
Capacity realization in stochastic batch-processing networks

using discrete-review policies

Constantinos Maglaras Sunil Kumar

Information Systems Laboratory Graduate School of Business

Stanford University Stanford University

Stanford, CA 94305-9510 Stanford, CA 94305

Email: maglaras@isl.stanford.edu Email: skumar@leland.stanford.edu

November 1997

Capacity realization in stochastic batch-processing networks
using discrete-review policies 1

Abstract

We present diÆculties with realizing the capacity of queueing networks with batch servers

under well known scheduling disciplines. We introduce a family of scheduling policies called

discrete-review policies, which not only guarantee capacity realization for queueing networks

with batch servers, but also contain among them policies that allow us to realize desired behavior

on \uid" scale, including asymptotically optimal policies. In this family of policies system

status is reviewed at discrete points in time, and at each such point the controller formulates a

processing plan for the next review period, based on the queue length vector observed, which is

then executed in open-loop fashion. We outline a proof of capacity realization for every policy

in this family, and provide results of simulation studies that establish the usefulness of the

proposed family of policies.

1Key words and phrases: Scheduling, batch processing, re-entrant lines, discrete-review policies, uid models.

Running title: Discrete-review policies for batch networks

1 Introduction

In any manufacturing system, one would like the throughput capacity of the entire system to be no

smaller than the throughput capacity of each of the individual servers in the system. Throughput

capacity of a manufacturing system depends primarily on the capacity of the individual servers in

the system, but it also depends on the operating procedures employed, among other things. We

say that capacity realization has been achieved by a manufacturing system operating under a given

set of operating procedures, if it can sustain throughput rates arbitrarily close to the throughput

capacity of its bottleneck servers. Of course, it may not be desirable to push throughput rates

close to the capacity of the system because of the resulting congestion, but one would like to retain

the ability to do so. Alternately, a system that does not realize capacity is unnecessarily wasteful

since its performance degrades at much lower throughput rates than a system that does realize

capacity. Thus, capacity realization is not about maximizing throughput, but about maximizing

the potential to sustain throughput. Capacity realization would be a necessary condition for the

adoption of a set of operating procedures.

In this paper, we investigate the problem of capacity realization for manufacturing systems with

batch processing servers. These are servers capable of handling more than one job simultaneously,

which are common in some manufacturing systems such as semiconductor wafer fabs (well-drive

furnaces for example). In general, the throughput rate is a vector, whose components are the

throughput rates of each of the job or product types being manufactured in the system. In this

paper, we will assume the product mix, that is, the relative proportions of the product types being

manufactured is exogenous to the problem under consideration and is �xed beforehand. We will

establish our results for all such �xed product mixes satisfying some very mild assumptions.

We consider manufacturing systems operating under two di�erent job release policies or admis-

sion control policies: (a) the Open loop release policy which admits new jobs into the system at

random, independent and identically distributed intervals of time, and (b) the CONWIP or Closed

loop release policy [30] which maintains the WIP in the system constant and admits a new job

into the system only when a job exits the system, having completed all processing. In the case

of the open loop policy, the product mix can be maintained by choosing the distributions of the

inter-arrival times suitably, and in the case of CONWIP, the product mix can be maintained by

determining the type of the job admitted upon the exit of a previous job by sampling from a distri-

bution. We will analyze such manufacturing systems by building an associated queueing network

model under the given operating procedure. We then verify that the queueing network model is

capable of sustaining the desired level of throughput in order to establish capacity realization in

the original manufacturing system.

In the queueing network model of the manufacturing system under the open loop release policy

(called an open queueing network), for each scheduling policy u, we can determine a feasible set

�u, such that the network is stable, or equivalently, it does not have arbitrarily large average

queue lengths, when sustaining any throughput � 2 �u. In the queueing network model of the

manufacturing system under the CONWIP release policy (called a closed queueing network), we

can determine a critical throughput rate �� that is the maximum throughput rate that can be

1

achieved asymptotically as we allow the �xed WIP level in the model to increase without bound,

for a �xed product mix. We can thus determine a set �u of all values of �� for all possible choices

of the product mix, under the scheduling policy u.

In both cases, we say that capacity realization has been achieved in the original manufacturing

system under the given scheduling policy u, if the set �u in the queueing network model is the largest

possible under any scheduling policy. That is, �w � �u for any scheduling policy w. For a �xed

product mix, the set of achievable throughput rates is determined by the throughput capacity of the

bottleneck server in the system. Hence, an interpretation of our de�nition of capacity realization

under a given policy is that the maximum throughput rate achieved by the scheduling policy for a

�xed product mix equals the throughput capacity of the bottleneck server under the same mix.

In manufacturing systems without batch processing capability, calculating the throughput ca-

pacity of a server is straight forward. One �rst calculates the total activity time that the server

spends in the transformation of each job; this includes subsequent visits to the same server and

has the interpretation of the \unit workload". The reciprocal of this number gives the throughput

capacity of this server, or in other words the maximal throughput that can be sustained in ideal

circumstances. This calculation is then easily extended to the case of multiple job types in a �xed

product mix. In manufacturing systems with batch processing servers the throughput capacity of

each individual server is calculated by assuming that the server always processes full batches, that

is, simultaneously processes as many jobs as possible. Thus, in calculating throughput capacity of

systems with batch servers, we equate the batch server to a fast server capable of processing one

job at a time.

The issue we will address is whether this throughput capacity can be achieved. The motivation is

twofold: �rst, this will describe the \physical" limits of achievable throughput rates of such systems;

second, in modeling a manufacturing system with batch servers, one would like to know when it

is justi�ed to replace the batch servers by faster single lot servers, or equivalently, when will a set

of operating procedures result in eÆcient utilization of the batch servers of the system. Of course,

the primary aim of the system manager is more than eÆcient utilization of the batch resources.

Yet, as we have discussed earlier, one could argue that capacity realization is a prerequisite of any

\good" policy.

Recent developments in queueing network analysis have demonstrated that capacity realization

even in networks without batch servers, is not trivial. This is particularly true of queueing networks

with feedback routing such as reentrant lines, which arise in queueing network models of semicon-

ductor fabs. There have been many recent examples of both open networks which are unstable at

throughput rates much smaller than the bottleneck capacity [4, 21, 28], as well as closed networks

that do not achieve bottleneck throughput as the WIP grows without bound [14, 19]. However,

there have been some positive results which have demonstrated that at least some policies can be

guaranteed to realize capacity, at least in the case of reentrant lines [6, 8, 18, 19].

It is not at all clear how capacity realization can be achieved in queueing networks with batch

servers, which arise as natural models of manufacturing systems with batch processing servers. In

fact, as we will demonstrate in the next section, if we apply scheduling policies that are known

to realize capacity in queueing network models without batch servers, one need not realize the

2

capacity of the corresponding queueing network with batch servers. Together with the examples

mentioned above, these observations illustrate the fact the realizable capacity in a manufacturing

system is a complex issue that depends on virtually every aspect of the system, including the

scheduling policy used and the presence of batch servers. The diÆculty faced in scheduling policy

design for queueing networks with batch servers is in the trade-o� between running full batches

and incurring excessive delays (and consequently WIP) while waiting for full batches to build up.

