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Abstract. We formulate a dynamic no-arbitrage asset pricingmodel for equities and corpo-
rate bonds, featuring time variation in both risk aversion and economic uncertainty. The
joint dynamics among cash flows, macroeconomic fundamentals, and risk aversion accom-
modate both heteroskedasticity and non-Gaussianity. The model delivers measures of risk
aversion and uncertainty at the daily frequency. We verify that equity variance risk premi-
ums are very informative about risk aversion, whereas credit spreads and corporate bond
volatility are highly correlated with economic uncertainty. Our model-implied risk premi-
ums outperform standard instruments for predicting asset excess returns. Risk aversion is
substantially correlated with consumer confidence measures and in early 2020 reacted
more strongly to new COVID cases than did an uncertainty proxy.

History:Accepted byHaoxiang Zhu, finance.
Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/

mnsc.2021.4068.

Keywords: risk aversion • economic uncertainty • dynamic asset pricing model • VIX • variance risk premium • sentiment • COVID crisis

1. Introduction
Many economic models combine assumptions regard-
ing the preferences of economic agents with assump-
tions regarding the data generating process for
consumption growth or productivity shocks to derive
implications for financial asset prices. A large class of
models (Bansal et al. 2014) relies on time variation in
economic uncertainty as the main mechanism to gen-
erate variation over time in financial risk premiums
while assuming the risk aversion of households to be
time invariant. Another class of models featuring
habit-forming utility, starting with Campbell and Co-
chrane (1999), stresses time-varying risk aversion as
the main driver of financial market risk premiums.

In this article, we separately identify time-varying
uncertainty in fundamentals, using macro data, and
time-varying aggregate risk aversion (or its inverse,
which we call “risk appetite”), using both macro data
and financial asset prices, through the lens of a dy-
namic asset pricing model.1 To do so, we build on the
habit models of Campbell and Cochrane (1999),
Menzly et al. (2004), and Wachter (2006), but in con-
trast to those models, we allow stochastic risk aver-
sion to have a component that is uncorrelated with
fundamentals. The nonfundamental component may
reflect economic news that is imperfectly correlated
with realized measures of aggregate activity or con-
sumer sentiment regarding the economy, a hypothesis

we formally test. However, it may also reflect pure
mood swings (weather-induced swings of Kamstra
et al. (2003)) or unmodeled institutional factors, such
as risk constraints faced by financial institutions
(Adrian and Shin 2013, He and Krishnamurthy 2013),
that end up affecting aggregate risk aversion.

To develop the risk aversion measure in an internal-
ly consistent manner, we must solve for asset prices as
a function of preferences, consumption growth, and
cash flow dynamics. We use two prominent risky as-
set classes: corporate bonds and equities. To give the
macroeconomic- and cash flow–based fundamentals a
maximal chance of fitting asset price dynamics, we
use, inter alia, monthly data on industrial production,
which is helpful in identifying cyclical variation, and
model fundamental and cash flow shocks (earnings
for equities, loss rates for corporate bonds) using non-
Gaussian distributions with time-varying second and
higher-order moments. Concretely, we use the bad
environment–good environment (BEGE) framework
developed in Bekaert and Engstrom (2017), where
shocks to key state variables are modeled as the sum
of two centered gamma distributions with time-
varying shape parameters. These shape parameters
drive changes in “bad” (“good”) volatility, associated
with negative (positive) skewness, respectively. De-
spite the fact that the model accommodates state vari-
ables with time-varying non-Gaussian shocks, our
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formulation admits (quasi) closed-form solutions for
asset prices within the affine class. Our modeling
framework is quite different from the model in
Bekaert and Engstrom (2017), which appends a simpli-
fied BEGE model for consumption growth to the non-
linear price of risk model of Campbell and Cochrane
(1999), preventing closed-form equilibrium solutions.
Our modeling of macroeconomic uncertainty also de-
livers an uncertainty index as a byproduct, contribut-
ing to a recent cottage industry for developing indices
of macroeconomic uncertainty (Jurado et al. 2015).

To identify the model parameters and stochastic risk
aversion, we go beyond using only information in his-
torical realized returns, which are known to be noisy.
In particular, we use both realized variances and
option-implied variances in the estimation of the model
parameters. A large empirical literature (Andersen et al.
2003) shows that realized variances can be measured
fairly precisely and provide accurate forecasts of future
return variances. Moreover, conditional return varian-
ces are an exact function of the relevant state variables
(including risk aversion) in our pricing framework (see
Joslin et al. 2013 for a similar observation in a term
structure model). There is also a large literature on in-
ferring risk and risk preferences from option prices,
which we discuss in more detail in Section 2.2 Option-
implied volatility, such as the famous VIX index in the
equity market, reflects both the physical return distri-
bution, including the probability of crashes, and risk
aversion. The risk aversion of agents creates a demand
for insurance against potential losses, making (out-of-
money) put options relatively more expensive than call
options. Such expensive put options are the source of
the consistent presence of a positive variance risk pre-
mium (often empirically measured as the difference be-
tween the VIX index-squared and the physical condi-
tional return variance) (see Bekaert and Hoerova 2016
and Bakshi and Madan 2006 for formal arguments).
Option data should also be informative about condi-
tional risk premiums, which are difficult to observe
from the data. Martin (2017) uses option-implied var-
iances to provide bounds on equity premiums, and
several articles (Liu et al. 2004, Santa-Clara and Yan
2010, Bollerslev and Todorov 2011) suggest that com-
pensation for rare events (“jumps”) accounts for a large
fraction of equity risk premiums.

An important output of our model and contribution
of this work is a measure of time-varying aggregate
risk aversion that consistently helps price assets in the
context of our structural asset pricing model and is
easily tracked over time, even at high frequencies. To
accomplish this, we exploit the model implication that
asset prices and variances are an exact function of the
uncertainty and risk aversion state variables. Al-
though we filter the uncertainty state variables from
macroeconomic data, we use a method of moments

estimation for the preference parameters, which ex-
ploits the model implication that risk aversion is a lin-
ear function of a set of observable financial variables,
such as credit spreads and equity risk-neutral varian-
ces. The measure should be a useful model-based
complement to sentiment indices developed in the be-
havioral finance literature (Baker and Wurgler 2006,
Lemmon and Portniaguina 2006) or practitioner indi-
ces developed by financial institutions (see Coudert
and Gex 2008 for a survey). We hope that our mea-
surement of risk aversion will be useful in other areas
of economics as well. For example, in monetary eco-
nomics, recent research suggests a potential link be-
tween loose monetary policy and greater risk appetite
of market participants, spurring a literature that ex-
plores what structural economic factors drive risk
aversion changes (Rajan 2006, Adrian and Shin 2009,
Bekaert et al. 2013). In international finance, Miranda-
Agrippino and Rey (2020) and Rey (2015) suggest that
global risk aversion is a key transmission vector by
which U.S. monetary policy is exported to foreign
countries and is a major source of asset return co-
movements across countries (Xu 2019).

Our main results are as follows. First, we find sig-
nificant time variation in the volatilities and higher-
order moments of the fundamentals, especially in real
activity. The time variation in uncertainty is dominat-
ed by strongly counter-cyclical bad volatility. More-
over, we find that macroeconomic uncertainty is infor-
mative about uncertainty regarding risky asset cash
flows, both for the equity and corporate bond mar-
kets. Nonetheless, the volatility of corporate bond loss
rates shows independent time variation.

Second, the extracted risk aversion process loads
most significantly on equity risk-neutral variances
(with a positive sign) and realized variances (with a
negative sign), consistent with the literature finding
the variance premium to be a good proxy for aggre-
gate risk aversion. This finding is also consistent with
recent work in the consumption-based asset pricing
literature, showing the variance premium to be very
informative for identifying equilibrium models featur-
ing complex data generating processes for the funda-
mentals (Bollerslev et al. 2009, Drechsler and Yaron
2011, Bekaert and Engstrom 2017). Nevertheless, cor-
porate bond market variables, the credit spread and
realized corporate bond variance, also account for al-
most 35% of the measured variation in risk aversion.
Moreover, our measure of risk aversion sometimes
deviates materially from the signal provided by the
variance premium. In particular, the residual from a
regression of risk aversion on the variance risk premi-
um shows meaningful counter-cyclical variation. The
risk aversion process is much more rapidly mean re-
verting than would be implied by habit models, which
is consistent with the results in Martin (2017).
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Third, economic uncertainty is highly correlated
with corporate bond volatility and, especially, with
credit spreads, suggesting that these financial measures
are good predictors of macroeconomic turbulence. In
addition, our economic uncertainty index predicts out-
put negatively and significantly. Because equity risk
premium variation is dominated by changes in risk
aversion, but the conditional variance of equity returns
also loads strongly on macroeconomic uncertainty, our
results help explain the failure of a large literature in fi-
nance (starting with French et al. 1987) to find a robust
link between future equity returns and the conditional
variance of equity returns while assuming a constant
price of variance risk. In addition, the model-implied
equity premium is always above and very highly corre-
lated with the lower bound provided in Martin (2017).

Fourth, to aid with the interpretation and validation
of our risk aversion measure, we conduct several exer-
cises. We present the correlation of the risk aversion
measure with macroeconomic news data to verify its
relation to alternative measures of real activity.
Among seven news announcements, we find industri-
al production news to be most important determinant,
but it still only accounts for a small part of the varia-
tion in risk aversion, consistent with our model find-
ings. We also relate risk aversion to 16 alternative
sentiment/confidence measures, most of which do
not rely on asset prices. Even when those external
measures are orthogonalized with respect to economic
uncertainty, our risk aversion proxy is highly correlat-
ed with them, and risk aversion is most correlated
with measures focusing on consumer sentiment/con-
fidence. The highest correlation occurs with the Sentix
investor sentiment measure designed “to reflect in-
vestors’ emotions fluctuating between fear and
greed.” In addition, we analyze the behavior of risk
aversion during the COVID crisis. We find that, con-
trolling for economic news, our high-frequency proxy
to risk aversion reacts more to information regarding
the volume of new cases of infection than does our
high frequency proxy to economic uncertainty.

The remainder of the paper is organized as follows.
Sections 2 presents the model. Section 3 presents the
estimation results for the fundamentals and cash flow
dynamics and Section 4 for risk aversion. In Section 5,
we investigate how our measures of risk aversion and
macroeconomic uncertainty correlate with (and pre-
dict) macroeconomic activity and asset price changes
and examine their relation with extant indices. We
also examine the link between risk aversion and vari-
ous consumer and investor confidence measures, fin-
ishing with a study of the behavior of risk aversion
and uncertainty during the COVID crisis. Concluding
remarks are in Section 6.

2. Modeling Risk Appetite and
Uncertainty

In this section, we first define our concept of risk aver-
sion. We then build a dynamic model with stochastic
risk aversion and macroeconomic factors affecting
the cash flows processes of two main risky asset clas-
ses: corporate bonds and equity. The state variables
are described in Section 2.2 and the pricing kernel in
Section 2.3.

2.1. Risk Aversion
An ideal measure of risk aversion would be model-free
and would not confound time variation in economic
uncertainty with time variation in risk aversion. There
are many attempts in the literature to approximate this
ideal measure, but invariably various modeling and
statistical assumptions are necessary to identify risk
aversion. For example, in the options literature, a num-
ber of articles (Ait-Sahalia and Lo 2000, Britten-Jones
and Neuberger 2000, Jackwerth 2000, Rosenberg and
Engle 2002, Bakshi et al. 2003, Bliss and Panigirtzoglou
2004, Bakshi and Wu 2010, Faccini et al. 2019) appear at
first glance to infer risk aversion from equity options
prices in a model-free fashion, but it is generally the
case that the utility function is assumed to be of a par-
ticular form and/or to depend only on stock prices.3

Our approach is to start from a utility function de-
fined over both consumption (fundamentals) and a
potential nonfundamental factor. Our measure of risk
aversion is then the coefficient of relative risk aversion
implied by the utility function. We specify a consump-
tion process accommodating time variation in eco-
nomic uncertainty and use the utility framework to
price all assets consistently, given general processes
for their cash flows.

Consider a period utility function in the hyperbolic
absolute risk aversion (HARA) class:

U
C
Q

( )
�

C
Q

( )1−γ
1 − γ

, (1)

where γ is the curvature parameter, C is consumption,
and Q is a process that will be shown to drive time-
variation in risk aversion. Essentially, when Q is high,
consumption delivers less utility and marginal utility
increases. We assume

Q � C
C −H

� f (C), (2)

where H is an exogenous reference level or process (C
> H), for example, the external habit stock as in Camp-
bell and Cochrane (1999) (CC henceforth) or a subsis-
tence level. Critically, the H process can vary through
time but is exogenous to the agent’s optimization
problem, as in the well-known “catching up with the
Jones’s” preferences (see also Abel 1990). This excludes
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internal habit models. Note that Q is a negative func-
tion of consumption. If Q were simply an exogenous
process, risk aversion is equal to γ and does not vary
over time (see Abel 1990 for such multiplicative habit
models).

The coefficient of relative risk aversion for this class
of models is given by

RRA � −CU′′(C)
U′(C) � γQ, (3)

and is thus proportional to Q. We use the terms “risk
aversion” and “risk appetite” as each other’s inverse.4

For pricing assets, it is helpful to derive the log pric-
ing kernel that is the intertemporal marginal rate of
substitution in a dynamic economy. We assume an in-
finitely lived agent, facing a constant discount factor
of β, and the HARA period utility function in Equa-
tion (1). The log pricing kernel, mt+1, is then given by

mt+1 � ln (β) + ln
U′(Ct+1)
U′(Ct)

[ ]
� ln (β) − γΔct+1 + γΔqt+1,

(4)

where we use t to indicate time, lower case letters to
indicate logs of uppercase variables, and Δ to repre-
sent the difference operator. For all gross returns Ri, it
is true that Et exp (mt+1)Ri

t+1
[ ] � 1.

There are a variety of approaches to model Q. In the
external habit model of CC, Qt is the inverse of the
surplus ratio. CC models qt exogenously as a slow-
moving, persistent process but restricts the correlation
between shocks to qt and Δct to be perfect. That is, risk
aversion is fully driven by consumption shocks. Im-
portantly, there is no time variation in economic un-
certainty in their model as the consumption growth
process is homoskedastic. The “moody investor”
economy in Bekaert et al. (2010) is also a special case.
In that model, qt is also exogenously modeled, but has
its own shock; that is, there are preference shocks not
correlated with fundamentals. Another special case is
the model in Brandt and Wang (2003), in which the
risk aversion process specifically depends on inflation
in addition to consumption growth.

We specify a stochastic process for q (risk aversion),
which is partly but not fully driven by macroeconomic
fundamentals (consumption growth) and features an
independent preference shock. Shocks to risk aversion
that are independent of macroeconomic fundamentals
may arise in a variety of ways. The experimental litera-
ture (Cohn et al. 2015) shows that the subjective willing-
ness to take risk is indeed lower during a recession,
which is simulated by priming people with a stock mar-
ket crash (versus boom), and that this risk aversion is
rooted in emotions of fear.5 Thus, bad economic news
can increase risk aversion, but it is unlikely that the ag-
gregate component of this type of counter-cyclical risk

aversion is perfectly correlated with measured aggre-
gate consumption growth.

