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Abstract. Logos serve a fundamental role as the visual figureheads of brands. Yet, because
of the difficulty of using unstructured image data, prior research on logo design has largely
been limited to nonquantitative studies. In this work, we explore the interplay between
logo design and brand identity creation from a data-driven perspective. We develop both a
novel logo feature extraction algorithm that uses modern image processing tools to decom-
pose pixel-level image data into meaningful features and a multiview representation learn-
ing framework that links these visual features to textual descriptions, consumer ratings of
brand personality, and other high-level tags describing firms. We apply this framework to
a unique data set of brands to understand which brands use which logo features and how
consumers evaluate these brands’ personalities. Moreover, we show that manipulating the
model’s learned representations through what we term “brand arithmetic” yields new
brand identities and can help with ideation. Finally, through an application to fast-food
branding, we show how our model can be used as a decision support tool for suggesting
typical logo features for a brand and for predicting consumers’ reactions to new brands or
rebranding efforts.
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1. Introduction
Logos, which adorn everything from product packag-
ing to advertising, are the most distinct marks used by
brands. Designers create logos to represent the es-
sence of brands, and firms redesign their logos to
convey new ideas or communicate new positionings.
Virtually every company has a logo, and logo rede-
signs are commonplace, often following company
mergers, acquisitions, and divestitures, but also occur-
ring periodically for many brands in an effort to main-
tain a modern look (Henderson and Cote 1998). Yet,
despite the clear significance of logos, the substantial
costs of logo redesigns, and the need for tools for
managers to navigate this complex process, marketing
scholars have paid relatively little attention to logo de-
sign. In part, this lack of attention may stem from a
perception that the design process is more art than sci-
ence. Modern image processing and machine learning

methods, however, allow us to work with complex,
unstructured data, such as images, thereby enabling
us to study creative processes from a data-driven
perspective.

In this paper, we leverage these new technologies to
build a decision support system for the logo design
process. Specifically, we build a multiview representa-
tion learning framework that captures the linkages
between a brand’s function, its logo features, and con-
sumer perceptions of its brand personality (BP). This
framework allows us to mathematically embed a di-
verse set of brands in a latent space, which, in turn,
provides a mechanism for exploring many interrelated
questions about design and branding from a data-
driven, holistic perspective. In particular, there are
three intertwined perspectives with their own unique
questions that we address through our representation
learning framework:
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1. The designer’s perspective. Given a description of
a brand and a desired consumer-level perception,
which logo features are most commonly used to
achieve that identity? This question mirrors the design
process, in which a designer uses a company-supplied
brief to design a logo.

2. The brand manager’s perspective. Given a
newly designed logo, how will consumers perceive
it? Or, given a set of candidate logos that may vary
on key design elements, which logo best matches a
company’s targeted brand perception? Answering
such questions is of relevance to brand managers
and requires being able to use a logo and a brand
profile as inputs to predict consumers’ evaluations
of the brand.

3. The consumer’s perspective. What associations
exist among logo features, brand function, and brand
perception? That is, given a logo and knowledge of
what a firm does (i.e., its industry), what inferences
will a consumer make about what the brand with
that logo stands for or what the brand’s personality
is? This is the perspective that branding researchers
focus on in much of the prior literature, which exam-
ines how particular logo features impact consumer
perceptions about a firm. Distinct from the manag-
er’s perspective, consumers may only have a vague
sense of what the firm does when making these
evaluations.

Underpinning the answers to each of these ques-
tions are the interrelated processes by which consum-
ers perceive logos and designers design them. When
consumers encounter a new logo, the vast literature
on consumer information processing suggests that
they evaluate this new logo on the basis of logos they
have encountered before (Kardes et al. 2008, Loken
et al. 2008). Likewise, when designers design logos,
they do so with this process implicitly in mind. For ex-
ample, in mood boarding, one of the most common
brainstorming techniques in practice (e.g., Endrissat
et al. 2016, Miller 2016), designers take concepts from
a company-supplied brief and generate visual ele-
ments that link to those concepts. Part of that process
often involves thinking of existing brands that already
draw on those concepts or on common design ele-
ments that have been used historically to evoke those
concepts.

Our results from applying this framework to a
unique data set of hundreds of brands, containing
logo data, textual descriptions, tags describing ba-
sic firm features, and consumer brand personality
perceptions, indicate that the logo design process
practiced by the firms in our study is quite system-
atic: from the designer’s perspective, we find that
a model-based approach can predict many logo features
from text, industry, and brand-personality descriptors.
Similarly, from the manager’s perspective, we find that,

by knowing brand function and the brand logo, we
can predict how consumers will evaluate the brand.
From the consumer’s perspective, we find support
for many findings from the literature on how aes-
thetics influence consumer judgments. Moreover, we
find that our learned representations can, indeed,
capture many intricate aspects of visual branding
and can be used for ideation and decision support.
However, we also find that it is generally difficult to
predict how consumers will evaluate brands based
solely on logos.

Beyond these specific findings, our work makes
several contributions. Foremost, to our knowledge,
it is the first paper to study real logos from a holistic
and quantitative perspective. This is important be-
cause it adds a level of objectivity to the design pro-
cess: although our model cannot replace the creative
touch of designers, it does offer both designers and
firms decision support tools that can guide the craft-
ing of their brand identities in an objective fashion.
When weighing competing designs and opinions,
an objective prediction of the reactions of consum-
ers to a logo design can allow managers to make a
data-driven decision in what has historically been
viewed as a subjective domain. Moreover, the de-
sign recommendations from the model can be used
even by budget-strapped firms to thoughtfully de-
sign their logos. Finally, by representing all facets of
a brand identity using a multidimensional latent
space, our framework allows designers to interpo-
late between different brands to yield novel combi-
nations of existing identities, thus facilitating the
creative process.

From a methodological perspective, ours is among
the first papers in marketing to directly use image
data without relying on human coders. Distinct from
recent work in marketing that has used deep-learning
frameworks to extract brand-relevant attributes from
natural images (Liu et al. 2020), our work presents a
novel image-processing approach to automatically ex-
tract features from pixel-level image data, uniquely
tailored to studying logos. Our feature-extraction al-
gorithm decomposes logos into meaningful features,
which are driven by prior theory about logo seman-
tics. These features form a “visual dictionary” that de-
scribes logos in a way that is meaningful to designers
and amenable to probabilistic modeling. The automat-
ic nature of our feature-extraction methods makes
them widely applicable and scalable without the need
for human coders.

Our work is also among the first in marketing to
synthesize both unstructured text and image data. To
do so, we employ a variant of the multimodal varia-
tional autoencoder (MVAE), which is an extension of
the popular variational autoencoder (VAE), a deep-
learning framework used for learning representations
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of data (Kingma and Welling 2013, Rezende et al.
2014). Our framework learns joint multiview repre-
sentations of the different facets of brand identity pre-
sent in our data: text, logo, brand personality, and
other observed firm traits. Distinct from supervised
deep-learning models that have been successfully em-
ployed in a number of recent marketing studies (e.g.,
Liu et al. 2019, Liu et al. 2020), our MVAE is a semisu-
pervised generative model (Kingma et al. 2014) that
learns a posterior distribution over latent parameters
that capture the joint statistical properties of all of
these data modalities. This multiview representation-
learning approach (Li et al. 2018) allows us to address
design from each of the distinct perspectives out-
lined rather than limiting us to making unidirectional
predictions.

To infer the latent representations of brands, we
develop task-specific inference networks that approxi-
mate the posterior distribution of a brand’s latent rep-
resentation using only a subset of the available data
modalities. In doing so, our inference procedure mir-
rors the decision-support contexts in which our model
can be used. For example, to mirror the designer’s
task of designing a logo given a textual brief and a tar-
get personality, we learn a task-specific designer infer-
ence network that takes as inputs text and tags
describing a brand and a target brand personality pro-
file and outputs a posterior distribution over that
brand’s representation, which can then be used to
generate a set of suitable logo features. This approach
to inference aids in the relevance of our work to de-
sign and branding practice as it provides a natural set
of decision-support tools that can be used to guide
each of these distinct tasks.

The rest of the paper is organized as follows:
In Section 2, we describe our conceptual framework
and review the literature on logo design and aes-
thetics in marketing. In Section 3, we describe the
unique data set we compiled to calibrate our model.
In Section 4, we briefly describe our logo feature-
extraction algorithm, leaving a more detailed de-
scription to our online appendix. In Section 5, we
present descriptive “model-free” evidence of the
links between design, brand personality, and firm
function. In Section 6, we develop a multiview learn-
ing model of brands and their logos, and in Section
7, we show the results of applying that model to our
data, providing both predictive and consumer-based
validation studies. Finally, in Sections 8 and 9, we
show how the framework can be used in practice, in-
cluding examples of how the learned representations
can be used for ideation, and how the task-specific
inference networks can be used as decision-support
tools in a data-driven design process. Finally, we
conclude with a summary and directions for further
study.

2. Background and Conceptual
Framework

There is a sizable literature, especially in consumer be-
havior, on how consumers react to logos and market-
ing aesthetics and process information related to
brands. Much of this literature describes how specific
logo features generate different consumer reactions.
Other papers discuss how these reactions vary across
cultures or study the mechanisms that govern con-
sumers’ reactions to various visual stimuli. In this sec-
tion, we first theoretically motivate our model using
the literature on consumer information processing.
Then, we briefly review the findings about how con-
sumers perceive logos that inform our logo feature-
extraction algorithm, described in Section 4.

2.1. Conceptual Framework
Our application of multiview representation learning
to modeling the design process is rooted in the
information-processing literature. Categorization the-
ory suggests that, when confronted with an unfamiliar
logo, consumers make inferences about this new
brand based on the degree to which it activates exist-
ing mental categories (Loken et al. 2008). Studies of
category-based inference suggest that consumers com-
pare the features of a target stimulus (a new brand or
a brand extension) with features of a category (a par-
ent brand) to determine if the stimulus is a member of
that category (Kardes et al. 2008). If sufficient overlap
of features exists, consumers imbue the stimulus with
the typical associations of the category.

In designing logos, designers often implicitly rely
on categorization theory for ideation. Specifically, de-
signers draw on the idea that brands and logos exist
in a landscape that forms the basis of consumer men-
tal categories, understanding that consumers evaluate
new designs by the concepts that those designs acti-
vate in their minds. Designers then position new logos
within this landscape. For instance, designers routinely
use mood or image boarding, whereby visual ele-
ments, such as the logos, fonts, and colors of existing
brands in the focal category are composed on a board
to stimulate thinking about the visual associations
that a logo can activate (McDonagh and Storer 2004,
Stigliani and Ravasi 2012, Endrissat et al. 2016, Miller
2016). These mood boards then serve as the basis for
ideation for a final logo design.

Our model-based approach to design seeks to math-
ematically recreate this landscape through representa-
tion learning by embedding brands in a learned latent
vector space, in which a firm’s position in that space
jointly predicts what that firm does, how that firm de-
scribes its brand through text, the visual features of
that firm’s logos, and how consumers perceive that
firm’s brand personality. In this way, the learned
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space captures a semantic map of brands and their lo-
gos in the present-day consumer consciousness, which
serves as the basis for our data-driven approach to de-
sign ideation and decision support.