Ideally we would like the batch servers to always run full batches and yet the network not to

incur substantial delays beyond those in an equivalent network composed only of single servers.

It is not immediate whether a general procedure to achieve this goal exists. Finally, one of the

main approaches to verifying capacity realization for queueing networks involves analyzing their

associated \uid limits" [3, 5, 6, 7, 17, 19]. As it will become apparent in the next section, it is not

clear how one can describe uid limits of networks with batch servers, and thus direct application

of this method is diÆcult.

There is a considerable literature on queueing networks with batch servers. Most of it is either

concentrated on performance analysis of single station networks [27, 24], or of product form networks

[29, 26] which form a very small class of queueing network models, or on designing batching control

policies using simple models [10, 11]. In a di�erent spirit from the work mentioned above, signi�cant

contributions have been made in addressing the complexity of scheduling problems with batch

servers in a combinatorial optimization framework. The reader is referred to [1] and some of the

references therein for some recent results. In all these cases, capacity realization is either obvious

or implicitly assumed. In fact, none of the existing literature would lead the reader to suspect the

kind of behavior illustrated in the next section.

The main contributions of this paper are the following. First, we will use a simple example in

order to illustrate that capacity realization for systems with batch servers can be diÆcult. The

example we use is one where capacity realization is guaranteed under any non-idling scheduling

rule in the absence of batching [8]. Thus, it is the presence of batch servers that causes this

subtle and undesirable system behavior. Moreover, the analysis of this example and a series of

similar counterexamples provided in [20], establish that in general, simple heuristic rules will fail

to realize capacity of batch processing systems. This motivates the problem of �nding a policy

that will guarantee capacity realization for this class of systems. Our second contribution, is to

describe a family of scheduling policies, called discrete-review policies, that always achieves capacity

realization in queueing networks with batch servers under very general assumptions. These policies

were �rst introduced in Harrison's BIGSTEP approach to dynamic ow management [13] and later,

they were formally described and analyzed for a general class of networks by one of the authors

in [22, 23]. In a discrete-review policy, system status is reviewed at discrete instants in time and

processing decisions are made over a planning horizon whose length depends on the amount of work

present in the system upon review. Safety stock requirements are enforced for each class of jobs in

order to ensure the proper execution of these processing plans and to avoid unplanned idleness.

Although understanding and solving the problem of capacity realization is fundamental to the

design of scheduling policies and must logically precede any other design consideration, this is not

an end in itself. Scheduling polices also have to perform well with respect to other (and sometimes

3

conicting) metrics like mean throughput time. The family of discrete-review policies allows us to

pick policies that not only guarantee capacity realization but also perform well with respect to the

other performance metrics. For example, a static priority rule may be desirable from a throughput

time standpoint, and yet capacity realization cannot be guaranteed under this priority policy. Using

the discrete-review framework, one can construct a policy that is guaranteed to realize capacity,

and yet whose gross behavior mimics the static priority policy (by keeping the majority of the

WIP in the classes that correspond to the lower priority classes in the static policy, for example).

It is also possible to �nd a discrete-review policy that is \optimal" in an asymptotic uid sense.

Thus, the discrete-review framework goes beyond mere capacity realization. Also, discrete-review

policies involve periodic, but relatively infrequent, review and planning. This �ts naturally into a

practical scheduling system where status is reviewed at the beginning of a shift, and a processing

plan is determined for the shift. The operators then implement the plan without supervision,

and at the end of the shift, the new status of the manufacturing system is determined and the

process repeated. Thus the discrete-review framework is more than a mere theoretical convenience.

Finally, the uid limits are easy to describe under discrete-review policies. This allows us to use

the powerful theoretical machinery developed for uid limits to obtain performance guarantees.

The speci�c contributions in this paper relative to the previous results of [22, 23] are the

following. First, the class of networks under investigation and the corresponding description of the

family of discrete-review policies are extended to allow for servers with batch processing capability.

All previous results regarding open network models established in [22, 23] are generalized for the case

of batch processing systems. Second, closed network models are considered for which it is proved

that under fairly general assumptions, every discrete-review policy in this family is guaranteed to

realize capacity. The analysis of eÆciency of closed networks using uid models follows on the

previous work in [19] and is new for the class of networks and policies considered here. Moreover,

from the nature of our results and the associated mode of analysis, it is should be apparent that

the proposed framework can be extended to more general network models with relatively simple

reasoning, while leaving the overall structure of the proposed solutions unaltered. Such extensions

include setup delays (or costs), routing decisions and admission control (job release policies), and

more complicated processing paradigms where, for example, multiple resources need to be engaged

for one activity. An important implication of this observation from a practical perspective is

that more accurate network models of real manufacturing systems can be addressed within this

framework.

The rest of the paper is structured as follows. Section 2 describes a simple two-station example,

which should help motivate the general problem being addressed. Section 3 describes the open and

closed multiclass queueing network models and formally de�nes capacity realization. In Section

4, a family of discrete-review policies is described both for open network models and in Section

5 an outline of the proof of stability under a a discrete-review policy in this family is presented.

Section 6 extends these results to the case of closed queueing networks and Section 7 contains some

remarks regarding di�erent choices of such discrete-review policies in relation to other performance

criteria of interest. Section 8 contains a simulation study for the example described in Section 2

and �nally, some concluding remarks are included in Section 9.

4

m1 = 8 m2 = 2

m3 = 8

Batch server: batch capacity = 10 lots

Single lot server

Figure 1: Example of Batch Processing Network

2 Motivating Example

In this section we will present an example of a reentrant line with a batch server. This is a queueing

network model which arises as a natural model of process subsequences within semiconductor wafer

fabs. This example will serve to highlight the diÆculties with capacity realization in manufacturing

systems with batch servers.

Consider the reentrant line shown in Figure 1. It consists of two servers, of which server 1 is

a batch server with maximum batch size 10, i.e., it is capable of processing up to 10 customers

simultaneously. Server 2 has maximum batch size 1. There are three customer classes. Classes 1

and 3 are served by server 1, and class 2 by server 2. New arrivals begin service as class 1 jobs and

on completion of service, successively become class 2 and 3 jobs before exiting. The (deterministic)

time to serve jobs in classes 1, 2, and 3 is 8, 2, and 8 respectively.

The network is operated under a closed loop or CONWIP admission control scheme. That is, a

new job is introduced into class 1 whenever a job departs from class 3. This maintains the number

of jobs in the network constant, and this �xed population is set at N > 30. The scheduling policy

used is the Last Bu�er First Serve (LBFS) static priority rule which gives priority to class 3 jobs

over class 1 jobs at server 1; that is, higher priority is given to jobs that are closer to completing

service in the system and thus exiting. Jobs within a class are served in FIFO. This priority policy

is implemented in a non-preemptive manner and both servers 1 and 2 operate in a non-idling

fashion. That is, whenever a server has any work to process, it begins processing and does not idle

in anticipation of further work buildup. (These policies are also referred to as work conserving.)

Also, there is no minimum batch size requirement. That is, server 1 begins working on a batch as

soon as there are any jobs in the batch, and does not wait until a minimum number of jobs are

available before processing; that is, the server admits min(Qk(t); 10) jobs, where for k = 1; 3. The

system begins operation with all N jobs in class 1.

