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Abstract
Routines shape many aspects of day-to-day consumption. While prior research has established the importance of habits in

consumer behavior, little work has been done to understand the implications of routines—which the authors define as repeated

behaviors with recurring, temporal structures—for customer management. One reason for this dearth is the difficulty of mea-

suring routines from transaction data, particularly when routines vary substantially across customers. The authors propose a new

approach for doing so, which they apply in the context of ridesharing. They model customer-level routines with Bayesian nonpara-

metric Gaussian processes, leveraging a novel kernel that allows for flexible yet precise estimation of routines. These Gaussian processes

are nested in inhomogeneous Poisson processes of usage, allowing the authors to estimate customers’ routines and decompose their

usage into routine and nonroutine parts. They show the value of detecting routines for customer relationship management in the con-

text of ridesharing, where they find that routines are associated with higher future usage and activity rates, and more resilience to service

failures. Moreover, the authors show how these outcomes vary by the types of routines customers have, and by whether trips are part

of the customer’s routine, suggesting a role for routines in segmentation and targeting.
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Routines are an integral feature of consumers’ daily lives: for many
people, from the time they wake up to the moment they go to sleep,
their time is structured around routines. Such routines often involve
consumption, like picking up coffee from a favorite coffee chain
each morning, checking a weather app before going outside, or
choosing a mode of transportation to get to and from work.
Moreover, consumers’ routines differ from one another: while
one person may drink their coffee only in the mornings, seven
days per week, another may prefer to have their coffee after
lunch, and only on weekdays. Marketers can greatly benefit from
understanding consumer routines. Yet, while routines are intui-
tively important drivers of consumer behavior, prior research has
not explored the presence of such routines in consumers’ behavior
and their implications for customer management. Accordingly, the
objectives of this research are (1) to build a statistical model that
can capture customer routines at the individual level and (2) to
explore the relationship between such routines and behavioral out-
comes like transaction frequency and customer activity.

We define a routine as a behavior with a defined, recurring,
temporal structure, such that the same behavior occurs at
roughly the same time, period after period. We focus

specifically on the period of a week, as weekly routines
capture many common routines, including, for instance,
weekday commutes, weekday lunches, weekend brunches,
and weekly grocery shopping.1 Routines are related to habits,
which have been studied more extensively in marketing
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(e.g., Drolet and Wood 2017). It is the emphasis on temporal
structure that differentiates routine behavior from habitual (or
repeat) behavior. For example, a consumer who always shops
at the same store may do so out of habit. A customer who
always shops at that same store every Thursday evening exhib-
its a routine. In this sense, a routine can be viewed as a habit that
is embedded in a consumer’s day-to-day schedule. We posit
that such temporally structured behavior may be an especially
important predictor of customer value, and customer behavior
more generally.

Little research has been done on capturing routines and
understanding their impact on consumer behavior and firm
profitability. In this work, we focus on the implications of rou-
tines for customer relationship management (CRM). In particu-
lar, we hypothesize that, given equal transaction rates,
customers who interact with the company as part of their
routine may be higher-value customers, in terms of more
future purchasing and lower rates of churn, relative to custom-
ers with no routine. Routine customers may also be better cus-
tomers in other ways, including having lower price sensitivities
and higher resilience to service disruptions. We hypothesize
that the effect of a routine exists over and above a mere ten-
dency to repurchase the same product, as is already captured
in many existing CRM frameworks like the recency–fre-
quency–monetary value (RFM) model (e.g., Blattberg, Neslin,
and Kim 2008; Neslin et al. 2013). In other words, given two
customers with identical purchasing summary statistics—that
is, they both purchased recently, they both made the same
number of purchases historically, and they both spent the
same amount on each purchase occasion—we predict that the
customer whose purchase timings exhibited a higher routine-
ness will be a better customer in the future.

To measure customer routineness, we develop a statistical
model that allows us to identify the routine of each individual
customer, if it exists, and isolate the share of the consumption
that can be attributed to that routine. This model enables us to dif-
ferentiate between, for instance, a customer who has ten routine
trips per week (e.g., to and from work every weekday) and
another customer who has only two routine trips per week (e.g.,
going to yoga class on Tuesday and Thursday afternoons).
Specifically, our model is an individual-level, inhomogeneous
Poisson process that captures individual-specific patterns in con-
sumption across periods, with a unique Bayesian nonparametric
specification of its rate. The individual-specific rate of consumption
is decomposed into a component that captures potentially dynamic
levels of idiosyncratic or “random” consumption, and a “routine”
component that captures individual-level consistencies in consump-
tion timing, which is modeled using a Gaussian process (GP) prior
with a unique kernel structure. This kernel structure incorporates
intuitive aspects of consumption over time—specifically, that
certain days exhibit similarities in consumption (e.g., a Tuesday
might be more similar to a Thursday than to a Sunday) and
that consumption within days exhibits a 24-hour cycle (e.g.,
12:05 a.m. is similar to 11:55 p.m.)—to precisely estimate
individual-specific variation in routine behavior. Using the
routine component of the Poisson rate parameter, we construct

an individual-specific “routineness” metric that measures the
degree to which an individual’s behavior is structured around a
routine. In addition to the routineness metric, the model infers
the form or temporal “shape” of the routine for each consumer
(e.g., whether a consumer has a Monday through Thursday
morning routine or a Tuesday evening routine).

We apply our model and routineness metric to data from Via,
a leading New York City–based ridesharing company, to esti-
mate consumer routines in requesting rides. Ridesharing is a
particularly rich setting for studying routines, as travel is
often an integral part of many daily and weekly routines. We
identify various patterns in using the ridesharing service
across users, including predictable commuting routines as
well as more complex, idiosyncratic routines. More impor-
tantly, we show that, as hypothesized, users who are more
routine in their behavior are also more valuable to the firm, in
terms of both higher future usage and higher rates of remaining
active, even after controlling for past usage patterns such as
recency, frequency, or clumpiness. Having established the value
of routineness in customer value, we then show that routines also
play a role in driving and moderating other aspects of the cus-
tomer–firm relationship, including price sensitivity and customer
response to service failures. Our results suggest that firms can
benefit from understanding routines for better predicting future cus-
tomer activity and developing segmentation and targeting strate-
gies. Notably, routines moderate customer behavior both between
customers, insofar as more routine customers behave differently
than less routine customers, and within customers, insofar as cus-
tomers react differently to pricing and service for trips that are
part of their routines. The between-customer effects suggest that
the firm may benefit from identifying routine users, or even culti-
vating routines, while the within-customer effects suggest that
there is room for firms to optimize the provision of services
around customers’ routines.

The rest of the article is organized as follows. We start by
discussing the prior literature on habits and routines and the
connections between routineness and other extant metrics of
transaction timing in CRM. We then present our model for cap-
turing and measuring customer-specific routines. Moving next
to our empirical application, we describe the ridesharing data
and the results of applying our model: We first apply the
model on synthetic data that mimics the real data, validating
the model’s ability to recover different types of routines. We
then apply the model on the ridesharing data, characterizing
the types of routines exhibited by riders, and validating the
model’s fit. Finally, we explore the idea of routineness more
deeply by highlighting the relevance of routines for CRM,
exploring how customer-level outcomes vary by the type of
routine, and comparing routineness with other constructs. We
conclude with discussion and directions for future research.

Conceptual Foundations
While research on routines is relatively scant, the closely related
topics of habits and repeat behaviors have been studied exten-
sively, both in marketing and in related disciplines. Early
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work in marketing used the term “repeat buying habit” to indi-
cate the practice of repeatedly buying the same product or
repeatedly buying from the same company, without considering
the more psychological construct of a habit or habit formation
(Ehrenberg and Goodhardt 1968). Predicting repeat purchasing
has subsequently been the focus of many models in customer
base analysis, including popular buy-till-you-die models (e.g.,
Schmittlein, Morrison, and Colombo 1987) and more general
RFM-based specifications (e.g., Dew and Ansari 2018).
Repeat buying is also central to other important marketing con-
structs, including brand and store loyalty and brand inertia (e.g.,
Guadagni and Little 1983), all of which can also be viewed as
forms of habitual behavior. Moving beyond studying simple
repeat purchasing, Shah, Kumar, and Kim (2014) generalized
the idea of habits to recurring behaviors like returning products,
purchasing on promotion, and purchasing low-margin items.
They showed that these repeat behaviors are linked to firm prof-
itability, and that firm actions can influence the formation of
habitual behaviors.

Habit formation has also been studied in economics, often in
the context of consumption and expenditure, where it is typi-
cally defined as current expenditures depending on lagged
expenditures through a “habit stock.” In this literature, habits
have been used to explain the smoothness of consumption
over time, even in the presence of shocks to income, although
evidence for the existence of habit formation in aggregate con-
sumption is mixed (Dynan 2000; Fuhrer 2000).

Much of the theory behind why habits matter, how they
develop, and how they can be changed has come from the psy-
chology and consumer behavior literatures. Habits have been
studied in psychology since as early as the nineteenth century
(James 1890). In this literature, habits are often defined as ten-
dencies to repeat behaviors, typically automatically or subcon-
sciously (Ouellette and Wood 1998; Wood, Quinn, and Kashy
2002), and sometimes in a goal-directed manner (Aarts and
Dijksterhuis 2000) or triggered by contextual cues (Neal et al.
2012). Especially relevant for our empirical application of ride-
sharing, habits have recently been identified as a primary driver
of travel mode choice (e.g., Verplanken et al. 2008), which is of
particular interest for developing more sustainable consumer
choices (White, Habib, and Hardisty 2019). A noteworthy
finding in this literature is the habit discontinuity hypothesis,
which states that context changes that disrupt individuals’
habits can lead to deliberate choice consideration and habit
breaking (Verplanken et al. 2008). This phenomenon has also
been observed in the CRM literature. For example, Ascarza,
Iyengar, and Schleicher (2016) show that customers who con-
tinue to transact with the firm out of habit may be driven to
churn by company retention efforts, even when those retention
efforts are intended to save the customer money, simply by
means of disrupting their inertia.

Routines and Habits
In one sense, routines can be viewed as a specific type of habit,
where the automaticity of behavior is related to time: if, every

day, at a certain time, a consumer carries out an action, then
time can be considered the context that triggers that behavior.
Thus, many of the predictions made elsewhere in the literature
about habitual behavior and customer loyalty (e.g., Ascarza
et al. 2018) carry over to routines: we postulate, for instance,
that routines can lead to nearly automatic choices, and will
thus be more difficult to break, resulting in stickier long-term
behavior and lower likelihood to react negatively to price
increases or service failures. However, we hypothesize that rou-
tines are more predictive of customer value than mere habit.
The key distinction between habits and routines is that
whereas habits simply imply automatic, repeated behaviors, a
behavior is routine only if it additionally has a recurring, tem-
poral structure. Intuitively, such behaviors are likely embedded
in a consumer’s daily life and, thus, may be even more auto-
matic and indicative of long-term value than habitual behaviors
that lack such a temporal structure. Thus, a customer who is
routinely consuming a focal product or service may be even
more valuable than one who is merely habitually (i.e., repeat-
edly) consuming the product, but not in a routine manner.

