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Abstract

We study the role of commitment in communication and its interactions with rules,

which determine whether information is verifiable. Our framework nests models of

cheap talk, information disclosure, and Bayesian persuasion. It predicts that commit-

ment has opposite effects on information transmission under the two alternative rules.

We leverage these contrasting forces to experimentally establish that subjects react

to commitment in line with the main qualitative implications of the theory. Quanti-

tatively, not all subjects behave as predicted. We show that a form of commitment

blindness leads some senders to overcommunicate when information is verifiable and

undercommunicate when it is not. This generates an unpredicted gap in information

transmission across the two rules, suggesting a novel role for verifiable information

in practice.
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1 Introduction

The goal of this paper is to experimentally study the effects of rules and commitment in com-

munication. In our analysis, rules are restrictions on language that determine whether an agent

can freely misreport what she knows or whether she can only use verifiable information. Com-

mitment captures the extent to which the agent can communicate according to predetermined

protocols. Any communication environment potentially can be affected by the degree of com-

mitment and by the nature of the rules governing communication. For instance, models of

cheap talk, information disclosure, and Bayesian persuasion differ from each other in ways that

lead back to differences in rules and commitment. In many concrete applications, it is difficult

to measure the exact degree of commitment available to an agent or the extent to which rules

are enforced. Yet, rules and commitment do vary significantly in practice depending on the

context and observables such as the frequency of communication. Thus, studying their effects

on communication is a natural question.

We present a simple model of communication under partial commitment and consider two

alternative rules: verifiable and unverifiable information. The focus on partial commitment

is a key feature of our analysis: it allows us to nest many existing communication models

under the same umbrella and experimentally test key qualitative predictions about the role of

commitment in communication. The contrast between verifiable and unverifiable information

further enriches our analysis, as the main comparative statics have opposite signs under these

two alternative rules. Our main results indicate clear treatment effects in line with the main

qualitative predictions of the theory. We also uncover important quantitative deviations from

the theory. Specifically, we find that rules matter in unpredicted ways; we propose a systematic

rationalization for these departures.

We consider a sender-receiver model with binary states and actions. The sender wants the re-

ceiver to choose a high action, whereas the receiver wishes to match the state. There are three

stages. In the commitment stage, the sender publicly commits to an information structure,

which is a map between states and messages. Under unverifiable information, the sender can

freely misreport her private information. Under verifiable information, she can only conceal it.

In the revision stage, the sender learns the state and can privately revise the chosen information

structure. In the guessing stage, the receiver observes a message and chooses an action. The

message is generated with probability ρ from the commitment stage and with the remaining

probability from the revision stage. We view the probability ρ as capturing the sender’s com-

mitment power: the higher ρ is, the higher the probability that the sender will not be able to
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revise her strategy after learning the state and thus, the higher the extent to which she is com-

mitted to her initial communication. An observable prediction of the model is that variations in

commitment power generate outcomes that are qualitatively different depending on the commu-

nication rule. For example, an increase in the sender’s commitment power should increase the

amount of information conveyed under unverifiable information, whereas it should decrease it

under verifiable information. When the sender can fully commit, these two scenarios coincide

and the information conveyed in equilibrium is independent of the communication rule. We

exploit these predictions to experimentally test the role of commitment in communication.

This framework captures the flavors of a wide variety of models of communication, including

models of cheap talk (Crawford and Sobel, 1982; Green and Stokey, 2007), disclosure (Gross-

man, 1981; Milgrom, 1981; Jovanovic, 1982; Okuno-Fujiwara et al., 1990), and Bayesian per-

suasion (Kamenica and Gentzkow, 2011). It helps organize our analysis in two ways. First, the

comparison across models generates contrasting predictions that go to the heart of the strate-

gic tension of communication under commitment. As we illustrate in the paper, these contrasts

discipline which explanations can be used to rationalize potential departures from the theory.