In addition, the wealth of richer people conceivably
decreases proportionally more than that of poorer
people in bad times (because more of their wealth is
tied up in risky asset classes). Thus, changes in the
wealth distribution across individuals may cause
changes in aggregate wealth-weighted risk aversion
and even induce counter-cyclical risk aversion. Of
course, we cannot exclude risk aversion changes that
are driven by other sources, ranging from reactions to
political speeches to pure mood swings.

Finally, it goes without saying that our risk aversion
process is identified within the context of a particular
rational expectations model, and thus alternative in-
terpretations of our results are possible. We provide
more discussion and external validation in Section 5.3.

2.2. Economic Environment: State Variables
2.2.1. Macroeconomic Factors. In typical asset pricing
models, agents have utility over consumption, but it is
well known that consumption growth and asset re-
turns show very little correlation. Instead, we use in-
dustrial production as our main macroeconomic factor,
with its availability at the monthly level an additional
advantage. We extract two macro risk factors from in-
dustrial production, good uncertainty, denoted by pt,
and bad uncertainty, denoted by nt, thereby contribut-
ing to the recent macroeconomic literature on the mea-
surement of real uncertainty (Jurado et al. 2015) and its
effects on the real economy (Bloom 2009).

Specifically, under our model the change in log in-
dustrial production index, θt, has time-varying high-
er-order moments governed by two state variables: pt
and nt. These two factors additionally affect the condi-
tional mean of growth, which also has an autoregres-
sive component:

θt+1 � θ + ρθ(θt − θ) +mp(pt − p) +mn(nt − n) + uθt+1,
(5)

where the growth shock is decomposed into two inde-
pendent centered gamma shocks,

uθt+1 � σθpωp, t+1 − σθnωn, t+1: (6)

The shocks follow centered gamma distributions with
time-varying shape parameters,

ωp, t+1 ~ Γ̃ pt, 1
( )

, ωn, t+1 ~ Γ̃ nt, 1( ), (7)

where Γ̃ x, 1( ) denotes a centered gamma distribution
with shape parameter x and a unit scale parameter.
The shape factors, pt and nt, follow autoregressive
processes,

pt+1 � p + ρp(pt − p) + σppωp, t+1, (8)

nt+1 � n + ρn(nt − n) + σnnωn, t+1, (9)
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where ρx denotes the autoregressive term of process
xt+1, σxx the sensitivity to shock ωx, t+1, and x the long-
run mean. We denote the macroeconomic state varia-
bles as Ymac

t � θt pt nt
[ ]′.6

Because macro risks are also allowed to affect ex-
pected growth, our model can accommodate cyclical
effects (e.g., lower conditional means in bad times) or
the uncertainty effect described in Bloom (2009). The
conditional higher moments of output growth are lin-
ear functions of the bad and good uncertainties. For
example, the conditional variance and the conditional
unscaled skewness are as follows:

Conditional Variance: Et uθt+1
( )2[ ]

� σ2θppt + σ2θnnt,

Conditional Unscaled Skewness :

Et uθt+1
( )3[ ]

� 2σ3θppt − 2σ3θnnt:

This reveals the sense in which pt represents good and
nt bad volatility: pt (nt) increases (decreases) the skew-
ness of industrial production growth.

The state variables and shocks derived from indus-
trial production growth serve as key macro determi-
nants for consumption growth and cash flows.

2.2.2. Cash Flows and Cash Flow Uncertainty. To
model the cash flows for equities and corporate
bonds, we focus attention on two variables that exhib-
it strong cyclical movements, namely earnings growth
(Longstaff and Piazzesi 2004) and corporate defaults
(Gilchrist and Zakrajšek 2012).

2.2.2.1. Corporate Bond Loss Rate. To price corpo-
rate bonds, we must model the possibility of defaults.
Suppose a portfolio of one-period nominal bonds has
a promised payoff of C ≡ exp c( ) at t+ 1( ), but will in
fact only pay an unknown fraction Ft+1 ≤ 1 of that
amount. Therefore, the nominal payoff for a one-
period zero-coupon defaultable corporate bond at pe-
riod t + 1 is C × Ft+1 � exp(c+ ln(Ft+1)) � exp(c− lt+1).
Thus, lt+1 is defined as −ln(Ft+1) � −ln(1− Lt+1) where
Lt+1 (i.e., 1− Ft+1) is the aggregate corporate loss rate,
which can be computed as the default rate times one
minus the recovery rate. We provide more detail on
the pricing of defaultable bonds in the asset pricing
section (Section 2.3).

The dynamics for the aggregate corporate bond log
loss rate, lt, are modeled as follows:

lt+1 � l0 + ρlllt +mlppt +mlnnt + σlpωp, t+1
+ σlnωn, t+1 + ult+1, (10)

ult+1 � σllpωlp, t+1 − σllnωln, t+1, (11)

ωlp, t+1 ~ Γ̃(lpt, 1), ωln, t+1 ~ Γ̃(ln, 1), (12)

with ln > 0, and where the law of motion for cash flow
uncertainty is

lpt+1 � lp + ρlp(lpt − lp) + σlplpωlp, t+1: (13)

The conditional mean depends on an autoregressive
term and the good and bad macro uncertainty state vari-
ables pt and nt. The total disturbance of the loss rate is
governed by three independent heteroskedastic shocks:
the good and bad environment macro shocks
{ωp, t+1,ωn, t+1} and the (orthogonal) loss rate shock
ul, t+1. The loss rate shock follows a typical BEGE process,
but we only allow ωlp’s shape parameter to be time vary-
ing, so that only the volatility factor associated with the
positively skewed loss rate shock varies over time.7

This dynamic system allows macroeconomic uncer-
tainty to affect both the conditional mean and condi-
tional variance of the loss rate process. However, it
also allows the loss rate to have an autonomous auto-
regressive component in its conditional mean (making
lt a state variable) and accommodates heteroskedastic-
ity not spanned by macroeconomic uncertainty. This
financial cash flow uncertainty has a time-varying
component, denoted by lpt, and a constant component
denoted by ln. If σllp and σlplp are positive, as we
would expect, the loss rate and its volatility are posi-
tively correlated; that is, in bad times with a high inci-
dence of defaults, there is also more uncertainty about
the loss rate, and because the gamma distribution is
positively skewed, the (unscaled) skewness of the pro-
cess increases. We also expect the sensitivities to the
good (bad) economic environment shocks, σlp (σln) to
be negative (positive): intuitively, defaults should de-
crease (increase) in relatively good (bad) times.

The conditional variance of the loss rate is
σ2lppt + σ2lnnt + σ2llplpt + σ2llnln, and its conditional un-

scaled skewness is 2(σ3lppt + σ3lnnt + σ3llplpt − σ3llnln). We

denote the financial state variables as Yfin
t � lt lpt

[ ]′.
2.2.2.2. Earnings, Consumption, and Dividends. Log
earnings growth, gt, is defined as the change in log
real earnings of the aggregate stock market. It is mod-
eled as follows:

gt+1 � g0 + ρgggt + ρ′
g,macY

mac
t + ρ′

g, finY
fin
t

+ σgpωp, t+1 + σgnωn, t+1 + σglpωlp, t+1
+ σglnωln, t+1 + ugt+1, (14)

ugt+1 � σggωg, t+1, ωg, t+1 ~ N(0, 1): (15)

The conditional mean is governed by an autoregres-
sive component, the three macro factors and two fi-
nancial factors; the time variation in the conditional
variance comes from the good and bad uncertainty
factors, and the loss rate uncertainty factor. The earn-
ings shock is assumed to be Gaussian and
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homoskedastic, because we fail to reject the null that
the residual series, after controlling for the heteroske-
dastic fundamental shocks, is Gaussian and
homoskedastic.

We model consumption as stochastically cointe-
grated with earnings so that the consumption-earnings
ratio becomes a relevant state variable. Define κt ≡
ln Ct

Et

( )
. The model for κt is completely analogous to the

model for gt (i.e., replacing g by κ in Equations (14) and
(15)). Similarly to earnings growth, there is an autono-
mous conditional mean component, and the heteroske-
dasticity of κt is spanned by macroeconomic and finan-
cial uncertainties. As with log earnings growth, we fail
to reject Gaussianity and homoskedasticity of uκt+1.

Finally, the log dividend payout ratio, ηt, is ex-
pressed as the log ratio of dividends to earnings. Re-
cent evidence in Kostakis et al. (2015) shows that the
monthly dividend payout ratio is stationary. We mod-
el ηt analogously to κt and gt, again assuming a Gauss-
ian and homoskedastic residual shock (as justified by
the data). Using ηt+1 and gt+1, dividend growth Δdt+1,
is given by ηt+1 − ηt + gt+1.

2.2.3. Pricing Kernel State Variables. We now discuss
the real pricing kernel components, consumption
growth, changes in risk aversion, and the inflation
process needed to price nominal cash flows.

2.2.3.1. Consumption Growth. By definition, log real

consumption growth, Δct+1 � ln Ct+1
Ct

( )
� gt+1 +Δκt+1.

Therefore, consumption growth is spanned by the
previously defined state variables and shocks, and it
inherits an intricate shock distribution with time-
varying higher-order moments, including a time-
varying volatility of volatility (Bollerslev et al. 2009)
that may be spiky and skewed, mimicking the jumps
in consumption growth volatility in Drechsler and
Yaron (2011).

2.2.3.2. Risk Aversion. The state variable capturing

risk aversion, qt ≡ ln Ct
Ct−Ht

( )
, follows

qt+1 � q0 + ρqqqt + ρqppt + ρqnnt + σqpωp, t+1 + σqnωn, t+1
+ σqgωg, t+1 + σqκωκ, t+1 + uqt+1, (16)

uqt+1 � σqqωq, t+1, ωq, t+1 ~ Γ̃(qt, 1): (17)

The risk aversion disturbance loads on the consump-
tion growth shocks and features an orthogonal prefer-
ence shock. Thus, given the distributional assump-
tions on these shocks, the model-implied conditional
variance is σ2qppt + σ2qnnt + σ2qqqt + σ2gg + σ2κκ, and the con-

ditional unscaled skewness 2(σ3qppt + σ3qnnt + σ3qqqt).
With σqq � 0 and certain restrictions on σqp, σqn, σqg,

and σqκ, the model implies a perfect conditional corre-
lation between risk aversion and real activity, as in the
Campbell and Cochrane (1999) model.

We model the pure preference shock also with a
centered gamma distributed shock, so that its variance
and (unscaled) skewness are proportional to its own
level. Controlling for current business conditions,
when risk aversion is high, so is its conditional vari-
ability and unscaled skewness. The plausibility of this
assumption is illustrated, for example, by the pattern
that option-implied volatilities, which are partially
driven by risk aversion, are much more volatile in
stressful times. The higher moments of risk aversion
are perfectly spanned by macroeconomic uncertainty
on the one hand and pure risk aversion itself (qt) on
the other hand. Key identifying assumptions are that
qt does not affect the macro variables, and uq, t+1 repre-
sents a pure preference shock. The conditional mean
is modeled as before: an autonomous autoregressive
component and dependence on pt and nt.

2.2.3.3. Inflation. Because the assets we are pricing
are quoted in nominal terms, we close the model with
a specification for inflation. The conditional mean of
inflation depends on an autoregressive term and the
three macro factors Ymac

t . The conditional variance
and higher moments of inflation are proportional to
the good and bad uncertainty factors {pt,nt}. The in-
flation innovation uπt+1 is assumed to be Gaussian and
homoskedastic. There is no feedback from inflation to
the macro variables:

πt+1 � π0 + ρπππt + ρ′
π,macY

mac
t + σπpωp, t+1

+ σπnωn, t+1 + uπt+1, (18)
uπt+1 � σππωπ, t+1, ωπ, t+1 ~N(0, 1): (19)

2.2.4. Matrix Representation. The dynamics of all state
variables introduced previously can be written com-
pactly in matrix notation. We define the macro factors
Ymac
t � θt pt nt

[ ]′ and other state variables Yother
t �

πt lt gt κt ηt lpt qt
[ ]′. Among the 10 state varia-
bles, the industrial production growth θt, the inflation
rate πt, the loss rate lt, earnings growth gt, the log
consumption-earnings ratio κt, and the log divided
payout ratio ηt are observable, whereas the other four
state variables, {pt,nt, lpt,qt}, are latent. There are nine
independent centered gamma and Gaussian shocks in
this economy. The system can be formally described
as follows (technical details are relegated to the online
appendix):

Yt+1 � µ+AYt +Rωt+1, (20)

where constant matrices, µ (10 × 1), A (10 × 10), and R
(10 × 9), are implicitly defined, Yt � [Ymac′

t Yother′
t ]′

(10 × 1) is a vector comprised of the state variable

Bekaert, Engstrom, and Xu: The Time Variation in Risk Appetite and Uncertainty
3980 Management Science, 2022, vol. 68, no. 6, pp. 3975–4004

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

23
6.

16
5.

61
] 

on
 2

1 
M

ar
ch

 2
02

4,
 a

t 0
8:

18
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



levels, and ωt+1 � [ωp, t+1 ωn, t+1 ωπ, t+1 ωlp, t+1 ωln, t+1
ωg, t+1 ωκ, t+1 ωη, t+1 ωq, t+1]′ (9 × 1) is a vector comprised
of all the independent shocks in the economy. Among
the nine shocks, five shocks are gamma distributed—
the good uncertainty shock (ωp, t+1), the bad uncertain-
ty shock (ωn, t+1), the right-tail loss rate shock (ωlp, t+1),
the left-tail loss rate shock (ωln, t+1), and the risk
aversion shock (ωq, t+1). The remaining four shocks
are standard homoskedastic Gaussian shocks (i.e.,
N(0, 1)). Importantly, given our preference structure,
the state variables driving the time variation in the
higher-order moments of these shocks are the only
ones driving the time variation in asset risk premiums
and their higher order moments. Economically, we
therefore rely on time variation in risk aversion, as in
the classic Campbell-Cochrane model and its variants
(Wachter 2006, Bekaert et al. 2010), and time variation
in economic uncertainty, as in the model of Bansal
and Yaron (2004), to explain risk premiums. The mod-
el’s implications for conditional asset return variances
are critical in identifying the dynamics of risk aversion
(Joslin et al. 2013).