Clumpiness, Regularity, and Routines
Our work is also related to the growing literature on extending
traditional RFM frameworks to incorporate information about
usage and purchase timing. RFM-based frameworks, while
useful predictive tools, discard much of the richness of a cus-
tomer’s transaction history and simply summarize a customer’s
likelihood of repeat purchasing by how recently they purchased
and how often they purchased in the past. Recent work has
shown that there is incremental value in moving beyond these
simple statistics. A notable contribution in this stream is
Zhang, Bradlow, and Small (2015), who defined the “clumpi-
ness” of customer transaction times. Their metric captures the
customer-level entropy of intervisit times and is higher when
a customer exhibits more temporally clustered, or “clumpy,”
behavior. They show that, in many empirical contexts, espe-
cially contexts with bingeable content, this measure of clumpi-
ness is a key (positive) predictor of customer lifetime value.
Another key contribution comes from Platzer and Reutterer
(2016), who defined the concept of transaction regularity. In
particular, they introduced a buy-till-you-die model, the
Pareto/GGG, where the regularity of transactions is modeled
by relaxing the standard exponential-distributed intertransac-
tion time model common to many customer base models, allow-
ing for customer-specific gamma-distributed intertransaction
times. They find that incorporating regularity can improve
customer-level predictions.

Routineness is conceptually distinct from, but related to,
these two metrics. In particular, routines can generate clumpy
or regular behavior, or even regular clumpy behavior, depend-
ing on the type of routine. For example, a customer who takes
multiple rides club-hopping every Saturday night exhibits a
routine that is clumpy, while a “workaholic” customer who
takes a ride to work seven days a week exhibits very regular
behavior. We illustrate these ideas in Figure 1. In contrast, a
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customer who commutes only on Mondays and Wednesdays
may have a routine that is neither clumpy nor regular. In
other words, the measures are distinct: not all routines are
clumpy or regular, and not all clumpy or regular behaviors
are routine.2

That routines can generate clumpy and regular behavior is a
key advantage of our framework for several reasons. First, rou-
tines add additional nuance to the possible “types” of clumpi-
ness that can be observed, thereby partly answering a call
from Kumar and Srinivasan (2015) to explain the origins of
clumpiness in transactions. Relatedly, this link between rou-
tines, clumpiness, and regularity also sheds light on when
clumpy and regular transaction times, which intuitively seem
at odds, may both be predictive of higher customer value,
insofar as both may be manifestations of routines. More
broadly, the interpretability of routines makes routineness a
valuable metric for marketers looking to build interpretable
yet accurate CRM models, thus addressing an ongoing need
for new advances in this space (Neslin et al. 2006). Finally,
our novel approach of identifying and isolating routines using
transaction data and relating them to the customer value is con-
sistent with Du et al.’s (2021) call to move toward a richer char-
acterization of behavior and toward relating such behaviors to
firm growth through customer value.

Model
In this section, we specify a model of usage that yields a natural
metric for how routine a customer’s behavior is, and what
weekly routine the customer exhibits. By “usage,” we mean
the consumer interacting with the firm in some way, and by
“weekly routine,” we mean the structure of usage within a
given week, which is the main focus of this research. Before
describing the model, we first review its methodological
underpinnings.

Methodological Background
The model we propose merges an inhomogeneous Poisson
process with a Bayesian nonparametric Gaussian process
(GP). While the basis of many customer base analysis models
is a homogeneous Poisson process (Schmittlein, Morrison,
and Colombo 1987), inhomogeneous Poisson process transac-
tion models have been employed to capture more complex
dynamics in usage or transaction behavior (e.g., Ascarza and
Hardie 2013; Ho, Park, and Zhou 2006). An inhomogeneous
Poisson process is a point process over some space, S, where
the rate of observing events, λ(s), depends on position in the
space, s ∈ S, such that the number of events in any bounded
region of the space, Y(B), B ⊆ S, is distributed:

Y(B) ∼ Poisson ∫Bλ(s)ds
( )

.

In many marketing applications, the space S is time
(i.e.,S = R), such that the process simply captures that events
are not uniformly likely over time. Poisson processes have
several useful properties, including the superposition property,
which says that if Y1 and Y2 are Poisson processes with rates λ1
and λ2, then Y1 + Y2 is also a Poisson process with rate λ1 + λ2
(Kingman 1992). We make use of this property in our model
specification to separate routine from nonroutine transactions.

In our model, the time-varying rate parameter of the Poisson
process is modeled using a GP (Williams and Rasmussen 2006).
In marketing, GPs have seen increased use in recent years, in
both aggregate-level and individual-level CRM and brand choice
contexts (Dew and Ansari 2018; Dew, Ansari, and Li 2020;
Tian and Feinberg 2021). Regarding our research objective, GPs
offer an ideal solution to modeling routines because, unlike
other flexible function estimation methods, they enable us to flex-
ibly model customer-level rates of usage while also allowing us to
encode prior knowledge about the structure of time. We elaborate
on this point in the following subsection. In the broader literature,
our model aims to capture time-varying purchasing or usage pat-
terns and is thus related to a long line of dynamic models in mar-
keting (e.g., Du and Kamakura 2012; Kim, Menzefricke, and
Feinberg 2005).

Model Specification
We propose a model of customer usage of a focal product or
service. The key dependent variable, denoted yit, captures
how many times customer i interacts with the company
during time period t. When we apply this model to ridesharing
data, the dependent variable will be requesting rides. However,
our model is fully general and can be applied using timing data
from any context, at various time intervals, and for myriad cus-
tomer behaviors of interest (e.g., using a mobile app, making
purchases with the firm, visiting the firm’s website).

We model a customer’s observed usage yit as the amalgamation
of two individual-level, inhomogeneous Poisson processes over
time (t): a routine process yRoutinei (t), which captures how often con-
sumption needs arrive as part of the customer’s routine, and a non-
routine or “random” process, yRandomi (t), which captures how often
consumption needs arrive outside of the customer’s routine.
Throughout the article, we use the words “nonroutine” and
“random” interchangeably. The idea is that usage outside of the
routine is likely due to random needs arising, from the point of
view of the customer, not that this process is totally random (i.e.,
white noise). Each of these processes has its own customer-specific
rate, λRoutinei (t) and λRandomi (t). As the analyst, we do not observe
whether a given transaction is routine or not; we only observe
the collection of all transactions, yi(t) ≡ yRoutinei (t)+ yRandomi (t).
This additivity assumption implies that usage in a customer’s
routine can increase or decrease independently of usage outside
the routine, and vice versa. By the superposition property described
previously, we have that yi(t) is also a Poisson process, with rate
given by λRoutinei (t)+ λRandomi (t). Meaningfully decomposing
overall usage into routine and nonroutine parts thus requires spec-
ifying these rates.

2 We also demonstrate these connections empirically in our “quasi-simulation”
analysis, described subsequently.
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To specify these rates, we first simplify our setting by assum-
ing that the analyst only cares about time on a discrete grid, such
that we only consider the number of uses that occur within fixed
intervals. Slightly abusing notation, we use t to refer to this
fixed time grid. Given our intuition that routines are customer-
level behaviors that are consistent in terms of when they occur,
week over week, the relevant grid to consider consists of weeks
(w), days within weeks (d), and hours within days (h), the col-
lection of which gives us t = (w, d, h). We assume that w
indexes weeks since the start of the data, d indexes days of
the week starting with d = 1 = Sunday, and h = 0, …, 23
indexes the 24 hours of a day. To simplify notation even
further, we use the unit of “day-hours,” which we denote as
j = 1 + (d − 1) × 24 + h, such that j = 1, …, 168 captures
all the hours in a week. Under this time structure, the dependent
variable yit = yiwj captures the number of interactions customer
i has with the firm in week w at day-hour j.

Under this discrete time assumption, our model likelihood
can be specified as

yit ∼ Poisson(λRoutineit + λRandomit ), (1)

where λRoutineit = ∫τ∈tλRoutinei (τ)dτ, and likewise for λRandomit . We
denote the overall usage rate as λit ≡ λRoutineit + λRandomit . We
then break each of the overall usage rate terms into two
dynamic parameters:

λit = exp (γiw + ηij)+ exp (αiw + μj). (2)

In each term, there is one parameter that varies over weeks (w) and
one that varies over day-hours (j). Our substantive focus is primar-
ily on variation over day-hours. Thus, noting that λit could be
rewritten as λit = exp (γiw) exp (ηij)+ exp (αiw) exp (μj), we
refer to the terms with j subscripts (i.e., ηij and μj) as “day-hour
rate” terms, reflecting the rate of usage across day-hours, and
refer to the terms with w subscripts (i.e., γiw and αiw) as “weekly
scaling” terms, as these terms scale up or down each of the rate
terms over customers and weeks.3

We next explain how this structure maps onto the idea of
routines as week-over-week consistencies in time of use. In

the first term, the routine rate, λRoutineit = exp (γiw + ηij), the
day-hour rate parameter, ηij, has an i subscript. Thus, ηij cap-
tures patterns of day-hour usage that are specific to customer
i. If the weekly scaling parameter, γiw, is large for many subse-
quent weeks, it suggests that the customer is expected to use the
service consistently at the same day-hours each week, following
the pattern determined by ηij. However, in the second term, the
nonroutine or “random” rate, λRandomit = exp (αiw + μj), the
day-hour rate parameter does not have an i subscript. Instead,
this term captures general patterns of day-hour usage that are
common across customers and across weeks. For example, in
our empirical application, μj captures that, on average, custom-
ers tend to take rides during the day, but not in the middle of the
night. Said differently, if any given user were to randomly have
need of the service, μj captures when we might expect that
random need to arise and how the distribution of random
needs may deviate from a uniform distribution over day-hours.
If this term’s weekly scaling parameter, αiw, is high, it suggests
that the customer is expected to make many requests that week,
but that the day-hour pattern of those requests is not consistent
with that customer’s week-over-week patterns. It is this tension
between consistently using the service at the same (individual-
specific) day-hours, versus using the service in a way that is
“random” (up to the typical usage patterns in the population),
that implicitly defines what our model detects as a routine: if
the usage follows a customer-specific day-hour pattern that is
consistent over weeks, over and above the general consistency
implied by the customer base as a whole, that usage will be cap-
tured by the first term and is what our model defines as routine
usage.

Recall that the superposition property implies that our model
can be equivalently expressed as the sum of two count pro-
cesses, yit = yRoutineit + yRandomit , such that

yRoutineit ∼ Poisson(exp (γiw + ηij)), (3)

yRandomit ∼ Poisson(exp (αiw + μj)). (4)

This decomposition allows for a natural definition of the levels
of random usage and routine usage through the expectation of
Poisson random variables. Specifically, we define two
metrics, ERoutine

iw and ERandom
iw , which are the expected number

of random and routine interactions, respectively, within a

Figure 1. Clumpy and Regular Routines.
Notes: This figure illustrates the conceptual links between routineness, regularity, and clumpiness.