Second, the framework itself informs a parsimonious experimental design. In our treatments,

we change two variables—the degree of commitment ρ and the verifiability of information—

while leaving the underlying structure of the game unchanged.

We begin by establishing several patterns in the data that are consistent with the key quali-

tative predictions of the theory. Specifically, we present two main sets of findings. First, we

show that, on average, both senders and receivers react to commitment. For senders, we ex-

ploit within-treatment variation to show that between the commitment and the revision stages,

their average behavior changes in the direction predicted by the theory. When information

is unverifiable, senders reveal more information in the commitment stage than in the revision

stage. When information is verifiable, this ranking is reversed, as predicted by the theory. For

receivers, we exploit across-treatment variation to show that, as commitment increases, they

become more responsive to information from the commitment stage. These reactions are con-

sistent with the fact that information conveyed in the commitment stage is more meaningful

when the level of commitment is higher. For our second main finding, we test how increas-

ing commitment power changes the amount of information conveyed by the senders. In line

with the theory, we find that this amount increases with commitment in treatments with unver-

ifiable information and decreases with commitment in treatments with verifiable information.

Furthermore, we find that verifiability has the predicted effect of increasing the amount of in-

formation conveyed by senders. Overall, these strong treatment effects validate the qualitative
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implications of the theory, especially given the contrasting implications of the theory depend-

ing on the verifiability of messages.

We then analyze the main quantitative deviations from the theory that we observe in the data.

In treatments with low commitment, we replicate existing findings in the literature by show-

ing that, relative to the predictions of the theory, senders undercommunicate when information

is verifiable and overcommunicate when it is not.1 However, we find that the opposite holds

in treatments with high commitment: senders overcommunicate when information is verifiable

and undercommunicate when it is not. These deviations create an information gap between

verifiable and unverifiable treatments, which is particularly apparent in the limiting case of full

commitment: empirically, the amount of information conveyed is higher in verifiable treat-

ments than in unverifiable ones, even though in theory this amount should be the same. From

a policy perspective, this information gap presents a novel justification for making it more dif-

ficult for senders to misreport their information.

We discuss the extent to which a model with boundedly rational agents may help explain

these deviations. We note that a number of plausible biases that have been explored in prior

work—such as lying-averse senders or non-Bayesian receivers— are insufficient to rational-

ize the observed deviations. We consider the possibility that a fraction of senders are com-

mitment blind: they behave under commitment as if they had no commitment power whatso-

ever. That is, they are incapable of exploiting commitment to their advantage. In both stages,

these senders choose a strategy that is optimal under no commitment. This bias has different

implications depending on the communication rule and, in particular, could explain the ob-

served information gap. To find evidence for commitment blindness, we look at treatments

with partial commitment, where we can observe the behavior of the same sender in scenarios

with and without commitment power. Our analysis reveals that there is a group of senders who

behaves in ways that are consistent with commitment blindness. To evaluate whether this ex-

planation is fully capable of accounting for the quantitative departures from theory, we esti-

mate a structural model of Quantal Response Equilibrium (QRE). By clustering the observed

senders’ strategies in treatment-specific representative groups, we can capture the typical be-

havior of commitment-blind senders. For each treatment, we then simulate data from our esti-

mated model and find that it can explain a considerable part of the gap observed in the data.

Related Literature. The role of commitment in communication is at the center of the re-

cent literature on persuasion and information design (Kamenica, 2019; Bergemann and Morris,

1For cheap talk, see the survey by Blume et al. (2020). For information disclosure, see Jin et al. (2020) and
references therein.
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2019). To study the effects of commitment, we innovate by considering a versatile framework

in which commitment can be varied experimentally. Recent theoretical contributions by Lip-

nowski et al. (2018) and Min (2017) more generally analyze the implications of partial com-

mitment under unverifiable information.2 In a framework with no commitment, Kartik (2009)

studies changes in lying costs, bridging models of cheap talk and information disclosure.

