraction, µ, of simulations will result in all 
candidates not reaching deployment, so we incorporate 
TND, an estimated expected time to deployment by a 
project outside of our sample.

We obtain the preclinical dates and trial history of 
vaccine candidates from publicly available data col
lated by the LSHTM. We observe the start dates and 
durations of each preclinical and clinical trial, along 
with their vaccine strategy. We augment the LSHTM 
timeline with news pertinent to vaccine progress from 
FactSet StreetAccount. We classify vaccine-related stor
ies into seven positive types and six negative types. The 
Online Appendix includes more detail on the number 
of candidates and breakdown of strategies, the news 
types and corresponding probability adjustments, and 
our choices of parameters, also presenting evidence 
that our assumptions are reasonably consistent with 
the (small) set of observed trial outcomes. We will vali
date our choices both by examining robustness to rea
sonable variations and by comparing them to other 
actual ex ante forecasts published during the sample 
period.
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Our indicator of vaccine progress aims to capture 
expectations about deployment principally in the United 
States because this is likely to be the primary concern of 
U.S. markets. Because of political considerations, we 
believe that observers at the time judged it to be very 
improbable that vaccines being developed in China and 
Russia would be the first to achieve widespread deploy
ment in the United States. Our base case construction for 
this reason omits candidates coded in the LSHTM data 
as originating in Russia or China, retaining candidates 
coded as multicountry projects including these two 
countries. We will also verify that including them in our 
index does not change our primary results.

In focusing on the scientific advancement of the indi
vidual candidates, our measure does not attempt to 
capture general news about the vaccine development 
environment and policy. News about the acquisition 
and deployment of delivery infrastructure by govern
ments (or the failure to do so) could certainly affect esti
mates of the time to availability. We also do not capture 
the news content of government financial support pro
grams or prepurchase agreements. News about regula
tory approval standards could have affected forecasts 
as well. Although we could alter our index based on 
some assessment of the impact of news of this type, we 
feel we have less basis for making such adjustments 
than we do for modeling clinical trial progress.

Figure 1 shows the model’s estimation of the ex
pected time to widespread deployment from January 
through October of 2020. The starting value of the 
index, in January, is determined by our choice of the 
parameter TND because, with very few candidates and 
none in clinical trials, there was a high probability that 
the first success would come from a candidate not yet 
active. However, this parameter effectively becomes 
irrelevant by March when there are dozens of projects. 
The index is almost monotonically declining, because 
there were no reported trial failures and very few 
instances of negative news through at least August. 
The crucial aspects of the index for our purposes are 
the timing and sizes of the down jumps corresponding 
to the arrival of good news.

3.2. Validation
We are aware of two data sets that contain actual fore
casts of vaccine arrival times, as made in real time dur
ing 2020. As a validation check, we compare our index 
to these.17

The two data sets are surveys, to which individuals 
supplied their forecasts of the earliest date of vaccine 
availability. Comparisons between these pooled fore
casts and our index require some intermediate steps 
and assumptions. In both cases, the outcomes being 
forecast are given as prespecified date ranges. Thus, on 
each survey date, we know the percentage of respon
dents whose point forecast fell in distinct bins. For each 

survey we estimate the median response, assuming a 
uniform distribution of responses within the bin con
taining the median. Under the same assumption, we 
can also tabulate the percentage of forecasters above 
and below our index.

The first survey is conducted by Deutsche Bank and 
sent to 800 “global market participants” asking them 
when they think the first “working” vaccine will be 
“available.” The survey was conducted four times 
between May and September. The second survey is 
conducted by Good Judgement Inc., a consulting firm 
that solicits the opinion of “elite superforecasters.” 
Their question asks specifically, “When will enough 
doses of FDA-approved COVID-19 vaccine(s) to inocu
late 25 million people be distributed in the United 
States?” (Information about the number of responders 
is not available.) Responses are tabulated daily, starting 
from April 24. For brevity, we examine month-end 
dates. Table 2 summarizes the comparison.

Our forecasts align well with those of the Deutsche 
Bank survey, though ours are more optimistic than 
the median. The optimism is more pronounced when 
compared with the superforecasters early in the pan
demic. Although we are within the interquartile range 
of forecasts after May, the earlier dates see us in the 
left tail of the distribution. A possible reason is the 
particular survey question, which specifies an exact 

Table 2. Forecast Comparison

Panel A. Deutsche Bank

Date Survey median VPI
% respondents 

below

May 1.158 0.958 35.0
June 1.162 0.893 31.2
July 0.920 0.595 20.8
September 0.625 0.561 44.3

Panel B. Superforecasters

Date Survey median VPI
% respondents 

below

April 1.902 1.291 16.1
May 1.643 0.958 14.6
June 1.189 0.893 31.0
July 0.808 0.595 32.7
August 0.519 0.606 58.4
September 0.445 0.518 57.2