3 Note that even in the case that events occur infrequently, such that yit is effec-
tively binary, the Poisson likelihood is both valid and useful: the Poisson
approximates the binomial and has computational benefits when paired with
sparse data, as we describe subsequently.
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single week w, for customer i, such that

ERoutine
iw =

∑
j

exp (γiw + ηij), (5)

ERandom
iw =

∑
j

exp (αiw + μj). (6)

In plain English, these two terms capture how often a user is
expected to interact with the firm in a given week, decomposing
the total number of interactions into the expected number of
interactions happening at random, and the number of interac-
tions stemming from the user’s routine. These metrics allow
us to identify how routine customers’ behaviors are, and they
are at the heart of the article’s focus and intended contribution.
We call ERoutine

iw the routineness of customer i in week w, and we
use this metric and terminology throughout our analysis.

Specifying the Components of the Usage Rates
Our model captures individual-level, time-varying usage
through two count processes, each of which has a rate
(λRoutineit and λRandomit , respectively) that comprises two parts:
scaling terms (αiw and γiw) and day-hour rates (μj, and ηij). To
model these parameters, we first recast the problem as estimat-
ing latent functions αi(w), γi(w), μ(j), and ηi(j), respectively.
This switch from subscript notation to functional notation is
merely a conceptual pivot: by recasting the problem of estimat-
ing rates as a problem of estimating unknown functions, we can
capture uncertainty over those rates using GPs. As we show,
this in turn allows us to encode prior knowledge and assump-
tions about these parts of the model in a natural way, beyond
those that could be incorporated in other specifications (e.g.,
state space models).4

GPs provide a way of specifying prior distributions over
spaces of functions. With this prior, we can encode structural
information about the functions in that space, like the smooth-
ness and differentiability of the functions, or other a priori knowl-
edge about their shape. In this way, GPs allow for flexible
estimation of functions, while optimally leveraging both infor-
mation sharing and a priori knowledge, to improve the efficiency
of those estimates. A GP is a distribution over functions,
f (x):Rd � R, defined by two other functions: a mean function,
m(x), which captures the a priori expected function value at
inputs x, and a kernel function k(x, x′), which captures a priori
how similar we expect the function values f(x) and f(x′) to be
for two inputs x and x′. Modeling f(x) using a GP is denoted
as f(x) ∼ GP(m(x), k(x, x′)). For a finite, fixed set of inputs, x

= (x1, …, xN), f(x) ∼ GP(m(x), k(x, x′)) is equivalent to

f (x1, . . . , xN) ∼ N(m(x1, . . . , xN), K), (7)

such that element (n1, n2) of K is given by Kn1,n2 = k(xn1 , xn2 ).
Mathematically, the matrix K is the kernel k(x, x′) evaluated pair-
wise over all inputs and is called the kernel matrix. Intuitively, a
GP specifies a multivariate Gaussian prior over the outputs cor-
responding to any combination of inputs, by means of its mean
function and kernel. Thus, these two objects are the primary
source of model specification in GP-based models. In practice,
it is common to set the mean function m(x) to be zero or a cons-
tant and let the dependencies between the outputs be solely cap-
tured by the kernel (Williams and Rasmussen 2006). The primary
restriction in specifying the kernel is that the corresponding
kernel matrix be positive definite. The mean function and
kernel themselves are typically parameterized through an addi-
tional set of parameters referred to as hyperparameters.

Returning to our specification, we model the following:

γi(w) ∼ GP(γ0i, kExp(w, w
′; ϕγ)), (8)

αi(w) ∼ GP(α0i, kExp(w, w′; ϕα)), (9)

ηi(j) ∼ GP(0, kDH(j, j′; ϕη)), (10)

μ(j) ∼ GP(0, kDH(j, j′; ϕμ)). (11)

Here, kExp(·, · ) is the exponential kernel, and kDH(·, · ) is a
novel day-hour kernel, both of which we define subsequently.
In γi(w) and αi(w), we allow for individual-level constant
mean functions, γ0i and α0i, capturing the mean level of
routine and nonroutine usage for each customer. The ϕs are
kernel hyperparameters.

The kernel used for both of the weekly terms is the exponen-
tial kernel (e.g., Dew, Ansari, and Li 2020), given by the
general form,

kExp(w, w′; ϕp = {σp, ρp}) = σ2p exp − |w− w′|
2ρp

[ ]
, (12)

where the p subscript corresponds to the hyperparameters of
parameter p. For this kernel, p is either γ or α.5 The exponential
kernel is a special form of the more general Matérn kernel, a
popular kernel often used to model functions that may exhibit
smooth fluctuations over time (Dew, Ansari, and Li 2020;
Williams and Rasmussen 2006).6 The smoothness of the under-
lying process is captured by the kernel’s length-scale parameter, ρ.
The higher this parameter, the more covariance is expected
between function values, given fixed inputs. We illustrate the
effect of the length-scale parameter on smoothness of the function

4 We note that there are many links between GPs and state space models, a dis-
cussion of which is beyond the scope of this article (see, e.g., Loper, Blei,
Cunningham, and Paninski 2021). There are also links between GP models
and time-series models. For example, spectral analysis in time series is
closely linked to Bochner’s theorem for kernel methods (like GPs), which estab-
lishes that every kernel function can be expressed equivalently as a spectral
density. This connection has been explicitly used in many GP methods to
derive new kernels (e.g. Wilson and Adams 2013).

5 Note that the same kernel hyperparameters are used for all customers, for a
given parameter. That is, there is no i subscript within p.
6 Here, we mean “smoothness” in the lay sense of the word, as illustrated by
Figure 2. We do not mean smoothness in the functional analysis sense of the
word, in terms of differentiability. For additional discussion of these two
forms of smoothness, see Dew, Ansari, and Li (2020).
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draws in Figure 2. In the context of routines, we expect that the
routine weekly scaling parameter, γi(w), will be smoother than
the nonroutine parameter, αi(w). This additional smoothness math-
ematically corresponds to our intuition that a routine should be con-
sistent week over week. We embed this a priori expectation by
defining different priors for ργ, the length scale of γi(w), and ρα,
the length scale of αi(w), as we discuss in the next section.

The other kernel, kDH(j, j′; ϕ), is a novel kernel that we term
the “day-hour kernel.” This kernel has a functional form designed
to capture the a priori structure we know exists within weeks, spe-
cifically that hours follow a 24-hour cycle and that certain days are
more similar to other days (e.g., weekends vs. weekdays, workdays
vs. days off). To capture these properties, we fuse a periodic kernel
(Williams and Rasmussen 2006, Chapter 4) with an unstructured
estimate of the correlation between different days of the week.
Specifically, we define

kDH(j, j′; ϕp = {σp, ρp, Ωp})

= σ2p ×Ωp[d, d′]

× exp − 1

2ρ2p
sin2

π|h− h′|
24

( ){ }
, (13)

where, again, p indexes a particular parameter, which in this case,
can be either μ or η. The matrixΩp is a correlation matrix over days
of the week, and the notationΩp[d, d′] stands for the (d, d′) entry of
that matrix (i.e., the correlation between days d and d′). This corre-
lation matrix can be seen as an unstructured kernel that allows the
model to detect, in a fully flexible way, the correlation structure that
exists between function values across different days. The third term
in this product is the periodic kernel with a 24-hour cycle, denoted
kPer(h, h′; ρp) for short. It captures the smooth but cyclic variation
we expect to see over hours within a day, with smoothness ρp.
Thus, our day-hour kernel is a specific form of the more general
class of multiplicative kernels, formed by specifying kernels sepa-
rately on input dimensions (in this case, days and hours), then mul-
tiplying those kernels together. Crucially, for our day-hour kernel to
be valid, the kernel matrix formed by evaluating our kernel pair-
wise at all input values must always be positive (semi)definite.
The kernel matrix (for parameter p) implied by our DH kernel is
given by

KDH = σ2pΩp ⊗ KPerp , (14)

where, analogous to previous kernel matrices, KPerp is the matrix
formed by evaluating the periodic kernel kPer(h, h′; ρp) pairwise
at all hours. To see that this matrix is positive definite, first, note
that we restrict Ω to be a correlation matrix, and thus, Ω is positive
definite. KPer is guaranteed to be positive definite, since
kPer(h, h′; ρp) is known to be a valid kernel (Williams and
Rasmussen 2006). Thus, since the Kronecker product of two pos-
itive definite matrices is also positive definite, we see that kDH(j, j′)
is a valid kernel.

Intuitively, this day-hour kernel allows us to place a prior
over functions that exhibit two natural properties when
dealing with weekly usage data: we allow for arbitrary

relatedness of days through the unstructured correlation
matrix Ωp, and for a natural 24-hour cycle through
kPer(h, h′; ρp), which accounts for the fact that usage at h = 0
(12 a.m.) will be similar to usage at h = 23 (11 p.m.). Finally,
through its multiplicative structure, it assumes that these two
forces operate together: if day d is similar to day d′, as captured
by Ωp, and hour h is similar to hour h′, a GP modeled with this
kernel is expected to have similar function values at (d, h) and
(d′, h′). By encoding this natural prior information into our
model structure, we facilitate the efficient inference of the
mean and individual-level rate functions, μ(j) and ηi(j).