Our specific structure admits conditional non-
Gaussianity yet generates affine pricing solutions. The
model is tractable because the moment generating
functions of gamma and Gaussian distributed varia-
bles can be derived in closed form, delivering expo-
nentiated affine functions of the state variables. In
particular,

Et exp (ν′Yt+1)[ ] � exp ν′S0 + 1
2
ν′S1RotherS′1ν

[
+ f S(ν)Yt + S2(ν)ln

]
, (21)

where S0 (10 × 1) is a vector of drift coefficients; S1
(10 × 4) is a selection matrix of zeros and ones that
picks out the Jensen’s inequality terms of the four
Gaussian shocks; Rother (4 × 4) represents the covari-
ance of the Gaussian shocks. The matrix f S(ν) and
the scalar S2(ν) are nonlinear functions of ν, involv-
ing the feedback matrix and the scale parameters of
the gamma-distributed variables; see the online ap-
pendix for more details.

2.3. Asset Pricing
In this section, we present the model solutions. The on-
line appendix contains detailed proofs and derivations.

2.3.1. Pricing Kernel and Asset Prices. The log pricing
kernel can be expressed as follows:

mt+1 � m0 +m′
2Yt +m′

1Rωt+1, (22)

where m0, m1 (10×1) and m2 (10×1) are constant
scalar or vectors that are implicitly defined using
Equations (14)–(17). The real pricing kernel in our
model follows an affine process as well. Assuming

complete markets, this kernel prices any cash flow
pattern spanned by our state variable dynamics.

To price nominal assets, we define the nominal pric-
ing kernel, m̃t+1, which is a simple transformation of
the log real pricing kernel, mt+1,

m̃t+1 �mt+1 −πt+1 � m̃0 + m̃′
2Yt + m̃′

1Rωt+1, (23)

where m̃0, m̃1 (10×1) and m̃2 (10×1) are implicitly de-
fined. The nominal risk free rate, r̃f t, is defined as
−ln Et exp m̃t+1( )[ ]{ }

, which can be expressed as an af-
fine function of the state vector.

To price defaultable nominal bonds, we assume that
a one period nominal bond portfolio faces a fractional
(logarithmic) loss of lt. Given the structure assumed
for lt in Equation (10), the log price-coupon ratio of the
one-period defaultable bond portfolio is

pc1t � ln Et exp m̃t+1 − lt+1( )[ ]{ }
, (24)

� b10 + b1′1 Yt, (25)

where b10 and b1′1 are implicitly defined. It is straightfor-
ward to show that a portfolio of zero-coupon nominal
defaultable corporate bonds, maturing inN periods, has
a price that is affine in the state variables. The assumed
zero-coupon structure of the payments before maturity
implies that the unexpected returns to this portfolio are
exactly linearly spanned by the shocks to Yt.

Equity is a claim to the dividend stream. The online
appendix shows that the price-dividend ratio is the
sum of an infinite number of exponential affine func-
tions of the state vector, with the coefficients following
simple difference equations.

2.3.2. Asset Returns. Given that the log price-coupon
ratio of a defaultable corporate bond can be expressed
as an exact affine function of the state variables, it im-
mediately implies that the log nominal return (before
maturity), r̃cbt+1 � pct+1 − pct, can be represented in
closed form. For equities, the log nominal equity re-
turn is r̃eqt+1 � ln (PDt+1+1

PDt

Dt+1
Dt

exp (πt+1)). It is therefore a
nonlinear but known function of the state variables,
which we approximate by a linear function (see the
online appendix for details).

To account for the approximation error, we allow
for two asset-specific homoskedastic shocks that are
orthogonal to the state variable innovations. As a re-
sult, log nominal asset returns approximately satisfy
the following factor model:

r̃it+1 � ξ̃0
i + ξ̃i′

1 Yt + r̃ i′Rωt+1 + εit+1, (26)

where r̃it+1 is the log nominal asset return i from t to
t + 1, ∀i � {eq, cb}; ξ̃i

1 (10 × 1) is the loading vector on
the state vector; r̃ i (10 × 1) is the loading vector on the
state variable shocks; and εit+1 is a homoskedastic er-
ror term with unconditional volatility σi.
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Rather than exploiting the model restrictions on pri-
ces, we exploit the restrictions the economy imposes
on asset returns, physical variances, and risk-neutral
variances. Given Equation (26) and the pricing kernel,
the model implies that one period expected log excess
returns are given by

RPi
t ≡ Et(r̃it+1) − r̃ft

� ∑
w�p,n, lp, q

σw(r̃ i) + ln
1 − σw(m̃1 + r̃ i)
1 − σw(m̃1)

[ ]{ }
wt

+ C(RPi): (27)

Here C(RPi) is a constant defined in the online appen-
dix and (as before), m̃1 and r̃ i are vectors containing
the sensitivities of the log nominal pricing kernel and
the log nominal asset returns to the state variable
shocks, respectively. The symbol σw(x) (w � p,n, lp,q)
represents linear functions of state variables’ sensitivi-
ties to the good uncertainty shock (ωp, t+1), the bad un-
certainty shock (ωn, t+1), the right-tail loss rate shock
(ωlp, t+1), and the risk aversion shock (ωq, t+1). Expected
excess returns thus vary through time and are affine
in pt,nt, lpt (macroeconomic and cash flow uncertain-
ties) and qt (aggregate risk aversion).

The signs of state variable coefficients are also
intuitive. For instance, because m̃1 � 0 0 0 −1 0

[
−γ− γ 0 0γ]′ and R•9 � 0 0 0 0 0 0 0 0 0 σqq

[ ]′,8
σq(m̃1) � m̃′

1R•9 � γσqq > 0, where γ > 0 follows from
the concavity of the utility function and σqq > 0 implies
positive skewness of risk aversion in Equation (16). It im-
mediately implies that an asset with a negative return
sensitivity to the risk aversion shock exhibits a higher
risk premium when risk aversion is high. That is, for
such an asset, σq(r̃ i) < 0; then, it can be easily shown that

σq( r̃ i) + ln 1−σq(m̃1+r̃ i)
1−σq(m̃1)

[ ]
≈ σq(r̃ i) − σq(r̃ i)

1−σq(m̃1) > 0.

The physical conditional return variance, VARi
t ≡

VARt(r̃ it+1), and the one-period risk-neutral condition-
al return variance, VARi,Q

t ≡ VARQ
t (r̃it+1), are obtained

as follows:

VARi
t �

∑
w�p,n, lp,q

σw(r̃ i)
( )2

wt +C(Pi); (28)

VARi,Q
t � ∑

w�p,n, lp,q

σw(r̃ i)
1− σw(m̃1)

( )2
wt +C(Qi); (29)

where C(Pi) and C(Qi) are constants defined in the on-
line appendix. The expected variances under both the
physical measure and the risk-neutral measures are
time-varying and affine in pt,nt, lpt and qt.

The functions in Equation (29) are affine transforma-
tions from the ones in Equation (28), using the σ(m̃1)
functions. Under normal circumstances, we would ex-
pect that the relative importance of risk aversion (qt)

increases under the risk neutral measure. In Equation
(29), this intuition can be formally established as
σq(m̃1) is positive given our parameter choices. As de-
rived previously, σq(m̃1) � γσqq is strictly positive;
therefore, as long as 1 > 1− γσqq > 0, the risk neutral
variance should load more heavily on qt than does the
physical variance. The same risk transfer intuition
does not necessarily hold for bad uncertainty nt, be-
cause it does not only affect risk aversion (which it
should affect with a positive coefficient), but also af-
fects consumption growth through its effect on earn-
ings growth and the consumption earnings ratio. In
this case, given that R•2 � [−σθn 0 σnn σπn σln
σgn σκn σηn 0 σqn]′, the risk transfer coefficient
σn(m̃1) � m̃′

1R•2 reduces to −σπn − γ(σgn + σκn) + γσqn.
Although a negative σgn (earnings growth loading neg-
atively on bad uncertainty) and positive σqn suggest
that risk neutral variances load more heavily on bad
uncertainty, it is conceivable that consumption smooth-
ing induces a positive σκn, which could potentially
undo this effect.

3. Estimation of Macroeconomic and
Cash Flow Dynamics

There are 10 state variables in the model but only 4 latent
state variables drive risk premiums and conditional physi-
cal and risk neutral variances in the model: two economic
uncertainty variables, pt and nt, cash flow uncertainty, lpt,
and risk aversion, qt. Although the total number of model
parameters is large, most parameters describe the dynam-
ics of the macroeconomic and cash flow state variables.
Moreover, there is no feedback from risk aversion to other
state variables. Thus, it is possible to estimate all parame-
ters governing the exogenous macroeconomic factors and
cash flow processes directly from macroeconomic and
cash flow data, without using financial asset prices. Al-
though the richness of the assumed dynamics gives a
maximal chance for uncertainty variables to drive asset
price dynamics, our approach ensures that we do not im-
part unrealistic dynamics to the macro and cash flow en-
vironment. We first discuss the estimation of macroeco-
nomic factors and then of the cash flow dynamics.

3.1. Macroeconomic Factors
Our output variable is the change in log real industrial
production, θt, where the monthly real industrial pro-
duction index is obtained from the Federal Reserve
Bank at St. Louis (from January 1947 to February
2015). The system for θt, described in Equations
(5)–(9), is estimated using the approximately maxi-
mum likelihood estimation (MLE) procedure of Bates
(2006), which delivers both parameters and filtered
state variables. We collect the three state variables in
Ŷmac

t � θt p̂t n̂t
[ ]′, where a hat superscript is used to
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indicate estimated variables or matrices. Similarly, we
denote the filtered shocks, ω̂mac

t � ω̂p, t ω̂n, t
[ ]′.

The parameter estimates for the industrial production
growth process are reported in Table 1. Industrial pro-
duction growth features slight positive auto-correlation
and high realizations of bad volatility decrease its con-
ditional mean significantly. The pt process is extremely
persistent (almost a unit root) and nearly Gaussian, forc-
ing us to fix its unconditional mean at 500 (for such val-
ues, the skewness and kurtosis of shocks to pt are effec-
tively zero). The shape parameter nt has a much lower
mean, featuring gamma-distributed shocks ωn, t+1 with
an unconditional skewness coefficient of 0.50 ( 2�����

16:14
√ )

and an excess kurtosis coefficient of 0.37 ( 6
16:14). It is also

less persistent than the pt process.
We graph the conditional mean of θt and the pt and

nt processes in Figure 1 together with the National Bu-
reau of Economic Research (NBER) recessions. The
strong counter-cyclicality of the nt process and the pro-
cyclicality of the conditional mean of the growth rate
of industrial production are apparent from the graph.
We also confirm the cyclicality by running a regression
of the three processes (conditional mean, pt, and nt) on
a constant and a NBER dummy. The NBER dummy
obtains a highly statistically significant positive (nega-
tive) coefficient for the nt (conditional mean) equation.
The coefficient is positive in the pt equation as well,
but not statistically significant. In fact, the nt regression
with simply a NBER dummy features an adjusted R2

of almost 45%.
The conditional variance of industrial production

and its conditional unscaled skewness are dominated
by nt and therefore highly counter-cyclical. Thus,

exposure to such macroeconomic uncertainty may ren-
der asset risk premiums and variances counter-cyclical
as well. The bottom plot in Figure 1 graphs the condi-
tional variance with a 90% confidence interval that em-
beds parameter uncertainty. The parameter uncertain-
ty is determined by drawing 1,000 parameter sets from
the asymptotic distribution of the parameter estimates
and then reapplying the Bates filter to obtain alterna-
tive conditional variance estimates. The 90% intervals
are quite tight as the median relative size of the stan-
dard error to the conditional variance is only 18%.9

3.2. Cash Flow Dynamics
Next, we must estimate the latent cash flow uncertain-
ty factor lpt, which determines the time variation in
the conditional variance of the log corporate bond loss
rate. The log corporate bond loss rate (l) requires data
on default rates and recovery rates for the U.S. corpo-
rate bond market. We obtain data on three-month av-
erage all-corporate bond default rates from Moody’s
and monthly recovery rates spanning November 1980
to February 2015 from the Federal Reserve Board. We
use six-month moving averages of these raw data to
compute the log loss rate representative for each
month. The estimation of the loss rate process uses
data from January 1982 to February 2015.

The dynamics of the variables are described in
Equations (10)–(13). We again use the approximate
MLE of Bates (2006) to estimate the model parameters.
Unlike the BEGE structure for real shocks, for the idio-
syncratic loss rate shock, only the right-tail shock (i.e.,
the adverse tail) is heteroskedastic. We denote the esti-
mated right-tail loss rate shape parameter as l̂pt, and
the loss rate shocks as ω̂lp, t+1 and ω̂ln, t+1.

As shown in Table 2, the loss rate process is persis-
tent with the autocorrelation coefficient close to 0.83.
The pt process does not significantly affect the loss
rate process either through the conditional mean or
through shock exposures. However, the ωn, t shock has
a statistically significant effect on the loss rate process;
moreover, nt affects the loss rate’s conditional mean
with a statistically significant positive coefficient. The
time-varying part of the conditional variance, lpt, is per-
sistent with an autoregressive coefficient of 0.86. The id-
iosyncratic shocks to the loss rate process also exhibit
substantial excess kurtosis (unconditional kurtosis �
1.15) and positive skewness (unconditional skewness �
0.90). The gamma shock generating negative skewness,
which has a time-invariant shape parameter, is nearly
Gaussian, with the shape parameter exceeding 100, so
that, although it contributes to the variance of the loss
rate, there is no meaningful negative skewness associat-
ed with this shock.

In Figure 2, we first plot the loss rate process l. The
loss rate clearly spikes around recessions, from an over-
all average of 0.6% to 2.1% on average in recessions (the

Table 1. Dynamics of the Macro Factors

θt+1 pt+1 nt+1
mean 0.00002 500 (fix) 16.14206

(0.00045) (2.14529)
ρ 0.13100 0.99968 0.91081

(0.03094) (0.01918) (0.01350)
mp 0.00001

(0.00034)
mn 20.00020

(0.00002)
ωp,t+1 loading 0.00011 0.55277

(0.00001) (0.07073)
ωn,t+1 loading 20.00174 2.17755

(0.00014) (0.15027)

Notes. This table reports parameter estimates of the industrial
production growth process using the monthly log growth data θt+1
from January 1947 to February 2015 (source: FRED). The model
involves two latent state variables: good economic uncertainty pt and
bad economic uncertainty nt. The model is estimated using the MLE-
filtration methodology described in Bates (2006). The full dynamic
processes of θt+1, pt+1 and nt+1 are described in Equations (5)–(9) in
Section 2. Standard errors are displayed in parentheses. The effective
loading of θt+1 on ωn,t+1 is 20.00174 and the estimate of σθn is
0.00174. Bold coefficients have <5% p-values.
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maximum value is 5.6% during February 2009). The
conditional mean of the loss rate in fact inherits the
counter-cyclicality of the loss rate itself, given the loss
rate’s high persistence and its positive dependence on
nt. Our model fits the positive skewness of the loss rate
process through the positively skewed ul shocks and
the positive dependence on ωn.