Notes. The table compares forecasts for the earliest date of vaccine 
availability in years. Panel A compares the median from a survey 
conducted by Deutsche Bank, whereas panel B compares the median 
from a survey conducted by Good Judgement Inc. The column VPI 
denotes the forecast from our estimated vaccine progress indicator, 
and the last column reports the percentage of respondents from each 
survey with forecasts below ours. Survey respondents are reported in 
calendar intervals. The comparison assumes a uniform distribution of 
forecasts in time within the median bin. The survey dates are as of the 
end of the month in the first column, except the Deutsche Bank 
September survey, which is for the week ending September 11, 2020.
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quantity of the vaccine being distributed in the United 
States. Respondents may have been more skeptical of 
feasible deployment than we have assumed. We will 
examine robustness of our results below to increasing 
the probability of an approved vaccine failing in the 
deployment stage.

4. Results
This section presents the paper’s main results: measur
ing the stock market sensitivity to vaccine news and 
interpreting the estimates through the lens of the model 
in Section 2.

4.1. Market Reaction to Vaccine News
Our empirical methodology is straightforward: we 
regress daily market returns in 2020 on changes in the 
VPI. Because our forecast construction does not utilize 
any stock market or financial information, its changes 
are exogenous in the regression context.

An important consideration is controlling for other 
news, of which there was a great deal during this period, 
principally because of the extent of the pandemic, policy 
responses, and the likely economic impact of these, but 
also including, for example, the U.S. election cycle. Our 
approach to controlling for nonvaccine news is to 
exclude days with large stock market moves that were 
reliably judged to be due to other sources. Specifically, 
we employ the classification of Baker et al. (2020b), who 
analyze causes of daily market moves greater than 2.5% 
in absolute value. Those authors enlist the opinion of 
three analysts for each such day and ask them to assign 

weights to types of causes (e.g., corporate news, election 
results, monetary policy, etc.). Under their classification, 
pandemic-related economic and policy news is assigned 
one of these categories. Research on vaccines falls under 
the category “other.” We view market returns as very 
unlikely to have been driven by vaccine news if none of 
the three analysts assigns more than 25% weight to this 
category, or if the return was more negative than �2.5%. 
The latter exclusion is based on the fact that there were 
no significant vaccine setbacks prior to the end of our 
data window,18 and on the assumption that positive 
vaccine progress cannot have been negative news. We 
then include dummies for all of the nonvaccine large- 
news days. There are 28 such days, 17 of which were in 
March. Although the approach is imperfect, it avoids 
putting (endogenous) financial variables, such as bond 
yields or credit spreads, on the right-hand side of our 
regressions. And, at a minimum we are limiting the abil
ity of our estimation to misattribute the largest market 
moves to vaccine progress.

Table 3 shows the resulting regression estimates of 
market impact. The dependent variable is the return to 
the value-weighted Center for Research in Security Prices 
(CRSP) index from January 1 through October 31, 2020. 
The regression specifications include contemporaneous 
changes in the vaccine progress indicator and also exam
ine lagged effects. Given the sheer volume of news being 
processed during this period, we do not rule out delayed 
incorporation of information, which would show up in 
the lag coefficients. Additionally, including lag terms 
addresses the possibility that the market overreacts to 

Table 3. Stock Market Sensitivity to Vaccine Progress

Parameter estimates of Equation (20) (1) (2) (3) (4) (5) (6)

γ1 �0.091 �0.068 �0.082 �0.063 �0.098 �0.089
(0.068) (0.066) (0.066) (0.064) (0.069) (0.069)

γ2 0.150* 0.180* 0.154* 0.177* 0.138 0.150*
(0.090) (0.091) (0.092) (0.090) (0.086) (0.083)

βt �1.229 �2.084* �1.409 �2.069* �1.000 �1.333
(1.353) (1.193) (1.290) (1.243) (1.141) (1.114)

βt�1 �3.836 �4.523 �3.850 �4.269
(3.069) (3.093) (2.892) (2.849)

βt�5, t�2 �1.959*** �2.281***
(0.689) (0.631)

α 0.290*** 0.225** 0.149
(0.105) (0.097) (0.099)

P
hβt�h �1.229 �2.084 �5.246 �6.592 �6.808 �7.883

F-stat on 
P

hβt�h 0.83 3.05 4.51 7.20 7.01 10.54
p-value on 

P
hβt�h 0.36 0.08 0.04 0.01 0.01 0.00

N 203 203 203 203 203 203

Notes. The table shows results from Regression (20). The dependent variable is daily excess returns on the 
market portfolio in percent. The return on the value-weighted CRSP index is used from January 1, 2020, to 
October 31, 2020. Independent variables include two lags of excess returns on the market portfolio, changes in 
vaccine progress indicator in years, and dummy variables for each jump date from Baker et al. (2020b) 
unrelated to news about vaccine progress. All columns employ the baseline construction of the vaccine 
forecast. Newey-West standard errors with four lags are shown in parentheses.