Hyperparameter Priors
To complete our fully Bayesian specification, we briefly
describe the priors for the hyperparameters of our GP kernels,
the most important of which are the length-scale parameters,
ρα and ργ. Recall that these hyperparameters control the
smoothness of the weekly scaling parameters, and that we
expect, a priori, that ργ will be larger than ρα. To encode that
in our model, we draw on the suggestions by Betancourt
(2020) and use weakly informative inverse-gamma priors.7

The inverse-gamma distribution, given by

f (x∣a, b) = βa

Γ(a)
x−a−1 exp

−β
x

( )
,

has a shape parameter a and a scale parameter β. For both ρα and
ργ, we set the shape parameter a = 5, which implies a 1% quan-
tile of around 1.8 The value of b is set differently for ρα and ργ
and may depend on the empirical application. In short, b can be
thought of as scaling the inverse-gamma distribution, effec-
tively changing the magnitude of the draws. Thus, higher
values will allow for higher length scales, corresponding to
higher smoothness. In our application, we set b = 5 for ρα
and b = 11 for ργ.9 This setting encourages higher values for
ργ, corresponding to higher smoothness of γi(w) over weeks,
which is exactly what our definition of routineness entails.
Meanwhile, the relatively lower prior expectation for ρα does
not enforce any a priori smoothness, which corresponds to
allowing random needs to arise at any time.10

7 This prior has two desirable properties: first, it has support over the positive
reals, and second, it “avoids” values that are close to zero. Too-small length-
scale values can be problematic when the inputs to the function of interest are
only observed on a coarse grid, as the smoothness between the observed
inputs is unidentified.
8 This value is important because our inputs are defined on a unit grid, so values
lower than 1 will not be identified from one another.
9 These exact values were arrived at following an optimization procedure,
similar to that suggested by Betancourt (2020), where the objective was to
find an inverse-gamma distribution with a 1% quantile of 1 and a 99% quantile
of either 38/4 (for γ) or 38/8 (for α), where 38 is the range of our calibration data.
A similar procedure can be used in other empirical settings.
10 The model is quite robust to these values; for instance, the results are nearly
identical if we set b = 5 for both. However, we think the b = 11 setting for rou-
tines is more consistent with our definition of consistent purchasing, week over
week.
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To estimate the correlation matrix Ω in the day-hour kernel,
we use a Lewandowski–Kurowicka–Joe (LKJ) prior for corre-
lation matrices, such that Ω ∼ LKJ(2), which puts a weak prior
toward the identity matrix (Lewandowski, Kurowicka, and Joe
2009).11 Intuitively this prior is setting a (weak) expectation
that different days will not be related to each other, essentially
imposing no prior assumptions about how strongly days will be
related to one another, or which days will be related to each
other. This flexibility is a key advantage of this approach
over a parametric kernel.12

Finally, for the individual-level constant mean functions, γ0i and
α0i, we specify these in a hierarchical way, such that γi0 ∼ N(0, σγ0 ),
and analogously for αi0. For all other parameters, we use standard,
weakly informative normal or half-normal priors.13

Inference
We estimate themodel parameters in a fully Bayesian fashion using
the no-U-turn sampler (NUTS), a gradient-based Markov chain
Monte Carlo sampler. To improve the scalability of the framework,
we use the NUTS implemented in NumPyro and code our model in
PyMC. This implementation of NUTS can be run on a graphics
processing unit (GPU), which is significantly faster than central
processing unit (CPU)-based implementations.

In its simplest form, our model can be computationally dif-
ficult: while discretizing the arrival times into hourly buckets
makes defining the kernel and estimating the GPs easier (due to
the limited number of inputs and natural structure between days,
weeks, and hours), it also forces the model to do likelihood compu-
tations over many time periods in which nothing happened. That is,
customers often interact with the firm sparsely, yet our likelihood
function is specified as a count variable over all time periods t =
(w, d, h), which forces us to consider all the zeroes. To help facil-
itate inference in this setup, we draw on a property of Poisson var-
iables described in Gopalan, Hofman, and Blei (2015). Specifically,
the log-likelihood of our model for all observations from a single
customer i can be decomposed into two terms:

log p(yi|λi) =
∑
yit≠0

yit log (λit)−
∑
t

λit + C, (15)

where C is a constant with respect to λit. The first term in this
expression depends only on the nonzero values of yit, while the
second term is a simple sum over all λit. In this way, the likelihood
can operate only on the nonzero values of yit, circumventing the
potentially problematic sparsity.

Parameter Recovery, Model Scalability, and Data
Applications
We conducted simulations to test the model’s ability to recover
the data-generating process and the model’s performance under
multiple different data settings. Specifically, we investigated
three questions: (1) For data generated from the model (i.e.,
with known routines and stochastic transaction process), how
well can the model’s parameters be recovered? (2) How well
does the model perform with varying degrees of data (i.e.,
number of customers, and number of time periods)? (3) How
robust is the model’s performance in the presence of customer
churn? In this subsection, we briefly summarize the results and
refer interested readers to Web Appendix B for more details.

Figure 2. Draws from a GP Prior.
Notes: This figure shows the effect of the length-scale parameter on draws from a GP with the exponential kernel. Each panel represents a different length scale

(ρ). Each line is an independent draw from a GP prior with an exponential kernel with that length scale. In our application, our prior for ρ encourages relatively

low smoothness for nonroutine usage, and relatively high smoothness for routine usage, consistent with the idea of routines being somewhat (but not absolutely)

sticky.

11 More generally, for Ω ∼ LKJ(η), the hyperparameter η = 1 puts a uniform
prior over correlation matrices, η > 1 puts a prior that concentrates toward the
identity matrix, and η < 1 puts a prior that concentrates away from the identity
matrix. By setting η = 2, we bias the model slightly toward finding no relation-
ship between days. This assumption is common in many Bayesian libraries
(e.g., it is the suggested weakly informative prior for correlation matrices in
Stan; https://mc-stan.org/docs/stan-users-guide/multivariate-hierarchical-priors.
html).
12 A parametric kernel, using, e.g., the day index 1–7 as its input, typically
implies some smoothness over adjacent days.
13 Our full implementation can be found at https://github.com/rtdew1/detecting-
routines/ and in Web Appendix A.
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Even with relatively little data (e.g., 100 customers over 20
weeks), the model can recover the data-generating process: correla-
tions between true and estimated (posterior median) parameters
ranged from .96 for population parameters (like μ(j)) to .74 for
individual-level parameters (like ηi(j)).14 More importantly, if we
look at the estimated number of routine and random requests, the cor-
relation between simulated and estimated values is as high as .98.
These results hold in the presence of churn, although model perfor-
mance is best when churn rates are low, in which case churn is rel-
atively rare, or fairly high, in which case most customers churn
during the calibration period.

Model Extensions
The framework we have introduced is quite general and only
requires the analyst to have access to transactional data. In
some cases, we may wish to incorporate covariates in the
model specification to understand how other events, like
firm interventions, or past service quality may relate to
routine and random usage. Such covariates can be included
by expanding the rate specification in Equation 2 to include
covariate effects. We give an example of such an extension
and describe the potential complexities that emerge when
trying to meaningfully incorporate covariates in our model
in Web Appendix C.

Another potential extension of interest is modeling routines
over different periods. The multiplicative structure of the
day-hour kernel, combined with the additive structure of the
overall routine rate, can be easily adjusted to handle such cases.
For example, if the model were aimed at capturing yearly rou-
tines, with the main unit of analysis being weeks (i.e., routines
in terms of which weeks of the year a person uses the service,
year over year), the day-hour kernel introduced previously
could be changed to a single periodic kernel over weeks (with
period 52), and the “weekly” kernel could be specified instead
as a yearly kernel, capturing how the strength of the routine
changes over years. If, in the same case, daily data were also avail-
able, one could decompose usage into days and weeks, specifying
a periodic kernel for weeks and a kernel for days (e.g., the
unstructured approach suggested previously), multiplying them
together in a similar fashion to our own day-hour kernel.
Finally, more granular time periods can also be used: if, for
example, minute-level routines were of interest, our same
model could be estimated with minute-level bins, rather than
hourly.15 We focus on hours because our empirical application
lends itself naturally to that unit of analysis, and we defer discus-
sion of optimal granularity selection to other work (see, e.g., Kim,
Bradlow, and Iyengar 2022). In short, the proposed structure is

flexible enough to capture many types of data granularities and
routines over many different time periods.

Application: Ridesharing

Data
We apply our model to data from Via, a popular New York City–
based ridesharing company. The data contain detailed records on
a sample of 2,000 customers who joined the platform between
2017 and 2018. Our specific data contain information on their
interactions with Via over a 48-week period between January
2018 and November 2018. For each customer, we observe their
acquisition date, though churn, if present, is unobserved. We
discard the first three weeks of data after acquisition for each cus-
tomer.16 Of the 48 weeks, we use the first 38 weeks for calibration
and reserve the final 10 weeks for holdout validation.

Like most ridesharing platforms, Via uses a system for
matching riders with rides. Specifically, when a customer
uses the company’s app to request a ride, their request generates
a proposal, assuming a match can be found. The rider can then
accept or reject that proposal. Unlike Uber or Lyft, however,
Via operates primarily as a ridesharing service, where custom-
ers typically share their ride with other customers and often
need to walk short distances from request locations to pickup
locations, and from drop-off locations to requested destinations.
Thus, each proposal includes standard information like the cost
of the ride, how long the driver will take to get there, and infor-
mation about how far the user will have to walk to meet the
driver.17 Occasionally, a rider makes a request and then
rejects it, possibly multiple times, looking for a better proposal.
To handle situations like this, the company uses a unit of anal-
ysis called a session, which is a grouping of back-to-back
requests. Following the company’s lead, the dependent variable
we focus on in our analyses is the number of sessions a given
user has in a given hour.18 Summary statistics for our session

Table 1. Summary Statistics.

Total customers 2,000

Total weeks (training) 38

Total weeks (holdout) 10

Number of sessions 86,952

Sessions/customer 43.48

Sessions/customer/active week 3.10

Active weeks in data/customer 14.02

Notes: The table presents summary statistics for our ridesharing data,

summarized over the training data, unless otherwise noted.

14 Note that this lower correlation for these parameters is expected: as we illus-
trate in the Appendix, an individual’s routine is only recovered if there are suf-
ficient requests from that routine.
15 Estimating minute-level routines would require estimating GPs over the
10,080 minutes in a week, which, in turn, would require more scalable
approaches to estimating GP models (e.g., Loper et al. 2021; Snelson and
Ghahramani 2005)

16 Some customers’ acquisition dates are within our calibration window; for
these customers, their activity does not enter the model likelihood until three
weeks after their acquisition.
17 Our data also include these covariates, which we describe and use in a sub-
sequent section to understand how routineness moderates the likelihood of
accepting proposals, and the likelihood of making requests conditional on
past trip quality.
18 Throughout the article, we use the terms “request,” “transaction,” and
“session” interchangeably, always referring to sessions.
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data are presented in Table 1 and Figure 3. Most riders have
either zero or one session per hour, and most users have
fewer than ten sessions per week. However, hours with more
than one session are also observed.

Importantly, a user can have a session without actually
taking a ride if they decline all of the proposals. We focus on
requests and not whether the ride was eventually accepted or
completed because it is the most granular level of engagement
with the company. A request means the rider was interested in
using the service at that time. That said, we further leverage the
information about acceptance and rejection of proposals when
we subsequently investigate the implications of routines for
customer behavior and customer management.

Quasi-Simulation Case Studies
To illustrate in more detail how our model works, we performed
what we term a “quasi-simulation,” combining real and syn-
thetic customers. The goal of this simulation is to show that
the model can recover meaningful patterns of behavior, under
realistic data conditions,19 even when those patterns are not
explicitly generated by the model. To that end, we simulated
the usage of 32 hypothetical customers, with rates of usage
typical of customers in our data, and whose usage follows pre-
specified, managerially meaningful patterns. These patterns
include different types of routines and different patterns of
overall usage, including switching between random and
routine usage and churning from the platform. We merged the
data from these 32 synthetic customers with a sample of 500
real customers and estimated the model on this partly synthetic
data set. Because the usage patterns of the 32 synthetic custom-
ers were not generated from the model itself, they allow us to
highlight the model’s ability to meaningfully estimate routine
behavior for a range of data patterns and illustrate how the
model parameters capture phenomena not explicitly included

in the model (e.g., customer churn). Combining these simulated
cases with a much larger set of real customer data ensures that
the population-level parameters are consistent with reality. For
brevity, the remainder of this section presents the individual-
level model results from two of these simulated customers—
one exploring the model’s ability to detect routines separately
from random usage, and the other illustrating how the model
captures churn in the data. The results for the remaining simu-
lated customers, including cases with noisy, clumpy, and
regular behavior, are reported in Web Appendix D.