Next, in the second and third plots of Figure 2, we
show the conditional higher-order moments of the loss
rate process, including the lpt process and the total
conditional variance. Although lpt is overall counter-
cyclical, it appears to peak a few months after reces-
sions. The conditional variance in the third panel
(Vart(lt+1)) also appears counter-cyclical, which is the
combined result of a counter-cyclical lpt process and a
strongly counter-cyclical nt process (σln being positive).
In fact, a regression of lpt on a constant and a NBER

dummy, yields a NBER coefficient of 6.78 with a
t-statistic of 3.03, but the t-statistic increases to 8.87 when
regressing the total variance on the NBER dummy.

We decompose the total conditional variance of the
loss rate in its contributions coming from shocks asso-
ciated with lpt, pt, and nt in the fourth plot of Figure 2.
The dominant sources of variation are lpt (accounting
for 29% of the total variance on average) and nt (ac-
counting for 40%). The relative importance of lpt drops
slightly in recessions, whereas that of nt increases, but
peaks when the economy starts recovering, reaching
as high as 93%. The pt process has a negligible effect
on the loss rate variance. Clearly, the loss rate variance
has substantial independent variation not spanned by
macroeconomic uncertainty.

With the loss rate process estimated, the dynamics
of the other cash flow state variables (earnings growth,

Figure 1. (Color online) Macroeconomic State Variables Filtered from Industrial Production Growth

194701 195504 196308 197112 198004 198808 199612 200504 201308

-0.04

-0.02

0

0.02

0.04

0.06

Conditional Mean

194701 195504 196308 197112 198004 198808 199612 200504 201308
0

500

1000

pt

nt

194701 195504 196308 197112 198004 198808 199612 200504 201308
0

20

40

60

80

194701 195504 196308 197112 198004 198808 199612 200504 201308

# 10
-4

0

1

2

3

Total Conditional Variance

Notes. From top to bottom: conditional mean (red) and actual monthly log growth rates (gray); good uncertainty state variable, pt; bad uncertain-
ty state variable, nt; total conditional variance of θt+1, σ2θppt + σ2θnnt, and a 90% confidence interval reflecting parameter uncertainty (obtained
through bootstrapping). The plot covers the estimation period from January 1947 to February 2015, and the estimation results are displayed in
Table 1. The shaded regions are NBER recession months from the NBERwebsite.
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the consumption earnings ratio and the payout ratio)
follow straightforwardly. We simply use linear projec-
tions of those variables onto the previously identified
state variables and shocks. The data we use for these
variables are standard and we relegate a discussion of
the data sources and the empirical results to the online
appendix. Noteworthy results are the strong cyclicality
of earnings growth (Longstaff and Piazzesi 2004) pri-
marily reflected in the positive dependence on indus-
trial production growth and negative dependence on
the loss rate, and the counter-cyclicality of the condi-
tional means of the consumption-earnings and the
dividend-earnings ratios. The latter is likely a natural
result of consumption and dividend smoothing, rela-
tive to highly cyclical earnings.

4. Estimation of Risk Aversion
The remaining task is to identify the structural kernel
parameters, including the risk aversion process param-
eters, and filter the latent risk aversion process. Our
approach here is unusual in that we simultaneously
estimate the structural parameters while spanning risk
aversion with observable financial instruments, deliv-
ering a risk aversion process that can be measured at
high frequencies. We first lay out the estimation strate-
gy and methodology and then discuss the results.

4.1. Estimation Strategy
To retrieve risk aversion from the model and data on
corporate bonds and equities, we exploit the fact that,

under the null of the model, asset prices, risk premi-
ums and variances are an exact function of the state
variables, including risk aversion. It thus follows that
risk aversion should be spanned by a set of asset pri-
ces and risk variables. Given our desire to generate a
high frequency risk aversion index, we select these in-
struments to be observable at high frequencies and to
reflect risk and return information for our two asset
classes. In particular, we postulate

qt � χ′zt, (30)

where zt (7 × 1) is a vector of 1 and six observed asset
prices at time t, including (1) the term spread (the dif-
ference between the 10-year Treasury yield and the
3-month Treasury yield, where the yield data are ob-
tained from the Federal Reserve Bank of St. Louis); (2)
the credit spread (the difference between Moody’s Baa
yield and the 10-year Treasury bond yield); (3) a de-
trended dividend yield or earnings yield (the differ-
ence between the raw dividend yield and a moving
average term that takes the five-year average of
monthly dividend yields, starting one year before, or
DY5yrt �DYt −∑60

i�1DYt−12−i, where DYt denotes the
ratio of 12-month trailing dividends and the equity
market price)10; (4) the realized equity return variance;
(5) the risk-neutral equity return variance; and (6) the
realized corporate bond return variance. Realized re-
turn variances rely on return data. Daily equity returns
are the continuously compounded value-weighted
nominal market returns with dividends from the Center
for Research in Security Prices (CRSP); the daily corpo-
rate bond market return is the continuously com-
pounded log change in the daily Dow Jones corporate
bond total return index (source: Global Financial Data).
The monthly realized variance is the sum of the squared
daily equity or corporate bond returns within the same
month. The monthly return (req) is the sum of daily re-
turns within the same month. We use the square of the
month-end VIX index (divided by 120,000) as the one-
period risk-neutral conditional variance of equity re-
turns (QVAReq), which is obtained from the Chicago
Board Options Exchange (CBOE) and is only available
from the end of January 1990. We use the VXO index
before 1990, also from CBOE, going back to June 1986.

The instruments make economic sense. The term
spread may reflect information about the macro-
economy (Harvey 1988) and was also included in the
risk appetite index of Bekaert and Hoerova (2016). The
credit spread and cash flow yields contain direct price
information from the corporate bond and equity mar-
ket respectively and thus partially reflect information
about risk premiums. Ideally, we would include infor-
mation on both risk-neutral and physical variances for
both equities and corporate bonds, but we do not have
data on the risk neutral corporate bond return vari-
ance. We use the realized variance for both markets,

Table 2. Dynamics of the Corporate Loss Rate

Mean

l0 ρll mlp mln

−0.0009 0.8306 1.95E-06 1.44E-04
(0.0017) (0.0241) (3.57E-06) (2.23E-05)

Shock sensitivities
σlp σln σllp σlln
−4.36E-06 0.0005 0.0006 1.08E-04
(7.37E-06) (0.0001) (0.0001) (5.78E-05)

Shape parameter dynamics

lp ρlp σlplp ln
5.2153 0.8556 1.8615 103.58
(0.2566) (0.0126) (0.1809) (1.2566)

Notes. This table reports parameter estimates of the corporate loss rate
process lt � ln(Lt) using monthly data from June 1984 to February 2015.
We obtain Lt+1 using the identity Lt+1 � DEFt+1 × (1−RECOVt+1),
where the default rateDEFt and recovery rateRECOVt are proxied by six-
month moving averages of three-month average all-corporate bond
default rates (source: Moody’s) and monthly all-corporate bond recovery
rates (source: FRED), respectively. The full dynamic processes of lt+1 and
the cash flow uncertainty state variable lpt+1 are described in Equations
(10)–(13) in Section 2. The conditional mean part of lt+1 is estimated by
projection first and then the variance equation by the approximate MLE
filtration of Bates (2006). Standard errors are displayed in parentheses.
Bold (italic) coefficients have<5% (10%) p-values.
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rather than an estimate of the physical conditional
variance, because realized variances are effectively
observed, whereas conditional variances must be esti-
mated. Given a loading vector χ, the risk aversion pro-
cess can be computed daily from observable data.

We report some properties of these financial instru-
ments in the online appendix and offer a summary
here. First, all of the instruments are highly persistent.
This high autocorrelation is the main reason we use a
stochastically detrended dividend (AR(1) � 0.982) or
earnings yield (AR(1) � 0.984) series rather than the ac-
tual dividend or earnings yield series.11 Second, the
various instruments are positively correlated but the

correlations never exceed 85%. Perhaps surprisingly,
the term spread is also positively correlated with the
other instruments, although it is generally believed
that high term spreads indicate good times, whereas
the yield and variance instruments would tend to be
high in bad times. Third, four of the instruments show
significant positive skewness. This is consistent with
our assumption that risk aversion is positively skewed
through its gamma distributed shock (see Equation
(17)), and we need the linear spanning model to be
consistent with the assumed dynamics for risk aver-
sion. The term spread, and earnings yields are signifi-
cantly negatively skewed so that a negative weight on

Figure 2. (Color online) Dynamics and Properties of the Corporate Loss Rate
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Notes. From top to bottom: loss rate lt+1, the cash flow uncertainty state variable lpt, the total conditional variance, and the total variance decom-
position. From Equations (10)–(13), the dynamics of the loss rate total disturbance are determined by four independent gamma shocks (ωp, ωn,
ωlp, andωln), and therefore its conditional variance components are additive; the fourth plot depicts the fractions of the total conditional variance
explained by each of the four shocks at each point of time. The loss rate estimation uses the longest sample available from June 1984 to February
2015, and the estimation results are shown in Table 2. The shaded regions are NBER recession months from the NBERwebsite.
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one of them could also induce positive skewness in
risk aversion, but their skewness coefficients are much
smaller in magnitude.

To identify the risk aversion process and the parame-
ters in the spanning condition, Equation (30), we exploit
the restrictions the model imposes on return risk premi-
ums (equities and corporate bonds), physical conditional
variances (equities and corporate bonds), and risk neutral
variances (for equities only). In terms of measurement,
risk premiums are the monthly excess returns minus the
one-month Treasury bill rate from the end of the prior
month (source: CRSP). We project the monthly realized
variance onto the lagged risk-neutral variance and the
lagged realized variance to obtain the monthly one-period
physical conditional variance PVAReq, analogous to Be-
kaert et al. (2013); the conditional corporate bond variance
under the physical measure (PVARcb) is the projection of
monthly realized variance onto the lagged realized vari-
ance and the lagged credit spread.

Our procedure implies that our risk aversion esti-
mate is forced to satisfy the properties of risk aversion
implied by the model: it is an element of the pricing
kernel, which must, in turn, correctly price asset returns
and be consistent with properties of return volatility
under both the physical and risk-neutral measures. To
accomplish this formally, we adopt a Generalized
Method of Moments (GMM) procedure.

4.2. Estimation Methodology
The estimation uses a GMM system in which we use as
instruments the same variables that are used to span
risk aversion (zt). For the GMM estimation, the sample
spans the period from June 1986 to February 2015 (T �
345 months). Apart from the χ parameters, we must
also identify γ, the curvature parameter,12 and the scale
parameter of the preference shock, σqq. The level of risk
aversion is also driven by the qt process, so that γ may
not be well identified. Therefore, we impose γ � 2. The
GMM system thus has eight unknown parameters

H � χ0,χtsprd,χcsprd,χCF5yr,χrvareq,χqvareq,χrvarcb,σqq[ ],
where the notation is obvious, and CF5yr refers to ei-
ther a detrended dividend or earnings yield (“DY5yr”
or “EY5yr”). Before the moment conditions can be
evaluated, we must identify the state variables and
their shocks, the pricing kernel, and the return shocks.
The estimation process consists of six steps: for each
candidate Ĥ � [χ̂′, σ̂qq] vector:

1. Identify the implied risk aversion series given the
loading choices, q̂t � χ̂

′zt. Consistent with the theoreti-
cal habit motivation for qt � ln ( Ct

Ct−Ht
) (i.e., Ct

Ct−Ht
> 1),

and the statistical assumption for qt (i.e., the shape pa-
rameter of theωq shock > 0), we impose a lower bound-
ary of 10−8 on qt during the estimation, which turns out
to be nonbinding.

2. Identify the state variable levels (Yt) and shocks
(Rωt+1). The parameters of the state variable processes,
{Ymac′

t ,Yfin′
t ,πt,gt,κt,ηt}, are predetermined (see Sec-

tion 3). To identify the risk aversion shock ω̂q, t+1, we
first project q̂t+1 on q̂t, p̂t, n̂t, ω̂p, t+1, ω̂n, t+1, ω̂g, t+1 and
ω̂κ, t+1 to obtain the residual term ûq

t+1, and then divide
it by σ̂qq (see Equation (17)). Given χ̂, a full set of state
variables levels, Ŷ t, and nine independent shocks, ω̂t+1
including ω̂

q
t+1, are now identified.

3. Identify the nominal pricing kernel. Given q̂t, γ, in-
flation and consumption growth as the sum of real log
earnings growth and the change in the log consumption-
earnings ratio (i.e., gt +Δκt), the monthly nominal kernel
is obtained:

̂̃mt+1 � ln (β) − γΔct+1 + γ q̂t+1 − q̂t
( )

−πt+1:

Constant matrices related to the log nominal kernel—
m̃0, m̃1, m̃2 (as in the affine representation of the ker-
nel; see Equation (23))—are implicitly identified.

4. Estimate the return loadings. We project log nomi-
nal asset returns on the 10 × 1 state variable vector Ŷ t
and the 9 × 1 shock vector ω̂t+1:

r̃it+1 � ξi0 + ξi′1 Ŷ t + r̃ i′R̂ω̂t+1 + εit+1, (31)

where r̃it+1 is the log nominal return for asset i, R̂ and
ω̂t+1 are identified previously, and the asset-specific
approximation error shock εit+1 (see Equation (26)) has
mean zero and variance σ2i .

5. Obtain the model-implied endogenous moments.
We derive three moments for the asset returns: (1) the
expected excess return implied by the model (using the
pricing kernel), RPi; (2) the physical (conditional ex-
pected) return variance, VARi, which only depends on
the return definition in Equation (31), and (3) the risk
neutral conditional variance, VARi,Q, which also uses
the pricing kernel. The expressions for these variables
are derived in Equations (27)–(29).