Significance levels: *p < 0:10; **p < 0:05; ***p < 0:01.
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vaccine news. The specifications also include two lags of 
the dependent variable to control for short-term liquidity 
effects. Specifically, the regression is

Re
m, t � α +

X0

h��k
βh∆VPIt+h + γ1Re

m, t�1 + γ2Re
m, t�2

+
X28

j�1
δj1jump j + ɛt (20) 

where ∆VPIt is the change in vaccine progress indica
tor, and 1jump j is a dummy equal to one on the jth 
jump date from Baker et al. (2020b). We also present 
results for specifications without the intercept, α, the 
argument being that including it treats both the real
ized market rally (or, positive sample average return) 
and the realized vaccine progress (negative average 
change in VPI) as having been expected, which is a 
potential misspecification.19

The first two columns of the table show results using 
our baseline vaccine progress indicator, and without 
lags. The estimated contemporaneous coefficient from 
the first column implies a stock market increase of 
1.29% on a decrease in expected time to vaccine deploy
ment of one year. Although economically meaningful, 
the response is not statistically significant given the 
short sample. Also, the estimated intercept in this speci
fication illustrates the point above. A positive value of 
0.29 translates into an “expected” annual return of 
106% (1:0029250� 1) for the stock market, which is not 
plausible. Column (2) shows the result of dropping the 
intercept. The response coefficient rises to 2.08%, which 
is statistically significant at the 10% level.

Columns (3) and (4) add a single lag of the VPI series. 
We explored a number of lag specifications, and this is 
the one preferred by the Bayes information criterion. 
The evidence is consistent with a substantial continued 
positive market response to vaccine progress as infor
mation is processed over a second day. Focusing on the 
cumulative impact of both days, the sum of the βs is 
5.25%, or 6.59% without the intercept, and both are sta
tistically significant at the 1% level. Going forward, we 
will adopt the more conservative of these two as our 
primary estimate. The final two columns include a lon
ger lag term, namely, the cumulative change in VPI 
from day t� 5 to t� 2. This specification allows us to 
address the possibility that some of the positive market 
reaction to vaccine progress in the first two days is an 
overreaction that subsequently reverses. In fact, we 
find the reverse: the response continues in the same 
direction. The cumulative five-day response now rises 
to 6.81%, or 7.88% without the intercept.

Our baseline estimate of approximately a 5% response 
to a one-year change in the VPI is strongly supported 
by the observed reactions to some especially salient 
announcements. For example, market rallies of 1.1% 

and 0.9% followed release of phase I results by Mod
erna on May 18 and July 14.20 These announcements 
caused drops in the VPI of 0.02 and 0.11 years, respec
tively, implying a response coefficient of at least eight. 
In an out-of-sample observation,21 Pfizer’s release of 
phase III results on November 9 at 6:45 a.m. caused a 
preopening market surge of 2.8%. Even attributing to 
the news a reduction in VPI of 0.25 years, the implied 
response coefficient would be over 10.

Because the construction of the VPI forecasts in
volves a number of assumptions, Table 4 presents addi
tional regressions using the baseline specification from 
column (3) for several variants of the methodology, 
including altering the news adjustments, the correlation 
assumptions, and the probability of successful vaccine 
deployment. In all of these variations, the estimated 
market response to vaccine progress is similar in mag
nitude to those reported in Table 3.

4.1.1. Industry Responses. As a validity check for our 
findings, we examine the price impact of vaccine pro
gress in the cross-section of industries. We first gauge 
each industry’s exposure to COVID-19 by its cumula
tive return from February 1, 2020, to March 22, 2020. 
This period captures the rapid onset of COVID-19 in 
the United States, with a public health emergency 
being declared on January 31, 2020, and a national 
emergency declared on March 13, 2020. Importantly, 
this period precedes the Federal Reserve’s announce
ment of the Primary Market Corporate Credit Facility 
and Secondary Market Corporate Credit Facility on 
March 23, 2020, helping us pin down industry covar
iances with COVID-19 itself, separate from covar
iances with policy responses.

We then estimate industry sensitivity to vaccine pro
gress over the nonoverlapping sample from March 23, 
2020, to October 31, 2020, by reestimating (20) sector by 
sector,

Re
i, t � α +

X0

h��1
βh, i∆VPIt+h + γ1, iR

e
i, t�1 + γ2Re

i, t�2

+
X28

j�1
δj, i1jump j + ɛi, t (21) 

where Re
i, t is value-weight excess returns on the 49 

Fama-French industry portfolios.
Figure 3 presents the results. Each industry’s sensi

tivity to vaccine progress is plotted against its expo
sure to COVID-19. The relationship is negative and 
statistically significant—industries that were more 
exposed to COVID-19 subsequently saw more posi
tive price impact as the vaccine was expected to 
deploy sooner. Table 5 shows the five top and bottom 
industries ranked by their sensitivity to vaccine news. 
In addition to having exhibited greater stock price 
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declines, the top sectors also had earnings that were 
more pandemic sensitive. Landier and Thesmar (2020) 
report that real estate, financials, and energy were 
among the sectors most revised down by analysts in 
the first quarter of 2020, whereas utilities were the 
least revised, for example. The association of industry 
exposure to COVID-19 with its subsequent sensitivity 
to our index lends confidence to the construction and 
interpretation of the index as, in fact, measuring vac
cine progress.