2.2. Logos
A limited amount of research in marketing studies lo-
gos. In seminal work, Henderson and Cote (1998) pro-
pose a framework for thinking about why logos matter
and how to design them well. Specifically, they investi-
gate how logo characteristics impact recognition and
affective reactions of consumers, deriving from the
NHE dimensions of design (naturalness, the extent to
which it contains natural shapes; harmony, the extent of
its symmetry and balance; elaborateness, i.e., complexity
as measured by the number and heterogeneity of logo
elements). Subsequently, Henderson et al. (2003) and
van der Lans et al. (2009) test these NHE dimensions
across cultures and find them to be universally good
descriptors of design.

Other behavioral researchers use experimental ma-
nipulation of fictional logos to study consumer reac-
tions to design and the psychological mechanisms
that underlie such reactions. Studying shape, for in-
stance, Klink (2003) relates the color, size, and shape
of logos to brand names; Walsh et al. (2010) studies
the impact of moving from an angular logo to a round
one; and Jiang et al. (2015) show that the circularity or
angularity of the logo affects customer perceptions of
hardness or softness, which, in turn, influence attri-
bute judgments about products. Others study the ori-
entation of logo elements, including Cian et al. (2014),
who find that the horizontal orientation of a logo or
the positioning of its elements can evoke the idea of
movement to influence consumers’ engagement and
attitudes. More recently, Schlosser et al. (2016) find
that upward diagonals convey greater activity than
downward diagonals, leading to more positive reac-
tions. Researchers also analyze the impact of the font
and typeface used in logos on consumer likelihood
to choose a product and the appropriateness of these
characteristics for particular industries, including work
by Doyle and Bottomley (2006) and Hagtvedt (2011).
In the latter, they show that incomplete typeface can
lead to perceptions of untrustworthiness and increased
innovativeness.

2.3. Aesthetics
There is a large body of work on aesthetics and per-
ceptions within marketing and psychology. Research
in this domain emphasizes the roles of color, font, ori-
entation, and other factors on how humans perceive
and respond to visual stimuli. Here, we selectively re-
view results that are relevant to identifying important
features for logo design.

In terms of colors, Deng et al. (2010) study consumers’
preferences for color combinations in product design.
Kareklas et al. (2014) show that people exhibit an auto-
matic preference for white over black in product choice
and advertising, similar to the implicit bias observed in
other studies in psychology. Relatedly, Semin and Palma
(2014) find that white is perceived as more feminine,
whereas black is perceived as more masculine. Psycho-
logical work looks at the effect of color on emotional re-
sponse. For example, Valdez and Mehrabian (1994) find
that, of the three key color dimensions, saturation and
lightness drive emotional responses along the pleasure,
arousal, and dominance dimensions.

Beyond colors, other work examines fonts, including
Childers and Jass (2002), who explore how semantic
connotations of typeface influence consumers’ ratings
of products, and Henderson et al. (2004), who analyze
many fonts to uncover factors that describe typeface
design and link them to consumer impressions. Still
other work looks at more abstract and higher level fea-
tures of design. For example, Navon (1977) finds that
global features are processed more readily and fully
than local ones. Pieters et al. (2010) use eye tracking to
study two distinct aspects of visual complexity of ad-
vertisements. Relevant to how brand constructs relate
to visual elements, Orth and Malkewitz (2008) decom-
pose package design into five distinct types and pre-
scriptively related these to brand personalities. Still
more research shows that the orientation of stimuli can
influence peoples’ perception of products. Meyers-
Levy and Peracchio (1992) show that the camera angle
of an ad featuring a product can influence judgments
of the product. Chae and Hoegg (2013) find that, in
cultures in which reading is done from left to right,
products are viewed more favorably when positioned
congruently with this spatial orientation.

Collectively, these studies on logos and aesthetics im-
ply that NHE dimensions and objective measures, such
as the color, angularity, orientation, font, and typeface of
the logo, are important for a quantitative modeling ap-
proach to support logo design. We use these features to
guide the design of our logo feature-extraction algorithm,
which we describe subsequently. Unlike many of these
studies, our work does not study the effects of single logo
features in isolation on consumer perceptions, but rather
examines logos holistically, exploring how visual features
combine to convey meaning in practice. To that end, our
work also differs from the aforementioned literature in
our use of a large number of real logos to understand
and model the multimodal associations between logos,
firm descriptors, and brand-personality measures.

3. Data
Our goal is to understand both what brand-relevant
concepts a given logo conveys and how a firm can
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design a logo that is consistent with those concepts.
To that end, we compiled a data set consisting of four
components: logos, textual descriptions of firms from
their websites, brand personality ratings from consum-
ers reacting to both the logo and textual description,
and finally a set of basic descriptors or tags capturing
high-level differences between firms in terms of their
functions and markets.

Our modeling approach focuses on learning the
links between existing logos and these other compo-
nents; hence, for our approach to be meaningful for
good design practices, we must ensure that the firms
for which we gather data have given some thought to
the design of their logos. We, thus, chose firms that
were either rated as having a strong brand identity by
brand specialists or were highly profitable and recog-
nizable based on the rationale that these firms have
likely invested in their brand identity as part of their
success. Specifically, we looked at all firms that were
either listed in the Interbrand brand consultancy’s list
of top 100 global brands of 2016, listed as among the
top 500 most valuable American brands of 2016 by the
brand valuation consultancy firm Brand Finance, or
listed in the Forbes 500 in 2016. There was a large de-
gree of overlap between the lists, leaving us with a
sample of 715 brands. In data processing, we further
eliminated firms with little textual data, resulting in a
final set of 706 brands. A detailed description of our
full data can be found in Online Appendix D, Tables 9
and 10.

3.1. Logos
Firms employ a variety of logos for different pur-
poses. Broadly speaking, a logo may comprise three
key features: marks, logotype, and subtext. Marks are
the nontextual parts of the logo (e.g., the Apple apple
or the Nike swoosh); the logotype is the primary tex-
tual identifier, usually displaying the brand name;
and the subtext is other text, often a brief descriptor of
the brand. A logo always has either a mark or a logo-
type although some logos have both, and some in-
clude subtext. Some firms use variants of their logo
for different purposes. As a rule, we used the version
that appeared most commonly on the firm’s online
marketing materials. When multiple logo versions
were prevalent, we selected the logo with a white
background and with both logotype and mark if such
a logo was in use.

3.2. Text
To understand the link between logo features and
how the firms think about themselves, we collected
textual descriptions consisting of both functional and
brand-relevant text taken directly from firms’ web-
sites. We collected this data in two batches: First, we
asked Amazon Turk users to find text on the firm’s

website that describes how the firm views its brand
and that does not merely describe what the firm does.
We guided workers toward the about us, mission
statement, corporate values, or investor relations pa-
ges of firms’ sites. In a second batch, we asked work-
ers to find text that describes what the firm does and
is not identical to the text already supplied. In both
cases, we gave incentives for workers to provide long
descriptions.

After gathering all this textual data, we applied
standard text-processing algorithms to create a dictio-
nary of brand and firm descriptors. We first tokenized
and stemmed the words, removing stop words. We
then removed all words that appeared in fewer than
20 of our 715 original brands. This left a dictionary of
852 words. Finally, we removed brands that contained
fewer than 20 of these 852 words, leaving us with our
final sample of 706 brands.

3.3. Brand Personality
To understand consumer perceptions of brands, we
collected brand-personality ratings from consumers,
following the framework of Aaker (1997). Specifi-
cally, we used Amazon Mechanical Turk to elicit
brand personality perceptions from U.S.-based con-
sumers by showing participants both the logo and
the text describing the firm. We then asked them to
rate the extent to which they thought each of a set of
traits describes the focal firm based on the logo
and text provided. We used the original set of 42
personality traits from Aaker (1997) as well as three
reverse-coded attention check traits.1 We gathered
20 responses per brand and use the average response
on each of the 42 traits as our data. In some of the
subsequent visualizations, we also group the brand-
personality traits according to the factor structure
outlined in Aaker (1997) by taking the average of all
traits assigned to a given factor.

3.4. Basic Descriptors (Tags)
Finally, we also collected a number of basic des-
criptors of firms to characterize high-level patterns of
heterogeneity between them. Specifically, to capture
high-level differences in target markets, we had a re-
search assistant label each firm as business to business
(B2B) and/or business to consumer (B2C). Then, as a
simple measure for capturing what firms do, we also
collected industry labels from Crunchbase, a database
commonly used by investors. Crunchbase offers a set
of standard tags describing what firms do. For exam-
ple, Uber has the labels customer service, mobile
apps, public transportation, ride sharing, and trans-
portation. We have 615 labels across our companies.
These are further organized into category groups re-
flecting similar activities. For example, public trans-
portation, ride sharing, and transportation are all
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categorized under the group transportation. We use
these groups as our industry labels. We retain labels
that apply to at least 10 firms, leaving us 34 industry
labels, in addition to the B2B/B2C labels. Because all
of these variables are binary descriptors, we refer to
them simply as tags.

4. Logo Feature Extraction
Modeling visual objects such as logos is difficult be-
cause of the need to work with unstructured image
data. The computer vision and machine learning liter-
atures have developed two broad approaches for in-
corporating images in models. The first approach uses
raw pixel-level data as the input to a model. This is
common, for example, in models of image recognition
or captioning, which typically use a neural network
for supervised prediction. The second approach be-
gins by processing the image to yield a dictionary of
representative image features that are then used as in-
puts to a model. We follow the second approach: we
first use our novel logo feature-extraction algorithm,
which is based on modern image-processing methods,
to process the logo images into logo features and then
incorporate these features in a model of design. Our
feature-extraction algorithm is rooted in the literature
on logo design and consumers’ responses to aesthetics
and distills logos into components that are meaningful
for consumers and designers. When combined with
the framework described in Section 6, this approach
yields an interpretable machine learning framework,
which is an important advantage over less structured
approaches. Each of our logo features is human-
interpretable, which is crucial for the model based on
them to be useful in decision support.

4.1. Algorithm Overview
Our algorithm has four stages: In the first stage, which
we term summarization, we compute a variety of fea-
tures from the logo as a whole, which we refer to as
global summary features. Examples of these features
are given in Figure 1, using Amazon’s logo. One such
computation involves density-based color quantiza-
tion that gives the number of distinct colors in each
logo. In the second stage of the algorithm, which we
term segmentation, we assign each logo pixel to one of
these colors and then segment the logo into regions
that are separated by either color or background (i.e.,
the color white). For each of these segments, we then
separate them into characters and marks. This third
character-identification stage uses a template-matching
procedure to separate out characters from marks and
identify an approximate font used in the logo if appli-
cable. This process is illustrated in Figure 2, again us-
ing Amazon’s logo as an example. In the final stage,
which we term tokenization, we cluster several of the

features across logos, including the color, hull shape,
and mark shape, to form a dictionary of logo features.
A detailed description of these stages is available in
the online appendix. We now describe the different
logo features that we extracted.

4.2 Visual Features
A listing of all of our visual features, including their
descriptions and connections to the previous litera-
ture, is available in the online appendix. Here, we
briefly describe the logo features, grouping them into
color, format, shape, font, and other features for expo-
sitional convenience.