6. Obtain the moment conditions ε(Θ;Ψt). Given
data on asset returns and options, we use the derived
moments to define 7 error terms that can be used to cre-
ate GMM orthogonality conditions. There are three
types of errors we use in the system. First, neither risk
premiums nor physical conditional variances are ob-
served in the data, but we use the restriction that the
observed returns/realized variances minus their ex-
pectations under the null of the model ought to have a
conditional mean of zero:

ε1(H;Ψt) �

r̃eqt+1 − r̃f t
( )

− R̂P
eq
t

RVAReq
t+1 − V̂AR

eq
t

r̃cbt+1 − r̃f t
( )

− R̂P
cb
t

RVARcb
t+1 − V̂AR

cb
t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)
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where r̃it+1 is the realized nominal return from t to
t + 1, r̃f t is the nominal short rate, and RVARi

t+1 is the
realized variance from t to t + 1; Ψt denotes the infor-
mation set at time t. Because the risk neutral variance
can be measured from options data, we use the error:

ε2(H;Ψt) � QVAReq
t − V̂AR

eq,Q
t

[ ]
, (33)

where QVAReq
t is the ex ante risk-neutral variance of

reqt+1. We assume that ε2(H;Ψt) reflects model and mea-
surement error, orthogonal to Ψt. Finally, we also
construct two moment conditions to identify σqq, ex-
ploiting the model dynamics for uqt+1 (i.e., the shock to
the risk aversion process as in Equation (16)):

ε3(H;Ψt) � (̂uq
t+1)2 − (̂σqq)2 q̂t

(̂uq
t+1)3 − 2(̂σqq)3 q̂t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (34)

Let ε1,2(H;Ψt) � ε1(H;Ψt)′ ε2(H;Ψt)
[ ]′. Under our

assumptions these errors are mean zero given the in-
formation set, Ψt. We can therefore use them to create
the usual GMM moment conditions. Given our previ-
ously defined set of instruments, zt, we define the mo-
ment conditions as

E gt(H;Ψt,zt)[ ] ≡ E

ε1,2(H;Ψt)︸###︷︷###︸
5×1

⊗ zt︸︷︷︸
7×1

ε3(H;Ψt)︸###︷︷###︸
2×1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0︸︷︷︸

37×1
:

(35)

To keep the set of moment conditions manageable, we
only use two moment conditions for the identification
of σqq. Denote gt(H;Ψt,zt) (37 × 1) as the vector of er-
rors at time t, and gT(H;Ψ,z) (37 × 1) the sample
mean of gt(H;Ψt,zt) from t � 1 to t � T. Then, the
GMM objective function is

J(H;Ψ,z) ≡ Tg′T(H;Ψ,z)WgT(H;Ψ,z),
whereW is the weighting matrix. We use the standard
GMM procedure, first using an identity weighting
matrix, yielding a first stage set of parameters Ĥ1. We

then compute the optimal weighting matrix as the in-
verse of the spectral density at frequency zero of the
orthogonality conditions, Ŝ1, using five Newey and
West (1987) lags:

Ŝ1 �
∑j�5
j�−5

5− | j |
5

Ê[gt(Ĥ1;Ψt,zt) gt−j(Ĥ1;Ψt−j,zt−j)′]:

(36)

Then, the inverse of Ŝ is shrunk toward the identity
matrix with a shrinkage parameter of 0.1 in obtaining
the second-step weight matrixW2:

W2 � 0:9Ŝ−1 + 0:1I37×37, (37)

where I37×37 is an identity matrix of dimension 37 × 37.
This gives rise to a second-round Ĥ2 estimator. To en-
sure that poor first round estimates do not affect the
estimation, we conduct one more iteration with shrink-
age, compute Ŝ2(Ĥ2), and produce a third-round
GMM estimator, Ĥ3. Last, the asymptotic distribution
for the third-step GMM estimation parameter is��
T

√ (Ĥ3 −H0)→
d
N(0,Avar(Θ̂3)), where Âvar(Ĥ3) �

(G′
T(Ĥ3)Ŝ−1

2 GT(Ĥ3))−1 and where GT denotes the gra-
dient of gT .

Because the estimation involves several steps and is
quite nonlinear in the parameters, we increase the
chance of finding the true global optimum by starting
from 24,000 different starting values for χ̂ drawn ran-
domly from a large set of possible starting values for
each parameter. The global optimum is defined as the
parameter estimates generating the lowest minimum
objective function value.

4.3. Risk Aversion Estimation Results
Table 3 reports the parameter estimates in the span-
ning relation. The system estimates eight parameters
with 37 moment conditions. The test of the overidenti-
fying restrictions fails to reject at the 5% level but

Table 3. Risk Aversion Spanning Parameters

Panel A: Estimation results

Constant χtsprd χcsprd χEY5yr χrvareq χqvareq χrvarcb

Estimate 0.050 −0.753 7.166 0.763 216.984 54.038 118.248
(Standard error) (0.014) (0.566) (1.030) (0.291) (0.490) (1.753) (10.826)
VARC −0.90% 23.30% 2.18% −34.12% 98.93% 10.62%

Panel B: Specifications

ρ(qt,NBERt) 0.454 Hansen’s J 41.1254
(Standard error) (0.043) p-value 0.0671

Notes. This table presents the GMM estimation results for risk aversion, qt � χ′zt , using equity market and corporate bond market asset
moments. The GMM system also consistently estimates σqq, and has a total of eight unknown parameters. The p-value of Hansen’s
overidentification test (J test) is calculated from the asymptotic χ2 distribution with the degree of freedom being 29 (37 − 8). Variance
decomposition (VARC) of a linear variable zt is obtained by χz

cov(qt, zt)
var(qt) × 100% (the sum � 100%). Efficient standard errors are shown in

parentheses. Bold coefficients have < 5% p-values. The sample period is June 1986 to February 2015 (345 months).
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rejects at the 10% level. (We investigate the fit of the
model along various dimensions in more detail later.)
Except for the term spread, all instruments are signifi-
cant at the 10% level or better. The positive coefficient
on the risk neutral and the negative coefficient on the
physical realized equity return variances is consistent
with the idea that the variance risk premium (the dif-
ference between the two) may be quite informative
about risk aversion in financial markets (Bekaert and
Hoerova 2016). To translate the coefficients into statis-
tics of economic importance, we also report a variance
decomposition, reporting the ratio of the covariance
of the estimated coefficient times the instrument with
risk aversion over the variance of risk aversion (these
statistics sum up to 100%). Jointly the realized and
risk neutral variance account for 65% of the total risk
aversion variation; the credit spread and the realized
corporate bond variance for about 35%. The implied
risk aversion process shows a 0.45 correlation with the
NBER indicator and is thus highly counter-cyclical.

In Table 4, we estimate the dynamic properties of
the risk aversion process according to Equation (16).
All the parameters are estimated by Ordinary Least
Squares, except for the σqq parameter, which is deliv-
ered by the GMM estimation. The process shows
moderate persistence (an autocorrelation coefficient of
0.74), and the conditional mean also shows significant
positive loadings on pt and nt. However, qt and nt ac-
count for 84% and 16% of the variation in the condi-
tional mean, respectively. Risk aversion shocks do not
load significantly on the macroeconomic shocks, and
therefore, most of their variation is driven by the risk
aversion specific shock. These results suggest that eco-
nomic models that impose a very tight link between

aggregate fundamentals and risk aversion, such as
pure habit models (Campbell and Cochrane 1999) are
missing important variation in actual risk aversion. In
addition, risk aversion is much less persistent than the
risk aversion implied by these models; the autocorre-
lation coefficient of the surplus ratio process in the CC
model is 0.99 at the monthly level, compared with
0.74 for qt. This result is not preordained as many of
the financial instruments spanning risk aversion are
highly persistent, with the earnings yield being most
persistent. In CC, the dividend yield is a sufficient sta-
tistic for risk aversion. Our results suggest that, in the
context of our model, a measure of risk aversion that
depends solely on the dividend yield would not fare
well with respect to the moments that we fit in the
GMM step.

Table 5 examines in more detail how well the esti-
mated dynamic system fits critical asset price mo-
ments in the data. The moments are reported in
monthly units; for example, the monthly equity pre-
mium produced by the model is 80 basis points. All
model moments are within two standard errors of the
data moments and most are within one standard error
of the data moment.13 The model overestimates the
equity premium but is still close to within one stan-
dard error of the data moment. The corporate bond
risk premium is 10 basis points higher than the data
moment. The model implied variance moments are all
quite close to their empirical counterparts. Finally, the
table also reports the model-implied variance and un-
scaled skewness of the risk aversion innovation, σ2qqqt
and 2σ3qqqt, respectively.

The model endogenously generates the implied risk
neutral variance, which can be compared with the actual

Table 4. Structural Risk Aversion Parameters

Structural risk aversion parameters qt+1

Projection GMM

q0 ρqp ρqn ρqq σqp σqn σqg σqκ σqq
Estimate −0.0503 0.0003 0.0036 0.7387 0.0004 0.0004 −0.0002 −0.0040 0.1417
(Standard error) (0.0538) (0.0001) (0.0007) (0.0351) (0.0002) (0.0022) (0.0069) (0.0069) (0.0020)

Conditional mean variance decomposition (75% of total variance)

pt nt qt
VARC −0.01% 16.21% 83.81%

Shock structure variance decomposition (25% of total variance)

ωp,t+1 ωn,t+1 ωg,t+1 ωκ,t+1 ωq,t+1
VARC 0.86% 0.00% −0.01% 0.17% 99.14%

Notes. This table presents the model-implied risk aversion process parameters. In the first panel, parameter estimates are obtained either from
simple projection or from the GMM estimation. The second and third panels report the variance decomposition results of the conditional mean

and shock structure of q̂t+1, respectively. In the second panel, VARC of a linear variable x with coefficient βx is as follows, VARC � βx
cov(̂y,x)
var(̂y) ,

where ŷ � Êt (̂qt+1); VARC in the third panel uses ŷ � q̂t+1 − Êt (̂qt+1). Robust and efficient standard errors are shown in parentheses. Bold (italic)
coefficients have <5% (10%) p-values. The sample period is June 1986 to February 2015 (345 months).
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risk neutral variance. The two series are 87.9% correlat-
ed, which represents a remarkable fit, but the model
does fail to match some distinct spikes of the VIX in sev-
eral crisis periods (see Figure F.2 in the online appendix).

4.4. Robustness
Online appendix G considers several robustness checks
to our main estimation. We consider different values
for gamma (1.1; 3.5 or estimated), consider setting pt
constant at 500 (given its minor role in asset pricing dy-
namics), and consider qt loading on only pt and nt rath-
er than all macro-shocks. It turns out that γ is estimated
to be 2.124. Although some of the spanning parameters
change across different specifications, the resulting risk
aversion process is highly correlated with the one ana-
lyzed in this article. The one exception is the model
with γ � 3.5, where the risk aversion process is only
72% correlated with the reported one, but this model is
rejected by Hansen’s J-test and fails to fit the key corpo-
rate bond moments. We conclude that our current esti-
mation is robust to slight specification variations.

5. Risk Aversion, Uncertainty, and
Asset Prices

In this section, we first characterize the link between
risk aversion and macroeconomic uncertainty, and as-
set prices. Then, we present external validation evi-
dence of our risk aversion measure.

5.1. Risk Aversion, Uncertainty, and
Asset Returns

Figure 3 graphs the risk aversion process (top plot),
raBEXt , which in our model equals raBEXt � γexp (qt).
The gray lines around the estimates represent a 90%
confidence interval, reflecting the sampling error in
the coefficient estimates.14

Clearly, these intervals are extremely tight. The
weak counter-cyclicality of the process is immediately

apparent with risk aversion spiking in all three reces-
sions but also showing distinct peaks in other periods.
The highest risk aversion of 8.03 is reached at the end
of October in 2008, at the height of the Great Reces-
sion. However, the risk aversion process also peaks in
the October 1987 crash, the August 1998 crisis (Russia
default and Long-Term Capital Management (LTCM)
collapse), after the Internet bull market ended in Au-
gust 2002 and in August 2011 (Euro area debt crisis).

How important is risk aversion for asset prices? In
our model, the priced state variables for risk premi-
ums and variances are those entering the conditional
covariance between asset returns and the pricing ker-
nel and therefore are limited to risk aversion qt, the
macroeconomic uncertainty state variables, pt and nt,
and the loss rate variability lpt. In Table 6, we report
the loadings of risk premiums and variances on the
four state variables. To help interpret these coeffi-
cients, we scaled the projection coefficients by the
standard deviation of the state variables so that they
can be interpreted as the response to a one standard
deviation move in the state variable. For the equity
premium, by far the most important state variable is
qt, which has an effect more than 10 times larger than
that of nt. The effects of pt and lpt are trivially small.
The economic effect of a one standard deviation
change in qt is large representing 51 basis points at the
monthly level (this is a bit lower than the average
monthly equity premium). For the corporate bond
premium, nt and qt are again the most important state
variables. A one standard deviation increase in nt in-
creases the monthly corporate bond risk premium by
4 basis points, representing more than 10% of the av-
erage monthly premium. The effect of qt is about three
times as large as the effect of nt.

The coefficients for variances are somewhat harder
to interpret, but nt and qt remain the most important
state variables with the former (latter) more important

Table 5. Fit of Moments

Moment Model Empirical average
Boot.standard error/

standard error

Mom 1 Equity risk premium 0.00800 0.00530 (0.00246)
Mom 2 Equity physical variance 0.00325 0.00286 (0.00051)
Mom 3 Equity risk-neutral variance 0.00393 0.00397 (0.00049)
Mom 4 Corporate bond risk premium 0.00488 0.00388 (0.00050)
Mom 5 Corporate bond physical variance 0.00023 0.00024 (0.00003)
Mom 6 Risk aversion innovation variance 0.00783 0.00843 (0.00163)
Mom 7 Risk aversion innovation unscaled skewness 0.00222 0.00164 (0.00078)

Notes. This table evaluates the fit of conditional moments of equity and corporate bond returns. Column “Model” reports the averages of the
relevant model-implied conditional moments. The “Empirical average” represent the sample averages of the excess returns (for Mom 1 and
Mom 4), and the sample averages of empirical conditional variances (for Mom 2, Mom 3, and Mom 5). For Mom 6 and Mom 7, “Risk aversion
innovation” refers to uqt+1 in Equation (16); the variance and unscaled skewness rows compare the average model-implied conditional moments
with the unconditional moments. Block bootstrapped standard errors are shown in parentheses; we allow the block size to vary for different
moments to accommodate different levels of persistence: block sizes � [0 6 15 1 10] for Mom 1 to Mom 5, respectively. Asymptotic standard
errors are reported for Mom 6 and Mom 7. Bold numbers denote a distance of less than 1.645 standard errors from the corresponding empirical
point estimates. The sample period is June 1986 to February 2015 (345 months).
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for corporate bond (equity) variances. The one variable
for which qt is only the thirdmost important variable is
the corporate bond physical variance, which reacts
more strongly to nt and lpt. Recall that lpt measures the
idiosyncratic component in corporate loss rates but
that loss rates load very significantly on our business
cycle variable.

Because the relationship between asset prices and
state variables is affine, we also compute a variance de-
composition. That is, we compute, for x ∈ p,n, lp,q

{ }
,

coefficient on xt × Cov(xt,Momt)
Var(Momt) , where Mom represents

an asset price moment like the equity risk premium or
corporate bond physical variance. These variance pro-
portions add up to one. In themodel, 97% of the equity
risk premium’s variance is driven by risk aversion;
only 72.5% of the corporate bond risk premium is driv-
en by risk aversion, whereas 27.5% is accounted for by
bad macroeconomic uncertainty. The physical equity
variance is predominantly driven by risk aversion

(72.5%), whereas 85% of the corporate bond return’s
physical variance is driven by bad macroeconomic un-
certainty. Nevertheless, macroeconomic uncertainty
also accounts for 27.5% of the variance of the physical
equity variance. It would be logical that the risk neutral
variance would load more on risk aversion and less on
macroeconomic uncertainty than the physical variance
and this is indeed the case, with risk aversion account-
ing for 85.5% of the variance of the risk neutral
variance.