Our paper relates to a large body of experimental literature on cheap talk, which has been re-

cently surveyed by Blume et al. (2020). Models of cheap talk feature no commitment and un-

verifiable information and have been used to study a variety of phenomena, including lobbying

(Austen-Smith, 1993; Battaglini, 2002) and the interaction between legislative committees and

a legislature (Gilligan and Krehbiel, 1987, 1989). Dickhaut et al. (1995) was the first experi-

mental paper to test the central prediction of Crawford and Sobel (1982) that more preference

alignment between the sender and the receiver should result in more information transmission.

Their main result is consistent with this prediction. Forsythe et al. (1999) add a cheap talk com-

munication stage to an adverse selection environment with the feature that the theory predicts

no trade and that communication does not help. By contrast, in the experiment, communica-

tion leads to additional trade, partly because receivers are too credulous. Blume et al. (1998)

study a richer environment and compare behavior when messages have preassigned meanings

with behavior when meanings emerge endogenously. Among other findings, they confirm that,

as in Forsythe et al. (1999), receivers are gullible. Cai and Wang (2006) also vary preference

alignment and find that senders overcommunicate relative to the predictions of the cheap talk

model and that receivers are overly trusting.3

Our paper also relates to the literature on information disclosure. Disclosure models feature

no commitment but verifiable information and have been used to study quality disclosure by

a privately informed seller (e.g., Verrecchia, 1983; Dye, 1985; Galor, 1985). Milgrom (2008)

and Dranove and Jin (2010) survey this literature. In contrast to experiments on cheap talk, ex-

periments on the disclosure of verifiable information typically find that senders undercommu-

nicate relative to the theoretical predictions. For instance, Jin et al. (2020) find that receivers

are insufficiently skeptical when senders do not provide any information, which in turn leads

senders to undercommunicate.4 Jin et al. (2019) and de Clippel and Rozen (2020) find evi-

dence for strategic obfuscation of verifiable evidence in settings with no and full commitment,

respectively. Information unraveling has also been studied in the field. For instance, Mathios

2Perez-Richet and Skreta (2018) study a model of interim information manipulation under full commitment.
3See also Sánchez-Pagés and Vorsatz (2007), Wang et al. (2010), and Wilson and Vespa (2020).
4See also Forsythe et al. (1989), King and Wallin (1991), Dickhaut et al. (2003), Forsythe et al. (1999),

Benndorf et al. (2015), Hagenbach et al. (2014), and Hagenback and Perez-Richet (2018).
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(2000) and Jin and Leslie (2003) document the failures of information unraveling for food nu-

trition labels and hygiene grade cards in restaurants.

One of our treatments replicates the leading example in Kamenica and Gentzkow (2011) and

is one of the first tests of Bayesian persuasion. This treatment features full commitment and

unverifiable information.5 Other papers have studied a similar treatment with different designs

and goals. Aristidou et al. (2019) compare the design of information and monetary incentives.

Their remarkably simple implementation imposes some aspects of the equilibrium behavior

onto subjects’ tasks. In their findings, senders are able to extract a higher rent from receivers

when using information rather than monetary incentives. On average, senders’ strategies are

close to equilibrium—a result that is in line with one of our findings. Au and Li (2018) aug-

ment Bayesian persuasion with reciprocity and test their model in the laboratory. In their im-

plementation, senders directly choose posteriors instead of information structures. This simpli-

fies senders’ tasks and eliminates the need for receivers to do Bayesian updating. Their results

highlight interesting inconsistencies relative to the standard theory. Finally, Nguyen (2017)

uses an intuitive interface for senders and allows them to choose among a small set of precom-

piled communication strategies. Overall, given receivers’ behavior, a large fraction of senders

behave optimally and their behavior involves partial information transmission.

2 Theoretical Framework

In this section, we present our theoretical framework and discuss its main predictions. The

model achieves two goals. First, it captures settings in which the sender has only partial com-

mitment power. Second, it highlights the contrast between verifiable and unverifiable informa-

tion. These features generate a rich set of predictions that we then test experimentally.