4.2.1. Color. The full color dictionary, computed by
clustering the colors across all our logos, is given in
Figure 3. Apart from just computing which colors are
present in a logo, our algorithm also identifies the

Figure 1. (Color online) Examples of Global Features, Using
Amazon’s Logo as an Example

Notes. Percentage of whitespace captures the percentage of pixels
that are white (background) within the convex hull of the logo. The
number of corners is a measure of angularity computed via the Harris
corner detector. Edge gradients capture directionality of edges in the
logo and are computed by computing numerical gradients sliding
over a black and white version of the logo. The convex hull is the
smallest convex polygon containing all of the nonbackground pixels.

Figure 2. (Color online) Examples of the Segmentation Pro-
cess, Using Amazon’s Logo as an Example

Notes. The original logo is at top. Beneath that is the segmented logo,
in which black identifies the background and distinct regions are
marked by different color regions. We then apply a template match-
ing and filtering algorithm to identify which of these regions are
characters (bottom right) and assume the remainder are the marks
(bottom left).
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dominant color (one per logo) and accent colors (all
colors except the dominant color). It also computes
the extent of white space within the convex hull
(which is the smallest convex polygon that contains
all of the nonbackground pixels) of all logo pixels. We
also compute other summary statistics about color in
the hue–saturation–value color space, including the
mean and standard deviation of the saturation and
lightness channels.

4.2.2. Format and Shape. These include features that
capture the presence of a mark in the logo, the number
of marks, and the aspect ratio of the logo. We also clus-
ter the convex hulls of our logos to form a dictionary
of logo shapes, shown in Figure 4. Similarly, we stan-
dardize the shape of each mark, convert it to grayscale,
and then cluster all marks into 14 representative mark
types. We give examples of these classes in Figure 5.

4.2.3. Font. Font is a crucial feature of logos. We,
therefore, develop a procedure to identify and describe
characters and their fonts. Specifically, we apply a
template-matching procedure to match each logo
segment to an extensive collection of fonts, which we
curate to capture the intricacies of font design as ex-
haustively as possible. This font dictionary captures a
range of font families, forms, and styles, including
fonts from all Vox-ATypI font classes, a standard font
classification scheme used by font experts.2 We illus-
trate our complete font typology in Figure 6.

4.2.4. Others. The literature review identified several
other features that are important for logo design, such
as complexity, symmetry, and orientation. For each of
these, we include direct or indirect measures aimed at
capturing that feature without the need for a human
coder. For complexity, we use a number of measures,
including the number of distinct colors, the number of
segments, the perimetric complexity (the ratio of edge
pixels to interior area), and the grayscale entropy (the
average variance of pixel intensities across sliding
windows). We also include measures of both horizon-
tal and vertical symmetry, computed by looking at the
correlation between halves of the image. For orienta-
tion, we compute both measures of position of the
mark relative to the text and also edge-based metrics.
Several of these features are illustrated in Figure 1,
and more details are provided in the online appendix.

4.2.5. Discretizing Variables. Some of our logo fea-
tures are real or integer-valued. We discretize each of
these features into two binary variables, correspond-
ing to whether the logo is in the bottom or top quartile
of the data for that feature. This measures whether the
logo is particularly low or high on a feature. For ex-
ample, discretizing the number of corners variable gives
us two binary variables: low number of corners and high
number of corners. The only exception to this procedure
is the number of colors in a logo: as the vast majority
of logos have either one, two, or three colors, we con-
vert this variable to a categorical variable with four
levels: one, two, three, or more than three colors. We

Figure 3. (Color online) Color Dictionary

Notes. These were obtained by clustering in the LAB color space across logos, which is meant to capture differences in human color perception.
The RGB color channel values of the cluster centers for the representative set of colors along with the actual color encoded by those values.

Figure 4. Hull Classes: The Six Typical Shapes of Logos as Characterized by Their Convex Hulls

Note. Each logo in our data set is assigned to one of these classes.

Dew, Ansari, and Toubia: Letting Logos Speak
Marketing Science, 2022, vol. 41, no. 2, pp. 401–425, © 2021 INFORMS 407

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.1

76
.1

30
] 

on
 0

9 
Se

pt
em

be
r 

20
24

, a
t 1

3:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



have found that discretizing real and integer-valued
variables improves the empirical performance of our
model significantly and also aids interpretability: it is
difficult for a designer to attempt designing a logo
with 22 corners but relatively easier to design one
with “many” or a “few” corners.

5. Exploring the Data
In this section, we present some model-free evidence
to illustrate the interplay among logo features, firm
function as captured by the tags, and brand-
personality perceptions. These analyses motivate the
full model by illustrating the complex relationship be-
tween logo design and firm identity. We use forest
plots to visualize the linkages among variables in an
intuitive and interactive fashion. These plots show
how one focal outcome variable varies as a function of
another (binary or binarized) explanatory variable. In
the remainder of this section, we highlight a few of
these plots. However, we also provide a web app that
allows the reader to explore the full set of possible for-
est plots, and it can be accessed at https://dr19.
shinyapps.io/explore_logo_data/.

In Figure 7, we present two forest plots that illus-
trate how the color of a logo relates to other features
of the brand. The first plot compares BP perceptions

(on the vertical axis) across three common dominant
logo colors: black, blue, and red. The plot shows the
difference in the outcome (e.g., perceived honesty of
the brand) for firms that have a particular dominant
color (e.g., blue) and firms that do not have that domi-
nant color. We can see, for instance, that black logos
tend to score low on down to earth but high on di-
mensions such as daring, spirited, and imaginative.
Interestingly, they also score high not only on upper
class and charming, but also on outdoorsy and tough.
This result, in isolation, seems surprising as upper
class and charming appear quite different than out-
doorsy and tough. This unintuitive result highlights
the need for understanding the whole combination of
logo features, jointly: black, alone, may be used to
convey a multitude of brand identities. Logo design
must, thus, simultaneously rely on many facets to
build a personality-consistent logo.

Apart from conveying brand image, firms may rely
on logos to signal the kind of product or service that
customers will receive. The second part of Figure 7 vis-
ualizes the variation in the dominant color of the logo
across industry labels. Again, we find that some of
these relationships are quite strong and intuitive. For
instance, blue is associated with financial services but
not with food and beverage, and the reverse is true for
red. Black is associated with clothing and apparel,
which is also consistent with the brand personality
link of black with upper class and charming as many
clothing and apparel companies are also luxury brands.
However, we again see that the relationships are com-
plex. For example, although we saw in the brand
personality analysis that black logos are perceived as
rugged, it is not necessarily the case that companies in
“rugged” industries, such as manufacturing, are using
black logos.

Beyond simple features such as color, our feature-
extraction algorithm also isolates more complex fea-
tures of logos inspired by past research. Although
most prior work has not used brand personality as the
dependent measure, we can nonetheless find support
for many findings from the literature by examining
the links between logo features and personality per-
ceptions, including:

Figure 5. Mark Classes: Three Examples of OurMark Classes with 10 Randomly Sampled Examples of Each

Note. Each mark is assigned to a single class.

Figure 6. Font Classification System Employed by the
Algorithm

Note. Fonts were matched to a font class, weight, style, andwidth.
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• Horizontally symmetric logos tend to be per-
ceived higher along almost all brand-personality di-
mensions except intelligent, perhaps reflecting the role
of harmony in positive affect discussed in Henderson
and Cote (1998).

•High entropy, a measure of complexity, that is sim-
ilar to the concept of feature complexity in Pieters et al.
(2010) is generally associated with low perceptions
across most brand-personality traits.

• A high proportion of upward diagonal edge gra-
dients appears positively related with cheerful, spirited
firms, which lends some support for the findings of
Schlosser et al. (2016), who find that upward diagonals
convey activity.

• Placing the mark toward the right is associated with
lower perceptions of down-to-earthness, honesty, and

wholesomeness but marginally higher intelligence. Al-
though not directly related to their findings, the idea that
placement of themark relative to the text matters for per-
ceptions echoes the findings of Deng and Kahn (2009).

• Angularity, as captured by the number of corners,
is positively associated with down-to-earth and tough
logos and negatively related to the others. This appears
consistent with Jiang et al. (2015), who find angularity
to be associated with durability.

• A circular hull is positively associated with cheer-
ful, daring, and spirited but negatively associated with
intelligence, supporting the findings of Jiang et al.
(2015) that circularity is associated with comfortable-
ness and customer sensitivity.

Taken together, these findings show that our fea-
tures capture many of the aspects discussed in the

Figure 7. (Color online) Forest Plots Describing Relationships Between Brand and Logo Traits

Notes. At top: Each color in the plot represents a different brand-personality factor denoted in the legend. On the x-axis are different dominant
logo colors. On the y-axis is the difference in brand personality perception for firms that have that color versus firms that do not have that color.
At bottom: A similar plot but showing instead how a logo is more or less likely to have a certain dominant color based on its brand’s industry
tag. In both plots, error bars around the points represent two standard errors.
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literature.3 Finally, although we only highlighted a
few relationships here, we also provide a web app
that allows the reader to explore the full set of possible
relationships in our data using forest plots, and it can
be accessed at https://dr19.shinyapps.io/explore_
logo_data/.

These visual analyses are interesting but limited:
they examine relationships between features in isola-
tion but cannot be used to reason about the com-
bination of logo features a firm should employ to be
perceived a certain way. We see, for instance, that red
is positively associated with food and beverage com-
panies but negatively with an upper-class brand-
personality perception. What combination of logo
features might convey the idea of an upper-class
fast-food company? To answer questions regarding
combinations of features and to facilitate the use of
unstructured, textual data that may more accurately
reflect the nuances of a company, we need a model
that leverages these types of data to simultaneously
capture all aspects of brand identity.

6. Modeling Framework
We now describe our model for logo design. We draw
on recent advances in deep generative modeling (Kingma
and Welling 2013, Kingma et al. 2014, Ranganath et al.
2014, Rezende et al. 2014) andmultiview learning (Suzuki
et al. 2016, Li et al. 2018, Wu and Goodman 2018) to learn
multimodal representations of brands in a joint latent
space that is shared across our different data modalities.4

Specifically, we flexibly capture the linkages among the
textual website descriptions, logo features, tags cap-
turing heterogeneity between firms, and brand-
personality metrics in a semisupervised fashion,
using a multimodal generalization of a variational
autoencoder. Our representation-learning approach
enables us to answer questions from all three per-
spectives listed in the introduction (i.e., designer,
brand manager, and consumer) without the need to
specify one domain as the dependent variable and
the others as independent variables.

6.1. Variational Autoencoders
We begin by briefly describing a simple VAE before
focusing on multimodal extensions that are relevant
for our work. Variational autoencoders were pro-
posed by Kingma and Welling (2013) and Rezende
et al. (2014) as scalable mechanisms for estimating
generative models of data. A variational autoencoder
consists of two tightly integrated components: a gener-
ative model for the observed data that is specified in
terms of latent variables and an amortized variational
distribution that approximates the posterior distribu-
tion of the observation-specific latent variables. The
two components are jointly estimated.

The generative model represents the probability
distribution of the observed data, xi for observation i,
in terms of a multidimensional latent variable zi. The
mapping between zi and the parameters of the proba-
bility distribution is specified using a multilayered
neural network, called the decoder network, whose pa-
rameters (weights and biases) are contained in the
vector θ. The joint distribution of the data and the la-
tent variables is given as pθ(xi,zi) � pθ(xi | zi)p(zi),
where the prior for zi is isotropic Gaussian, p(zi) �
N (0, I).