Case 1: Random, then routine. In Figure 4, we plot the key model
estimates for a simulated individual for whom routine behavior
emerges over time. Specifically, this individual was simulated
by drawing day-hour request times in two ways: For the first
half of the data (i.e., before week 19), each week, we drew
five day-hours completely at random and assumed the individ-
ual makes one request at each of these five day-hours. Since the
five day-hours are drawn anew each week, there is no pattern to
this individual’s usage, and thus the model should capture this
as random activity. Then, at week 19, we simulate this user sud-
denly adopting a routine. To simulate routine usage, we first
drew a set of five random day-hours (e.g., Sunday at 2 p.m.,
Tuesday and Wednesday at 8 p.m., and Thursday at 8 a.m.
and 6 p.m.) and then assumed that the user requests a ride at
these same five day-hours each week. Since the user is
making requests at the same times, week over week, the
model should detect that a routine has emerged around week 19.

In the top-left panel of Figure 4, we plot the posterior median
estimates of ERandom

iw (black/solid line) and ERoutine
iw (red/dashed

line). To the right of the decomposition, we show the posterior
median estimates of the random scale parameter, αi(w), and the
routine scale parameter, γi(w). Finally, below those, we show
the posterior median estimate of the routine rate ηi(j), plotted
as an intensity over day-hours, and below that, the model’s
expectations for when this user will request rides during the
last week of the training data (w = 38).

Figure 4 shows that the model is correctly able to parse this
user’s behavior. In the decomposition panel, the random

Figure 3. Distributions of Summary Statistics.
Notes: Distribution of three summary statistics in our training data: (1) the total number of sessions per customer, (2) the number of sessions per customer per

active week, and (3) the number of active weeks per customer.

19 By including real transaction data alongside hypothetical cases, we ensure
that the model’s population parameters and hyperparameters will be estimated
at realistic values.
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component ERandom
iw is high at the start, capturing around five

rides per week. We can also see this reflected in the relatively
high value of the random scale, αi(w). Then, in the middle,
we see a sudden shift, with ERandom

iw falling to zero and
ERoutine
iw rising to around five, corroborating the model’s

ability to detect routines. These changes are driven by
changes in the scale parameters, αi(w) and γi(w): since the
request times became consistent week over week, γ(w)
increases, meaning the day-hour rate of the model is dominated
by ηi(j), rather than μ(j). The relative smoothness of these trajec-
tories, especially γi(w), is driven by the GP assumption for these
terms, which smooths over time, with a degree of smoothing
governed by the GP’s length-scale parameters, ρα and ργ.
Finally, the times that the user is expected to request a ride
are captured in the user’s routine rate, ηi(j), for which there
are five peaks in usage. These peaks, when combined with
the routine scale γi(w) in week 38, translate exactly to five
expected requests at exactly the hours simulated: Sunday at 2
p.m., Tuesday and Wednesday at 8 p.m., and Thursday at 8
a.m. and 6 p.m.

Case 2: Routine, then Churn. Figure 5 presents the results for a
different simulated user, who first exhibited routine behavior
(generated analogously to the last 19 weeks of the simulated
customer in case study 1) but then stopped using the service
altogether. Although our model is not explicitly designed to
detect churn, inactivity can be captured in our framework
when both scaling terms become very negative, implying
zero expected requests. Indeed, this is exactly how the
model behaves. The first panel shows that the decomposition
correctly captures, at first, a high level of routine usage, which
then dips to zero at the midpoint, when the user churns.
Looking at the model components, we see that this pattern
of routine requests is driven by the routine scale parameter,
γ, which starts out relatively high (when the user is active),
but then plummets and stays low until the end of the data.
Again, the routine rate, η, can recover the correct routine
for this user, with five peaks (Friday at 1 p.m., Saturday at
3 p.m., etc.). However, as reflected in the bottom panel,
when that routine rate is combined with a very negative
routine scale, we see that the model predicts essentially no

Figure 4. Simulated Case: Random, Then Routine.
Notes: Model estimates for a simulated individual who first uses the service randomly, then adopts a routine. Error bands are 95% credible intervals.
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requests for the last week of the data, when the customer
becomes inactive.20

Results
Having established the model’s ability to separate routine
behavior from random behavior, and its ability to accurately
recover routines across different data settings, we next describe
the results from the real data, estimated on the full sample of
2,000 customers over the period of 38 weeks used for model
calibration.

Model Estimates
We first describe some of the population-level parameter esti-
mates which characterize usage patterns broadly; for example,
what days and times exhibit the highest level of usage across
customers, and how often users exhibit random versus routine
behavior. We then describe some individual case studies,
exploring the degree of routineness and the specific routine pat-
terns for individual consumers.

Population patterns. There are two main population-level
parameters of interest: the population-level rate parameter,
μ(j), which governs when users tend to take rides (randomly),
and the correlation matrix Ω from the day-hour kernel, which
describes how different days are related to one another. We
plot the posterior means of these quantities in Figure 6.

Some intuitive patterns emerge. First, from the posterior
mean of μ(j) (Panel A), we see that random needs tend to
arise during all times, except in the middle of the night (i.e.,
hours 2–5, or 2 a.m. to 5 a.m.). This pattern is moderated

Figure 5. Simulated Case: Routine, Then Churn.
Notes: Model estimates for a simulated individual who uses the service in a routine pattern, but then churns. Error bands are 95% credible intervals.

20 Note also that there is an apparent pattern in the random scale, where there
seems to be a decrease in transactions around week 30: this decrease is an arti-
fact of scale. When combined with the estimate for μ and exponentiated, all
these very negative numbers still suggest zero requests. We sometimes
observe random fluctuations like this, purely due to this lack of identification
between negative values, especially when the random process is zero
throughout.
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somewhat on the weekends, when travel times shift a bit later,
and when there is a noticeable drop in usage at 4 a.m., corre-
sponding to the closing time of many bars in New York City.
On weekdays, we also observe a slight increase in usage of
the service in the evenings, but the daytime variation is much
less stark than the variation between day and night. Similarly,
the correlation matrix (Panel B) captures the expected pattern
that weekdays tend to be more similar to one another than to
weekends. Saturday and Sunday are correlated, as are Friday
and Saturday.

Another key output of our model is the decomposition of
usage into routine and random requests. Figure 7 shows the
joint distribution of the two parts ERoutine

iw and ERandom
iw in the

last week of our data. We find an L-shaped distribution, suggesting
that heavy-usage customers are either primarily routine or primarily
random but rarely both. Most customers fall in the lower-left part of
the figure, with few requests per week, balanced between random
and routine. Although Figure 7 shows the decomposition pattern
for the last week of the data, we also find similar weekly decompo-
sitions throughout the data period.

Finally, the combination of routine and random usage,
ERoutine
iw + ERandom

iw , should capture overall usage (i.e., E[yiw]).
Indeed, we find that to be true: in-sample, the correlation coef-
ficient between expected usage and actual usage is r = .947, p <
.001, reflecting very good fit.

Individual customers’ routines. We zero in on the individual-
level parameters to illustrate the insights provided by the
model. Relative to the simulated examples, the results on
real users are less clean-cut in their interpretation, but they
still offer valuable customer-level insights. In Figures 8
and 9, we show the same posterior estimates and decomposi-
tions for two real customers, as we did for the simulated case
studies in Figures 4 and 5.

Figure 8 provides an example of a very common type of
routine: commuting. As shown in the decomposition, this cus-
tomer is a fairly heavy user, making roughly 14 ride requests
per week, with a high level of routine usage. This routine
usage tends to cluster around commuting hours, 8 a.m. and 5
p.m., as can be seen both in the routine rate and in the expected
numbers of requests. In contrast, Figure 9 presents a customer
with a random pattern of usage. This customer transacts less fre-
quently than the first customer. In the decomposition, we see the
random component trending upward toward the end of the cal-
ibration window, driven by the increase in this customer’s
random scale. That the model captures this increase in usage
with the random scale suggests that the day-hour pattern of
those interactions is not consistent, week over week. While
the model does still estimate a routine rate, ηi(j), when com-
bined with the customer’s very low routine scale γi(w), we

Figure 6. Posterior Means of μ(j) and Ω.
Notes: Panel A shows the posterior mean of μ(j), the common rate of usage across individuals at the day-hour level. Panel B provides a visualization of the posterior

mean of Ω, the correlation matrix across days for routines. Lighter colors indicate higher correlation.

Figure 7. Joint Distribution, ERoutineiW and ERandomiW .
Notes: This figure illustrates the joint distribution of the posterior medians of

ERoutineiW and ERandomiW , where W = 38, the last week of the data.
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see that the customer’s expected day-hour pattern of usage is
very diffuse, very much resembling the population pattern
shown in Figure 6.

Heterogeneity in Routines: Uncovering Routine Types
While the case study in Figure 8 captures an intuitive and
common routine, other users might have different routines.
To understand the typical types of routines present in our
data, we clustered our posterior median estimates of customers’
routines, ηi(j). Specifically, we focused on those customers who
had at least five routine rides in total over the calibration period
(i.e.,

∑38
w=1 E

Routine
iw ≥ 5). This filtering ensures that the ηi(j)

parameter captures a meaningful routine,21 and it resulted in

1,042 customers. Then, we performed k-means clustering on
the estimated ηi(j) parameters and uncovered seven distinct
routine types in ridesharing behavior, which we labeled accord-
ing to the routine pattern and summarize in Figure 10.22

We see that although commuting is a common routine type,
there are also other common routines. We find two types of
likely leisure-oriented routines: The “Nights and Weekends”
(14% of customers) customers primarily make requests at
night, and especially on the weekends. The “Work Hard, Play
Hard” (17% of customers) cluster exhibits weekend usage that
peaks between midnight and 4 a.m. (the closing time of
most bars in New York City) and weekday morning and

Figure 8. Real User: Commuting Routine.
Notes: Model estimates for an individual who is active throughout the 38-week training window and uses the service in a routine, typically in commuting hours.

21 Per our discussion in the preceding sections, the model always estimates ηi(j),
but for consumers who have no actual week-over-week consistency, γi(w) will
be very negative, and ηi(j) will be meaningless.