2.1 Model

There are two players: a sender and a receiver. The sender privately observes a state and

communicates with the receiver to influence her final decision, which affects everyone’s payoff.

More specifically, let θ ∈ {θL, θH} be the state and µ0 ∈ (0, 1) denote the prior probability that

the state is θH. The receiver chooses an action a ∈ A = {aL, aH} and wishes to match her action

5In a different setting, the experimental literature on Cournot competition with endogenous timing also studies
commitment in the lab. A player can choose to publicly commit to a production quantity, thus emerging as a
Stackelberg leader and increasing her payoff. See, for instance, Huck and Müller (2000), Huck et al. (2001), and
Morgan and Várdy (2004, 2013).

5



to the state. That is, her state-dependent payoff is

u (aL, θL) = u (aH, θH) = 0, u (aL, θH) = − (1 − q) , u (aH, θL) = −q,

where the relative cost of the mistakes in the two states is parametrized by q. A rational receiver

would choose action aH whenever her posterior belief that the state is θH is larger than q. We

call q the persuasion threshold and assume that µ0 < q. That is, with no communication,

the receiver would choose aL.6 The sender earns a positive payoff only if she successfully

persuades the receiver to take action aH. Specifically, her payoff is v(a) = 1 if a = aH, and

v(a) = 0 otherwise.

Let an information structure be a map π : {θH, θL} → ∆(M), where M = {θH, θL, n} is an

exogenously specified set of messages. Denote by ΠU the set of all such information structures

and by Π the subset from which the sender can choose. The difference between Π and ΠU

captures exogenous restrictions on the sender’s strategies, which we call communication rules.

If Π = ΠU , we say that information is unverifiable. In this case no restrictions are imposed

on the sender strategies. Conversely, we say that information is verifiable if Π = ΠV := {π :

{θH, θL} → ∆(M) | π(θH |θL) = π(θL|θH) = 0}. In this case, message m = θ can only be sent by

type θ and, therefore, it represents a verifiable statement asserting that the state is indeed θ. In

contrast, message m = n can be sent by both types.

The game unfolds in three consecutive stages. In the commitment stage, before observing the

state θ, the sender chooses πC ∈ Π. In the revision stage, the sender privately observes θ and

chooses πR ∈ Π. Because πR is chosen after observing θ, the sender has no commitment power

in the revision stage. In the guessing stage, a message m is drawn with probability ρ ∈ [0, 1]

from πC(·|θ) and with probability (1 − ρ) from πR(·|θ). The receiver observes πC and m, but

does not observe either θ or πR. She chooses an action σ(πC,m) ∈ ∆(A).

We refer to ρ as the sender’s degree of commitment. It captures the extent to which the sender

is able to commit to her commitment-stage strategy πC. For high values of ρ, the message m is

more likely to be determined by strategy πC, which is chosen before the sender has learned the

state and it is publicly observed by the receiver. Conversely, for low values of ρ, the message

m is more likely to be determined by the revision-stage strategy πR, which is chosen after the

sender has learned the state and it is not observed by the receiver. For this reason, we refer to

πC and πR as the commitment and revision strategies, respectively.7

6When instead µ0 ≥ q, revealing no information is optimal for the sender regardless of the degree of commit-
ment and the verifiability scenario.

7Alternative but equivalent interpretations are possible. One can think of the sender as having the opportunity
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In summary, our framework is characterized by three main variables, which are common

knowledge among the players: (i) the communication rule, ΠU versus ΠV , (ii) the degree of

commitment ρ ∈ [0, 1], and (iii) the persuasion threshold q ∈ (µ0, 1). This framework is

convenient as it allows us to span across notable communication models. When ρ = 0 and

information is unverifiable, our model captures cheap-talk communication. When ρ = 0 and

information is verifiable, our model captures a disclosure game with verifiable communication.