To approximate the posterior of the latent variables,
pθ(zi | xi), VAEs rely on an amortized variational dis-
tribution qφ(zi | xi), which is specified using another
neural network, called the encoder or inference network.
Note that the inference network uses the available
data xi as its input to specify the variational distribu-
tion for the observation-specific zi. The weights and
biases of this network, φ, are amortized (i.e., shared)
across all observations, allowing for scalable varia-
tional inference. Inference networks, thus, transform
the inferential problem to that of learning a function,
parameterized by a neural network, such that given
any data, we can obtain an approximate posterior dis-
tribution for the latent variables of interest simply by
evaluating the function. The structure of such a stan-
dard VAE is illustrated in Figure 8.

6.2. Multimodal VAE
As we have data from multiple domains, we use a
multimodal VAE, or MVAE, to learn a latent represen-
tation that is shared across domains (Suzuki et al.
2016, Wu and Goodman 2018). We have data on i �
1, : : : ,N, brands across the four domains, indexed
by d ∈ {Text,Logo,Tags,BP}. The observed data for
brand i in domain d is written as xdi , and the complete
observation is given by xi � {xTexti ,xLogoi ,xTagsi ,xBPi }. The
domains differ in the number and type of features
(e.g., words for text, logo features for logos, person-
ality traits for brand personality). We index these
features within domain d as j � 1, : : : ,Vd such that
xdi � {xdi1, : : : ,xdiVd

}. The generative model specifies the
probability distribution of the observed data in each
domain in terms of a shared latent variable vector zi.
Given our interest in analysis from multiple perspec-
tives (e.g., the designer’s perspective, which involves
inferring the logo features from the other modalities,
or the manager’s perspective, which involves predict-
ing consumer reactions from firm-generated content),
we use multiple inference networks that condition on
different subsets of the observed data xi to infer the
common latent variable zi. Figure 9 visually illustrates
the modeling and inferential framework. Although
we observe data for all domains for each brand in our
data, the framework allows for missing domains. We
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now focus on the generative model for the domains
before turning our attention to inference.

6.2.1. Multimodal Generative Model. The generative
model represents the probability distribution of the
multimodal observed data xi in terms of a shared
multidimensional latent variable zi, which has an iso-
tropic Gaussian prior p(zi) �N (0, I). As in the standard
VAE, the joint distribution of the data and the latent
variables is given as pθ(xi,zi) � pθ(xi | zi)p(zi). Howev-
er, the probability models for the different domains are
independent, conditional on zi, that is, pθ(xi | zi) �∏

dpθd(xdi | zi). In turn, the probability model for each
domain is specified using independent feature-level
probability distributions such that pθd(xdi |zi) � ∏

jp
j
θd(xdij | zi). Let µd

i contain the parameters for the different
feature-level distributions associated with observation i
within domain d. A domain-specific decoder network,

DNetd(zi;θd), captures the nonlinear relationship be-
tween µd

i and zi such that µd
i �DNetd(zi;θd). We first

describe the different feature-level probability distribu-
tions and follow with a description of the domain-
specific decoder networks.

6.2.2. Feature-Level Distributions. Conditional on the
joint representation zi, each brand’s features are mod-
eled using independent domain- and feature-specific
exponential-family distributions as follows:

• Text. A Bernoulli distribution captures whether a
given word j is present in brand i’s textual description
with probability5

P(xTextij � 1) � 1
1 + exp (−μText

ij ) : (1)

• Logo features. The logo features are either binary
or categorical. For binary features, such as whether the

Figure 8. Graphical Model for a Standard VAE

Notes. Given xi, the inference network with parameters φ specifies the approximate posterior for zi. The decoder network with parameters θ
transforms the latent representation zi into the parameters of the likelihood for xi.

Figure 9. (Color online) An Illustration of OurMVAE Framework
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logo has a mark, we use a Bernoulli distribution. For
categorical features consisting of m � 1, : : : ,Mj possible
options, such as the dominant color, we use a categori-
cal distribution, such that

xLogoij ~ Categorical(softmax(µLogo
ij )), (2)

µ
Logo
ij � (μLogo

ij1 , : : : ,μLogo
ijMj

): (3)

The probability vector of the categorical distribution
is given by

softmax(µLogo
ij ) � exp (μLogo

ij1 )
∑Mj

n�1exp (μLogo
ijn )

, : : : ,
exp (μLogo

ijMj
)

∑Mj

n�1exp (μLogo
ijn )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

• Brand personality. Brand personality is real-valued
as it is the average of all respondent ratings, measured
between 0 and 4. We, therefore, model it using a nor-
mal distribution, such that6

xBPij ~ N (μBP
ij1 ,σ

BP
ij ), σBPij � log (eμBP

ij2 + 1)): (4)

• Tags. The tags, including B2B/B2C and industry
labels, are binary and follow a Bernoulli distribution.

In these feature-level distributions, the observation-
specific distributional parameters (e.g., the mean μBP

ij1
and the variance σBPij of the normal in Equation (4)) are
specified nonlinearly in terms of the latent variable zi
for that observation using modality-specific decoder
networks.

6.2.3. Decoder Network. We use a domain-specific
feed-forwardnetworkµd

i �DNetd(zi;θd) for thedecoder.
The network has Ld hidden layers composed of rectified
linear activation units (ReLU) that apply the transforma-
tion ReLU(x) �max (0,x) to their input. In addition, the
network allows for skip connections (Dieng et al. 2019)
that connect the latent vector zi directly to each layer. The
skip connections help avoid latent variable collapse be-
cause of which models such as ours get stuck in uninfor-
mative local optima. Each layer ℓ computes a transformed
representation of the brand through a set of Hℓd hidden
units, whose activations are contained in the size (Hℓd, 1)
vector hDec,d

iℓ . The weights associated with each layer are
contained in the matrices,Wd,h

ℓ andWd,z
ℓ , where the latter

is associated with the latent variables zi. The hidden
layers are connected sequentially to each other, resulting
in the following sequence of computations:

hDec,d
i1 � ReLU(ad0 +Wd,z

0 zi),
hDec,d
i2 � ReLU(ad1 +Wd,h

1 hDec,d
i1 +Wd,z

1 zi),
⋮

hDec,d
iLd � ReLU(ad(Ld−1) +Wd,h

(Ld−1)h
Dec,d
i(Ld−1) +Wd,z

(Ld−1)zi),
µd
i � adLd +Wd,h

Ld
hDec,d
iLd

+Wd,z
Ld
zi,

(5)

and the adℓ vectors contain the biases (intercepts) for

the hidden units in layer ℓ. The last layer, also known
as the output layer, computes the parameters µd

i of the
data likelihood. The use of multilayered feed-forward
networks allows us to capture complex joint distribu-
tions involving the different domains, and the expres-
siveness of the model depends upon the number of
hidden units and layers. We use θd to refer to all of
the decoder network parameters within domain d
across all the features j. Although the exact nature of
the decoder network differs across domains, the pre-
ceding conveys the general structure. We describe the
specifics of each domain’s network architecture in a
later section.

6.2.4. Task-Specific Inference Networks. The key task
in using the MVAE framework is to learn the joint la-
tent representations zi. In our work, we follow the
standard practice of assuming a mean-field variational
approximation for the posterior of zi. The approxi-
mate posterior is given by the normal distribution:

pθ(zi | xi) ≈ qφ(zi | ξi) �N (ξmi , diag(ξvi )), (6)

where, as in the standard VAE, an inference network
computes the mean and variance terms of this nor-
mal distribution, ξi � {ξmi ,ξvi }, from data xi. The infer-
ence network ξi � INet(xi;φ) is again a feed-forward
neural network composed of L hidden layers, each
composed of Hℓ ReLU hidden units. Skip connec-
tions are not needed in this network. The neural net-
works associated with the decoder and inference
networks are independent and do not share any
parameters. The inference procedure consists of op-
timizing the decoder and inference network parame-
ters θ and φ such that qφ(zi | ξi � INet(xi;φ)) is as
close to the true posterior pθ(zi | xi) as possible.

In our application, it is important to be able to infer
zi given information on only a subset of the domains.
This involves using brand-specific data on some sub-
set of the domains to compute zi, which can then be
used to make predictions on the missing domains. For
example, when approaching the task of data-driven
design (i.e., the designer’s perspective), we have data
on everything except the logo. Alternatively, a brand
manager cares about how consumers evaluate a brand
or brand candidate given a logo, text, and industry in-
formation. To tackle this challenge, we introduce the
idea of task-specific inference networks: inference net-
works corresponding to different conditional posteri-
ors, depending on the patterns of missingness that
govern a particular context. Specifically, we imple-
ment four distinct inference networks: (1) the full data
inference network, akin to that of the classical VAE;
(2) the designer’s inference network, corresponding to
the case in which we observe everything except the
logo; (3) the manager’s inference network, corre-
sponding to the case in which we observe everything
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except consumer’s perceptions of brand personality;
and (4) the consumer’s inference network, correspond-
ing to the case in which we observe the logo and the
tags. That is, we learn four distinct inference networks,
which we index by t ∈ Full,Des,Mgr,Con

{ }
, where t

stands for task, corresponding to four separate func-
tions,

ξi,t � INett(x̃ti ;φt),
where x̃ti is shorthand for the data available for infer-
ence task t (for example, for t � Con, x̃i � {xLogoi ,xTagsi ).
Intuitively, this function corresponds to the model’s
“best guess” at the posterior given data from the avail-
able domains for the particular task. We summarize
these tasks in Table 1. Regardless of which inference
network is used, the decoder network and probability
models are shared across tasks. Hence, each inference
network is forced to learn a coherent, unified represen-
tation, irrespective of the missing modalities. Finally,
although we have assumed a set of tasks correspond-
ing to our data setting, this structure can be easily
adapted to include other tasks of interest.

6.2.5. Inference. Inference with this multimodal setup
involves variational expectation maximization, adapted
to allow for our multiple decoder and inference net-
works. This involves optimizing the parameters θ and φ
of the decoder and inference networks, such that first en-
coding and then decoding data xi leads to a prediction
that is as close as possible to the original data.

The classic VAE, with one decoder and one infer-
ence network, minimizes the loss function:

ℓ(θ,φ) � ∑N
i�1

−Ez~qφ(zi |ξi�INet(xi;φ))[log pθ(xi | zi)]

+ KL(qφ(zi | xi) || p(zi)), (7)

where KL(· || ·) is the Kulback–Leibler divergence be-
tween distributions. This loss is the negative of the
standard evidence lower bound for doing variational
inference on the latent parameters, zi, but in which the
parameters of the variational approximation are deter-
mined by the inference network (Blei et al. 2017). An-
other interpretation is that the first term encourages a

good reconstruction of the data, and the second term
regularizes the zi estimates toward the prior.