22 More specifically, we used the parametric longitudinal k-means method
(lcMethodLMKM in the latrend package in R) designed for clustering trajecto-
ries. We selected the number of clusters based on standard k-means metrics, spe-
cifically by examining the scree plot of the weighted mean absolute error of the
clustering solution. For details, see Web Appendix E.
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nighttime usage. There are also two clusters that use the
service only during one part of the day, either just in the
morning (“At Dawn”; 10%) or just in the evening
(“Evenings”; 9%). Understanding this diversity of routines
is a key benefit of our individual-level model. For example,
in this case, realizing the magnitude of the number of “half
commuters,” like the “At Dawn” and “Evenings” clusters,
spurred our partner company to try to understand how it
can capture the full commute for these groups of customers.
We return to these routine types, and explore their differen-
tial value to the company, subsequently.

Model Validation
Before exploring the implications of routineness for CRM, we
first validate the model by examining its ability to predict our
holdout data. Mechanically, making predictions from the
model is straightforward. Since μ(j) and ηi(j) do not vary over

weeks, the only two components of the model that need to
be projected forward are αi(w) and γi(w). To do so, we
utilize the fact that GPs are marginally Gaussian to derive
the posterior predictive values, given what we previously
observed. Here, we focus on doing this for γi(w), but the
math is analogous for αi(w). Let w∗ indicate a new week
that we want to make a prediction for, having observed
weeks w = (w1, …, wW), with estimated function values
γi(w). Then γi(w∗) ∼ N(m∗, s∗), where

m∗ = γ0i + K(w∗, w)K(w, w)−1[γi(w)− γ0i], (16)

s∗ = k(w∗, w∗)− K(w∗, w)K(w, w)−1K(w, w∗), (17)

and where K(w, w) is the kernel matrix (on the training
data), K(w∗, w) is the vector formed by evaluating the
kernel k(w∗, w) for all w ∈ w, and likewise for K(w, w∗).
Examining this equation closely reveals an important
feature of GP models with stationary kernels, like our

Figure 9. Real User: Random Usage.
Notes: Model estimates for an individual who is active throughout the 38-week training window and uses the service at random.

382 Journal of Marketing Research 61(2)



exponential kernel: when forecasting far away from
observed data, GPs revert to the mean. This reversion is
driven by K(w∗, w) going to zero when the inputs are far
apart.

Using this forecasting machinery, we focus on two types
of predictions: First, we predict how many sessions someone
will have in the future. Second, and more pertinent to our
research objective, we predict when someone will request
rides, in terms of day-hours of a particular future week.
We compare the predictive performance of the model to
four benchmarks:

1. Nonroutine Usage (NR): A version of our model with
the routine term set to zero, equivalent to a Poisson
model with rate λNRit = exp [αi(w)+ μ(j)]. Comparing
the performance of the full model with this benchmark
gives a sense of what the routine part of the model
captures.23

2. No Day-Hour Variation (NDH): A version of our model
with all j terms eliminated, equivalent to a Poisson
model with rate λNDHit = exp [αi(w)]. Comparing the
full model with this model gives a sense of what
adding day-hour variation captures.

3. Pareto/GGG: The Pareto/GGG model of Platzer and
Reutterer (2016), as implemented in the BTYDPlus package.

4. Long Short-Term Memory (LSTM): An LSTM deep
learning model, similar to Sarkar and De Bruyn’s (2021)
LSTM for direct marketing, but with the objective of pre-
dicting which times in a week a user will request a ride. For
each individual in the data, we train an LSTMwith the full
38-week calibration data, then use a sliding window of data
to predict, in the subsequent weeks, which day-hours are
most likely to have a ride request.24

Predicting volume of requests. First, we consider the task of pre-
dicting how many sessions each customer will have during the
ten-week holdout period, ignoring the actual timing of those
sessions. A priori, the accuracy of these forecasts for our
models will depend on how representative past usage rates
are of future usage rates, given the mean reversion property
of GPs described previously. We also expect the Pareto/GGG,
and buy-till-you-die models more generally, to do quite well
at this task, as predicting a cumulative number of transactions

Figure 10. Heterogeneity in Routines: Routine Cluster Centroids.
Notes: Average values of ηi(j) per cluster, with cluster labels in the facet titles, along with cluster sizes as a percentage of customers.

23 Note that the NR model is a separately estimated model. We are not just
zeroing out the nonroutine term from the full model.

24 Although our model is similar to that of Sarkar and De Bruyn (2021), in the
sense that we trained LSTMs, our approach is different in the specifics of our
architecture and in the loss functions used: our goal is to predict, given a cus-
tomer’s history, whether that customer will make a request during each of
168 day-hours; in the parlance of deep learning, it is a classification task,
with 168 outcomes. In contrast, Sarkar and De Bruyn explore predicting dona-
tion incidence, given a set of features describing company–customer interac-
tions. For a detailed description of our LSTM benchmark, see Web Appendix F.
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during a holdout window is often the main use case for these
models. For our LSTM, the loss and training procedures were
focused on classifying and ranking request timing (i.e., our
next prediction task), not on predicting request volume. It is
not a priori obvious how well the LSTM will perform on the
distinct (but related) task of forecasting request volume.

In Table 2, we show the mean absolute errors in forecasting
the number of requests, where the mean is computed across cus-
tomers, with their corresponding 95% confidence intervals. We
can see that the forecasting results match our intuition: the
Pareto/GGG and our proposed model achieve statistically indis-
tinguishable performance.25 The other versions of our model
also perform well, which makes sense, as we have removed
sources of day-hour variation but left the week-over-week var-
iation components intact. The fact that these versions perform
marginally worse is suggestive of the additional predictive
benefit of including day-hour information. Finally, the LSTM
performs quite badly. As we describe in more detail in the
Web Appendix, this poor performance is likely the result of
two aspects of how the LSTM was trained: First, its loss is
focused on the probability that a request occurs in a given
day-hour. Second, the LSTM uses a sliding window to make
“one week ahead” forecasts, which, in the holdout period,
requires assuming predictions are true to forecast more than
one week ahead. To get good performance on the (subsequent)
day-hour prediction task, we found it necessary to set the
threshold for predicting that a request would materialize to be
relatively small, which, in this case, leads to overforecasting
the actual volume of requests.

Predicting request timing. Beyond just predicting how many
requests a user will make each week, our model also captures
when a request will occur within that week, by estimating
day-hour rate terms μ(j) and ηi(j). When considering an
appropriate metric for validating our model, it is important
to consider the continuous nature of time. Imagine a case
where a customer takes a ride at 9 a.m., but the model
thought the most likely time for such a ride was in the 8
a.m. hour. In well-calibrated models that consider the conti-
nuity of time, the expected rate of transacting at 8 a.m. and 9

a.m. should be similar, given that 8:59 a.m. and 9:00 a.m. are
a mere minute apart. Yet, standard classification metrics like
hit rates fail to take such continuity into account. Thus, a
better way to measure the quality of timing predictions is
through metrics for rankings, wherein the model produces
a ranking of the most likely request times, and success is
measured by how highly ranked the actual request times
are. In our running example, the well-calibrated model
should give similar rankings to the 8 a.m. and 9 a.m. times
and, thus, would score similarly well in terms of predictive
ability even if the customer happened to use the service at
9:00 a.m., rather than 8:59 a.m.

We use two ranking metrics to measure how well the model
predicts request times: mean average precision (MAP), and
conditional precision (CP). For both metrics, higher values rep-
resent better rankings. These metrics are both standard in the lit-
erature on recommendation systems, where they are used to
evaluate the relevance of a ranked list of recommended
items.26 To calculate these statistics for both our model and the
nested NR version, we look at the ranking implied within each
week by the estimated transaction rate (i.e., λit and λNRit ). Because
the NDH model implies a uniform rate across all day-hours, the
ranking statistics are undefined for this model, and we do not
include its results in this section. For the Pareto/GGG, we
compute the rankings implicitly, using predictions. For each cus-
tomer, we use the BTYDPlus package to draw from the posterior
predictive distribution of transacts for each customer. This distribu-
tion is cumulative, reflecting the total number transactions we expect
to see by time t. Thus, to get an estimated transaction rate for each
hour, we evaluate the cumulative predicted transactions for each
hour of the holdout period and compute cumulative differences.
We then rank these hours in each week. Finally, for the LSTM, sim-
ilarly to our proposed model, we form a ranking by ranking the
model’s day-hour estimated probabilities within each week. The
results for the ten-week holdout period are shown in Table 3.

First, our full model dramatically improves ride time pre-
dictions compared with the model with no individual-level
routines (NR). This is not surprising: the only part of the
NR model that predicts ride times is μ(j). In that sense, the

Table 2. Mean Absolute Error: Predicting Number of Requests.

Proposed
Model NR NDH P/GGG LSTM

7.73 8.30 8.31 7.51 26.13

[7.17, 8.28] [7.64,

8.96]

[7.65,

8.97]

[6.97,

8.05]

[19.45,

32.80]

Notes: NR = nonroutine usage; NDH = no day-hour variation; P/GGG =
Pareto/GGG; LSTM = long short-term memory. The table presents mean

absolute error across customers for the number of sessions during our

ten-week holdout period. Intervals are 95% confidence intervals.

Table 3. Holdout Ride Timing Metrics.

Proposed Model NR P/GGG LSTM

MAP .131 .069 .043 .110

[.124, .139] [.064, .074] [.041, .045] [.076, .102]

CP .072 .029 .016 .089

[.066, .079] [.025, .033] [.013, .018] [.076, .102]

Notes: NR = nonroutine usage; P/GGG = Pareto/GGG; LSTM = long

short-term memory. The table presents MAP and CP statistics for predicting

ride timing in the holdout period. Intervals are 95% confidence intervals.

25 This similar performance also holds if we examine different subsets of cus-
tomers. See Web Appendix G for a more detailed comparison between our
framework and the Pareto/GGG.

26 See Web Appendix H for details of calculating MAP and CP in our applica-
tion. For excellent expositions of MAP and recommender systems, see Sawtelle
(2016) and https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-
ranked-retrieval-results-1.html.
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NR model is assuming the same day-hour ranking across all
customers, or just one “population routine,” corresponding
to the day-hours that customers, in general, are likely to
call rides. By comparing the full model with this baseline,
we corroborate that there is rich variation in the data in
terms of when individual customers request rides, highlight-
ing the predictive validity of the routine component of the
model. Our model also improves considerably on the
Pareto/GGG, a model that captures regularities in transac-
tion timing but is not specifically designed to predict
day-hour patterns. Although, in the extreme, such regulari-
ties could theoretically predict transaction timing down to
the day-hour, capturing regularity in ride times in our appli-
cation is not sufficient to predict ride timing accurately.
Finally, the LSTM, which was trained specifically for this
task, performs on par with our model.

It is noteworthy that the statistics in Table 3 are modest in
magnitude. For instance, the CP metric suggests that we are
only able to accurately predict roughly 10% of the
out-of-sample session times. An important caveat here is that
these metrics ignore that some trips are routine, whereas
others are not. By definition, we only expect to be able to
predict the routine trip times. In Figure 11, we show evidence
of this phenomenon: the more routine a person is, the higher
their MAP. The plot for CP is nearly identical. These results
suggest that our model does, indeed, capture session timing
within weeks, when that timing is predictable.