In order to describe the future dynamics of the system, we will keep track of the number of jobs

in each class in the system, the remaining service time of the batch at the head of the line in each

of the classes, and the number of jobs in the batch at the head of the line in both class 1 (batch

1) and class 3 (batch 3) at server 1. The (deterministic) evolution of the state, starting from the

initial state of N jobs in class 1, is described in Table 1. Table 1 also keeps track of the cumulative

5

Time State(Queue; Remaining Service; Batch1, Batch2) Cum. departures

0 (N; 0; 0; 8; 0; 0; 10; 0) 0

8 (N � 10; 10; 0; 8; 2; 0; 10; 0) 0

16 (N � 20; 16; 4; 8; 2; 8; 10; 4) 0

24 (N � 16; 12; 4; 8; 2; 8; 10; 4) 4

32 (N � 12; 8; 4; 8; 2; 8; 10; 4) 8

40 (N � 8; 4; 4; 8; 2; 8; 10; 4) 12

48 (N � 4; 0; 4; 8; 0; 8; 10; 4) 16

56 (N; 0; 0; 8; 0; 0; 10; 0) 20

Table 1: State Trajectory under LBFS

number of departures from class 3 up to the time indicated.

Table 1 shows that the state trajectory is periodic with period equal to 56. In these 56 time

units, the number of departures from class 3 is 20. Thus, the long run average throughput of this

system is 5=14 = 0:357 jobs per unit time. This is smaller than the throughput rate predicted

assuming that server 1 always runs full batches of size 10, which is 0:5 jobs per unit time. This

result does not depend in the amount of WIP in the system, since one could choose N to be

arbitrarily large while the evolution of system dynamics will still be described exactly as in Table

1. Also, it is interesting to note that when we assume that server 1 runs full batches, the bottleneck

server is server 2, whereas in the trajectory described in Table 1, the bottleneck server is server

1. That is, despite the fact that the batch server has ample capacity in order to theoretically

sustain the bottleneck system throughput, determined by server 2 to be 0:5 jobs per unit time,

the simple scheduling rule employed insuÆciently utilizes server 1 (by running small batches) so

that it becomes the bottleneck resource. An interesting direction of work would be to examine the

sensitivity of the overall system throughput on deviations from full batch loading for server 1. The

simplest case to be considered would be the extreme one where server 1 is the bottleneck resource

to start with, for example in the case where m1 = m3 = 10, every deviation from operating in full

batches would result to a loss in throughput. In general, system throughput sensitivity to batch

loading characteristics will depend on the amount of excess capacity for server 1 and the speci�cs of

the implemented policy the system. This is an interesting topic on its own and will not be pursued

here any further. Finally, one may be tempted to believe that the behavior described in Table

1 is a consequence of choosing the service times to be deterministic. This is not true: the same

conclusion is obtained when the service times are i.i.d. random variables with the same means.

Section 7 explores this further.

This example illustrates the following issues.

1. Capacity realization in networks with batch servers is non-trivial, and policies which realize

capacity in networks without batch servers may not do so in networks with batch servers.

In particular, LBFS is guaranteed to realize capacity in the reentrant line of Figure 1 if we

replace server 1 by a server which processes one customer at a time but 10 times faster. Thus,

6

it may be grossly incorrect to approximate the behavior of networks with batch servers using

single, faster server models.

2. Naive policies which do not incorporate minimum batch requirements may not be the de-

sirable class of policies in networks with batch servers. One possible solution is to enforce

minimum batch size requirements as in [11]. A minimum batch requirement of 10 at server 1,

i.e., not allowing server 1 to process a batch unless it has 10 jobs in it achieves a throughput

of 0:5 in this example. But, in general, the choice of the minimum batch size is non-trivial,

since the throughput of the system is not monotone in the choice of minimum batch size and

sometimes no minimum batch size rule will realize capacity [20]. Also, manufacturing pro-

cess considerations may determine the minimum batch size rather than operational policies,

further complicating the issue.

3. To the reader familiar with uid models associated with queueing networks, it will be clear

that it is very hard to describe the uid model corresponding to this example in particular,

or networks with batch servers in general; this will be discussed further in section 5.

In a subsequent section of this paper we will describe a family of discrete-review policies for

networks with batch processing resources. Each policy from this family will guarantee capacity

realization and furthermore, it will enforce each server to process jobs in full batches. But �rst, we

formally de�ne the queueing network models we will work with in this paper.

3 Multiclass queueing network models

The results presented in this paper apply both to open and closed queueing network models. For

concreteness, we �rst provide a detailed description of the former, based on the setup introduced

by Harrison in [12]. We will then provide a description of how the model may be adapted for the

closed network case.

3.1 Open Network Model

Consider a queueing network of single server stations indexed by i = 1; : : : ; S. (Throughout this

paper the terms station and server will be used interchangeably.) Each station is allowed to process

jobs in batches and the maximum batch size at station i will be denoted by ci. The network is

populated by job classes indexed by k = 1; : : : ;K and in�nite capacity bu�ers are associated with

each class of jobs. Class k jobs are processed in batches by a unique station s(k) and each station can

only process one job class at any point in time. The service times for class k batches are f�k(n); n �
1g, and for concreteness service is assumed to be non-preemptive. Let �k = 1=E[�k(1)] = 1=mk be

the service rate for class k jobs, expressed in batches per unit time, and M = diagfm1; : : : ;mKg.
Upon completion of service at station s(k), a job in a class k batch becomes a job of class m with

probability Pkm and exits the network with probability 1 �Pm Pkm, independent of all previous

history. Assume that the general routing matrix P = [Pkm] is transient (that is, I+P +P 2+ : : : is

convergent). Every job class k can have its own exogenous arrival process with interarrival times

7

f�k(n); n � 1g. The set of classes that have a non-null exogenous arrival process will be denoted by

E and the the notation E(t) will be used to signify the K-dimensional vector of exogenous arrivals

in the time interval [0; t]. For future reference, let �k = 1=E[�k(1)] be the arrival rate for class

k jobs and � = (�1; : : : ; �K)
T , and let M = diagfm1; : : : ;mKg. The set fk : s(k) = ig will be

denoted Ci and is called the constituency of the server i, while the S �K constituency matrix C

will be the following incidence matrix:

Cik =

(
1 if s(k) = i

0 otherwise.

Throughout this paper we make the following assumptions on the distributional characteristics of

the arrival and service time processes:

(A1) �1; : : : ; �K and �1; : : : ; �K are mutually independent IID sequences;

(A2) E[�k(1)] <1 for k = 1; : : : ;K and E[�k(1)] <1 for k 2 E ;

(A3) For any x > 0; k 2 E ; Pf�k(1) � xg > 0. Also, for some positive function p(x) on R+ withR
1

0 p(x)dx > 0, and some integer j0, P
nPj0

i=1 �k(i) 2 dx
o
� p(x)dx.

The technical regularity conditions in (A3) are imposed so that we can make use of the general

stability theory of Dai [6]; these conditions are never invoked in propositions which are actually

proved in this paper.