Finally, when ρ = 1 and information is unverifiable, our model captures a Bayesian persuasion

game.

As in many communication games, this framework features multiple Perfect Bayesian Equi-

libria (PBE), which are defined and discussed in Appendix A. In the paper, we impose a tie-

breaking rule on the sender behavior that refines the set of equilibria. We assume that, in both

the commitment and the revision stage, whenever two strategies lead to the same continuation

payoff, the sender breaks ties in favor of the one with the highest probability of sending mes-

sage m = θH conditional on state θH. The idea is that honesty is especially prominent when

it is also convenient for the sender. In contrast, we do not impose any restriction on how the

the sender should break ties conditional on θL. This tie-breaking rule is simple but powerful: it

is sufficient to guarantee the uniqueness the equilibrium outcome. Moreover, it formalizes the

tendency to use natural language that we see in the data. We refer the reader to Appendix A

for further discussion about the refinement. In the rest of the paper, we will refer to PBE that

satisfy this tie-breaking rule as equilibria without further qualification.

2.2 Main Predictions

In this section, we describe the main theoretical predictions that we later bring to the labora-

tory. To do so, we introduce two measures of the correlation between the state and the action,

denoted φ and φB. These measures quantify in different ways the extent to which the sender

transmits information to the receiver.

Our first measure focuses on the joint behavior of sender and receiver. Let (πC, πR, σ) be

a profile of strategies and define φ(πC, πR, σ) := Corr(πC ,πR,σ)(θ, a), the statistical correlation

between the state θ and the action a that is induced by (πC, πR, σ). The correlation φ can be

viewed as a measure of “information received,” namely, the extent to which the receiver reacts

to revise her commitment strategy after learning the state, which occurs only with probability 1 − ρ. Another
interpretation is that the revision game is always available but the sender has a type that determines whether she
will take advantage of the opportunity to revise the strategy. The parameter ρ is then the probability that the sender
is not this opportunistic type.
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to the information sent by the sender. It captures the informativeness of the outcome induced

by the players’ strategies.8

Our second measure focuses exclusively on the sender’s behavior. Fix any information struc-

ture π ∈ Π. For example, this could be πC, πR, or ρπC + (1 − ρ)πR. Consider a hypothetical re-

ceiver with utility u and prior belief µ0, who optimally responds to the message m drawn from

π. That is, such a receiver chooses σB(m) = aH if µ0π(m|θH) ≥ q
(
µ0π(m|θH) + (1 − µ0)π(m|θL)

)
and σB(m) = aL otherwise. Define φB(π) = Corrπ,σB(θ, a), the statistical correlation between

the state θ and the action a induced by (π, σB). We refer to φB as the “Bayesian” correlation. It

can be viewed as a measure of “information sent,” namely, the extent to which the sender con-

veyed useful information to a hypothetical Bayesian receiver. It captures the informativeness

of the outcome induced by the sender’s strategy and the behavior of such a receiver.

When (πC, πR, σ) is on the equilibrium path, φ(πC, πR, σ) = φB(ρπC+(1−ρ)πR), that is, the two

measures coincide. However, distinguishing between φ and φB is useful for two reasons. First,

in the experiment, receivers may of course fail to be Bayesian. In such a case, φB(ρπC+(1−ρ)πR)

will help us isolate the information sent by the sender net of the receivers’ mistakes. Second,

φB(πC) and φB(πR) allow us to quantify how much information is sent by the sender’s behavior

in the commitment and the revision stage.

We now characterize the equilibrium outcomes. We begin by fixing the degree of commit-

ment ρ and the communication rule. We show uniqueness of the equilibrium correlation and

compare the Bayesian correlation of the strategies in the commitment and revision stages. To

this purpose, define ρ := q−µ0
q(1−µ0) and ρ̄ := q(1−µ0)

q(1−µ0)+(1−q)µ0
.

Proposition 1. Fix ρ and the communication rule. All equilibria induce the same correlation.