Routineness and Customer Management
Having established the validity of the framework, we return to
one of the central questions of the article: Can routineness help
firms better understand and manage their customers? One
crucial advantage of being able to distill transaction timing to
a single metric—routineness—is that we can subsequently
explore how routineness relates to many outcomes of interest,
without needing to build new models. In this section, we start
by showing that routineness is a key predictor of customer

value, over and above other transaction characteristics. We
then explore how routineness moderates consumers’ reactions
to different aspects of the ridesharing service and how customer
value varies by routine type.

Routineness and Customer Value
Overall, routine customers comprise a significant part of the
value in our sample: the 20% of customers who, during the cal-
ibration period, had on average one routine request per week (or
at least 38 routine requests) make 53% of all sessions and 51%
of the total revenue in the holdout period. Alone, these statistics
are suggestive, but limited: is it these customers’ routineness
that explains their high out-of-sample value, or merely their
high overall request rates? To understand whether routineness
explains value over and above other summaries of transaction
behavior, we turn to regression analysis. Specifically, we con-
sider the routineness of each user at the end of the calibration
period (i.e., ERoutine

i38 , as estimated by the model) and relate it
to (1) # Requests, defined as the number of requests a customer
makes in the holdout period, and (2) Active, defined as whether
a customer is active at all in the holdout period (i.e., a measure
of ten-week retention). When modeling requests as the depen-
dent variable, we use simple ordinary least squares (OLS); for
modeling activity, we use logistic regression. In each of these
regressions, we control for observable characteristics that
strongly predict future value, including the number of requests
the customer made in the last week of the calibration data, and
the commonly used recency and frequency variables that
capture how recently a customer last made a request and how
many requests the customer has made previously. Moreover,
to see if routineness explains behavior over and above extant
summaries of transaction timing, we also include the calibration
period clumpiness (Hp) and regularity (as estimated by the
Pareto/GGG’s ki parameter) as predictors.27

Before describing the results, we note two important aspects
of these regressions: First, routine requests are part of the total
number of requests. As high usage can result from either
random needs or routines, this specification allows us to under-
stand whether having a higher routine component is incremen-
tally valuable, over and above controlling for just the level of
usage. In other words, by controlling for the number of requests
in w = 38, we are trying to determine whether the “shape” of
within-week usage, in terms of request timing, matters for
explaining future customer value. Second, the inclusion of
recency and frequency metrics is especially important here: a
litany of models in customer base analysis have shown that
these metrics are key summary statistics for predicting repeat

Figure 11. MAP by Number of Routine Rides.
Notes: Points on the plot represent customers. On the x-axis, we plot the

estimated routineness, summed over the holdout period, per person. On the

y-axis, we plot the estimated MAP for that customer. A locally estimated

scatterplot smoothing is overlaid, showing the generally increasing pattern.

27 The connections between these metrics and routineness described previously
may raise concerns about multicollinearity in this analysis. However, in our
data, we do not find these metrics to be problematically correlated: as expected,
clumpiness and regularity are negatively correlated (r = −.21, p < .0001),
whereas clumpiness and routineness are very weakly negatively correlated (r
= −.08, p = .0005) and regularity and routineness are modestly positively cor-
related (r = .42, p < .0001).
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purchasing (e.g., Blattberg, Neslin, and Kim 2008; Fader,
Hardie, and Lee 2005; Schmittlein, Morrison, and Colombo
1987). If mere habit (in the “buying habit” sense of the word)
were the primary driving force behind customer value, we
would expect these two statistics to explain much of the varia-
tion in future transactions. Thus, by incorporating these mea-
sures in the model, we can establish whether routineness
matters, beyond what mere habit would already predict.

Table 4 presents the results of these regressions. We estimate
each model three times: omitting the routineness metric
(Columns 1 and 4), measuring the dependent variable using the
entire holdout sample of ten weeks (Columns 1–2 and 4–5),
and measuring the dependent value using the last month of the
holdout data (i.e., the last five weeks, Columns 3 and 6). The
intent behind splitting the dependent variable in this way is to
assess how robust routineness is in explaining short- and
mid-term customer behavior. We find that higher routineness is
positively and significantly associated both with the number of
requests a customer makes and with the customer being active
at all. Furthermore, compared with the simpler models
(Columns 1 and 4), routineness not only improves model fit
but also is the only metric among all transaction timing metrics
considered that positively and significantly explains customer
activity levels, even in the mid-term. In summary, even after con-
trolling for the number of requests a customer made at the end of
the training data, standard recency and frequency measures from
the CRM literature, and clumpiness and regularity, we find
that number of routine requests is positively, significantly, and

incrementally associated with higher request rates and a higher
tendency to remain active, suggesting that customers with rou-
tines are more valuable.

Routines and Other Customer Behaviors
Next, we consider whether understanding customers’ routines
can be useful for customer management in ways beyond pre-
dicting activity levels. In particular, we consider two related
questions: First, do highly routine customers interact with the
firm’s service differently than nonroutine customers? And
second, do customers behave differently during their routines?
We hypothesize that customers whose usage stems primarily
from a routine may not only be more likely to engage in activ-
ities that are directly valuable to the firm but also react differ-
ently to various aspects of the firm’s service, like pricing and
service failures (e.g., pickup and drop-off delays). There may
also be differences between routine and nonroutine users in
terms of which aspects of the service are more important to
them. For instance, users who routinely rely on the service
may place higher importance on things like convenience of
trips. Such effects may exist not just across customers but
also within customers. For example, if a price change or
service failure is associated with a trip that is part of a custom-
er’s routine, the customer may react differently than if the price
change or service failure were associated with a nonroutine trip.
The direction of these within-customer effects is not a priori
obvious: while the automaticity of routines implies that usage

Table 4. Relationship Between Customer Value and Routineness.

Dependent Variable:

No. of Requests
OLS

Activity
Logistic

(1) (2) (3) (4) (5) (6)
Weeks of Test Data All 10 All 10 Last 5 All 10 All 10 Last 5

Requests (w = 38) 3.838*** 1.614*** .375** .611*** .461*** .203***

(.184) (.241) (.154) (.103) (.106) (.056)

Recency −.238*** −.284*** −.157*** −.140*** −.134*** −.123***
(.045) (.043) (.028) (.010) (.010) (.010)

Frequency .130*** .097*** .052*** .0003 −.002 .002

(.008) (.008) (.005) (.002) (.002) (.002)

Regularity (k) 10.533*** 4.511** 2.401* .313 .005 .407

(1.986) (1.952) (1.244) (.463) (.484) (.395)

Clumpiness (H) 9.269*** 8.443*** 4.845*** −1.491*** −1.520*** −.628*
(1.918) (1.836) (1.170) (.380) (.381) (.326)

Routine (w = 38) 5.216*** 2.685*** 1.035*** .262**

(.385) (.245) (.328) (.124)

Observations 2,000 2,000 2,000 2,000 2,000 2,000

R2 .540 .579 .429

*p< .1.

**p< .05.
***p< .01.
Notes: Intercept omitted for clarity. The table presents regressions of future activity—either number of future sessions (Models 1–3) or a binary measure indicating

any activity at all (Models 4–6)—on customer-level summary statistics, including regularity, clumpiness, and routineness. The dependent variable is measured either

over our entire holdout period (ten weeks), or just in the last five weeks of the holdout period. Standard errors are in parentheses.
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is stickier regardless of variability in service, suggesting that
customers may be less sensitive to service quality during their
routines, it is equally plausible that the high degree of familiar-
ity customers have with service during their routines may exac-
erbate their reactions to any deviations from normal service.

To explore these hypotheses, we need to be able to quantify
the overall routineness of a given customer and the degree to
which a given trip is part of that customer’s routine. Both quan-
tities are easily derived from our model. The former is what we
previously referred to as (weekly) routineness, measured by
ERoutine
iw . The latter we will refer to as “trip routineness”: given

an observed trip occurs during week w, day-hour j, the trip rou-
tineness is the expected number of routine requests estimated by
the model at that time, ERoutine

iwj = exp [γi(w)+ ηi(j)].
To understand how these two aspects of routines connect to

the company’s service, recall that our data include information
about the rides that users requested. Some of these variables are
characteristics of the proposal, including the cost to the user
(Price), the time until the driver can pick the customer up
(Driver ETA), how long the customer will have to walk to get
the ride (Pickup Walking Dist.), the expected time and total dis-
tance of the trip (from which we compute Speed), and the
number of passengers for that request (# Passengers). We
observe these characteristics for all the requests in the data.
Moreover, for rides that were realized (i.e., requests that ended
up in a trip), we observe variables that capture the quality of the
ride. These include whether the driver picked up the rider on
time (Pickup Delay, which we measure in minutes), whether
there were delays in the trip (Dropoff Delay), how far the rider
had to walk from their drop-off to their final destination (Dropoff
Walking Dist.), and whether there were other passengers in the
car during the trip (# On-board [Pickup], # On-board [Dropoff],
and Max On-board).28 Based on these data, we ask two questions:
(1) How likely is a customer to accept a proposal, and, particularly,
a less favorable proposal? and (2) Given that a customer accepts a
proposal (i.e., takes a ride), how likely is that customer to request a
ride again within seven days, particularly after a service failure?
More importantly, we explore how the two types of routineness
explain and moderate these dependent variables.

To answer these questions, we run four separate OLS regres-
sions, the results of which are shown in Table 5.29 The depen-
dent variable in each regression is either accepting a proposal or
requesting again within a week. In the first two regressions
(Models 1 and 2), the key independent variable of interest is
the routineness of each customer at the end of our calibration
window, and the unit of analysis is rides requested or taken
during our holdout window. This setup allows us to address
the “between-customers” question: Does a customer’s current
period routineness explain their subsequent behavior? In these
regressions, we include customer-level random effects to
control for other unobserved differences across customers. In
the second two regressions (Models 3 and 4), the key indepen-
dent variable of interest is trip routineness, and the analysis is
done at the level of requests within our calibration period. We
focus here on in-sample rides to ensure that our routineness
metric is accurately characterizing the nature of each request.
This setup allows us to address the “within-customers” ques-
tion: Do customers behave differently when a trip is part of
their routine? Since trip routineness is measured at the request
level, we use customer-level fixed effects to control for poten-
tial customer-specific unobservables. In all four regressions,
we also include variables describing the proposal. In the
“request again” analyses, which condition on a customer actu-
ally having completed the trip, we include variables describing
the completed trip. Finally, to understand the potential moder-
ating role of routines in explaining these outcomes, we
include interactions of all of proposal and trip-related variables
with the focal measure of routineness.