Finally, denote by Qk(t) the total number of class k jobs in the system at time t, and by Q(t)

the corresponding K-vector of \queue lengths". A generic value of Q(t) will be denoted by q,

and the size of this vector is de�ned as jqj = P
k qk. Let � = diagfcs(1); : : : ; cs(k)g and de�ne

Q̂(t) = ��1Q(t). That is, Q̂k(t) is the number of class k jobs expressed as a number of full class k

batches.

Let R = (I �P T)M�1�. The nominal workload or average resource utilization level vector for

a multiclass network is de�ned by

(A4) � = CR�1� < e,

where the inverse exists since P is assumed to be transient. The inequality in condition (A4)

implies that there is enough processing capacity to deal with incoming traÆc, provided that each

server is processing work in full batches. (The letter e signi�es the vector of ones of appropriate

dimension, and all vector inequalities should be interpreted componentwise.)

A scheduling policy takes the form of a K-dimensional cumulative allocation process T =

fT (t); t � 0; T (0) = 0g, where Tk(t) denotes the time allocated by server s(k) into serving

class k jobs up to time t. Let I(t) be the I-dimensional cumulative idleness process de�ned by

I(t) = et � CT (t), where Ii(t) is the total time that server i has been idled up to time t. The

process I(t) has to be non-decreasing, which reects the implicit capacity constraint of the system.

For purposes of this paper it will not be necessary to de�ne precisely the set of admissible scheduling

policies, because our goal is simply to study system behavior under the policies described in the

next section.

8

3.2 Closed Network Model

In order to describe a closed queueing network, one needs to restrict attention to a multiclass

network where there are no exogenous arrivals but the switching matrix is assumed to be stochastic.

In our notation this translates to the condition that �k = 0 and
P

m Pkm = 1 for each job class k2.

Thus, in a closed queueing network initialized by a K-dimensional queue length vector such that

jQ(0)j = N , these N jobs will circulate inde�nitely among stations in the network, with no arrivals

and no departures. It is assumed that the switching matrix P is irreducible, and thus jobs of any

given class visit all other classes with probability one. The traÆc intensity, or nominal load, at

every station �� can be calculated up to a constant given the switching matrix P and the service

rate vector �. We make the following canonical choice. Let � be the unique invariant probability

measure associated with the routing matrix P . This is determined by the transition matrix P and

equation �P = �. Then de�ne

� = CM�; (3.1)

and

�� := min
�

1

��
: (3.2)

�� above is the maximum sustainable throughput at any WIP level. Scheduling policies are de�ned

for closed networks exactly as in the open case.

3.3 Capacity Realization

We now formally de�ne capacity realization in both models described above. In the case of open

networks, we say that capacity realization is achieved by a speci�ed scheduling policy if the network

is stable, i.e, the underlying Markov chain for the network3 is positive Harris recurrent for every �

satisfying (A4); the reader is referred to Dai [6] for a detailed description. Under some more con-

ditions on the arrival and service processes [7], we can de�ne capacity realization by the equivalent

condition that the expected total WIP EjQ(t)j < 1 in steady state for every � satisfying (A4).

(A4) implicitly de�nes the largest possible set �u described in Section 1. We will never explicitly

work with �u, but will use (A4) instead.

In the case of closed networks, N denotes the constant WIP level in the network (that is

jQ(t)j = N), and let �k(N) be the average departure rate for class k jobs. We say that capacity is

realized under a given policy if the policy is \eÆcient," that is,

lim
N!1

�k(N) = �k�
�: (3.3)

4 Discrete-review policies

Discrete-review policies were �rst introduced by Harrison in his BIGSTEP approach to network

control problems in [13] and later, they were formally described and analyzed in a general framework

2This product mix structure is subsumed in the matrix P since P determines the distribution of the type of a new

arrival upon the exit of an old job.
3We will be deliberately vague about this underlying Markov process and describe it only for our recommended

policy.

9

by one of the authors in [22] and [23]. In this paper, we extend the work of the later to batch-

processing networks.

In such a policy, system status is reviewed at discrete points in time, and at each such point

the controller formulates a processing plan for the next review period, based on the queue length

vector observed. Formulation of the plan requires solution of a linear program whose objective

function involves a dynamic reward function. This function assigns a reward rate to time devoted

in processing the di�erent classes of jobs as a function of the observed queue length vector. In our

formulation this function can be almost arbitrary, though in practice it can be chosen judiciously

in order to \induce" desired system behavior, or enforce the desired priorities among the various

job classes. Implementation of the plan involves enforcement of certain safety stock requirements

in order to avoid unplanned server idleness. The durations of review periods and the magnitudes

of safety stocks are dynamically adjusted: review periods get longer and safety stocks increase as

queues lengthen, but both grow less-than-linearly as functions of queue length. During each review

period the system is only allowed to process jobs that were present in the beginning of that period,

which makes the implementation of the associated processing plans very simple.

In speci�c, a discrete-review policy is de�ned by or is derived from a real valued, strictly positive,

concave function l(�) on R+, a a real valued, strictly positive, continuous function r(�) on RK
+ , plus

a K-dimensional vector � that satisfy the following restrictions.

l(x)

log(x)
> c0;

l(x)

log(x)
!1 as x!1; and (4.1)

l(x)

x
! 0 as x!1; (4.2)

c1 � rk(q) � c2 + jqj for some c1; c2; > 0 and k = 1; : : : ;K; (4.3)

�k > �k for k = 1; : : : ;K: (4.4)

Under any of the policies to be considered, system status will be observed at a sequence of times

0 = t0 < t1 < t2 < : : :; we call tr the r
th review point and the time interval between tr and tr�1

the rth planning period. Given that the queue length vector q = Q(tr) is observed at tr, server

activities over the next planning period are determined by solving a linear program, the data for

which involve l(�), r(�), and �. We �rst discuss this linear program for the open network model of

section 3.1. To be speci�c, having observed q the controller sets ~q = q=jQ(0)j,

l = l(j��1qj); r = r(~q); and � = l��; (4.5)

and then solves the following linear program: choose a K-vector x of time allocations or activity

levels to

maximize rTx (4.6)

subject to q + l��Rx � �; x � 0; Cx � le: (4.7)

(The reader should note that l and r when used without any argument will always correspond

to the length of a speci�c planning period and the corresponding reward vector.) The constraint

10

q + l� � Rx � � implies that the nominal ending inventory will be above a speci�ed threshold

requirement. It is implicit in this formulation that the planning problem involves a deterministic

uid approximation to system dynamics. It is also clear from the de�nition of the matrix R as

R = (I � P T)M�1� that it has been assumed that servers process work in full batches. Assuming

for now that this planning linear program is feasible and given the vector of nominal time allocations

x, a plan expressed in number of batches of jobs of each class to be processed over the ensuing

period (p(k)), and a nominal idleness plan expressed in units of time for each server to remain idle

(ui) over the same period are formed as follows:

p(k) =

�
xk
mk

�
^
�

qk
cs(k)

�
for k = 1; : : : ;K; and ui = l � (Cx)i for i = 1; : : : ; S: (4.8)

To implement this plan, each server i is �rst idled for ui units of time, and then the plan p is

implemented in open-loop fashion until its completion, which signals the start of the (r + 1)th

review period. The construction of the processing plan p using equation (4.8) ensures that it will

be implementable from jobs present at the beginning of this review period. Condition (4.4) ensures

that if the observed state q is above the safety stock requirement �, then there is enough work

at each station in order to process any feasible processing plan in full batches. The actual time

allocated in serving jobs during each review period is equal to the execution time of the processing

plan p (adjusted for any planned idleness). Following this observation, it should be clear that in

general the actual duration of a review period will not be equal to l and thus, a distinction should

be made between the nominal and actual allocation processes.