4.2. Welfare Cost of the Pandemic
In Section 2.6, we derived theoretical bounds on the 
welfare benefit of ending a disaster conditional on an 
observed stock market response to the disaster “clock.” 
We computed and exhibited these bounds for the base
line case (and several alternative parameterizations). 
These bounds are conservative in the sense that they 
allow for essentially unlimited variation in the disaster 
parameters. It turns out that for a wide range of plausi
ble parameters the actual bounds can be tighter. This is 
shown in Figure 4, where we plot the relationship 
between the two quantities for several dozen parameter 
sets in which each disaster variable is allowed to vary 
over a significant range, as given in the figure caption.22

So, for example, model solutions for low intensity (ζ) or 
severity (χ) of the Poisson shocks plot near the lower 
left. Raising these parameters yields points plotted fur
ther to the right and higher. The key point is that the 
vertical width of the plot is narrow. With this collection 
of models, the welfare implications of the stock market 
response are well identified.

In particular, we can see that stock market sensitivi
ties in the range of our empirical estimates (e.g., around 
5%) imply welfare costs per remaining expected year of 
the pandemic of between about 4.5% and 5.2%. This 
conclusion can be supported by any choice of the disas
ter parameters that matches the observed sensitivity. 
For example, the choices (µ(1) � 0:015,σ(1) � 0:075, 
χ�0:035,ζ � 1) and (µ(1) � 0:03,σ(1) � 0:075,χ� 0:025, 
ζ � 2) each yield a sensitivity of 0.05, and each implies a 
welfare cost of 0.048 per year.

We can now combine this estimate with our forecasts 
for the expected time to successful vaccine deployment 
constructed in Section 3 (shown in Figure 1). Assuming 
that this series captures belief at the time for the pan
demic’s duration, and assuming investors’ model of 
the pandemic economy aligned with the model’s 
dynamics, our results imply that in late April 2020, 
when deployment was expected in about a year, the 

Table 4. Stock Market Sensitivity to Vaccine Progress—Robustness

Additional regression results (1) (2) (3) (4) (5) (6)

News All states None Current state All states All states All states
Depreciation Y N Y Y Y Y
Cor(n, n′) 0.2 0.2 0.2 0.4 0.2 0.2
πbase

approval 0.95 0.95 0.95 0.95 0.85 0.95
Ex-China and Russia Y Y Y Y Y N
γ1 �0.082 �0.081 �0.083 �0.086 �0.083 �0.091

(0.065) (0.065) (0.065) (0.066) (0.066) (0.056)
γ2 0.154* 0.154* 0.153* 0.153* 0.154* 0.143

(0.091) (0.092) (0.092) (0.091) (0.091) (0.087)
βt �1.403 �1.829 �1.605 �1.577 �1.471 1.073

(1.287) (2.047) (1.334) (1.233) (1.228) (1.671)
βt�1 �3.829 �4.715 �2.725 �3.308 �3.691 �5.812**

(3.063) (3.904) (2.606) (3.090) (2.951) (2.925)
α 0.227** 0.207* 0.243** 0.236** 0.228** 0.228**

(0.095) (0.098) (0.096) (0.095) (0.095) (0.095)
P

hβt�h �5.233 �6.544 �4.330 �4.884 �5.161 �4.739
F-stat on 

P
hβt�h 4.51 5.59 4.93 3.73 4.49 3.71

p-value on 
P

hβt�h 0.04 0.02 0.03 0.06 0.04 0.06
N 206 206 206 206 206 206

Notes. The table shows the results from Specification (1) in the paper. The dependent variable is daily percent excess returns on the market 
portfolio. Independent variables include two lags of excess returns on the market portfolio, a five-day window of changes in vaccine progress 
indicator in years, and dummy variables for each jump date from Baker et al. (2020b) unrelated to news about vaccine progress. The first column 
is the baseline specification with news applying to all states, deterministic depreciation, base copula correlation of 0.2, probability of success in 
the application state equal to 0.95, and exclusion of candidates from China and Russia. Column (2) removes news and depreciation; column (3) 
restricts news to the current state and increases the ∆π from news on positive data releases, positive enrollment, and dose starts to 15%, 5%, and 
5%, respectively; column (4) doubles the base copula correlation to 0.4; column (5) decreases the probability of success to 0.85 in the application 
state; and column (6) includes candidates from China and Russia. The return on the value-weighted CRSP index is used from January 1, 2020, to 
October 31, 2020. The table uses Newey-West standard errors with four lags (shown in parentheses).