In any equilibrium:

• If information is verifiable and ρ̄ ≤ ρ < 1, then φB(πC) < φB(πR).

• If information is unverifiable and ρ < ρ < 1, then φB(πC) > φB(πR).

This result highlights a tension between the commitment and revision stages. This tension

manifests itself in opposite ways under the two alternative communication rules, thus provid-

ing useful and testable predictions that we will exploit in our experimental analysis. The in-

tuition for Proposition 1 is the following. Under both verifiable and unverifiable information,

the sender would like to commit to persuading the receiver to choose the high action as often

8In Online Appendix D.2, we show that if (π′C , π
′
R, σ

′) induces an outcome that is more informative than
(πC , πR, σ) in the Blackwell sense, then φ(π′C , π

′
R, σ

′) ≥ φ(πC , πR, σ).
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as possible. When ρ is sufficiently high, this implies that partial information revelation occurs

in both verifiability scenarios. However, in the revision stage, the sender is unable to resist the

temptation to undo her commitments and manipulate information in her favor. Under verifi-

able information, this opportunity implies that the strategy in the revision stage reveals the state

(“unraveling”). Thus, φB(πR) = 1. Under unverifiable information, instead, it implies that the

strategy in the revision stage is uninformative (“babbling”). Thus, φB(πR) = 0. A notable aspect

of the behavior implied by Proposition 1 is that it features the opposite pattern depending on

verifiability: in transitioning between commitment and revision stages information transmitted

increases for verifiable information and it declines for unverifiable information. Interestingly,

as we will show later in Table 2, in the commitment stage, the sender anticipates her future be-

havior in the revision stage and prepares accordingly: relative to the full-commitment scenario,

she overcommunicates when information is unverifiable and undercommunicates when infor-

mation is verifiable. These commitment strategies are an attempt to obtain final posteriors that

are as close as possible to the full-commitment scenario. Overall, this result illustrates how

changes in the rules can generate stark contrasts in the way senders react to commitment power.

Our next result describes how the correlation induced by the strategies played on-the-equilibrium

path (in short φ) changes with the degree of commitment and how this depends on the commu-

nication rule.

Proposition 2. .

• When information is verifiable, the equilibrium correlation φ weakly decreases in ρ. In

particular, φ = 1 if and only if ρ < ρ̄.

• When information is unverifiable, equilibrium correlation φ weakly increases in ρ. In

particular, φ = 0 if and only if ρ < ρ.

• When ρ = 1, equilibrium correlation φ is independent of the communication rules.

This result illustrates that changes in commitment affect equilibrium correlation in starkly

different ways depending on the communication rules. To understand this result, we first con-

sider two extreme cases. When ρ = 0, the sender has no commitment power. When information

is verifiable, unravelling occurs in equilibrium and, thus, the correlation is equal to 1. When

information is unverifiable, babbling is only equilibrium and, thus, the correlation is equal to

0. As ρ increases, the revision stage becomes increasingly less likely, and the relevance of the

commitment-stage strategy increases. This allows the sender to approach the optimal solution

under full commitment, ρ = 1. When ρ = 1, the equilibrium correlation is independent of the
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rules of communication. To see this, note that when ρ = 1 and information is verifiable, the

sender can replace the use of message θH with message n. By doing so, she can induce the

same joint distribution over states and actions that is optimal under unverifiable information.

3 Experimental Design

In this section, we describe the laboratory implementation of our model, the main treatments

that we conducted, and how we compute the correlations φ and φB from the data. We view our

experimental design as a particularly useful framework to organize our analysis of commitment

and communication rules. As we illustrate in the next sections, subject behavior in any given

treatment is heterogeneous and challenging to evaluate on its own. In contrast, the comparison

across treatments, along with the asymmetric nature of our predictions, goes to the heart of the

strategic tension in our model.

3.1 Lab Implementation and Treatments

We begin by describing the implementation of the base game. A ball is drawn at random from

an urn that contains three balls, one red and two blue. The message can be red, blue, or empty.