The objective of the linear program (4.6) is de�ned using the function r(�) that hereafter it will
be referred to as a dynamic reward function. Such a function associates with each (appropriately

normalized) queue length vector ~q a corresponding K-vector r(~q), where the kth component rk(~q)

is treated as a reward rate for time devoted to processing class k jobs. In the planning problem

(4.6)-(4.7) one seeks to determine a vector x of time allocations over the planning period that

maximize total reward subject to the various constraints imposed. The speci�c choice of the

reward rate function will a�ect the overall system behavior; pointers as to di�erent such choices

will be provided in section 7.

When the planning linear program (4.6)-(4.7) is infeasible, a relaxed - or infeasible planning

- logic is employed to steer the state above the desired threshold levels. The �rst step of this

infeasible planning algorithm is summarized in the following linear program: �nd a scalar l̂ and a

K-vector x̂ to

minimize l̂ (4.9)

subject to l̂��Rx̂ > �� + e; x̂ � 0; l̂ � 0; Cx̂ � l̂e: (4.10)

Given the solution of the linear program (4.9)-(4.10), which is always feasible, a processing plan

p̂(k) = bx̂k=mkc and an idleness budget û = l̂e�Cx̂ are formed. Then the nominal processing plan

and idleness budget for the rth planning period is set to be pr = p̂J and ur = ûJ respectively, where

J = dle. This processing plan cannot be implemented from jobs that are all present at the review

point, and as a result a more careful execution methodology should be employed. The speci�cs of

11

this algorithm together with a rigorous analysis can be found in [23]. For the extension to networks

with batch servers it is necessary to build up the levels to �� and the remaining of the logic in

[23] applies without any modi�cation. Note that in simpler network models, such as reentrant lines

introduced by Kumar in [15], this infeasible planning step is much easier to implement. There, the

system is �rst idled to accumulate j�j external arrivals and subsequently, work is pushed through

the network until all job classes are above their safety stock requirement.

Finally, the notation DR(r; l; �) will be used in order to specify a discrete-review policy derived

from the functions r(�), l(�), and the vector �. In the sequel, we will use a subscript to di�erentiate

between di�erent review periods.

One can de�ne an underlying continuous time Markov chain for a multiclass network under any

policy in the proposed family. At any time t de�ne the S-vector b(t), where bi(t) is the number

of jobs in the current batch being served in station i. Assume that tr � t < tr+1 and de�ne the

parameter J(t) to be equal to 1 if the linear program (4.6)-(4.7) is feasible or otherwise set it equal

to the number of remaining executions of the processing plan p̂ derived from (4.9)-(4.10). Let p(t)

be a K-vector, where pk(t) is the number of class k jobs that remain to be processed at time t

according to the processing plan pr or p̂r, depending on whether the planning LP was feasible.

Let u(t) be the S-vector of remaining idling times for each of the servers for the ensuing planning

period. Finally, let Ra(t) be the jEj-vector and Rs(t) be the K-vector associated with the residual

arrival and service time information. The Markovian state descriptor will then be

Y(t) = [Q(t); b(t); J(t); p(t); u(t); Ra(t); Rs(t); jQ(0)j]; (4.11)

and Y will represent the underlying state space. Imitating Dai's argument [6] and using the strong

Markov property for piecewise deterministic processes of Davis [9], it is easy to show that the

process fY(t); t � 0g is a strong Markov process with state space Y. A detailed description of

such constructions can be found in Dai [6].

In the next two sections, we establish capacity realization under DR(r; l; �) in both open and

closed network models.

5 Stability in open queueing networks

The main result regarding discrete-review policies in batch processing networks is that every such

policy is stable for every open multiclass network satisfying (A4). The theme of the proof is quite

simple. By enforcing safety stocks and rigid processing plans, one ensures that the batch servers

always run full batches. But these processing plans might result in unbounded WIP due to either

too much waiting for the safety stocks to accumulate or too little stu� being pushed out in a

review period. The idea is to then show that the average WIP remains bounded using the powerful

technique of uid limits.

Note that we do not distinguish between di�erent reward functions at this point. The capacity

realization results hold for all reward functions satisfying (4.3). The following theorem summarizes

this result for open networks.

12

Theorem 5.1 Let functions l; r and a vector � be as de�ned in section 4, satisfying (4.1)-(4.4).

Then an open multiclass network is stable, as de�ned in Section 3.3, under the discrete-review

policy DR(r; l; �).

The proof of Theorem 5.1 easily follows from the analysis of discrete-review policies presented in

[23, 22]. The primary technique used relies on the uid limit approach pioneered by Dai [6]. There

one examines the behavior of the uid limit model under the scheduling policy under investigation,

which is a deterministic and continuous approximation to the underlying network dynamics. This

model is formally derived by a functional law-of-large-numbers type of scaling along any sequence of

initial conditions fyng � Y such that kynk ! 1 as n!1. \Fluid" scaled processes are obtained

by rescaling space and time by the initial population size as follows:

�fn(t) =
1

kynkf
yn(kynkt): (5.1)

The conditions satis�ed by the limits of these processes determine the associated uid limit model.

Roughly speaking, Dai [6] established that proving stability of the limiting uid model is suÆcient

to establish positive Harris recurrence of the underlying Markov chain. The interested reader is

referred to [6] for further details.

The framework that has been described so far was developed for networks without batch pro-

cessing resources. For our setup, given that the servers can process jobs in batches, one needs to

formally extend this framework to this more general class of networks. It is a straight forward

extension of Dai's treatment in [6, Theorem 4.1], to prove that for any sequence of initial condition

fyng such that kynk ! 1, there exists a converging subsequence along which the uid limits of the

queue length and allocation processes exist. This follows from the fact that the allocation process

is still Lipschitz continuous and that the jump size at every state transition is bounded above by

maxi ci. Despite this result, the actual derivation of the uid model equations in the presence of

batch servers is problematic. The reason is that one needs to keep track of the batch sizes that get

served at every point in time4.

We can show, for the proposed class of discrete-review policies, that the servers process jobs in

full batches with probability one, and thus the batch server can be replaced in uid scale by a faster

station serving one job at a time. Safety stock requirements are imposed so that within each short

planning period each server can be fully occupied processing full batches of jobs. A large deviations

analysis of the proposed discrete-review structure that establishes this claim can be found in [23,

Lemmas 5.1-5.3] for the case of non-batch servers and can be extended to the case considered in

this paper in a straight forward manner. As a parenthetical remark, it should be noted that even

when the network is operating under heavy loading conditions, as for example in the network in

Figure 1 for large values of N , the system is not guaranteed to operate its resources in full batches

under an arbitrary policy.

The uid model is then derived by �rst bounding the di�erence between the nominal and actual

allocation processes and subsequently, obtaining the uid limit of the nominal allocation process.