Significance levels: *p < 0:10; **p < 0:05; ***p < 0:01.
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welfare value of ending the pandemic was approxi
mately 5% of total wealth. At the beginning of March, 
with very little vaccine progress reported, the analo
gous numbers are approximately three years forecast 
duration, and a welfare cost of 15%. By November 

2020, with less than six months expected until success
ful vaccine deployment, ending the pandemic immedi
ately would still have been worth over 2% of total 
wealth. These are the paper’s principal findings.

We defined V as the welfare gain from transitioning 
immediately to the nonpandemic state. More gener
ally, the quantity (17) defined in Section 2.4 gives the 
value of any intervention that shortens the expected 
duration of the crisis. For example, a partially success
ful vaccine technology which cuts this duration in half 
can be associated with its analogous welfare gain. 
Using one of the above choices for the disaster para
meters, Table 6 shows the fraction of wealth the repre
sentative agent would be willing to pay to lower the 
expected duration from one value to another. The 
table entries are close to constant along each diagonal, 
indicating that the welfare gain scales almost linearly 
with the expected change in duration. A semieffective 
vaccine that reduced the duration from four to two 
years is worth somewhat less but close to one that 
reduces the duration from two years to zero.

5. Discussion
In assessing our conclusions on the welfare cost of the 
pandemic, several natural questions arise. First, how 
robust is our estimate of the welfare cost of a pandemic 
to model assumptions and parameters? Second, is 5% 

Figure 3. (Color online) Industry Sensitivity to Vaccine Progress 

Notes. The figure plots industry sensitivity to vaccine progress against exposure to COVID-19 as measured by cumulative returns. Cumula
tive returns are from February 1, 2020, to March 22, 2020. Sensitivity to vaccine progress is estimated from March 23, 2020, to October 31, 
2020, as in (21).

Table 5. Industry COVID Exposure and VPI Sensitivity

Panel A. Top 5 industries

Industry
βt + βt+1 estimated 

from 3/23 to 10/31
Cumulative return 
from 2/1 to 3/22

Oil �15.89 �55.37
Textiles �9.84 �50.79
Banks �8.02 �42.72
Construction �7.90 �49.65
Real estate �7.79 �51.20

Panel B. Bottom 5 industries

Industry
βt + βt+1 estimated 

from 3/23 to 10/31
Cumulative return 
from 2/1 to 3/22

Utilities �1.45 �36.45
Precious metals �1.07 �10.79
Packaging �1.05 �30.88
Autos �0.37 �39.99
Coal 1.99 �43.12

Note. The table shows the top five and bottom five betas from 
Regression (21) of Fama-French 49 industry returns on changes in the 
expected time to vaccine deployment.
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of total wealth a reasonable amount to be willing to pay 
to curtail a pandemic? Third, how should one think 
about “five percent of total wealth” in terms of real- 
world values (e.g., dollars)? Fourth, how do these mag
nitudes compare with other ways of assessing the cost 
of COVID-19? Finally, what are the ramifications of 
these numbers?

On the first question, as discussed extensively in Sec
tion 2.6 (Figure 2), the estimate of 4%–6% of total 
wealth being the welfare cost per year of the pandemic 

is quite robust to varying model parameters around the 
baseline assumptions about preferences, output, or 
disaster frequency and duration. This robustness car
ries over to many extensions of the model, as described 
further below.

Turning to the second question, note that within the 
context of the model, the welfare gain estimate is inti
mately tied to the rate of loss (or lower growth rate) of 
wealth due to the disaster shocks. In our calibrations, 
parameters consistent with the observed stock market 

Figure 4. Stock Market Sensitivity and Welfare Loss Rate 

Notes. The figure shows the welfare cost per unit (expected) time, V=E[T?], as a function of the stock market sensitivity to changes in the expected 
time �∆log P=∆E[T?] as the current state s increases by one. Each point corresponds to a different set of disaster parameters. The ranges of these 
parameters are µ(1) ∈ [�0:01, 0:03],σ(1) ∈ [0:05, 0:10],χ ∈ [0:01, 0:05],ζ ∈ [1, 2]. The remaining parameters are those given in Table 1.

Table 6. Welfare Gain as a Function of Reduction in Expected Duration

T2: expected duration after intervention (years)

3.50 3.00 2.50 2.00 1.50 1.00 0.50 0

T1: initial expected duration
4.00 2.60 5.15 7.65 10.09 12.48 14.82 17.11 19.35
3.50 — 2.62 5.18 7.69 10.14 12.54 14.89 17.19
3.00 — — 2.63 5.21 7.73 10.19 12.61 14.97
2.50 — — — 2.64 5.23 7.77 10.24 12.67
2.00 — — — — 2.66 5.26 7.81 10.29
1.50 — — — — — 2.67 5.29 7.84
1.00 — — — — — — 2.69 5.31
0.50 — — — — — — — 2.70

Notes. The table shows the percentage of wealth that the representative would be willing to trade for an 
intervention that shortens the pandemic from an initial expected duration of T1 years to another state with 
T2 < T1 years remaining in expectation. The pandemic parameters are µ(1) � 0:015,σ(1) � 0:075,χ � 0:035, 
and ζ � 1. The remaining parameters are shown in Table 1.
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sensitivity all imply that the expected growth of wealth 
is 4%–6% less per year while the crisis is unchecked. 
Hence, sacrificing five percent of wealth per year of 
expected duration to avoid this outcome makes sense 
economically.