Bekaert et al. (2013) argue that the variance risk pre-
mium houses much information about risk aversion.
Is this true in our model? To answer this question, we
compute the model-implied variance risk premium as
the difference between the risk neutral variance and
the physical variance. A projection on the 4 state vari-
ables reveals that 96.8% of the variance of the variance
risk premium is accounted for by risk aversion. Con-
versely, regressing risk aversion on the variance

Figure 3. (Color online) Risk Aversion Index and Uncertainty Index

198606 199007 199409 199811 200301 200703 201105 201502
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Risk Aversion Index
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2.5

Uncertainty Index

Notes. The risk aversion index is denoted as raBEXt � γexp(qt) and the uncertainty index is denoted as uncBEXt . Both qt and uncBEXt are linear func-
tions of a set of financial instruments as in Equations (30) and (39), respectively. The utility curvature parameter γ is 2. The correlation between
the two series is 81.70%. The gray region denotes 90% confidence intervals around the point estimates. These intervals are computed using the
asymptotic variance-covariance matrix of the spanning coefficients and the Delta method. The shaded regions are NBER recession months from
the NBERwebsite.
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premium, the coefficient is 170.50 with a t-statistic of
49.08, and the R2 is 87.5%. Through the lens of our
model, the variance premium is clearly a good proxy
for risk aversion. However, they are not identical. As
Cheng (2019) discusses in detail, the estimates of the
variance risk premium occasionally go negative,
whereas our risk aversion process, by construction,
never does. Moreover, the residual from a regression
of risk aversion on the variance risk premium shows
meaningful time variation that is highly correlated
with the credit spread and earnings yield. This residu-
al is also statistically significantly counter-cyclical.
These properties of our risk aversion processes are ro-
bust across specification variation as shown in Online
Appendix G.

We next verify that the model-implied risk premi-
ums indeed predict realized excess returns. We test
this in Table 7. We regress realized cumulative excess
returns in the equity and corporate bond markets at
various horizons on the corresponding model-implied
risk premium estimates. The R2’s increase with hori-
zon, topping out at 14.63% at the 12-month horizon
for corporate bonds, but do not exceed 0.43% for

equity returns. All coefficients are statistically signifi-
cant at the 10% level. The one-month risk premiums
are also more than 47.6% correlated with the NBER re-
cession indicator and thus counter-cyclical.

Given the vast literature on return predictability, it
is informative to contrast the predictive power of our
model implied premiums with the predictive power
of the usual predictors used in the literature. We do
this exercise out-of-sample as the literature has shown
huge biases because of in-sample overfitting (Welch
and Goyal 2008) and parameter instability (Koijen and
Van Nieuwerburgh 2011). We consider five empirical
models, depending on the predictors used: (1) earn-
ings yield, (2) earnings yield, term spread, and credit
spread, (3) and (4) analogous to (1) and (2), respective-
ly, with the dividend yield replacing the earnings
yield, and (5) physical uncertainty and variance risk
premium estimate. For equity (corporate bond) re-
turns, we use the physical uncertainty derived from
equity (corporate bond) returns as before. We then
generate out-of-sample predictions for the risk premi-
ums by starting the sample after five years of data and
then running rolling samples to generate predictions

Table 7. Predicting Excess Returns Using Model-Implied Risk Premiums

Regression Estimates of bk in 1
k
∑k

i�1 r̃ t+i − r̃f t+i−1 � ak + bk 1k
∑k

i�1Et(RPt+i−1) + εt+k

Equity Corporate bond

1 month 3 months 6 months 12 months 1 month 3 months 6 months 12 months

bk 0.7598 0.5094 0.5644 0.4247 1.3802 1.6708 1.4752 1.5166
(0.4167) (0.2817) (0.2356) (0.2146) (0.4127) (0.2743) (0.2241) (0.2017)

R2 0.24% 0.24% 0.43% 0.30% 3.18% 9.87% 11.43% 14.63%

Notes. This table evaluates the k-month return predictability using model-implied k-month risk premiums. The k-month excess returns are
1
k
∑k

i�1 r̃t+i − r̃f t+i−1. The model-implied k-month risk premiums are 1
k
∑k

i�1Et(RPt+i−1), where RPt+i−1 denotes the model-implied one-month ahead
expected excess returns of t + i. Given the model solution, the expectation of future risk premiums, Et(RPt+i−1), is obtained using the law of
iterated expectations for i > 1. Hodrick (1992) standard errors are reported in parentheses, and adjusted R2s are in percentages. Bold (italic)
coefficients have <5% (10%) p-values.

Table 6. Model-Implied Coefficients of Moments on State Variables {pt,nt, lpt,qt}

Conditional moment

Upside economic
uncertainty

pt

Downside economic
uncertainty

nt

Cash flow
uncertainty

lpt
Risk aversion

qt

Mom 1 Equity risk premium 0.1506 2.7861 −0.0853 50.5085
VARC 20.004% 3.256% 20.033% 96.782%

Mom 2 Equity physical variance 0.0486 2.8394 0.0556 6.1202
VARC 20.063% 27.466% 0.137% 72.460%

Mom 3 Equity risk-neutral variance 0.0487 2.8065 0.0556 11.9204
VARC 20.022% 14.350% 0.083% 85.589%

Mom 4 Corporate bond risk premium 0.0626 3.5398 0.1151 12.1779
VARC 20.032% 17.668% 0.164% 82.200%

Mom 5 Corporate bond physical variance 0.0004 0.1483 0.0394 0.0181
VARC 20.073% 84.807% 8.136% 7.130%

Notes. This table reports the decomposition of model-implied conditional moments by the four state variables, {pt,nt, lpt,qt}: coefficients and
variability decomposition. The closed-form solution of each conditional moment is shown in Section 2 (see the online appendix for detailed
derivations). For interpretation and reading purposes, the coefficients are multiplied by standard deviations of the corresponding state variables
of the same column and then multiplied by 10,000. The variance decomposition (VARC) is reported in a bold italic font and is calculated by
coefficient × Cov(xt,Momt)

Var(Momt) where x ∈ {p,n, lp,q} andMom is fromMom 1 toMom 5. The four VARCs in the same row add up to 100%.
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from the five-year point to one month ahead. With
those competing risk premium estimates in hand, we
then run simple horse races over the full sample by es-
timating

r̃t+1 − r̃ft � a Mod(t) + (1 − a) Emp Mod(t, i)
+ et+1, for i � 1, : : : , 5: (38)

where Mod(t) represents the one-month-ahead
model-implied risk premium, and Emp Mod(t,i) rep-
resents the one-month-ahead empirical model-im-
plied risk premium, depending on the predictor set i
as mentioned above.

The results for the a coefficient are reported in
Table 8. The implied risk premiums from the model
clearly outperform the empirical models for both eq-
uity and corporate bond returns with the a coeffi-
cient being well over 0.50, varying between 0.81 and
1.01. All a coefficients are highly statistically differ-
ent from zero. We conclude that our model captures
the predictable variation better than the fitted values
extracted from standard instruments used in the lit-
erature. Although it is true that the model risk pre-
miums are not truly out-of-sample, the exercise im-
poses the structural parameter stability and
numerous restrictions implied by the model. The
poor performance of the empirical models involving
the earnings and dividend yields may be surprising
relative to an older return predictability literature,
but direct regressions reveal that the equity yield
variables have no statistically significant predictive
power for our sample period.

Finally, Figure 4 compares the model-implied equity
premium with the lower bound for the equity premi-
um proposed and estimated by Martin (2017). Martin

(2017) shows that the equity premium can be bounded
by an index of option prices, closely related to but not
identical to the VIX. Our estimates are larger but show
very similar variation compared with the bound of
Martin (2017). In fact, the correlation between the two
series in the overlapping sample is 95%. This is not
surprising given our previous results. Risk aversion is
highly correlated with the variance risk premium and
is also the main determinant of the equity risk premi-
um in the model (Table 6). These results also provide
economic confirmation of the empirical finding that
the variance risk premium robustly predicts stock re-
turns, but the conditional variance in the stock market
fails to predict returns or predicts returns with a nega-
tive sign (Bekaert and Hoerova 2014).

5.2. Interpreting Economic Uncertainty
Because of its dependence on financial instruments,
we can compute risk aversion even at a daily level. In
contrast, economic uncertainty, the conditional vari-
ance of industrial production growth, is a function of
both pt and nt, σ2θppt + σ2θnnt (Table 1), and is filtered at
the monthly level. Here, we use financial instruments
to approximate macro uncertainty.

In Table 9, we show the coefficients from a regres-
sion of uncertainty on the financial instruments used
to span risk aversion and two additional instruments,
the detrended dividend yield, and realized variances
of speculative bond returns. We obtain monthly real-
ized speculative corporate bond return (source: FRED,
“ICE BofAML US High Yield Total Return Index”)
variances using the same methodology as for overall
corporate returns. Because the daily index only starts
in February 1990, we use an empirical model to fill in
the missing data from June 1986 to January 1990.15

Table 8. Out-of-Sample Predictability

Least-square estimates of a in
r̃t+1 − r̃f t � ai ×Mod(t) + (1− ai) × Emp Mod(t, i) + et+1

Emp Mod (1) (2) (3) (4) (5)

Equity

ai 0.8228 0.9266 0.9067 0.9658 0.8086
(0.1079) (0.0943) (0.0495) (0.0327) (0.0802)

R2 0.7% 1.1% 1.3% 1.7% 1.8%

Corporate bond

ai 0.9351 0.8272 1.0114 0.8294 0.8108
(0.1294) (0.0798) (0.1307) (0.0827) (0.0756)

R2 0.9% 1.8% 0.9% 1.6% 2.5%

Notes. This table evaluates the relative importance of model-implied risk premium estimates and empirical
risk premium estimates in predicting future excess returns. “Mod” represents the model-implied risk
premiums whose dynamics are fully spanned by {pt,nt, lpt,qt}. The empirical risk premium estimates are
obtained out-of-sample (using five years of data); “EmpMod (i)” (i � 1, 2, 3, 4, 5) corresponds to predictor set
(1) {EY5yr}, (2) {tsprd, csprd,EY5yr}, (3) {DY5yr}, (4) {tsprd, csprd,DY5yr}, and (5) {PVAR, VRP}. The table
reports the optimal combination of model-implied and empirical risk premium estimates that minimizes the
sum of squared residuals. Least square standard errors are shown in parentheses. Bold coefficients have <5%
p-values (against zero).
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The R2 is 50% and uncertainty loads significantly
on all instruments except for the realized equity and
speculative bond return variances. Unlike the risk
aversion process, uncertainty loads very strongly on
both credit spreads and the physical corporate bond
variance. The term spread also has a significant neg-
ative effect on uncertainty (and no effect on risk
aversion). This makes sense as flattening yield
curves are associated with future economic down-
turns. The table also reports regressions from the
two components in macroeconomic uncertainty, bad
and good uncertainty, onto the instruments. Clearly,
the variation in macroeconomic uncertainty is domi-
nated by the bad component and the coefficients for
the bad component projection are very similar to
those of total uncertainty. We also report the results
from a variance decomposition applied to the fitted
values of the regression. The credit spread explains
almost 63% of the explained uncertainty variation.
The dividend and earnings yield variables likely off-
set one another partially with one contributing a
positive, the other a negative amount to the total
variation but jointly the equity yield variables still
explain close to 20%. Finally, the risk neutral equity
variance and the physical corporate bond return var-
iance each contribute about 12%–14% of the ex-
plained variation of uncertainty.

From this analysis, we create an uncertainty index
representing the part of economic uncertainty that is
explained by the financial instruments:

uncBEXt � χunc′zt: (39)

In the bottom plot of Figure 3, we graph the uncer-
tainty proxy with a confidence interval obtained from
the asymptotic variance-covariance matrix of χunc in
Equation (39). The correlation between actual uncer-
tainty and risk aversion is 60%; when we use the
proxy, the correlation increases to 82%. Obviously,
most of the time crisis periods feature both high un-
certainty and high risk aversion. There are exceptions
however. For example, the October 1987 crash hap-
pened during a time of relatively low economic uncer-
tainty. It also appears that at the end of the 1990s,
macro uncertainty secularly increases, consistent with
the Great Moderation ending around that time (Baele
et al. 2015). The uncertainty index is measured with
more error than is the risk aversion index.

Bloom (2009) has argued that uncertainty, extracted
from data on the VIX and realized stock return varian-
ces, precedes bad economic outcomes. Segal et al.

Figure 4. (Color online) Model-Implied Equity Premium and
the Equity Premium Lower Bound of Martin (2017)

198606
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Notes. The solid line depicts the model-implied monthly equity pre-
mium, as formulated in Equation (27). The dashed line depicts the
“epbound” series constructed byMartin (2017), representing the low-
er bound to the equity premium as given by the right-hand side of
the inequality in equation (15) of his paper. This series is available
from January 1996 to January 2012 and is downloadable from http://
personal.lse.ac.uk/martiniw/. Note that Martin (2017) reports annu-
alized lower bound estimates at the daily frequency; the dashed red
line in this plot takes the end-of-month values and divides them by
12 to match with the monthly numbers in our analysis. The shaded
regions are NBER recession months from the NBERwebsite. The two
series are 94.78% correlated.

Table 9. Projecting Macroeconomic Uncertainty on
Financial Instruments

Total VARC Upside VARC Downside VARC
(× 103) (× 103) (× 103)

Constant −0.009 0.006 −0.015
(0.005) (0.000) (0.005)

χtsprd −0.577 −2.33% −0.004 2.70% −0.573 −2.47%
(0.112) (0.002) (0.112)

χcsprd 2.024 62.69% −0.016 6.52% 2.040 62.32%
(0.246) (0.004) (0.246)

χDY5yr 2.343 41.57% −0.162 139.79% 2.505 44.74%
(0.456) (0.007) (0.456)

χEY5yr −0.609 −22.57% 0.048 −55.56% -0.657 −24.28%
(0.189) (0.003) (0.189)

χrvareq −0.257 −3.76% −0.002 −0.03% −0.255 −3.65%
(0.620) (0.010) (0.621)

χqvareq 1.190 13.25% 0.066 5.20% 1.124 12.20%
(0.669) (0.010) (0.670)

χrvarcb 17.792 13.67% −0.056 0.37% 17.848 13.49%
(5.927) (0.092) (5.935)

χrvarcbSPEC −2.233 −2.51% −0.108 1.01% −2.125 −2.35%
(5.564) (0.087) (5.571)

R2 50.20% 70.80% 50.60%

Notes. This table presents regression results of the monthly
macroeconomic uncertainties (estimated from industrial production
growth; see Table 1) on monthly financial instruments; some are used
to span time-varying risk aversion. “Total” indicates the total
industrial production growth conditional variance, or σ2θppt + σ2θnnt;
“Upside”, σ2θppt; “Downside”, σ2θnnt. “ × 103” means that the
coefficients and their standard errors are multiplied by 1,000 for
reporting convenience. VARC reports the variance decomposition.
Robust and efficient standard errors are shown in parentheses.
Adjusted R2s are reported. Bold (italic) coefficients have <5% (10%) p
values. The sample period is June 1986 to February 2015 (345 months).
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(2015) show that a measure of bad macroeconomic un-
certainty predicts economic growth negatively. We re-
gress future real industrial production growth at vari-
ous horizons on our uncertainty index—its financial
proxy and the actual one—and the risk aversion pro-
cess. In addition, we use the squared VIX (or QVAR
in our notation). The results are in Table 10. We use
Hodrick (1992) standard errors to accommodate the
overlap in the data. Panel A shows univariate results.
All indices predict growth with a negative sign at the
one month, one quarter and one year horizons. Our fi-
nancial instrument uncertainty index generates the

highest R2 by far. This suggests that it is indeed macro
uncertainty predicting output growth, with the VIX
having much lower predictive power in univariate re-
gressions. The actual macroeconomic uncertainty (col-
umn “unctrue”) exhibits substantially more predictive
power than the VIX (column “QVAR”) but still sub-
stantially less than the combination of financial instru-
ments most correlated with it (column “uncBEX”). This
is likely because of the important role played by the
credit spread in uncBEX, with the credit spread known
to predict future economic activity (see De Santis 2018
and references therein).