4In the absence of such information the uid model equations can only be speci�ed in the form of a di�erential

inclusion, which provides a \loose" characterization in most cases.

13

The details of the proof were provided for the non-batch case in [23, Propositions 6.1-6.3] and are

easily extended for our setup. Finally, stability is proved by specifying an appropriate Lyapunov

function for the uid model with the required negative drift. In speci�c, the functions used where

�(q(t)) for the case of a constant reward vector (r(q) � r) and �(q(t)) for the general case of a

dynamic reward rate function

�(q(t)) = rTR�1q(t) and �(q(t)) = �
Z
1

t

e��(��t)rT (q(�))R�1 _q(�)d� ; (5.2)

where � > 0 is a discount factor. Combining all of the results presented in this section and

invoking Dai's stability Theorem, appropriately modi�ed for batch processing networks, the proof

of Theorem 5.1 is completed.

6 EÆciency in closed queueing networks

The treatment of discrete-review policies in closed queueing networks is new, and we note in passing

that the results of this section have not been established even for single lot servers before. The

basic idea of the proof remains the same as in the open network case. By enforcing safety stocks

and rigid processing plans, the discrete-review policies ensure that the batch servers always run full

batches. But this may result in very large throughput times because too few jobs are departing

during a planning period, implying by Little's law that the throughput rate would be small for a

given �xed WIP. The idea then is to establish that this does not happen, i.e., the rate of departures

is suÆciently high using the uid model approach.

First, we describe some necessary changes in the de�nition of the class of discrete-review policies

in closed networks. In closed networks there are no external arrivals, that is � = 0, and therefore

one would need that �rst, j�j � N , where N is the total job population in the network and second,

the following condition should be substituted for (4.7)

q �Rx � �: (6.1)

The remaining of the planning logic is unaltered.

Similarly, in the infeasible planning logic the only modi�cation required is the substitution of

the following constraint in (4.10)

�Rx > �� + e: (6.2)

Note that since P is assumed to be irreducible the infeasible planning linear program remains

feasible under this constraint. The goal in closed networks is to redistribute the various jobs in

the network so that the safety stock requirements are satis�ed without being able to accumulate

external arrivals. The rest of the infeasible planning logic remains unchanged.

Finally, the Markovian state descriptor needs to changed for the case of closed networks, namely

by dropping Ra and noting that Y is restricted to the hyperplane jQ(t)j = N , where N is the �xed

population size.

For closed network models, the equivalent notion of eÆciency (as opposed to stability in the

open network case) needs to be de�ned. Let D(t) be the K-dimensional cumulative departure

14

process and let �D(t) = M�1 �T (t) be the associated cumulative departure process in the uid limit

model. We de�ne eÆciency for the limit uid model as follows.

De�nition 6.1 The uid model associated with a closed multiclass network under a speci�ed

scheduling policy is eÆcient if for every class k, for every solution to the uid model,

lim sup
t!1

Dk(t)

t
� �ka

�: (6.3)

Now we provide a suÆcient condition for eÆciency based on analysis of the associated uid limits.

Obtained by [19, Theorem 3.4.2], this is the analog of Dai's result for closed networks: the original

closed network is eÆcient as de�ned in section 3.4 if the uid model is eÆcient as de�ned above.

The following result is obtained for closed networks.

Theorem 6.1 Let functions l; r and a vector � be as de�ned in section 4, satisfying (4.1)-(4.4).

Then a closed multiclass network operating under the policy DR(r; l; �) is eÆcient as de�ned in

(3.3).

The �rst part of the proof of Theorem 6.1 uses the same kind of analysis as the one described

in the previous section for the case of open network models. The �rst step is to establish that the

uid limit model under the policy DR(r; l; �) is given by the following set of equations:

_q(t) = �Rv(t); q(0) = z; (6.4)

v(t) 2 argmax
v2V(q(t))

r(q(t))T v; (6.5)

where V(q(t)) = fv : v � 0; Cv � e; (Rv)k � 0 for all k such that qk(t) = 0g. The proof of this
result follows again from the analysis in [23, Propositions 6.1-6.3]. The next step in the proof is to

analyze the resulting uid model. This treatment is new, and hence is presented in some detail.

Let f(t) be the instantaneous departure rate process in the uid model, where f is mnemonic

for ow. Then, �D(t) =
R t
0 f(s)ds. Equations (6.4)-(6.5) can be rewritten in terms of f(�) as follows:

_q(t) = �(I � P T)f(t); q(0) = z; (6.6)

f(t) 2 argmax
f2F(q(t))

~r(q(t))T f; (6.7)

where F(q(t)) = ff : f � 0; CMf � e; ((I � P T)f)k � 0 for all k such that qk(t) = 0g and

~r(�) =Mr(�).
Let � be the unique invariant measure associated with the routing matrix P and recall the

de�nition a�. We claim that the departure rate vector f = ��, where �� = a��, is feasible for the

linear program described in (6.7). Note that f � 0, by the de�nition of a� it follows that CMfx � e,

and �nally since � is the invariant measure associated with P it follows that (I�P T)� = 0. Hence,

~r(q(t))T f(t) � a�~r(q(t))T�: (6.8)

As noted earlier, in order to prove eÆciency of the policy under investigation it is suÆcient to prove

that

lim sup
t!1

�D(t)

t
� �� a:s:: (6.9)

15

Note that for all t � 0 we have that
P

k qk(t) = 1 which implies from (6.6) that

�e � P T �D(t)� �D(t) � e: (6.10)

Consider any subsequence of times ftlg such that tl !1 as l!1 where the limit liml!1
�D(tl)=tl

exists. >From (6.10) we have that

lim
l!1

�
P T

�D(tl)

tl
�

�D(tl)

tl

�
= 0: (6.11)

Since � is unique, equation (6.11) implies that liml!1
�D(tl)=tl is of the form a� for some positive

constant a. >From (6.8) it follows that

lim inf
l!1

1

tl

Z tl

0
~r(q(s))T (f(s)� a��)ds � 0;

which using the positivity (non-idleness) condition of r(�) in turn implies that �(a � a�) � 0, or

equivalently that a � a�. Since, this is true for any converging subsequence ftlg, condition (6.9)

follows. To relate property (6.9) to eÆciency for the closed network under the speci�ed policy, we

use Theorem 3.4.2 from [19]. This concludes the proof.

7 Choosing the reward vector and implementation

So far we have illustrated that batch servers can introduce unexpected subtle behavior that can

restrain the system from realizing capacity, or equivalently, from sustaining its theoretical through-

put capacity. Subsequently, a family of policies was described that is guaranteed to realize capacity

both for open and closed network models under fairly general assumptions. Such policies are de�ned

using a reward rate function r(�) that so far has not been speci�ed, with the exception of some mild

conditions required in the derivations of the analytical results presented. Naturally, the next step,

which is left to the discretion of the system manager, is to specify the function r(�) according to

the appropriate performance considerations, as well as other design and operational speci�cations.

For example, for the case of semiconductor wafer fabs, which provided the initial motivation for

this work and have been mentioned earlier, an excellent account of some of the relevant issues can

be found in the review article by Uzsoy et al. [31], as well as the articles by Wein [32] and Kumar

[16].