As another check, one could compare our estimate 
to the total drop in stock market wealth—around 
36%—at the onset of the pandemic. This is not the 
same quantity that we are estimating. However, the 
two numbers are not unrelated. Any estimate of the ex 
ante cost of COVID-19 substantially less than 36% of 
stock market wealth would be difficult to reconcile 
with this observation. Conversely, as discussed in Sec
tion 4.1, modest good news about clinical trials at vac
cine developers Moderna (May 18 and July 14, 2020) 
and Pfizer and BioNTech (November 9, 2020) led to 
sharp, well-identified market reactions in the range of 
1%–3% each.23 Again, an estimate of the cost of the 
pandemic lower than that implied by this stock mar
ket sensitivity to arrival of vaccine news would thus 
be incompatible with data.

Our estimate is also similar to magnitudes reported 
in the literature that computes the welfare gain of elimi
nating other types of disasters.24 Barro (2009) reports 
that, in a model with rare disasters, moderate risk aver
sion, and an EIS greater than one, society would be 
willing to pay up to 20% of permanent income to elimi
nate disaster risk. Pindyck and Wang (2013) estimate 
the willingness to pay to reduce the impact of a disaster 
to 15% of capital stock at 7% of permanent income.

Regarding the third question, as a baseline value, 
total U.S. household wealth at the end of 2019 was 
approximately $96 trillion, so that five percent repre
sents about $5 trillion. Global estimates typically find 
household wealth three to four times that of the United 
States (Shorrocks et al. 2019), implying a global ex ante 
cost of the pandemic at $15–$20 trillion.

Dollar values in this range are plausible, and are not 
out of line with other estimates of the cost of the pan
demic. There is now a substantial literature estimating 
the cost of COVID-19 based on forgone health and eco
nomic activity. As discussed in the introduction, a com
mon approach in health economics is to assign values to 
lives and productivity lost because of the virus. Writing 
in mid-2020, Cutler and Summers (2020) forecast health 
losses (including both morbidity and mental health) 
caused by the pandemic and estimate the total economic 
cost of COVID-19 to be $16 trillion under the assumption 
that “it will be substantially contained by the fall of 
2021.” Implicitly, then, this is an estimate of a rate of loss 
for one year. Other such estimates, offered as context for 
the need to invest in pandemic preparedness, are in sim
ilar ballpark range: Craven et al. (2021) estimate eco
nomic disruption caused by pandemic wave recurrence 
relative to speedy recovery to be $5 trillion for the Unites 
States, Summers et al. (2021) estimate it to be $36 trillion 

globally and about $6 trillion for the United States by 
implication, Lander and Sullivan (2021) assess the cost 
to be $16 trillion for a severe pandemic and $10 trillion 
for a milder one, and Gates (2022) takes as starting point 
the economic loss from the COVID-19 pandemic to be 
$14 trillion. Similarly, and focusing just on gross domes
tic product (GDP), the Congressional Budget Office 
(2020) estimated over $7 trillion in lost output through 
2030. The IMF’s World Economic Outlook (IMF 2021) 
estimated the collapse could have been three times as 
large had policymakers not enacted significant interven
tion (including $16 trillion in fiscal support). They fur
ther estimate the cumulative loss in output relative to 
the counterfactual without COVID-19 to be $28 trillion 
over 2020–2025. The proximity or similarity of this range 
of estimates to our own—despite the very different 
inputs and assumptions—lends credence to each.

Finally, there are clear policy implications to our 
findings. As noted in the introduction, pandemic pre
paredness strategists have explicitly targeted reducing 
the time to global deployment of a vaccine for the next 
pandemic to under six months. Achieving this target 
involves putting in place global surveillance systems 
for early detection of future outbreaks; maintaining 
“hot” manufacturing, supply chains, and distribution 
networks; and prearranging infrastructure for clinical 
trials. Cost estimates associated with these steps are 
typically tens of billions of dollars annually. If six 
months to worldwide deployment represents a reduc
tion of 12 months from a no-investment baseline 
(approximately the COVID-19 experience), our work 
implies a value creation that is many times larger than 
any plausible capitalized value of such investment.

5.1. Extensions
We extend the model in several directions in the Online 
Appendix in order to illustrate further the robustness 
of our conclusions.