Focusing first on the between-customers results, we see that
highly routine customers, as measured by week 38 routineness,
are indeed different in their holdout behavior. Such customers
are more likely to accept proposals in general (OLS coefficient
β = .077, p < .01), and more likely to make requests within a
week of any given completed trip (β = .052, p < .01). In
terms of accepting proposals, while longer driver estimated
time of arrival (ETA) is associated with lower acceptance
rates (β = −.050, p < .01), there is a positive interaction with

Figure 12. User Behaviors, by Routine Type.
Notes: This figure presents the average value of four behavior variables, by routine type. Holdout value is the total amount spent over the holdout period. Error

bars represent standard errors, and the vertical line represents the overall mean.

28 The full data are summarized in Web Appendix I.

29 We use OLS for these regressions, as opposed to logistic regression, to aid in
the interpretability of interaction terms.
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routineness (β = .011, p < .01), suggesting routine customers
are more willing to wait for their rides to come. However,
more routine customers appear to especially prefer faster
speeds (interaction β = .142, p < .01) and shorter walking dis-
tances (interaction β = −.009, p < .01). This pattern of moder-
ation is consistent with routine customers caring more about
convenience-related variables. In part, this could be driven by
self-selection: customers do not adopt a routine if rides are
inconvenient for them. In terms of requesting again within a
week, we see a prominent effect of week 38 routineness on
two very important service variables: price and pickup delay.
While higher prices and longer delays are both associated
with lower likelihood of returning to the service (β = −.014
and −.007 respectively, both with p < .01), routineness again
moderates these negative effects (interactions β = .014, p <
.01 and β = .005, p < .05, respectively), suggesting that the
stickiness of routines makes these customers more resilient to
these negative aspects of service. Taken together, these
between-customers results suggest that cultivating routine cus-
tomers may be valuable for the firm in myriad ways.

Turning to trip routineness (i.e., the within-customers
results), we again find positive and significant effects of routine-
ness (β = .051 for accepting proposals, and β= .020 for request-
ing again, both with p < .01). These main effects suggest that,
for trips that are part of a customer’s routine, the customer is
more likely to accept the proposal, and more likely to request
again within a week of the completed trip. We also see that
the routineness of a trip appears to moderate the negative
effect of price: while customers in general are less likely to
accept higher-priced proposals (β = −.071, p < .01) and to
ride again (β = −.022, p < .01) after taking a higher-priced
ride, these effects appear to be dampened when that ride is
part of the customer’s routine (interactions β = .018 and .016
respectively, both p < .01). There is also a positive interaction
between the routineness of a trip and the speed of the proposal:
when a customer requests a routine trip, they are more likely to
accept the proposal if the speed is high (interaction β = .086, p <
.01). Intuitively, customers are familiar with trips in their
routine and, thus, more sensitive to the details of those trips.
This pattern of effects suggests ways that the firm can explore
optimizing service around customers’ routines, by, for
example, offering faster service at premium prices for custom-
ers during their most routine times.

Segmentation by Routine Types
Recall that a key benefit of our framework is that it not only
yields an overall metric of routineness (of a ride, or a customer,
as we leveraged in the previous analyses) but also enables us to
uncover common routines in the data. In our application, we
found that there are seven common routine types, which we
summarized in our section on model results. Given these differ-
ent routine types, we next consider whether customers with dif-
ferent routines differ in other significant ways. We find that
these routine types differ not only in when they typically take
rides but also in many other behaviors and typical ride

characteristics. For instance, the more casual routine types
(i.e., “Work Hard, Play Hard” and “Nights and Weekends”)
tend to take longer and more expensive trips (higher ETA).
Commuters, in contrast, tend to take cheaper, solo trips.30

More interestingly, though, we also find that users with different
routines systematically differ in their value to the company. In
Figure 12, for each routine type, we show means and standard
errors of that type’s (1) proposal acceptance rate; (2) future
value, as measured by the total amount spent during our holdout
period; (3) proportion of (holdout) rides that came from nonroutine
usage, as estimated by our model; and (4) number of requests made
during the holdout period. We find striking differences across the
routines. For example, the casual clusters had a much lower prob-
ability of accepting rides and generated significantly lower value
during our holdout period. In contrast, the “Evenings” routine
appears to be the most valuable: these customers had a higher prob-
ability of accepting rides, took more rides, and spent more money
during that same period. Interestingly, a higher share of their overall
usage was also attributed to their routine. Commuting clusters also
appear more valuable, especially those that also incorporate
evening usage. In summary, these results suggest not only that
there is significant heterogeneity in routine types but also that
these routine types are associated with substantially different
behaviors, suggesting a role for routines to play in segmenting
and targeting customers.

Additional Analyses: Who and What
Until now, our analyses have proceeded by first identifying rou-
tines in terms of when customers interact with the firm, then
linking those temporal routines to relevant outcomes. This
approach raises two questions: First, can we predict who
tends to develop routines? And second, beyond timing, is
there any value in considering routines in terms of what custom-
ers do during those interactions? In our context, ridesharing, the
“what” of interest is where customers are traveling: customers
may always request a ride at the same time, but they may go
to the same place or different places.

To answer the “who” question, we examined whether any
proposal characteristics, averaged over the calibration period,
are predictive of high customer routineness at the end of the
training period (week 38). We find several suggestive patterns:
first, routine customers tend to have taken lower-priced rides,
with fewer other passengers, and shorter walking distances.
These results may be indicative of causality, whereby riders
develop routines because they are given cheap, convenient
trips, or selection, wherein riders with routines happen to take
rides during lower-priced, high-supply times. Interestingly,
these rides also tended to be longer rides, with higher driver
ETAs, which is consistent with travel during peak times, and
the presence of many commuters in our data. These results
are described in more detail in Web Appendix K.

30 In Web Appendix J, we include a figure that shows how six key behaviors
differ across our routine types.
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To answer the “what” question, we used trip location data to
derive two metrics of location consistency, which capture how
often each rider travels between the same locations. We then ana-
lyzed the relationship between location consistency, (temporal) rou-
tineness, and customer value. We find that location consistency is
neither particularly predictive of (timing) routineness nor predictive
of customer value after controlling for routineness. These results
suggest that, at least in the context of ridesharing, understanding
consistencies in when someone uses the service is more important
than understanding consistencies in where they are going. These
results are described in more detail in Web Appendix L.

Discussion

Summary and Contribution
Our work makes two primary contributions. First, from a method-
ological point of view, to the best of our knowledge, this is the first
article to model customer-level routines. To do so, we leverage a
Bayesian nonparametric GP with a unique kernel structure aimed
at estimating temporal routines, nested within a Poisson process.
This model can flexibly capture varying routines across customers
with high accuracy. Additionally, it yields a customer-level decom-
position of usage into a part that is routine and a part that is random,
allowing us to quantify the degree of a customer’s routineness.
Substantively, we apply the model to data from Via, a ridesharing
company, and show that we can capture managerially interesting
routines. We find that our model-based routineness metric is
strongly predictive of customer value, insofar as it is a positive
and significant predictor of both future usage and retention.
Moreover, this effect is robust, even over longer time horizons,
and after controlling for the level of usage, other typical CRM con-
trols, and extant transaction timing metrics. Stated differently, this
result is noteworthy because it suggests that the temporal shape of
usage matters: highly structured usage is more valuable than
random usage. While we apply our model in the context of ride-
sharing, the model we propose is general and can be applied to
usage or purchase data in many business settings.

Beyond our focus on the relationship between routineness
and customer value, we also present results that both validate rou-
tineness as a construct and establish its more wide-ranging impor-
tance in customer management. We show that routine customers
are better customers in ways that stretch beyond just lifetime
value: they appear to be generally less price sensitive and more
robust to some types of service disruptions. Our results suggest
that firms that understand their customers’ routines can optimize
the provision of services around those routines. Conceptually, we
differentiate routineness from constructs like clumpiness and regu-
larity. Finally, we show that routines represent an important source
of heterogeneity that can be useful for segmentation and targeting.

Limitations and Future Research
We view our work as an initial foray into the topic of modeling
and measuring customer routines and establishing their impor-
tance for customer management. As such, there are several

limitations of our work, which represent promising directions
for future research, to expand both our modeling capabilities
and our understanding of when and why routines matter.

From a methodological perspective, scalability of our frame-
work is a limitation. While the run time of the framework is fea-
sible, estimating our model in a fully Bayesian fashion on a
large sample of customers can be costly, as the run time is
superlinear in the sample size (see the simulations in Web
Appendix B). In practice, our partner company implements
our model on a large sample of data. Our simulation results
suggest estimating the model on a sample of consumers is a rea-
sonable solution: the quality of insights from small batches is
equivalent to larger data sizes. Thus, running the model in par-
allel with 10 compute nodes for 1 million customers using 20
weeks of data would take approximately 14 hours, which we
argue is quite feasible for most companies with established
data science tools. Alternatively, future research may examine
new avenues for improving scalability, including variational
Bayesian methods for inference (Hoffman et al. 2013), or sto-
chastic gradient Hamiltonian Monte Carlo methods (Dang
et al. 2019). Our methodology is also limited in that it does
not incorporate an explicit latent churn process. While we
have provided some evidence that the framework can detect
customer inactivity, our model performs best when the purchas-
ing process is relatively stationary.

From a substantive perspective, an area we leave unexplored
is the emergence of routines: while we show suggestive results
about which customers and trips are more likely to be routine,
these patterns are merely suggestive. Our analysis is not
causal, and thus cannot establish whether these are indeed
drivers of routines. However, given our findings that routine
customers are better customers, cultivating routines may be of
key interest to companies, and understanding how to do so is
a fruitful area for future research. Likewise, while we show sug-
gestive evidence that routine customers are less price sensitive,
price endogeneity is an important issue that we cannot fully
resolve with our data. Price experiments should ideally be run
to better understand how price sensitivity varies by routineness.
We leave a more complete understanding of the relationship
between price sensitivity and routines to future studies.

There are several other limitations of our analysis. For
instance, our main model captures requests, not actual rides
taken. Whether a rider takes a ride may, in part, be driven by
supply-side factors like availability of a ride. In turn, whether
the service was able to meet a rider’s demands in the past
may affect how routinely the customer requests rides in the
present, leading to perfectly routine behaviors appearing less
routine in our model. Another limiting factor in our analysis
is our focus on temporal routines. While we provide some evi-
dence that consistency in terms of what customers do is less
important, there may still be value in jointly modeling
“when” and “what.” We leave building such a joint model for
future research. Relatedly, because our model focuses just on
timing, we cannot differentiate between different subroutines:
drawing on an example from our introduction, if a customer
had a routine going to work, and another routine going to
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yoga class, our model results would blend these into just a
single routine. Finally, our understanding of routines more gen-
erally is limited by the fact that we only observe rideshare usage
by a single company: more comprehensive panels featuring
more alternatives may shed additional light on customer rou-
tines and how they drive consumer choice. We hope these lim-
itations spur additional study of customer routines.
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