In the context of discrete-review policies, the choice of r(�) will a�ect the performance of the

discrete-review policy as measured by the expected WIP at a given throughput satisfying (A3)

in the open case, or by the throughput obtained at a �xed �nite population in the closed case.

The following is a list of some pointers as to the choice of the reward rate function that de�nes a

discrete-review policy.

Non-idling: It is desirable that the discrete-review policy behave in a non-idling fashion. That

is, it never idles a server which has enough work to do. Indeed, the condition r(q) > 0 for all q � 0

ensures that the associated uid limits will be non-idling.

Mimicking priorities: From a system manager's point of view it would be useful if one could

mimic the behavior of a speci�ed (or desired) priority rule such as Shortest Remaining Process

16

Time (SRPT). The relative magnitudes of the reward rates assigned to the various job classes at

every review point de�ne a dynamic priority rule (or index rule) according to which we allocate

resource usage. For example, the static reward vector ri � i mimics the Last Bu�er First Serve

priority rule (which is the same as SRPT) in reentrant lines. The reader is referred to [23] for a

detailed discussion of these �rst two points.

Fluid-scale asymptotic optimality: With discrete-review policies, it is possible to implement

policies which are optimal in the following asymptotic sense. Consider a network optimization

problem where we seek to minimize

J�(z) = E�
z

Z T

0
g(Qk(t))dt; (7.1)

where g(�) is a cost rate function, that could be for example a linear holding cost, and E�
z denotes

the expectation operator with respect to the probability measure P�
z de�ned by any admissible

policy � and initial condition z. The corresponding uid optimization problem is de�ned by the

following equation

�Vg(z) = min
v(�)

�Z T

0
g(q(t))dt : q(0) = z and (q; v) 2 uid model

�
: (7.2)

The optimal instantaneous allocation is a state feedback law that can be characterized by a direct

application of dynamic programming principles (see for example Bertsekas [2]) as follows

v(t) = argmin
v2V(q(t))

r �Vg(q(t))
T (��Rv) = argmax

v2V(q(t))
r �Vg(q(t))

TRv; (7.3)

where V(q(t)) = fv : v � 0; Cv � e; (Rv)k � �k for all k such that qk(t) = 0g is the set of

admissible controls when the state is q(t). De�ne the vector valued function rg(q(t)) = RTr �Vg(q(t)).

This is a dynamic index rule or reward function, that de�nes the optimal policy for the uid model.

Using this reward rate function in a discrete-review policy will result in an asymptotically optimal

policy under uid scaling. That is, the associated uid limits will be optimal under the criterion

de�ned in (7.2). Policies designed using this asymptotic criterion may prove to be useful heuristic

policies for a manufacturing. The reader is referred to [25] for motivation and de�nition of the

property of uid-scale asymptotic optimality and to [22] for a detailed discussion in the context of

discrete-review policies.

From an implementation point of view, discrete-review policies have signi�cant appeal. For

example, one can think of the review period length as one shift (8 hours). Then, the system

manager determines an aggregate processing plan for the entire shift by solving just one LP. Given

the safety stock requirements imposed in the system, the execution of this plan is straight forward

and more importantly, the low level details within each planning period are relatively insigni�cant.

Thus, the operators can implement the plan without supervision throughout the shift. At the end

of the shift, the new status of the manufacturing system is reviewed by the system manager and

the process repeated. Finally, the detailed description of these control policies depends on just a

few parameters that can be easily chosen and readjusted by the system manager through time.

17

Policy Throughput

LBFS with no minimum batch size 0.357

LBFS with minimum batch size=10 0.5

Discrete-Review 0.5

Table 2: Comparison of policies in the deterministic case

8 A simulation experiment

Although we have provided mathematical proof of capacity realization under discrete-review polices,

the performance of these policies as measured by the average WIP in the system at a given input

rate � < �� in the open network case, or the throughput rate sustained at �xed WIP level in

the closed network case remains unresolved. As a step towards resolving this issue, we revisit the

example of Figure 1, and perform simulation studies of a discrete review policy in this example.

First consider the same setting as in Section 2, i.e., deterministic service times. For a closed

network of �xed population N = 1200, we compare the LBFS policy with no minimum batch size,

LBFS with a minimum batch size of 10, i.e., one cannot load less than ten customers to be processed

by server 1 at any time, and DR((1; 2; 3)0 ; 400; (1:25; 0:5; 1:25)0), i.e., a discrete-review policy with a

static reward function with ri � i, with review period of length 400, and � = (1:25; 0:5; 1:25)0 which

corresponds to thresholds � = (500; 200; 500)0 . Table 2 summarizes the results below. Note that

the �rst row is exactly the same as the example considered in Section 2, where we have specialized

to the case when N = 1200.

We now consider the case when the service times are distributed according to 4{Erlang distri-

butions, but with the same mean as the deterministic service times considered in Figure 1. We can

consider the three policies when the �xed population N = 1200 as described above. The results of

10 simulation runs of length 100; 000 time units each are tabulated in Table 3 below.

Policy Throughput 95% Con�dence Interval

LBFS with no minimum batch size 0.3325 5.2E-4

LBFS with minimum batch size=10 0.4994 6.2E-4

Discrete-Review 0.4949 6.3E-4

Table 3: Comparison of policies with 4{Erlang service time distributions

The results above verify that both LBFS with minimum batch size equal to 10 and the proposed

discrete-review policy achieve throughputs close to the bottleneck throughput of 0:5 for moderate

�xed population sizes N . It is also apparent that the former converges faster to the desired limiting

throughput rate. This motivates a discussion of the speed of convergence of the throughput under

the discrete-review policy to the bottleneck throughput as the �xed population increases.

18

8.1 Speed of convergence under discrete-review policies

One can calculate the speed of convergence for the throughput rate under the policy DR(r; l; �)

by a simple calculation. Let lr(s) be the execution time of th rth processing plan at server s. Let

l be the expected duration of its processing plan. Then the execution time of its processing plan

will be

lr = max(lr(1); lr(2));

which in general will be greater than E[lr(1)] = E[lr(2)] = l. The quantity lr � l can be bounded

using a large deviation argument and indeed, this is what was done in order to prove our theo-

rems. Intuitively, from Chebyshev's inequality this di�erence is bounded by a small multiple of the

standard deviation of the random variables lr(s). The latter is proportional to
p
l and thus the

throughput rate will be converging to its limit at a rate of 1=
p
l (since there are order l number of

jobs in each processing plan). Note that the choice of the 4{Erlang distribution in the simulation

study is equivalent to increasing l four-fold for exponential distributions as the both result in a

four-fold reduction in the variance of the random variables lr(s).

This rate of convergence may appear to be slow and indeed one can verify that LBFS with

minimum batch size equal to 10 will converge faster to bottleneck throughput than the proposed

policy for the example in Figure 1. Nevertheless, this is not discouraging since the strength of the

proposed family of policies is in that capacity realization is achieved for any multiclass queueing

network, and for almost any dynamic reward rate function. In such a general setting simple heuristic

rules cannot be guaranteed to be stable even for systems without batching, and as we mentioned

earlier, minimum batch size rules will not realize capacity in general.