A first extension endogenizes the real option to invest 
in vaccine research so that the speed of progress is an 
equilibrium outcome. Although we do not attempt to 
estimate a production function for pharmaceutical re
search and development (R&D), it is clear a priori that 
the more powerful the available technology the smaller 
the welfare cost of a pandemic. Nonetheless, we show 
that, given the observed market response to vaccine pro
gress, and the observed expected duration of the pan
demic, our welfare calculation would not be significantly 
altered under this version of the model.

The reduced-form model includes no mechanism by 
which agents themselves affect the severity of the disas
ter. So, a second generalization endogenizes the choice 
of labor supply, which determines both the degree of 
productivity and the exposure to health shocks. Agents 
optimally withdraw labor in the pandemic states, and 
the magnitude of the withdrawal then determines the 
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equilibrium severity of the shocks to wealth. This 
mechanism also limits the range of possible disaster 
characteristics, sharpening our identification of wel
fare effects.

Third, we consider implications for households that 
do not participate in the stock market. Under the 
assumption that nonparticipants and participants face 
the same exposure to the pandemic, we can compute 
their willingness to pay to end the pandemic based on 
their likely utility functions. We show that this willing
ness is quite similar in populations with lower elasticity 
of intertemporal substitution and higher impatience.

Last, the Online Appendix examines the extent to 
which the model can offer a plausible depiction of the 
path of the stock market and consumption that was 
actually experienced during 2020. Fully accounting for 
the behavior of the financial markets and the real econ
omy during 2020 is beyond the scope of the paper. Nev
ertheless, we argue that a consistent interpretation of 
the actual experience of 2020 is possible, and discuss 
the extent to which our conclusions may be affected by 
the model’s limitations.

6. Conclusion
This paper provides an estimate of the value of reduc
ing the expected duration of the COVID-19 pandemic 
using the joint behavior of stock prices and a novel 
vaccine progress indicator based on the chronology of 
stage-by-stage advance of individual vaccine candi
dates and related news during 2020. In the context of 
a general equilibrium regime-switching model of re
peated pandemics, the sensitivity of the stock market 
to the vaccine progress indicator is essentially deter
mined by the expected rate of loss (or lower growth 
rate) of wealth during a pandemic. Our empirical esti
mate can thus be translated into an implied welfare 
gain attributable to reverting to the nonpandemic 
state. With standard preference parameters, this gain 
was approximately 5%–15% of wealth, depending on 
the expected remaining duration of the pandemic. 
This number can also be interpreted as a measure of 
the expected cost of the pandemic.
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Endnotes
1 A related question concerns the welfare benefit of resolving disaster 
risk, that is, the uncertainty about them—without altering the occur
rence of disasters themselves. See Epstein et al. (2014) for a critique of 
models in which this benefit is large.
2 As Federal Reserve Chairperson Jay Powell remarked to CBS News 
in May 2020, “For the economy to fully recover, people will have to 
be fully confident. And that may have to await the arrival of a 
vaccine.”
3 Note that our maintained hypothesis that investors believed that 
vaccine deployment would effectively end the pandemic biases 
downward our estimate of the value of ending the pandemic because 
a more skeptical market would react less strongly to vaccine news. 
So, holding the observed response fixed, the less success a vaccine is 
expected to have, the greater must be the value of complete success.
4 An analogy from credit risk literature is that of a first-to-default bas
ket in which several correlated firms are part of a basket and the 
quantity of interest is the expected time to a first default.
5 We assess the hypothesis that the market overreacts to vaccine 
news and that wealth gains subsequently reverse. At short horizons, 
at least, the evidence suggests the opposite.
6 In an appendix available upon request, we illustrate that our model 
is subject to this critique. However, unlike the settings Epstein et al. 
(2014) consider, in our model consumption is determined endoge
nously. Thus, the “instrumental” value of information is large: agents 
can and do alter their consumption when risk disappears. Moreover, 
as in the early stages of the COVID pandemic, in our setting very little 
uncertainty is resolved in the near term. Hence, the representative 
agent would not be willing to pay significantly more to resolve all 
risks today than she would to resolve them in, for example, a year.
7 In a business cycle context, Andrei et al. (2019) model an economy 
in which the mean-reversion speed of current consumption shocks is 
time-varying. In Gillman et al. (2014) and Ghaderi et al. (2022) 
regimes of differing growth differ in their expected duration. Thus, in 
these models, agents similarly face persistence risk.
8 Note that this is not the same as a claim to aggregate consumption. 
As is well known (see Ai 2010), in an economy where the capital stock 
can be costlessly converted to consumption goods, the consumption 
claim’s price is equal to the capital stock, q. Distinguishing dividends 
from consumption is standard in the literature, and standard devices 
to help capture stock market dynamics include making dividends 
more procyclical (or “levered”) relative to consumption. Likewise, 
we need equity to be more exposed to disaster losses, which the out
put claim is. In the Online Appendix, we describe a decentralization 
of the economy in which this cash flow is the net payout of the corpo
rate sector to households.
9 The output claim behaves similarly to a levered claim to consump
tion in the sense that, upon a shock dq to the stock of wealth, the 
return to the consumption claim (which has price q) is [dq+ cq dt]
=q � (dq=q) + c dt, whereas the return to our claim is [d(pq) + (dq+
cqdt)]=(pq) � p+1