Table 10. On the Predictive Power of Risk Aversion and Uncertainty for Future Output
Growth

uncBEX raBEX QVAR unctrue

Panel A: Univariate

1 month −0.0028 −0.0021 −0.0016 −0.0023
(0.0004) (0.0004) (0.0006) (0.0006)
20.6% 11.1% 6.5% 13.1%

3 months −0.0027 −0.0021 −0.0017 −0.0023
(0.0004) (0.0004) (0.0005) (0.0005)
37.9% 21.9% 15.3% 26.5%

12 months −0.0014 −0.0007 −0.0006 −0.0009
(0.0003) (0.0003) (0.0002) (0.0003)
17.7% 4.3% 3.7% 6.5%

Panel B: Multivariate (1) R2

1 month −0.0034 0.0007 21.1%
(0.0007) (0.0006)

3 months −0.0031 0.0005 38.3%
(0.0006) (0.0005)

12 months −0.0025 0.0014 23.3%
(0.0005) (0.0004)

Panel C: Multivariate (2) R2

1 month −0.0031 0.0004 20.9%
(0.0005) (0.0004)

3 months −0.0028 0.0001 37.9%
(0.0005) (0.0004)

12 months −0.0017 0.0005 18.8%
(0.0004) (0.0002)

Panel D: Multivariate (3) R2

1 month −0.0025 −0.0005 20.9%
(0.0005) (0.0007)

3 months −0.0022 −0.0007 39.1%
(0.0004) (0.0004)

12 months −0.0016 0.0003 18.0%
(0.0003) (0.0003)

Notes. This table reports the coefficient estimates of the following predictive regression:

1
k

∑k
τ�1

θt+τ � ak + b′kxt + ωt+k,

where 1
k
∑k

τ�1θt+τ represents the future k-month industrial production growth from t + 1 to t + k, and xt
represents a vector of current-month predictors: (1) our financial instrument proxy of economic uncertainty,
uncBEX, (2) our risk aversion, raBEX, (3) the risk-neutral conditional variance (the squared month-end VIX
(VXO before 1990) index divided by 120,000), QVAR, and (4) the true total macroeconomic uncertainty
filtered from industrial production growth unctrue (Table 1). The coefficients are scaled by the standard
deviation of the predictor in the same column for interpretation purposes. Hodrick (1992) standard errors are
reported in parentheses, and adjusted R2s are reported on the third line in Panel A and in the right hand side
column in Panel B. Bold (italic) coefficients have <5% (10%) p-values.
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This result is confirmed in multivariate regressions.
In Panels B–D of Table 10, we pit the financial instru-
ment uncertainty proxy versus risk aversion (Panel B),
the squared VIX (Panel C), and actual economic un-
certainty (Panel D). In every single case, uncBEX is
highly statistically significant at all horizons, whereas
the coefficients on the other variables mostly turn in-
significant and often become positive.16

Uncertainty measures have become very popular in
the macroeconomic literature. Jurado et al. (2015) use
the weighted sum of the conditional volatilities of 132
financial and macroeconomic series, with the bulk of
them being macroeconomic. They have three versions
of the measure depending on the forecasting horizon,
but we focus on the one month horizon, which is most
consistent with our model. The correlation with our
economic uncertainty index, which only uses industri-
al production data, is highly significant and substan-
tial at 81%.

Macroeconomic uncertainty may be correlated with
political uncertainty, which has recently been pro-
posed as a source of asset market risk premiums
(Pástor and Veronesi 2013). Baker et al. (2016) create a
policy uncertainty measure, based on newspaper cov-
erage frequency. The index shows a highly significant
correlation of 0.34 with our uncertainty index.

Finally, we also examine the correlation between lpt,
the idiosyncratic variance component of corporate
bond loss rates, with financial instruments, but the R2

in such a regression is only 9% (see the online appen-
dix, Table F.3).

5.3. External Validation of the Risk
Aversion Measure

Ultimately, our risk aversion proxy is a latent pricing
kernel variable that helps the model fit corporate
bond and equity risk premiums, variance dynamics,
and the risk neutral equity variance in an internally
consistent fashion. We cannot, however, exclude that
other models with alternative latent variables fit the
data equally well. In addition, models outside of ex-
pected utility frameworks, such as prospect theory
with probability weighting (Baele et al. 2019) or mod-
els featuring biased expectations or beliefs (Lochstoer
and Muir 2021), may provide plausible alternative ex-
planations for the data. To hopefully increase the
reader’s comfort with Q actually measuring aggregate
risk aversion, we now provide several external valida-
tion exercises.

First, although risk aversion features a pure prefer-
ence shock in our model, it is motivated by a habit
framework, and we therefore expect it to be consistent
with the typical habit intuition. Following Wachter
(2006), we create a fundamental risk aversion process
from consumption data and the parameter estimates
of Campbell and Cochrane (1999). Recall that the

curvature of the utility function is a negative affine
function of the log “consumption surplus ratio,”
which in turns follows a heteroskedastic autoregres-
sive process with shocks perfectly correlated with con-
sumption growth. This habit risk aversion has a 0.21
correlation with our risk aversion measure, which is
significantly different from zero. Work by Bekaert
et al. (2010) and Martin (2017) also suggests the exis-
tence of more variable risk aversion in financial mar-
kets, imperfectly correlated with fundamentals.

A salient implication of the habit framework is that
bad economic shocks should increase risk aversion.
Even if true, it is unlikely that realized monthly or quar-
terly consumption growth data capture all relevant
news. Much relevant economic news and events hitting
markets every day are not captured in the actual
economic data until much later, if at all. We therefore
calculate daily measures of macro shocks (actual data
minus survey expectations) around seven macro an-
nouncements, industrial production, the unemploy-
ment rate, gross domestic product (GDP), the consumer
price index (CPI), balance of payments, consumer confi-
dence, and manufacturing confidence. We link our
model implied risk aversion measure to their end-of-
month cumulative shocks as a more direct measure of
salient economic news. Models in the Campbell-
Cochrane tradition predict negative links with industri-
al production and GDP news, and a positive link with
unemployment rate news. Table F.4 in the online ap-
pendix shows that these are indeed the three variables
that show a statistically significant link with risk aver-
sion; however, GDP growth news has an anomalous
positive sign. Positive confidence news decreases risk
aversion but the effect is insignificant, as are the effects
of the balance of payments and inflation (undermining
somewhat the model of Brandt and Wang 2003 linking
risk aversion to inflation). When we run a multivariate
regression, the three economic activity measures re-
main statistically significant and no other variables are
significant, with the coefficient signs remaining un-
changed. Among the seven macro news shocks, indus-
trial production shocks alone account for 50% of the
risk aversion variation explained by macro news
shocks, with unemployment accounting for 33% and
GDP news only accounting for 12% of explained varia-
tion. Overall, the reaction of our risk aversion to macro-
economic announcements is mostly in line with the
habit intuition. However, importantly, the R2 contribut-
ed by these macro shocks in all these regressions is
quite low, which is of course consistent with our main
finding that the bulk of the variation in risk aversion is
not driven by macro fundamentals.

Second, and stepping outside of the paradigm of
habit-based utility functions, the behavioral finance
literature suggests that the sentiment of retail invest-
ors may drive asset prices and cause nonfundamental
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price swings. We now analyze in depth the relation-
ship between our risk aversion measure and alterna-
tive sentiment/confidence measures that, important-
ly, do not rely on asset prices. The various measures
are listed in Table 11. The expected sign is reported in
the last column. In Panel A, we examine several meas-
ures that measure the sentiment of consumers, mostly
through surveys, such as Conference Board, the Uni-
versity of Michigan (see also Lemmon and Portniaguina
2006 and Qiu and Welch 2004), the Organisation for
Economic Co-operation and Development (OECD),
and Reuter’s surveys. Such surveys tend to measure
the confidence or sentiment of consumers regarding
the economic outlook and may therefore be directly
related to their overall risk aversion, without refer-
ence to asset prices. Table 11 shows that all the four
confidence/sentiment survey measures show significant
and negative correlations. The strongest correlation is
with Reuter/Ipsos consumer sentiment measure. Their
index is a composite index of 11 questions regarding the
overall and current economic and financial situation
that is run monthly via online polls. We also use two
variants of a text-based measure from Da et al. (2014),
who create a risk aversion measure based on the volume
of Internet searches for words such as “recession” and
“bankruptcies.” However, their month-end indices are
weakly correlated with our measure, perhaps confirm-
ing that sentiment goes beyond pure economic news. In
the next to last column, we orthogonalize the various
sentiment measures with respect to our economic uncer-
tainty measure and compute the risk aversion index’s
correlation with the residual. The correlations go down
in magnitude but remain negative and significant for all
four confidence measures.

In Panel B of Table 11, we use confidence measures
aimed at investors rather than consumers. Here, asset
prices may indirectly influence the measures. The
Yale and the American Association of Individual In-
vestors (AAII) surveys essentially gauge the percent-
age of individual investors who are bullish or bearish
about the stock market. The Sentix sentiment index
measures investor emotion (fear, greed, etc.) using
weekly surveys of more than 5,000 private and institu-
tional investors in 14 financial markets. All measures
show the correct sign, and all are significant, with the
Sentix measure being particularly highly correlated
with our risk aversion index (at −0.66). Again, the corre-
lations decrease when the measures are orthogonalized
with respect to economic uncertainty, but they remain
significantly correlated with our risk aversion measure,
with the exception of the AAII-bullish percentage. In
Panel C, the OECD business confidence index is −0.36
correlated with our risk aversion index, whereas the
news based sentiment measure of Shapiro et al. (2020)
is −0.49 correlated with risk aversion in Panel D. The
latter measure computes the average tone of economic

news articles (therefore, positive economic news is asso-
ciated with positive values of the index).

We also conduct a multivariate analysis, computing
the first principal component (PCA) of the standard-
ized and orthogonalized consumer- and investor-based
sentiment measures. As Panel F of Table 11 indicates,
the consumer PCA receives a coefficient of 0.20; the in-
vestor PCA a coefficient of 0.16, both highly statistically
significant. The consumer PCA accounts for 58.2% of
the predictable variation; the investor PCA for 41.8% of
the variation. The adjusted R2 is 30.5% so that a linear
function of these two PCA’s is more than 55% correlat-
ed with our risk aversion measure. Using the business
confidence measure in either PCA measure actually
worsens the fit (see online appendix, Table F.6).

Measures of confidence, especially when extracted
from questions regarding future economic outcomes,
may not necessarily be revealing about the mood and
sentiment of consumers, and investors. In fact, Barsky
and Sims (2012), using an analysis of the predictive
content of consumer confidence for economic activity
far in the future, find that confidence innovations
largely reflect genuine news about future productivi-
ty, which does not show up in current macroeconomic
data. They find a relatively minor role for the standard
“animal spirits,” which they interpret as expectational
errors (excessive optimism or pessimism about
growth rates), but may of course also reflect true tem-
porary mood swings. Importantly, the experimental
literature (Cohn et al. 2015) suggests that positive
(negative) news can invoke decreases (increases) in
risk aversion. Thus, an increase in consumer confi-
dence could still reflect a change in risk aversion, po-
tentially even consistent with a wider interpretation of
a habit model, where positive economic news should
reduce risk aversion. We feel that our collective evi-
dence is largely consistent with variation in Q reflect-
ing changes in aggregate risk aversion. First, the stron-
gest correlation is observed for the Sentix survey
explicitly designed to reflect “investor’s emotions
which fluctuate between fear and greed.” (https://
www.sentix.de/index.php/en/item/sntm.html) Oth-
er measures that generate higher correlations such as
the Michigan survey and Reuter/Ipsos consumer sen-
timent also feature questions more likely to elicit emo-
tional responses, than predictions about the direction
of the economy. Second, it is comforting to see eco-
nomic news sentiment featuring such high correlation
with our measure, consistent with the experimental
evidence, and with models incorporating habit.

A well-known sentiment index in the academic lit-
erature is the one created by Baker and Wurgler
(2006). The index is based on the first principal com-
ponent of six (standardized) sentiment proxies includ-
ing: the closed-end fund discount, the NYSE share
turnover, the number and the average first-day
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returns of IPOs, the share of equity issues in total eq-
uity and debt issues, and the dividend premium (the
log-difference of the average market-to-book ratios
of payers and nonpayers). High values mean posi-
tive sentiment so we expect a negative correlation
with our risk aversion indicator, and indeed the cor-
relation is significantly negative but still relatively
small at −0.16. Hence, our risk aversion index corre-
lates more with pure consumer sentiment indices
than with a sentiment index derived from financial
variables.