9 Concluding remarks

We have illustrated that the issue of capacity realization in systems with batch processing resources

can be a diÆcult problem and we have described a general family of policies that overcomes this

problem. The main feature of these policies is that they enforce class level safety stocks and rigid

processing plans that e�ectively prevent unplanned idleness or ineÆcient use of capacity. Moreover,

the only computation required in these policies is in determining the processing plans to be executed

over each planning period, which is minimal.

This paper illustrates the power of discrete-review policies for solving problems of capacity

realization in queueing networks. In fact, one could extend the network models that we consider,

and still obtain similar results. For example, the models could be generalized in order to allow

switchover times (or setup delays) when the servers switch between serving di�erent job classes,

routing control, as well as admission control. All these changes are virtually transparent in the

planning and execution logic of a discrete-review policy, while the nature of the corresponding

results will remain the same.

Ideally, the next step would be to simulate the policy against data collected form a large

manufacturing system and compare performance with other existing scheduling policies.

Acknowledgments: We are grateful to Tomislav Galjanic for undertaking the simulation study

19

described in Section 8. We would also like to thank the anonymous reviewers for numerous excellent

comments.

References

[1] Ahmadi, J. H., Ahmadi, R. H., Dasu, S., and Tang, C. S. Batching and scheduling jobs on batch

and discrete processors. Oper. Res. 39, 4 (July 1992), 750{763.

[2] Bertsekas, D. P. Dynamic Programming and Optimal Control, Vol.1. Athena Scienti�c, Belmont,

Massachusetts, 1995.

[3] Bertsimas, D., Gamarnik, D., and Tsitsiklis, J. N. Stability conditions for multiclass uid

queueing networks. IEEE Trans. Aut. Control 41, 11 (Nov. 1996), 1618{1631.

[4] Bramson, M. Instability of FIFO queueing networks. Ann. Appl. Prob. 4, 2 (1994), 414{431.

[5] Chen, H. Fluid approximations and stability of multiclass queueing networks: work-conserving policies.

Ann. Appl. Prob. 5 (1995), 637{655.

[6] Dai, J. G. On positive Harris recurrence of multiclass queueing networks: A uni�ed approach via uid

limit models. Ann. Appl. Prob. 5 (1995), 49{77.

[7] Dai, J. G., and Meyn, S. Stability and convergence of moments for multiclass queueing networks via

uid limit models. IEEE Trans. Aut. Control 40, 11 (Nov. 1995), 1889{1904.

[8] Dai, J. G., and Weiss, G. Stability and instability of uid models for certain re-entrant lines. Math.

Oper. Res. 21 (1996), 115{134.

[9] Davis, M. H. A. Piecewise-deterministic Markov processes: A general class of non-di�usion stochastic

models. J. R. Statist. Soc. Ser. B 46, 3 (1984), 353{388.

[10] Deb, R. K., and Serfozo, R. F. Optimal control of batch service queues. Ann. Appl. Prob. 5 (1973),

340{361.

[11] Glassey, C. R., and Weng, W. W. Dynamic batching heuristics for simultaneous processing. IEEE

Trans. Semiconductor Manufacturing 4 (1991), 77{82.

[12] Harrison, J. M. Brownian models of queueing networks with heterogeneous customer populations.

In Stochastic Di�erential Systems, Stochastic Control Theory and Applications, W. Fleming and P. L.

Lions, Eds., vol. 10 of Proceedings of the IMA. Springer-Verlag, New York, 1988, pp. 147{186.

[13] Harrison, J. M. The BIGSTEP approach to ow management in stochastic processing networks.

In Stochastic Networks: Theory and Applications, F. Kelly, S. Zachary, and I. Ziedins, Eds. Oxford

University Press, 1996, pp. 57{90.

[14] Harrison, J. M., and Nguyen, V. Some badly behaved closed queueing networks. In Stochastic

Networks, F. Kelly and R. Williams, Eds., vol. 71. Proceedings of the IMA, 1995, pp. 21{29.

[15] Kumar, P. R. Re-entrant lines. Queueing Systems 13 (1993), 87{110.

[16] Kumar, P. R. Scheduling semiconductor manufacturing plants. IEEE Control Syst. Mag. 14, 6 (Dec.

1994), 33{40.

[17] Kumar, P. R., and Meyn, S. P. Duality and linear programs for stability and performance analysis

of queuing networks and scheduling policies. IEEE Trans. Aut. Control 41, 1 (Jan. 1996), 4{17.

20

[18] Kumar, S., and Kumar, P. R. Fluctuation smoothing policies are stable for stochastic re-entrant

lines. Discrete Event Dynamic Systems 6 (1996), 361{370.

[19] Kumar, S., and Kumar, P. R. Fluid limits and the eÆciency of scheduling policies for stochastic

closed reentrant lines in heavy traÆc. In Stochastic Networks: Stability and Rare Events, K. Sigman

et.al., Ed., vol. 117. Springer Lecture Notes in Statistics, 1996, pp. 41{64.

[20] Kumar, S., Schwerer, E., and Wood, S. C. DiÆculties with capacity realization in semiconductor

wafer fabs. In preparation.

[21] Lu, S. H., and Kumar, P. R. Distributed scheduling based on due dates and bu�er priorities. IEEE

Trans. Aut. Control 36, 12 (Dec. 1991), 1406{1416.

[22] Maglaras, C. Discrete-review policies for scheduling stochastic networks: Fluid-scale asymptotic

optimality. Ann. Appl. Prob. (1997). Submitted.

[23] Maglaras, C. Dynamic scheduling in multiclass queueing networks: Stability under discrete-review

policies. Queueing Systems (1997). Submitted.

[24] Medhi, J. Waiting time in a Poisson queue with a general bulk service rule. Management Science 21

(1975), 777{782.

[25] Meyn, S. P. Stability and optimization of queueing networks and their uid models. In Mathematics

of Stochastic Manufacturing Systems, G. G. Yin and Q. Zhang, Eds., vol. 33 of Lectures in Applied

Mathematics. American Mathematical Society, 1997, pp. 175{200.

[26] Miyazawa, M., and Taylor, P. G. A geometric product-form distribution for a queueing network

with non standard batch arrivals and batch transfers. Adv. Appl. Prob. (1997). To appear.

[27] Neuts, M. F. A general class of bulk queues with Poisson input. Ann. Math. Stat. 38 (1967), 369{373.

[28] Rybko, A. N., and Stolyar, A. L. Ergodicity of stochastic processes describing the operations of

open queueing networks. Problems of Information Transmission 28 (1992), 199{220.

[29] Serfozo, R. F. Queueing networks with dependent nodes and concurrent movements. Queueing

Systems 13 (1993), 143{182.

[30] Spearman, M. L., Woodruff, D. L., and Hopp, W. J. CONWIP: a pull alternative to Kanban.

International Journal of Production Research 28, 5 (1990), 879{894.

[31] Uzsoy, R., Lee, C. Y., and Martin-Vega, L. A. A review of production planning and scheduling

models in the semiconductor industry part i. IIE Trans. 24, 4 (1992), 47{60.

[32] Wein, L. M. Scheduling semiconductor wafer fabrication. IEEE Trans. Semiconductor Manufacturing

1, 3 (Aug. 1988), 115{130.

21