p (dq=q) + (c=p)dt: For typical parameterizations where 
p ≈ 1 in nondisaster times, the effective leverage is p+1

p ≈ 2:
10 Hereafter, we denote λu=S as λ without a subscript. We also set the 
intensity of regress to be λd � 0.
11 To be specific, in Longstaff and Piazzesi (2004), disasters are i.i.d., 
so we have set the disaster duration to one year. In Ai (2010), there 
are no disasters, so we have used the baseline assumptions. In Gourio 
(2012) and Nakamura et al. (2013), we have set the nondisaster output 
growth and volatility to be as close as possible to their consumption 
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(or total-factor productivity (TFP)) process while obeying the param
eter restrictions in the proposition. In Marfè and Pénasse (2024), the 
output parameters are those of the dividend process.
12 Another dimension of robustness concerns the sensitivity of the 
bounds to the “clock” parameters s and S. There are two potential 
concerns. First, the proposition above uses the large-S limit of the 
model for tractability. This could potentially affect the tightness of 
the bounds. Second, the bounds could depend on when during the 
disaster (measured by s=S) the stock market response to duration 
news is measured. Numerical analysis in the Online Appendix shows 
that the results are very robust to the first concern. The bounds 
change negligibly as S is varied. The analysis also establishes that 
measuring the market response earlier (e.g., s � 1) is conservative in 
the sense that the implied welfare gains for a given market response 
increase with s.
13 This is a simplification. Candidate vaccines will actually undergo 
multiple overlapping trial sequences with different patient popula
tions, delivery modalities, or medical objectives (endpoints). One 
sequence could fail while others succeed. Trials can also combine 
phases I and II or II and III. In our empirical implementation we focus 
on the most advanced trial of a candidate. This follows Wong et al. 
(2018).
14 For example, if an RNA-based platform proves to be safe and effec
tive, then all candidates in this family would have a higher likelihood 
of success. In October 2020, two candidate vaccines had their trials 
paused because of adverse reactions: both were based on adenovirus 
platforms.
15 Our baseline success probabilities employ estimates in Pronker 
et al. (2013) augmented by our own sample of historical outcomes of 
infectious disease vaccine trials from pharmaceutical research firm 
BioMedTracker. Our baseline duration estimates are based on projec
tions from the pharmaceutical and financial press during 2020 as 
detailed in the Online Appendix.
16 The simulation procedure is presented graphically in a flowchart 
in the Online Appendix.
17 We do not employ these in our empirical work because the forecas
ters may condition their views on contemporaneous stock market 
reactions, whereas our measure does not employ any financial mar
ket information.
18 As of the time of writing, the website of Baker et al. (2020b) had 
classified days through June 2020. We append September 3 and Sep
tember 23 as two dates with negative jumps that were attributable to 
non-vaccine-related news.
19 Note that the VPI is, by construction, a conditional expectation, 
whose ex ante expected change is therefore zero. Slightly more accu
rately, if T∗ is the forecast deployment time, the date-t VPI may be 
expressed as Et[T� t], whose expected change over a day is minus 
one day or approximately �0.004 years.
20 Returns are computed from after-hours S&P 500 futures changes 
in a 60-minute postannouncement window.
21 Our clinical trial data end in October 2020. As of the end of that 
month, the level of VPI was 0.55.
22 The theoretically wider bounds shown in Figure 2 include models of 
essentially pure volatility shocks, with high σ(1) and disaster severity 
ζχ ≈ 0. Although these are valid parameter choices, they seem an inac
curate representation of the risks associated with a pandemic.
23 These broad rallies also received much attention in the media. See, 
for instance, Matt Levine, Money Stuff, May 19, 2020 (https://www. 
bloomberg.com/news/newsletters/2020-05-19/money-stuff-it-s-a- 
good-time-to-raise-vaccine-money), and July 16, 2020 (https:// 
www.bloomberg.com/opinion/articles/2020-07-16/a-vaccine- 
could-cure-airlines); John Authers, Bloomberg Opinion, November 10, 
2020 (https://www.bloomberg.com/opinion/articles/2020-11-10/ 

stocks-rotation-on-vaccine-may-cause-fallout-for-quant-funds); and 
Laurence Fletcher and Robin Wigglesworth, Financial Times, Novem
ber 14, 2020 (https://www.ft.com/content/886c52dd-b822-4152-886e- 
8dbd72da44a7).
24 Values are commonly reported as percentage reductions of per
manent income. Such numbers are directly comparable to our per
centages of (permanent) reductions in q because consumption is 
proportional to q.
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