In our multiview inference framework, pθ(xi |zi)
from Equation (7) decomposes into a product of the
domain-specific decoder networks and feature-
specific probability distributions. To this, we add a
stochastic binning procedure: for each iteration of
our optimization, we split the data into four equally
sized bins such that, for each bin, we use a different
one of our four inference networks, holding out the
relevant data modalities. Returning to Equation (7),
this means that, in our optimization, at each itera-
tion, the qφ(zi|ξi � INet(xi;φ)) used for observation i
depends on the bin to which brand i is assigned in
that iteration. Let m index the iteration of the optimi-
zation, and δitm � 1 if brand i is assigned to bin t on
iteration m and zero otherwise. The resulting per iter-
ation loss function is given by

ℓm(θ, {φt}) �
∑N
i�1

∑4
t�1

δitm −Ezi~qφt
logpθ(xi |zi)[ ]{

+KL qφt
(zi | x̃ti) || p(zi)[ ]}

: (8)

where qφt
� qφt

(zi | ξi,t � INett(x̃ti ;φt)):
Intuitively, this stochastic binning allows us to learn

our task-specific inference networks simultaneously
by augmenting our complete data with incomplete in-
stances of each of the original observations. Optimiz-
ing this loss is similar but not exactly equivalent to the
procedure suggested by Wu and Goodman (2018).

6.3. Implementation
We implemented our model using PyTorch and the
Pyro probabilistic programming language (Bingham
et al. 2019). We optimized the loss in Equation (8) using
stochastic gradients and the Adam algorithm (Kingma
and Ba 2014). To prevent overfitting, we utilized drop-
out for regularization (Goodfellow et al. 2016). We used
cross-validation to determine all model hyperpara-
meters, including the number of latent dimensions (K),
number of hidden layers for each network (L), and
number of hidden units per layer per network (H). This
procedure suggested an optimal dimensionality of the
latent space of K � 20. We found that using more than
a single hidden layer in the neural networks did not
improve model fit. This is most likely because our in-
puts are already high-level features, which, therefore,
limits the usefulness of the increasing levels of abstrac-
tion enabled by adding more layers. We also found that
it is important to mirror the complexity of the inference
network to the complexity of the task (i.e., the number
of inputs to that task): our final model architectures use
a single hidden layer consisting of 400 hidden units for
the full inference network, 200 hidden units for each of
the manager’s and designer’s inference networks, and

Table 1. A Summary of the Tasks, Including What Each
Uses as Inputs (i.e., What Data Are Provided) and What
Each Is Intended to Predict (i.e., What Data Are Missing)

Task Inputs Predictions

Full Text, logo, BP, tags None
Designer Text, BP, tags Logo
Manager Text, logo, tags BP
Consumer Logo, tags Text, BP

Note. Note that for all of the tasks, we are also able to reconstruct the
given inputs.
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50 hidden units for the consumer’s inference network.
We use 400 hidden units in all of the decoders and find
the model relatively insensitive to this choice. We in-
clude more details on implementation, including pseu-
docode, in the online appendix.

6.4. Relation to Prior Literature
Our framework is related to three other frameworks
that have been proposed to extend VAEs to multimodal
settings. First, our use of task-specific inference net-
works is a generalization of the per-domain inference
network idea introduced by Suzuki et al. (2016). Al-
though they focus only on two domains, ours covers
the many modalities case, in which the modalities can
be grouped into relevant tasks. More recently, Wu and
Goodman (2018) introduce a product-of-experts formu-
lation to handle more than two modalities. They also
use a subsampled training procedure that is similar to
ours. Their framework is more general than ours in
the sense that it does not require the specification of
specific tasks of interest. However, this generality
comes at the cost of predictive performance as we show
subsequently in our benchmarks. Finally, Nazabal et al.
(2020) develop a framework for handling heteroge-
neous inputs in a VAE framework that echoes our
per-domain likelihood structure but uses a different
training procedure and representation structure.

7. Model Results
In this section, we present our results. We begin with
model comparisons. We then describe the learned la-
tent space and test how the learned representations
correspond with consumer perceptions using two on-
line studies. We then discuss implications for ideation
and decision support in Sections 8 and 9.

7.1. Fit and Benchmarks
To assess model fit, we ran fourfold cross-validation.
We summarize the out-of-sample fit of the model, av-
eraged across folds and broken down by domain, in
Tables 2 and 3. In our MVAE framework, there are im-
portant distinctions between two types of fit meas-
ures: (1) reconstruction fit, which is computed using
the full inference network on the held-out set of
brands and captures how well the model does at re-
creating the inputs it is given for new brands, and (2)
predictive fit, which shows the model’s ability to pre-
dict missing domains for new brands, using the task-
specific inference networks.7 Table 2 gives fit statistics
for reconstruction, and Table 3 gives fit statistics for
prediction. In computing both types of fit, the decoder
networks remain the same, but the data given to the
model and, thus, the inference network used for in-
ferring z, change. Although both are out-of-sample

statistics, they have distinct interpretations. Good per-
formance on reconstruction indicates that a generative
model is able to learn meaningful representations for
new brands, which, in turn, indicates that the learned
latent space is truly capturing the statistical signal of
the inputs. In contrast, good performance on predic-
tion indicates the model is able to perform the tasks
we specified, in the traditional supervised sense, by
being able to successfully predict missing features
from the given features.

We measure fit using two metrics: for the real-
valued brand-personality features, we compute the
mean squared error (MSE), which we then average
across all personality traits. For MSE, lower values
indicate better fit. For the binary and categorical fea-
tures, we use the F1 score, which is the harmonic
mean of two measures of the success of a classifier,
precision, and recall. Precision is the fraction of true
positives identified by the model out of all positives
identified, and recall is the fraction of true positives
identified by the model out of all true positives.
Intuitively, the F1 score is high for a model that is
correctly able to distinguish positive cases from neg-
ative cases. We use these metrics as opposed to na-
ive measures such as accuracy because of the highly
imbalanced nature of many of our features. In Ta-
bles 2 and 3, we report the average of these statistics
across features. We report the precision and recall
statistics as well as holdout likelihood in Online
Appendix F.

We compare our model, denoted as task-specific in-
ference (TSI), to several benchmarks:

• Product of experts (POE). This uses the product-of-
experts framework developed by Wu and Goodman
(2018). Instead of our task-specific inference networks;
here, each domain has its own latent representation zd,
and these representations are combined using a prod-
uct-of-normals rule.

Table 2. Average Reconstruction Cross-Validation Error
Using the Full Inference Network

Domain Metric TSI POE PPCA NIR

BP MSE 0.320 0.447 0.340 1.008
Logo: Binary F1 0.272 0.218 0.172 0.051
Logo: Dominant color F1 0.216 0.176 0.163 0.034
Logo: Hull shape F1 0.219 0.182 0.170 0.102
Logo: Mark shape F1 0.123 0.095 0.091 0.015
Logo: Font serifs F1 0.405 0.320 0.308 0.297
Logo: Number of colors F1 0.492 0.444 0.440 0.124
Tags F1 0.282 0.329 0.116 0.031
Text F1 0.114 0.065 0.051 0.005

Notes. Note that MSE is the mean squared error, for which higher
numbers indicate worse fit, and F1 is the harmonic mean of recall and
precision for which higher numbers indicate better fit. Each column is
a different model and each row is a domain with a corresponding set
of features being reconstructed.
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• Probabilistic principal component analysis (PPCA).
This is a version of our model with no nonlinearities in
the generative model, which is equivalent to doing
PPCAwith task-specific (amortized) inference.

• Designer. This is an adaptation of our framework
with only the designer’s task. This model is, essentially,
a supervised model for predicting logo features from
other features, and thus, there is no reconstruction
cross-validation fit—only prediction.

• No information rate (NIR). This is the naive model
in which each feature is predicted to have its mean
value across all of the brands in the training set.

Each of these benchmarks (except NIR) is estimated
analogously to the focal model with amortized infer-
ence and the same structure for the decoder networks.

From the fit statistics, we note several things. First,
all models, and especially our TSI framework, do sig-
nificantly better than random (NIR) at explaining and
predicting the data. We see, however, that some do-
mains are more difficult to predict than others with
the text being the most difficult to predict. This diffi-
culty is not particularly surprising: the F1 score for
this domain is averaged over all of our textual tokens,
treated separately. We also notice that the consumer’s
task is quite challenging: in general, error rates in this
task are relatively high, suggesting it is difficult to
make predictions from a logo and basic tags alone
though we still perform better than chance.

Turning our attention to the more sophisticated
benchmarks, we see that our proposed framework is
competitive with the state-of-the-art framework pro-
posed in the literature (POE), outperforming it on
most metrics in both fit and prediction. Comparing
our model and PPCA, we see that the nonlinearities in
the generative model are especially important for re-
construction tasks as well as for predicting binary
logo features and brand personality. Most interesting,
however, is the comparison with the Designer bench-
mark, in which we see our multimodal framework
slightly outperform the simpler, unidirectional task.
This finding adds to a growing literature on the

benefits of multimodal learning, suggesting that joint-
ly learned representations can be tremendously valu-
able even in supervised prediction tasks (e.g., Wu and
Goodman 2019).

7.2. Understanding the Latent Space
Having established the predictive validity of the
model, we now turn to understanding the learned
brand representations. In general, it is difficult to in-
terpret the specific dimensions of our learned latent
space as all of the features of the data are compressed
to a 20-dimensional vector. Hence, each dimension of
z simultaneously encodes different aspects of the
data, and likewise, specific features tend to be en-
coded in a distributed way across the dimensions of z.
Even though the z-space cannot be directly inter-
preted, distances within it are meaningful: if two
brands are close together, they are predicted to share
features. By looking at where brands lie in this space,
we can better understand what the learned represen-
tations are capturing.

Table 4 shows the two nearest neighbor brands in
z-space for a set of four focal firms along with the
distance of each neighbor to the focal firm. We see
that, in general, a firm’s neighbors are those brands
that share many features: for example, they operate
in a similar industry, have similar brand percep-
tions, and share similar logo features. Moreover, the
more features two brands share, the closer they tend
to be in terms of distance in z-space. Focusing on
the firms in the first row of the table, Facebook’s
closest neighbor is Twitter: they both are innovative
social network platforms and both have simple,
blue, bulky logos. Similarly, Gucci’s nearest neigh-
bors are Dior and Cartier. Both operate in the luxury
retail space, have similar sophisticated brand person-
alities to Gucci’s and black-and-white, sleek, high-
whitespace logos.

It is not always possible to find a neighboring brand
that matches a focal brand on all four domains. Con-
sider Lowe’s, shown in the second row of the table.