In addition, many financial services companies cre-
ate their own risk appetite indices. As a well-known
example, we obtain data on the Credit Suisse First

Boston Risk Appetite Index. The indicator draws on
the correlation between risk appetite and the relative
performance of safe assets (proxied by seven to ten-
year government bonds) and risky assets (equities
and emerging market bonds). The underlying as-
sumption is that an increasing risk preference shifts
the demand from less risky investments to assets asso-
ciated with higher risks, thus pushing their prices up
relative to low-risk assets (and vice versa). The indica-
tor is based on a cross-sectional linear regression of
excess returns of 64 international stock and bond indi-
ces on their risk, approximated by their last 12-month
volatility. The slope of the regression line represents
the risk appetite index. The index shows a −0.49

Table 11. External Validation: Risk Aversion and Extant Consumer, Investor, Business, and
News Sentiment Measures

Source ρ ρOrth Signs

Panel A: Survey-based consumer sentiment

1 Conference Board consumer confidence −0.280 −0.186 −
2 University of Michigan sentiment index, Surveys

of Consumers
−0.359 −0.225 −

3 OECD consumer confidence −0.427 −0.151 −
4 Reuter/Ipsos consumer sentiment −0.526 −0.394 −
5 FEARS25 from Da et al. (2014) −0.130 −0.104 +
6 FEARS30 from Da et al. (2014) −0.130 −0.102 +

Panel B: Survey-based investor sentiment

7 Yale “crash” confidence (%believe in no crash) −0.498 −0.283 −
8 Yale valuation confidence (%believe the market is

not too high)
0.359 0.248 +

9 AAII bullish percentage −0.114 −0.070 −
10 AAII bearish percentage 0.321 0.206 +
11 Sentix investor sentiment −0.657 −0.423 −

Panel C: Survey-based business sentiment

12 OECD business confidence −0.363 −0.225 −
Panel D: News-based sentiment

13 Shapiro, Sudhof, and Wilson (2020) −0.490 −0.314 −
Panel E: Price or macro data-based measures

14 Orthogonalized sentiment of Baker and
Wurgler (2006)

−0.161 −0.142 −

15 Credit Suisse First Boston Risk Appetite Index −0.491 −0.282 −
16 Habit risk aversion of Wachter (2006) 0.208 0.172 +

Panel F: Regressing raBEX on consumer and investor PCAs (R2 � 30.5%)

Constant ConsumerPC1, 1~6 InvestorPC1, 7~11

Coefficient 2.839 0.203 0.157
Standard error (0.078) (0.059) (0.060)
VARC 58.2% 41.8%

Notes. Panels A–E assemble a list of 16 widely used sentiment and confidence measures and then presents the
correlations between our risk aversion index raBEX and these measures at the monthly (end-of-month)
frequency using the longest overlapping sample. Column “ρ” reports correlations with the raw sentiment/
confidence measures, and Column “ρOrth” reports correlations with measures orthogonalized by economic
uncertainty (obtained from Table 1); bold correlation coefficients have <5% p-values. Column “Signs”
indicates the expected sign of the correlation, given the construction of these measures. Panel F reports the
contemporaneous regression results of raBEX on a consumer sentiment PCA and an investor sentiment PCA
using adjusted (standardized, orthogonalized, sign-corrected) sentiment/confidence measures from Panels A
and B.More details are provided in Tables F.5 and F.6 of the online appendix.
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correlation with our index and is thus highly correlat-
ed with our concept of risk aversion.

5.4. Risk Aversion, Uncertainty, and Crises
We first analyze the behavior of our risk aversion mea-
sure and uncertainty proxies during the Covid crisis.
Being simple affine functions of financial instruments,
we can compute both variables at the daily level
throughout the March 2, 2020 to June 23, 2020 COVID
crisis period. The start date is determined by the first
COVID death in the United States, as before that date
the daily data on U.S. COVID cases were very erratic.
We download data from Our World in Data (OWID) to
compute the daily logarithmic change in COVID cases.
Naturally, the pandemic is associated with feelings of
fear, anxiety, and uncertainty, fed by reams of bad
news regarding the spread of the disease worldwide
and its devastating consequences. A higher incidence
of COVID cases should be plausibly associated with
higher overall risk aversion. Of course, the spread of
the disease is also accompanied by economic devasta-
tion, which may directly increase risk aversion through
a pure habit channel, and plausibly increase economic
uncertainty as well. We verify how our financial instru-
ment proxy to uncertainty and risk aversion react to
COVID case increases in Table 12. Importantly, we con-
trol for economic news, by using the sentiment measure
of Shapiro et al. (2020). Recall that this daily measure is
positive (negative) when economic news sentiment is
positive (negative). For ease of interpretation, we stan-
dardize both variables, so that the coefficients indicate
the risk response to a one standard deviation increase
in the independent variable.

Table 12 shows first that both independent variables
are highly statistically significant in both regressions,
with the adjusted R2 slightly higher for the uncertainty
regression (52% versus 48%). Importantly, our high
frequency risk aversion reacts more to information

regarding the volume of new cases of infection, than
does our high frequency proxy to economic uncertain-
ty, with the response being twice as large. In contrast,
uncertainty reacts more strongly to economic news
than does risk aversion, consistent with our risk aver-
sion measure being driven more by the nonfundamen-
tal shock. In all, 86% of the explained variation in the
risk aversion regression comes from COVID news,
whereas only 36% does in the uncertainty regression,
where economic news dominates. Although indirect,
this evidence is plausibly consistent with variation in
Q indeed being related to changes in risk aversion.

With our daily risk measures in hand, we can also
compare their behavior during the current COVID cri-
sis and the Great Financial Crisis (GFC). Figure 5 shows
risk aversion and the daily proxy to uncertainty from
January 2, 2020 to June 23, 2020 for the Covid crisis and
from September 2, 2008 to March 31, 2009 for the GFC.
Focusing first on uncertainty, note that the long-run
volatility is about 1.88%. During the COVID crisis, un-
certainty almost doubled to over 4% in March and
April 2020 before dropping to below 3% in May. Using
industrial production data to filter pt and nt during the
COVID crisis, it turns out that true economic uncertain-
ty in May 2020, given the devastating drop in output,
increased to 7.5%, a number never reached during the
GFC. The financial proxy to uncertainty stayed elevated
at slightly higher levels and for a longer time period,
from October 2008 to April 2009, often exceeding 4%.

As to risk aversion, with a long-term level of around
three, risk aversion was actually slightly below its long
term level in January and February 2020 but then sky-
rocketed in March, reaching a high of 26.36 on March
16, when the Federal Reserve cut the Federal Funds
rate to 0. Average risk aversion over March 2020 was
about 10 and then dropped to an average of 4.85 in
April. The steep increases in risk aversion early on in
the crisis also occurred during the GFC with risk

Table 12. Risk and the COVID Crisis

Daily risk aversion Daily uncertainty

raBEX uncBEX

Dependent variable Original Z VARC Original Z VARC

Cases % Chg 22.473 5.184 86% 2.401 3.328 36%
(2.848) (0.657) (0.455) (0.630)

Economic News Sentiment, Z −1.001 −0.231 14% −0.409 −0.567 64%
(0.353) (0.081) (0.056) (0.078)

Constant 3.644 −0.503 3.137 −0.323
(0.446) (0.103) (0.071) (0.099)

Notes. We regress our daily risk variables (the risk aversion and the financial proxy to economic uncertainty) on log daily percentage changes in
U.S. COVID-19 cases and the daily standardized economic news sentiment index (Shapiro et al. 2020). The sample spans 80 (trading) days from
March 2, 2020 to June 23, 2020; the starting date is set on March 2, 2020 (the first trading day after the first death case in the United States was
confirmed by CDC on February 29) to avoid extreme case increases during the early days. “Z”, standardized variables; “VARC”, variance
decomposition. Bold correlation coefficients have <5% p-values.
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aversion peaking on October 10, 2008 (after Lehman
Brothers collapsed) at 23.76. Risk aversion averaged
13.4 during October 2008, dropped to an average of
11.5 in December, and then hovered around 7 to
March 2009. In contrast, during the COVID crisis, risk

aversion has fallen more quickly and more steeply, av-
eraging 3.9 in May 2020. More summary statistics on
the behavior of the two risk variables during various
months in the two crises are reported in the online
appendix.

Figure 5. (Color online) Risk Aversion and Economic Uncertainty at Daily Frequencies Around the COVID-19 Crisis (Top Two)
and GFC (Bottom 2)
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6. Conclusion
We formulate a no-arbitrage model where fundamen-
tals such as industrial production, consumption earn-
ings ratios, corporate loss rates, etc. follow dynamic
processes that admit time-variation in both condition-
al variances and the shape of the shock distribution.
The agent in the economy takes this time-varying un-
certainty into account when pricing equity and corpo-
rate bonds, but also experiences preference shocks
that are less than perfectly correlated with fundamen-
tals. The state variables in the economy that drive risk
premiums and higher order moments of asset prices
involve risk aversion, good and bad economic uncer-
tainty and the conditional variance of loss rates on
corporate bonds. We use equity and corporate bond
returns, physical equity and corporate bond return
variances and the risk neutral equity variance to esti-
mate the model parameters and simultaneously de-
rive a risk aversion spanning process. Risk aversion is
spanned by six financial instruments, namely the term
spread, credit spread, a detrended earnings yield, re-
alized and risk-neutral equity return variances, and
the realized corporate bond return variance.

We find that risk aversion loads significantly and
positively on the risk neutral equity variance and the
realized corporate bond variance, and negatively on
the realized equity return variance. Risk aversion is
much less persistent than the risk aversion process im-
plied by standard habit models. It is the main driver of
the equity premium and the equity return risk neutral
variance. It also accounts for 72% of the conditional
variance of equity returns with the remainder ac-
counted for by bad macro uncertainty. For corporate
bonds, bad economic uncertainty plays a relatively
more important role. It accounts for 18% of the risk
premium variation and 85% of the corporate bond
physical variance. Hence, different asset markets re-
flect differential information about risk appetite versus
economic uncertainty. Our model-implied risk premi-
ums beat standard predictors of equity and corporate
bond returns in an out-of-sample horse race.

Our risk aversion measure is highly correlated with
the variance risk premium in equity markets, but also
shows strong correlation with existing confidence/
sentiment indices—especially indices measuring con-
sumer confidence. It shows the strongest correlation
with a sentiment measure focused on investor emo-
tions. We also detect several empirical links confirm-
ing the habit model intuition beyond the strong link
with measured consumption growth data. Our mea-
sure significantly reacts to industrial production news
shocks, for instance, and is highly correlated with eco-
nomic news sentiment.

Because the spanning instruments represent finan-
cial data, we can track the risk aversion index at

higher frequencies. We also construct a financial
proxy to economic uncertainty (the conditional vari-
ance of industrial production growth), which can be
obtained at the daily frequency as well. The financial
proxy to economic uncertainty predicts output growth
negatively and significantly and is a much stronger
predictor of output growth than is the VIX. In an out-
of-sample analysis on the COVID crisis, risk aversion
strongly reacts to COVID case increases and more so
than does the uncertainty proxy. Our risk aversion
and uncertainty indices are available on our websites
and we plan to update them regularly, which could
potentially be useful for both academic researchers
and practitioners.

Our work also has implications for the dynamic as-
set pricing literature. To explain asset return dynamics
in different asset classes, both changes in risk aversion
and economic uncertainty must be accommodated. In
addition, aggregate risk aversion must contain a rela-
tively nonpersistent, variable component. This varia-
tion also causes substantial variation in economically
important variables such as the conditional equity
premium, which is in line with recent estimates in
Martin (2017). Bretscher et al. (2019) show that risk
aversion significantly affects the impact of uncertainty
shocks on equity prices. Given that in our model this
variation arises from an externality in preferences, it is
conceivable that it is economically inefficient. More re-
search on the determinants of risk aversion changes is
clearly warranted.

Finally, we only used risky asset classes to create the
risk appetite index, omitting Treasury bonds, which
are arguably an additional important asset class. In
principle, given a process for inflation our model
should also price Treasury bonds. In fact, Cremers et al.
(2021) claim that an implied volatility measure com-
puted from Treasury bonds predicts the level and vol-
atility of macroeconomic indicators better than stock
market implied indicators do. However, a problem
with considering Treasuries as determining general
risk aversion is that they are often viewed as the
benchmark safe assets and are subject to occasional
flights to safety (Baele et al. 2020). This makes it
ex-ante unlikely that a simple pricing model such as
ours can jointly price the three assets classes. In our
current model, interest rates are excessively volatile,
for example. We therefore defer incorporating Trea-
sury bonds to future work.
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Endnotes
1 Pflueger et al. (2020) aim to identify the product of “uncertainty”
and “risk aversion,” which they term risk appetite, and show that it
is an important determinant of real rate variation.
2 A number of these articles develop time-varying risk aversion
measures motivated by models that really assume a constant risk
aversion coefficient and hence are inherently inconsistent (Boller-
slev et al. 2011, Faccini et al. 2019).
3 This is also true in the recent debate about the claim of recover-
ability of physical probabilities from option prices, which, if true,
identifies risk aversion as well (Ross 2015, Carr andWu 2016).
4 Gai and Vause (2006) and Pflueger et al. (2020), however, use the
term risk appetite to indicate the price of risk, that is, the product of
risk aversion and the amount of risk (which would be the volatility
of consumption growth in a power utility model).
5 There is an active literature on the neural basis of risk taking be-
havior in a financial context (see Kuhnen and Knutson 2005 for an
early paper).
6 This model was selected among eight models for the growth rate
of industrial production. Specifically, the different models consider
variations in the conditional mean process: (1) with an autoregres-
sive term, (2) with two volatilities-in-mean terms, (3) with two past
volatility shocks, (4) with an autoregressive term and two volatil-
ities-in-mean terms; and (5)–(8) are (2)–(4) with the good volatility
long-run mean equal to 500. Model 8 exhibits the lowest Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC)
criteria and thus is applied in the rest of the analysis. In addition,
the same model but with constant pt is rejected.
7 We experimented with five other models including letting only lnt
follow a BEGE process, letting both lnt and lpt follow a BEGE process
(with or without restricting the parameters to be the same across lnt
and lpt), and finally, a version of the last two models where lnt and

lpt also enter the loss rate mean. Our final loss rate model outper-
forms other models based on standard model selection criteria. De-
tails on alternative models are available upon request.
8 Matrix R•j is the jth column of the shock coefficient matrix in the
state variable process or R in Equation (20).
9 This computation does not take filter uncertainty into account.
10 We create an analogous detrended earnings yield variable using
earnings data.
11 The dividend yield shows a secular decline over part of the sample
that induces much autocorrelation. This decline is likely because of
the introduction of a tax policy favoring repurchases rather than divi-
dends as a means of returning cash to shareholders, and therefore
not likely informative about risk aversion (Boudoukh et al. 2007).
12 Given our focus on risk premiums and volatility dynamics, the
discount factor β is not identified. When using the short rate to tie
down its value, we estimate its value to be around 0.98. Albuquer-
que et al. (2016) develop a model where variation in the discount
factor plays a key role. In principle, we cannot exclude that our risk
aversion shocks represent time variation in the discount factor, but
we view this as very unlikely, given our external validation results
discussed in Section 5.3.
13 Bootstrapped standard errors for the five asset price moments
(equity risk premium, equity physical variance, equity risk-neutral
variance, corporate bond risk premium, and corporate bond physi-
cal variance) use different block sizes to accommodate different se-
rial auto-correlations to ensure that the sampled blocks are approxi-
mately independent and identically distributed (i.i.d). Following
Politis and Romano (1995) and Politis and White (2004), we look for
the smallest integer after which the correlogram appears negligible,
where the significance of the autocorrelation estimates is tested us-
ing the Ljung-Box Q test (Ljung and Box 1978).
14 We use the asymptotic covariance matrix from the GMM estima-
tion and the Delta method to obtain these intervals.
15 The empirical model for imputing daily realized speculative cor-
porate bond return variances before 1990 is explained in Online Ap-
pendix D.
16 The positive and significant coefficient at the 12-month horizon
for risk aversion is surprising. However, if we replace industrial
production growth with consumption growth (to better mimic the
economic model), the coefficient on risk aversion is negative and in-
significant (see Table F.2 in the online appendix). The coefficient on
economic uncertainty remains very significant and negative, sup-
porting our finding that uncertainty dominates risk aversion in pre-
dicting economic growth.
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