Table 3. Average Prediction Cross-Validation Error

Task Domain Metric TSI POE PPCA Designer NIR

Designer Logo: Binary F1 0.132 0.106 0.089 0.131 0.051
Logo: Dominant color F1 0.096 0.096 0.095 0.086 0.034

Logo: Hull shape F1 0.160 0.149 0.146 0.154 0.102
Logo: Mark shape F1 0.064 0.064 0.065 0.059 0.015
Logo: Font serifs F1 0.319 0.311 0.297 0.306 0.297

Logo: Number of colors F1 0.265 0.244 0.245 0.258 0.124
Manager BP MSE 0.794 0.774 0.811 1.008
Consumer BP MSE 0.834 0.828 0.847 1.008

Text F1 0.014 0.017 0.011 0.005

Notes. Note that MSE is the mean squared error, for which higher numbers indicateworse fit, and F1 is the harmonic mean of recall and precision
for which higher numbers indicate better fit. Each column is a different model and each row is a domain in a task.
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Based purely on what a firm does, we might expect
the nearest neighbor of Lowe’s to be Home Depot or
another home improvement store, yet the model iden-
tifies TravelCenters of America and Union Pacific as
its nearest neighbors. These two firms operate in
related but distinct industries from Lowe’s yet share
much in common on consumer perceptions and logo
aesthetics. All three firms have logos with the same
distinct medium blue color, a lack of white space, a
bulky design, and even a similar sans-serif font. Be-
cause the learned representations capture all domains
simultaneously, Lowe’s is placed closer to these two
brands as opposed to other aesthetically distinct com-
petitors. We can tell a similar story for McDonald’s.
Based just on what McDonald’s does, one might ex-
pect to find brands such as Burger King or Wendy’s
as its nearest neighbors. Instead, we find Heinz and
Wells Fargo. The reason for the discrepancy becomes
clear as we look across all aspects of the brands.
McDonald’s, Heinz, and Wells Fargo are all classic
American brands. Heinz, like McDonald’s, operates in
food service. Moreover, all three brands have correlat-
ed brand-personality ratings, scoring relatively high
on traits such as family-oriented, western, and small
town. Most obviously, all three have very similar logo
designs. Finally, we see the two examples in the first
row have much lower distances to their neighbors
than those in the second row, which emphasizes that
firms are close together when they match on all of the
dimensions.

7.3. Domain Importance Through Scaling
Given that our learned representations are derived
from four distinct domains—text, logo, BP, and tags—
a natural question is, to what degree do each of these
domains contribute to z? To our knowledge, there is

no easily derived decomposition of z into the variance
explained by the four domains. Rather, the task-
specific inference networks combine information from
all of the modalities in a nonlinear fashion to produce
the final z, making it very difficult to backout the
contribution of each domain. Thus, in order to under-
stand the contribution of each domain to the final
representations, we develop a procedure that we call
domain scaling. The intuition is simple: to understand
how important domain d is to the final representation
z, we reestimate the model but multiplicatively scale
all of the likelihood terms for domain d by a small
number ε (e.g., ε � 1e− 8). By doing so, we effectively
remove the contribution of domain d from the model.8

Unfortunately, the z-vectors learned across the dif-
ferent scalings are impossible to compare. The dimen-
sions of z are not uniquely identified, and hence, each
run of the model may return different z’s. Therefore,
rather than using z directly to compare scaling, we in-
stead use the brand distances in the learned z-space,
which do not depend on comparing the dimensions of
z and, thus, are consistent and interpretable across dif-
ferent runs. We use these distances to compare the dif-
ferent scalings through two metrics:

1. Rank correlation. For each scaling and for each
brand, we compute the distance between that brand
and all the other brands in z-space. Then, we compute
the Spearman rank correlation of these distance vectors
across different scalings. In particular, we focus on the
rank correlation between the distances learned in the
scaled version and the distances learned in the full, un-
scaled model. If the correlation is high, it indicates that
the scaled version is learning similar relationships be-
tween brands as the full model, which suggests that the
scaled domain does not contribute much to the rela-
tionships learned by the full model.

Table 4. (Color online) Nearest Neighbors in z-Space

Note. The two closest brands to each focal brand in z-space, including their logo, name, and, in parentheses, the distance between the
focal brand and the neighbor in z-space.
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2. Top 10 neighbors. For each scaling for each brand,
we compute the 10 closest brands to that brand. We
then compare, for each brand, how many of its top 10
neighbors are shared across different scalings. Again,
our primary focus is on comparing each scaled version
with the full version. This forms a metric with a maxi-
mum of 10 with higher values indicating more agree-
ment between the scaled version and the full version.
Similar to the rank correlation, higher values suggest
that the scaled domain is not contributing.

The average of these two measures across brands
for each of the different scalings are shown in Table 5.
From the table, we see that textual data appears to
contribute the most: when its contribution is scaled
down, the representations change most dramatically
as indicated by the relatively low rank correlation
score (0.69) and the low number of average shared
neighbors (2.72). Brand personality contributes the
second most to the representation and logos third. Re-
moving the descriptive tags does not seem to alter the
learned representations as significantly. This is likely
because the textual data are already a very rich source,
characterizing observed heterogeneity between firms.
That textual data contributes the most may also ex-
plain the relatively poor performance of the consum-
er’s task in Section 7.1 as it is the only task that does
not leverage this detailed information.

7.4. Validation Studies
We now describe two studies we ran to test whether
our model’s outputs are consistent with consumer
perceptions.9

7.4.1. Study 1: Intrusion Test. One way of validating
whether the model has learned meaningful represen-
tations is by generating random brands from the
model and assessing their coherence. Our MVAE is, at
its heart, a generative model, and new brands can be
randomly generated simply by drawing a new zi vec-
tor from the prior, zi ~N (0, I), and propagating that
vector down the decoder networks. If the model has
learned a meaningful latent space, then brand identi-
ties generated in this fashion should be coherent. We
give examples of randomly generated brands as well
as more details of this process in Online Appendix G.

To test whether consumers find brands generated
in this way coherent, we designed an experiment in
which we first generated 24 random brands from the

model. For each of the brands, we designed a logo
based on the model’s suggested logo template by in-
corporating as many high-probability features as pos-
sible and with no knowledge of the other domains.
We also generated summaries of the other three do-
mains: a word cloud, corresponding to the most likely
words from the text part of the model; the highest
probability industry tag, excluding very common tags
such as B2B and B2C; and the three highest and lowest
brand-personality traits.

To assess whether consumers view these brands as
coherent, we showed random subsets of 12 of these
randomly generated brand profiles to a set of 226 par-
ticipants from an online, university laboratory panel.
To test coherence, for each brand profile shown, we
randomly held out one of the domains and used an in-
trusion task. As a test, we gave participants two op-
tions to “fill in” the missing domain: either the truth
or the same domain from one of the different randomly
generated brands (the intruder). We selected the intruder
randomly from the three random brands that were
farthest away from the focal brand out of all the random
brands not included in that participant’s study.10 The
results support our claim that the model generates co-
herent brands: out of the 12 given profiles, the average
proportion of “correct” choices (i.e., where the intruder
was not chosen) per respondent was 0.65 with a 95%
credible interval of (0.63, 0.67) (obtained from a simple
binomial model). Moreover, the distribution of correct
choices was left-skewed with many respondents select-
ing correctly nearly 100% of the time (see Online Appen-
dix A, Figure 14, for the distribution). Taken together,
these results provide strong evidence that consumers
are able to identify the matching domain at a rate signi-
ficantly better than chance, indicating that the model is
indeed generating coherent brands.

7.4.2. Study 2: z-Space Distances. A second aspect of
model validity is whether the model has learned
meaningful similarities and differences between brands.
Under the MVAE, similarities between brands can be
measured by distance in z-space. Thus, the goal of this
study was to establish that distances in z-space are, in
fact, meaningful for consumers. To establish that, we first
randomly selected 50 of the real brands in our data. For
each of those brands, we then randomly selected one
brand from among the lowest quartile of distances from
that brand in z-space (i.e., close brands) and another

Table 5. Results of the Scaling Analysis

Metric Scaled text Scaled BP Scaled logo Scaled tags

Rank correlation 0.69 0.72 0.85 0.91
Shared top 10 neighbors 2.72 3.69 4.67 5.85

Note. For bothmetrics, lower scores indicate that domain is contributingmore to the learned representation in the full model.
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brand from among the highest quartile of distances (i.e.,
far-away brands). For each brand, we compiled a profile,
using that brand’s real data, consisting again of the firm’s
logo, a word cloud of the text from the firm’s website, all
of the firm’s industry tags (excluding B2B/B2C), and fi-
nally the top and bottom three brand-personality traits.
We then showed a sample of 221 participants from a
university-affiliated online panel a randomly selected set
of 12 of these 50 focal brands together with the near and
far brands for each and asked them to select which brand
was closer to the focal brand.

The results again confirm that the model results are
meaningful: the average proportion of correct re-
sponses per respondent was 0.77 with a 95% credible
interval of (0.75, 0.78) (again coming from a simple
binomial model). Moreover, the results are again left-
skewed, indicating most people agreed with the
model for the vast majority of the cases (again, see On-
line Appendix A, Figure 14, for the distribution). This
provides strong evidence that respondents agree with
our model’s judgments of brand similarity.

8. Ideation Through Brand Arithmetic
We now show how the learned representations can be
leveraged for ideation purposes by brand managers
or designers. The design process for new brands often
begins by thinking of existing brands that are in the
focal industry or that have similar identities to the
new brand.11 Elements of these brands’ logos may
then be mixed with visual features unique to the new
brand. For instance, a designer for a new medical
device company may start by looking at what logo de-
sign patterns are popular in healthcare and in technol-
ogy companies and may then fuse these elements to-
gether to create a template for the new brand.
Colloquially, it is also common to hear new brands,
especially start-ups, described as the “X of Y” (e.g.,
the “Uber of grocery stores” for a grocery delivery ser-
vice) or as a fusion of existing brands (e.g., a mix of
Mercedes-Benz and Old Navy for an accessible luxury
car or a mass market luxury fashion brand). In z-
space, the idea of fusing brand traits or identities can
be captured by averaging (or adding) together zi vec-
tors corresponding to specific traits or brands, an op-
eration we refer to as brand arithmetic.

8.1. Example: Medical Devices
We first consider the task of designing for a medical
device company. As described, medical devices can
be considered a fusion of technology and healthcare.
In our data, we have an industry tag corresponding
to healthcare as well as the technology-related indus-
try tags hardware, consumer electronics, and software.
To understand what features we would expect in a
brand that sits at the intersection of healthcare and

technology, we first need to define two average
vectors

zS � 1
NS

∑
i∈S

zi, z̄S � L
|| zS || zS, (9)

where S refers to the set of brands belonging to some
prespecified group of interest, NS is the number of
brands in that set, || · || denotes the Euclidean norm,
and L is the average Euclidean norm of all of the
learned vectors zi. Intuitively, this average is just the
average of all the zi vectors for all firms in some
group, rescaled by the average norm of all of the
brand representations. As more vectors are averaged
together, their norm tends to become smaller as the
large components of one are canceled out with the rel-
atively smaller components of others. Hence, to en-
sure comparability across all vectors in the space, we
employ this norm-preserving average.

Returning to our example, then, we define two
norm-preserving averages, z̄Health, which is the aver-
age of all brands tagged as healthcare companies, and
z̄Tech, which is the average of all brands tagged as ei-
ther hardware, consumer electronics, or software com-
panies. We can then interpolate between these two
vectors to create a new representation for a medical
device company:

zMedDevice � 0:5z̄Health + 0:5z̄Tech: (10)

To validate that this procedure indeed produces a rea-
sonable representation, we first check which firms are
close to the interpolated zMedDevice: among the 10 nearest
neighbors to zMedDevice are medical device manufacturers
Baxter International, Becton-Dickinson, McKesson, and
ThermoFisher Scientific; medical IT company Cerner
Corporation; and pharmaceutical companies AbbVie
and Celgene.

We can also see what predictions the model makes
about such a firm. Comfortingly, when we predict the
industry tags from zMedDevice, the top five tags are
healthcare, biotechnology, software, information tech-
nology, and hardware. The model also makes a strong
prediction that the company is B2B. When zMedDevice is
propagated through the text decoder, the highest
probability words include technology, patients, solu-
tions, and innovation (a word cloud showing the most
relevant terms is shown in Online Appendix A, Figure
15). For brand personality, the highest relative traits
are technical, intelligent, and contemporary, and the
lowest are outdoorsy, rugged, and masculine. Finally,
we summarize the logo features we expect for this
company in Online Appendix A (Table 7) and provide
a simple rendering of a logo created by the authors us-
ing the suggested logo features in Figure 10.
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8.2. Making Fast Food More Daring
Brand arithmetic can also be used with personality
traits. Consider the task of designing a daring fast-
food (DFF) company. In general, fast-food brands are
not perceived as particularly daring: in our data, on a
scale from 0 to 4, the average consumer rating of
McDonald’s for “daring” was 1.0 and for Burger King
1.05, and the average daring rating across all firms is
1.6 with a max of 3.3. To mathematically represent
combining “daring” and “fast food,” we first create
representative z-vectors for each of these concepts: for
daring, we create an average z̄Daring by averaging the
zi vectors for all brands that scored in the top decile of
daring. For fast food, we create z̄FastFood by averaging
together the zi vectors of McDonald’s, Burger King,
and KFC. To create a new brand identity, DFF, we
can simply interpolate between z̄Daring and z̄FastFood:
zDFF � 0:5z̄Daring + 0:5z̄FastFood.

Unlike the medical device case, in which we could
verify that the arithmetic had produced a reasonable
result by computing the new z’s nearest neighbors, in
our data, there is no natural “daring fast food” brand
to correspond to either of these new profiles. When
we compute the nearest neighbors to zDFF, they are
Fanta, Dominos, and Yum Brands. As we illustrate in
the next section, more recent entrants to the market do
reflect the predicted personality: when Shake Shack’s
zi is estimated using the full inference network, it falls
closer to zDFF than it does to z̄FastFood. However, Shake
Shack is not in our original data.

Nonetheless, we can still make predictions for this
previously unobserved brand identity. In both cases,
the two highest industry labels associated with zDFF
are food and beverage and travel and tourism, which
are the two labels most often associated with fast-food
firms. For brand personality, the highest three traits
are cool, trendy, and spirited. Though not daring,
these traits are correlated with daringness but may be
more likely to occur in a fast-food context, and daring
appears in the top 10.12 More importantly, we can also
use the model to predict what a daring fast-food firm
would look like. Although red is still the highest prob-
ability dominant color (probability � 0.365), black is
much more likely than for a normal fast-food firm
with an increase in probability of 0.129, the highest of
any color. Circular and square logos become much
less likely with narrow and wide rectangular logos

gaining probability. Having just a single color be-
comes much more likely, and having more than three
colors becomes much less likely. This list reflects just a
few of the predicted changes but gives a sense of the
utility of brand arithmetic: by interpolating in this
way, we can begin to understand what changes can be
made to a fast-food logo to make it look more daring.

8.3. Creating Brand Hybrids
As a final illustration of the brand arithmetic concept,
we consider the idea of interpolating between specific
brands. To interpolate between brands A and B, we
find the midpoint between the two brands in z-space:
zMid � 0:5zA + 0:5zB. We then consider which of our
existing brands are closest to this midpoint. In many
cases, the closest brands to zMid are simply the original
two brands or their closest neighbors. However, by
looking at which brands are close to zMid but not close
to either zA or zB, we can understand better how the
model interpolates between these two brands. We
now describe three examples interpolating between
well-known brands:

• Mercedes-Benz and Old Navy. When interpolating
between Mercedes-Benz, a luxury car brand, and Old
Navy, an affordable apparel retailer, we find among
the closest midpoint brands several very interesting
case studies. The nearest midpoint brand is Zara, a Eu-
ropean fast fashion brand, which is more upmarket
than Old Navy but not quite as luxurious as the third
and fourth closest brands, Ralph Lauren and Coach.
We also find some interesting car companies close to
the midpoint: Audi, likely because of its proximity to
Mercedes-Benz, and also Kia, a more downmarket
manufacturer.

• Louis Vuitton and Nike. When interpolating be-
tween luxury fashion brand Louis Vuitton and sporting
apparel and footwear company Nike, we find the clos-
est midpoint brand is Adidas, essentially similar to
Nike. However, among the other brands close to the
midpoint are Calvin Klein, a relatively upmarket fash-
ion brand with a sporty look and with a logo that fuses
elements of both Louis Vuitton and Nike. Other nearby
brands include Under Armour, another sporty, upmar-
ket retailer, and BMW, an innovative, sporty, luxury
car manufacturer.

• Google and McKinsey. Finally, we interpolate be-
tween the tech company and search engine Google
and the management consultancy McKinsey. The
closest brands to the midpoint between these firms
are SAP, Microsoft, and IBM. SAP and Microsoft are
both business-oriented technology providers. Both
are dominant B2B providers of software. Besides be-
ing a technology company, IBM also provides exten-
sive IT consulting services.

Taken together, these examples further emphasize
the ability of brand arithmetic to meld together brand

Figure 10. (Color online) Rendering of a Logo Based on
zMedDevice

Note. A simple, nonprofessional rendering of a logo based on the
visual profile in Online Appendix A, Table 7.
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identities and aid in the ideation process for new
brands.

9. Decision Support
In all of the previous analyses, we use the full inference
network and manipulate the learned zi representations
to aid in the brand ideation process. Yet perhaps the
most important contribution of our framework is pro-
viding a decision support tool for both designers in the
early stages of designing logos and managers who
want to understand the impact of logo design on brand
perception. Supporting data-driven decisions across
these perspectives requires our task-specific inference
networks, which allow us to make predictions about
missing modalities. In this section, we illustrate the de-
cision support provided by these networks through
two applications: in application 1, we consider using
the manager’s inference network to guide an actual re-
branding that took place during the course of our re-
search. Then, in application 2, we consider using the
designer’s and manager’s inference networks together
to provide decision support for the creation of a new
brand identity.

9.1. Application 1: Rebranding McDonald’s
Rebranding is common for firms looking to update
their image and keep pace with changing markets
(Henderson and Cote 1998). Often, this rebranding in-
volves a change (small or large) to the firm logo. Case
in point: of the 389 firms in our data for which we
were able to find information about the history of
their logo, 137 (35%) of them have changed their logo
at least once.13 One such firm is McDonald’s, whose
golden arches have experienced many evolutions over
time. Recently, McDonald’s has relied on a relatively
simple design featuring just the golden arches, quite
distinct from the version that was most common in
the 1990s as shown in Figure 11. Even more recently,
McDonald’s has reintroduced a red background to the
arches.14

To illustrate the utility of our model for aiding in re-
branding, we explore how consumers may perceive
each of McDonald’s candidate logos, using the older
logo as a baseline. Specifically, we construct three

hypothetical profiles for McDonalds by fixing the text
and industry tags and varying the logo design across
the three designs shown in Figure 11. We then use the
manager’s inference network to infer a zi for each of
these three profiles and, finally, use the brand-
personality decoder to infer how consumers may per-
ceive each profile. The predicted brand-personality
ratings, relative to the old logo, are shown in Figure
12. These results suggest that consumers perceive the
red background logo as more similar to the older,
more complex designs. This, however, may not neces-
sarily be beneficial: by and large, the simple, arches-
only design is expected to be perceived higher along
many dimensions, including things such as contempo-
rary, good looking, and up to date, which are likely
target traits in a rebranding. In fact, the arches-only
logo is predicted to fall short on only two dimensions:
small town and western. Intuitively, this makes sense:
many modern logos feature relatively simple, single-
color designs with considerable whitespace. The
arches-only logo is squarely in this mold and, thus, is
perceived as up to date and contemporary but per-
haps without the small-town charm of older logos.

9.2. Application 2: Shake Shack and In-N-Out
In our second application, we illustrate a full-use case
of the model’s decision support capabilities in the typ-
ical setting of a firm designing a new logo. Typically,
firms hire designers to produce potential options for
their new (or redesigned) logo. A manager then choo-
ses among these options or suggests possible changes
to the proposal (Henderson and Cote 1998). We illus-
trate how our model can help a designer designing
candidate logos and a manager evaluating potential
logo options or changes to a proposed logo.

Building on our previous analysis, we consider de-
signing a logo for a new fast-food firm. Specifically,
we use as inspiration two fast-food firms that were
not included in our data—Shake Shack and In-N-
Out—and imagine the task of designing their logos
from scratch. Structuring our analysis around existing
brands that were not included in our training data al-
lows us to ensure our model inputs are realistic and
provides another benchmark to assess the validity of
our results: although we are treating these brands as if

Figure 11. (Color online) Three Logos of McDonald’s

Notes. (1) An older logo, popular from the 1990s (and on McDonald’s roadside signs). (2) A newer version, introduced in the 2000s. (3) An even
newer version with a red background.
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they are new to the world, they do in fact exist, and
we can, therefore, compare our model recommenda-
tions to their actual designs.

The two brands offer a compelling case study be-
cause their brand identities are quite distinct. Shake
Shack is a relatively recent entrant to the fast-food
space. Its origin in New York City and its focus on up-
scale, urban markets is a fundamentally different posi-
tioning than competing fast-food chains. Its true logo
is also quite different from the typical fast-food restau-
rant. Yet, despite these differences in aesthetics and
brand, the functional aspect of the firm is essentially
identical to other fast-food restaurants: Shake Shack
sells burgers, fries, and milkshakes, quickly, in a
counter-service format. Hence, Shake Shack is inher-
ently drawing on existing branding concepts to create
a new, hybrid brand. As the basis for a hypothetical
new firm, we can use Shake Shack to test whether our
model is able to suggest meaningful features even for
a target that deviates from the norm. In-N-Out, on the
other hand, draws on many of the classic fast food
themes: it emphasizes its history, the classic roadside
iconography of fast food firms, the typical red and yel-
low patterns in its true logo, and again, it serves an af-
fordable menu similar to many mainstream fast food
restaurants. Hence, in asking our model to design a
logo for a hypothetical new firm based on In-N-Out,
we can validate that our model is indeed able to guide
the creation of more typical brand identities.

For the designer’s task, decision support starts with
the nonlogo inputs to the model: text describing the
firm, a target brand personality profile, and the relevant
set of tags describing the firm’s high-level characteris-
tics. To create our In-N-Out and Shake Shack lookalikes,
we first gathered the same data for these two brands as
for the brands in our calibration sample: we extracted

the words from their website and identified relevant
tags. For brand personality, we used a target brand
personality. For validation purposes, we also collected
each brand’s most typical logo. We process these data
in an identical fashion as our training data, creating a
new set of features that can be used by our model and,
in particular, our task-specific inference networks.15

These features, minus the true logos, serve as the basis
for our two lookalike brands.

9.2.1. Designing New Logos. To start, we consider
decision support for the designer, tasked with devel-
oping the logo for our Shake Shack and In-N-Out
lookalikes. Under our framework, this task is equiva-
lent to using the website text, target brand personality,
and tags as inputs to the designer’s inference network
from which we infer an approximate posterior for zi.
We then sample from that posterior to produce a dis-
tribution over the new brand’s predicted logo fea-
tures.16 For the designer, this process produces what
is essentially a logo template: a set of likely and un-
likely features that would be typical of a firm with
that description. We summarize the model’s outputs
for the Shake Shack lookalike in Table 6.

Comparing these predictions to the actual logos
(Online Figure 17), we find they are fairly accurate.
The black colors, sans-serif font, and detailed circular
design of its mark are all spot on. Moreover, in terms
of binary features, the true logo’s font is indeed origi-
nal width, no italics, and in the geometric font class.
Especially relative to other fast-food logos, there is a
high amount of whitespace. It does have a mark, and
the thin but complex features, particularly the mark,
are of relatively high perimetric complexity. The only
conspicuous differences between the true logo and the

Figure 12. (Color online) Comparison of the Predicted BP Evaluations Across the Two Candidate Logos Relative to the Old
Logo Shown in Figure 11

Note. We omit traits for which both logos were expected to have approximately the same evaluation as the old logo.
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prediction have to do with the font weight (light, not
bold) and the accent colors (light green, not gray).17

In some sense, these fairly accurate predictions are
not surprising: we have already demonstrated the
predictive validity of the framework. The purpose of
this example, however, is to illustrate how the frame-
work can be used by a designer. The template shown
in Figure 6 illustrates what the typical logo of a firm
with the supplied features might look like. Similar to
a designer’s mood-boarding process, it is based on
synthesizing existing logos of firms with similar fea-
tures. Rather than manually synthesizing existing
logos, the MVAE’s designer inference network com-
putationally synthesizes them through the latent z-
space and produces the template in Figure 6. These
features reflect the basic features a designer could use
as a starting point to design a typical young, trendy,
and glamorous food brand that describes itself using
the same words Shake Shack uses on its website. Of
course, the template is meant as a starting point, to
aid the designer in the brainstorming process, not as a
replacement for the designer. In Shake Shack’s case,
the fundamental role of the designer in improving on
this template is evident in where the true logo departs
from the template: although green was not a sug-
gested color from our model, the neon green, thin bur-
ger in Shake Shack’s logo is reminiscent of the signage
at a typical 1950s “burger joint” with the burger ex-
plicitly indicating the industry. Similarly, the thin font
is reminiscent of such signage.18

Finally, note that Shake Shack’s predicted visual
profile contrasts starkly with the model’s predictions
for In-N-Out: for In-N-Out, the model overwhelm-
ingly predicts a red dominant color (probability �
0.644). Although it also predicts two or three colors,

red and yellow occur with a much higher probability
for In-N-Out with red being the most likely color in
general and yellow being the most likely accent color.
Although bold fonts are still predicted, sans-serif fonts
are somewhat less likely with serif font being predicted
with probability 0.234. Other relatively more likely vi-
sual features include high saturation in colors, high
brightness, low perimetric complexity, and high verti-
cal symmetry, most of which are accurate predictions
and reflect the fast-food industry norms rather than
the edgier styling of Shake Shack. These differing pre-
dictions are driven by the differing emphases in the
target brand personality as well as the different words
emphasized on the two firms’ websites (as shown in
Online Appendix A, Figures 17 and 18). Taken together,
the contrasting model recommendations show that the
model is able to make meaningful distinctions between
ostensibly similar firms in a way that could guide de-
signers to crafting effective brand imagery.

9.2.2. Assessing Visual Changes. Finally, we again
consider the task of assessing changes to a brand’s logo
from the perspective of a manager, similar to what we
did previously with the McDonald’s case study. The ef-
fect of proposed changes to a logo can again be as-
sessed directly in our model framework by using the
manager’s inference network to see how the model’s
predictions about consumer perceptions change with
different logo feature inputs, conditional on the brand’s
textual description and industry tags. In this way, our
model provides decision support for managers as a
sandbox for experimenting with potential redesigns or
for comparing several potential designs.

To illustrate this, suppose Shake Shack was consid-
ering changing its font from its current light font

Table 6. Visual Profile Corresponding to zShakeShack as Inferred from the Designer’s Inference Network, Illustrating the
Likely Values of the Categorical Features at Left and a Selection of High-Probability Binary Features at Right

Categorical features Binary features

Feature Likely values Probability Feature class Likely values Probability

Dominant color: Black 0.519 Accent color: Light gray 0.633

Dark gray 0.164 Dark gray 0.303

Light gray 0.045 Contains color: Light gray 0.643

Hull shape: Triangle 0.431 Black 0.676
Medium oval 0.259 Font: Width: Original 0.904
Thin oval 0.203 Style: No italics 0.946

Sans/serif font: Sans 0.888 Weight: Bold 0.636
Mark class: Detailed circular design 0.226 Class: Geometric 0.489

Thin 0.219 Other: Has a mark 0.967
Narrow/vertical 0.142 High percentage whitespace 0.645

Number of colors: Three colors 0.449 High perimetric complexity 0.521
Two colors 0.308 Many downward diagonal edges 0.477

Note. For each of the binary features shown, we only report the highest values (e.g., the highest probability font class was geometric with
probability 0.491).

Dew, Ansari, and Toubia: Letting Logos Speak
422 Marketing Science, 2022, vol. 41, no. 2, pp. 401–425, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.1

76
.1

30
] 

on
 0

9 
Se

pt
em

be
r 

20
24

, a
t 1

3:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



weight to a bold font weight (as suggested by the pre-
ceding model). How might consumer perceptions
about Shake Shack change? Such a prediction can be
tested directly by adding the “bold font” feature to
the binary logo features and removing “light font”
and then using the MVAE’s manager’s inference net-
work. When we do so, we find that personality traits
such as western, small town, down to earth, and
family-oriented likely go up, and traits such as up to
date, intelligent, contemporary, and daring likely go
down.19 Although the changes are relatively slight, in
keeping with the relatively small proposed modifica-
tion, we do notice a pattern: Shake Shack’s modern
image may be negatively affected although its percep-
tion along classic fast-food dimensions such as family-
oriented may be bolstered.

10. Conclusion
In this paper, we explore logo design and brand iden-
tity from a data-driven perspective. Leveraging a rela-
tively large data set of prominent brands, a novel logo
feature extraction algorithm, and both model-free and
model-based analyses, we show that many aspects of
the design and branding processes can be predicted
from data, including which features brands use in
their logos and how consumers perceive these brands’
personalities. Moreover, we show how our multiview
representation learning approach yields both a mathe-
matical framework for ideation through brand arith-
metic and a set of decision support tools that can be
used to systematically approach the design process.

From a methodological perspective, our contri-
butions are twofold: First, we develop an automatic
approach for extracting meaningful and manipulable
features from logos. Second, we develop a multiview
learning framework based on multimodal variational
autoencoders with a novel approach to inference. Our
inference procedure combines task-specific inference
networks with stochastic data binning and is especially
suitable for the simultaneous estimation of multiple in-
ference networks that are geared toward providing de-
cision support tools for managers as well as designers.
By combining these two methodological advances, we
contribute to a nascent literature on interpretable ma-
chine learning: our feature extraction algorithm produ-
ces interpretable features, which, when combined with
our complex, nonlinear generative model, produce in-
terpretable recommendations and insights. Moreover,
our model-free and model-based analyses facilitate a
scalable understanding of how logo design patterns
vary across different industries and brand personalities.

More generally, we see much promise for multi-
modal learning methods, such as our MVAE, in other
marketing contexts. Many sources of data in market-
ing are multimodal, including information about

customers in omni-channel settings, and user-generated
data on online platforms, which often contain text,
images, and numeric outcome metrics. Much of the
content generated by firms is similarly multimodal:
e-commerce platforms typically contain photos, videos,
text, and numeric information (e.g., prices). Our MVAE
framework specifically and multimodal representation
learning more generally are ideal for tackling these
modern data challenges to uncover deeper insights
about customers, brands, and markets.

Finally, we note several areas for future research.
Foremost, ours is a model of logo typicality, not opti-
mality. We are able to capture what a typical firm
does, not what is the best logo for a firm, given objec-
tives other than typicality. Although exploring opti-
mality of designs may pose an interesting future
research area, the task of moving from a typical to an
optimal logo may also be better suited to a human de-
signer, who can add the creative flair that character-
izes the most successful logos (e.g., the FedEx arrow,
the Amazon “a to z”) beyond what our model-based
approach can suggest. Additionally, our model does
not make strong claims about the causality of design:
that is, it does not answer why existing logos are de-
signed the way they are, but rather conditions on the
existing design landscape. Answering this question is
difficult and likely involves both temporal factors
(e.g., mimicry of a successful brand) and functional
factors (e.g., red is easy to see on a sign from far away
or red stimulates the appetite).
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Endnotes
1 The reverse-coded traits were honest/dishonest, exciting/boring,
and good looking/ugly. Any participant who answered that both
traits are descriptive of the firm was automatically removed.
2 See https://en.wikipedia.org/wiki/Vox-ATypI_classification.
3 We include a forest plot showing these relationships in Online Ap-
pendix A, Figure 13.
4 We use the terms modality, data source, and domain interchangeably.
5 This simple coding reflects whether a firm chooses to label itself a
certain way (e.g., as “innovative”). Although the number of times a
given word is repeated may be informative, it may also merely re-
flect the volume of text on the firm’s website. Hence, we only model
the presence or absence of a given word in the textual description.
6 The log (ey + 1) structure in Equation (4) enforces positivity and is
more numerically stable compared with simple exponentiation.
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7 There is also in-sample reconstruction fit, which is how well the
model is able to reconstruct its inputs for the same set of brands on
which it was trained. Our model does exceptionally well on this
in-sample measure, but we do not report it here, favoring the
harder out-of-sample metrics.
8 There are two benefits of this likelihood scaling procedure over
just simply removing the domains from the model: from a practical
perspective, this procedure is significantly easier to implement, re-
quiring adding only a simple predefined scalar to the likelihood.
Second, although we do not explore this here, this scaling factor can
be tuned, or continuously increased, to assess the contribution of
the domain across a broad spectrum of weights.
9 Examples of all study stimuli are in Online Appendix H.
10 This distance restriction is necessary to ensure the choice is mean-
ingful: without this restriction, a participant may be forced to
choose between two very similar options (e.g., brand-personality
descriptions that differ by only one word or word clouds that con-
tain many of the same terms).
11 See, for example, https://99designs.com/blog/tips/logo-design-
process-how-professionals-do-it/.
12 We show the traits that increased and decreased the most relative
to the original z̄FastFood in Online Appendix A, Figure 16.
13 In fact, since compiling our initial data set in 2016, at least three
brands have changed their logos.
14 For an informal overview of the history of the McDonald’s logo,
see https://www.digitaldoughnut.com/articles/2019/september/
mcdonalds-history-and-evolution-of-a-famous-logo.
15 The features of Shake Shack are summarized in Online Appendix A,
Figure 17, and those for In-N-Out in Online Appendix A, Figure 18.
16 It is important to note that this operation is entirely out-of-sample:
neither Shake Shack nor In-N-Out’s logos were used in learning the
parameters of any of the functions in our model, nor were they
used in this case to compute the approximate posterior.
17 The light gray may be an artifact of the feature extraction process:
when thin, black features are imposed on a white background, the
color quantization procedure described in the online appendix
nearly always erroneously detects a light gray color in addition to
the black. This also accounts for the prediction of three colors.
18 See https://www.fastcompany.com/3041777/the-untold-story-
of-shake-shacks-16-billion-branding.
19 The model’s predictions of the 10 BP traits most positively and
negatively affected are shown in Online Appendix A, Figure 19.
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