The receiver earns $2 if she correctly guesses the color of the ball. She earns nothing otherwise.

The sender earns $2 if the receiver guesses that the ball is red, irrespective of its color. Given

this, the prior is µ0 = 1/3 and the persuasion threshold is q = 1/2. To present our results, we

adopt the following notation to distinguish between states, messages, and guesses: the state θ

is R or B; the message m is r, b, or n; and the receiver’s guess a is red or blue.

The game has three stages.9 In the commitment stage, the sender chooses an information

structure. She does so via a simple graphical interface (see Online Appendix E.1). The sender

selects πC(·|θ) by moving a slider, one for each state. The slider’s bar is colored according to

the conditional probabilities implied by the sender’s choice. These probabilities are updated in

real time in a table above the slider bar. In the revision stage, the sender learns the color of the

ball θ. With the same interface as the one just described, she can revise the part of her strategy

that concerns the realized state. We do not elicit the sender’s choice for the state that did not

realize. This design choice is a direct implementation of the game as we have described it.

Moreover, it helps highlight the stark contrast between the commitment and revision stage.10

9In the laboratory, we referred to these three stages with neutral labels: the communication, update, and
guessing stage. In the remainder of the paper, we maintain instead the nomenclature introduced in Section 2.

10Of course, when ρ = 1, there is no revision stage and, therefore, it is not included in the design.
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Table 1: Treatments Denominations

Sender’s Commitment Power

Information ρ = 0.20 ρ = 0.80 ρ = 1

Verifiable V20 V80 V100

Unverifiable U20 U80 U100

In the guessing stage, the receiver observes the information structure chosen by the sender in

the commitment stage but not the one chosen in the revision stage. For this last stage, we use

the strategy method, that is, we elicit the receiver’s guess for each possible message she could

receive. This allows the effective sample size to be increased considerably while keeping the

receiver’s task relatively simple.

We have a 2 × 3 factorial between-subject design, namely, each subject participates in a

single treatment. Our experimental variables are the sender’s commitment power ρ and the

communication rules (verifiable versus unverifiable information). For each rule, we conducted

three treatments with different degrees of commitment: ρ ∈ {0.20, 0.80, 1}. This gives us a total

of six treatments, which constitute the bulk of our investigation. Treatments are denoted as

illustrated in Table 1. In treatments with verifiable information, the interface prevents senders

from assigning positive probability to a red message conditional on a blue ball or to a blue

message conditional on a red ball. The interfaces are identical in all other respects.

Table 2 reports the equilibrium strategies for each treatment. Figure 1 reports the Bayesian

correlations of sender’s equilibrium strategies, φB(ρπC + (1− ρ)πR). This set of treatments cap-

tures the key tensions of our model. First, treatments V80 and U80 reveal the tension between

the commitment and the revision stage, as summarized by Proposition 1. This tension goes in

opposite directions according to whether information is verifiable. Second, informativeness is

increasing in ρ when information is unverifiable, while the opposite holds when information

is verifiable. Third, treatments U100 and V100 are predicted to induce an identical outcome

through senders’ strategies that are substantially different. In the following sections, we will

exploit these tensions to test the role of commitment and rules in communication.11

For each treatment, we conducted four sessions, for a total of 24 sessions. Each session in-

cluded 12 to 24 subjects (16 on average), for a total of 384 subjects recruited from the NYU

undergraduate population using hroot (Bock et al., 2014). At the beginning of each session,

11 In theory, φB is predicted to be 0 in U20 and 1 in V20, suggesting that the comparison with U80 and V80 is a
one-sided statistical test. In practice, however, the observed φB is likely to be higher than 0 in U20 and lower than
1 in V20, as suggested by the prior experimental evidence on U0 and V0 (see Section 1). Thus, the comparative
statics are falsifiable also because the comparison with U80 and V80 could display the wrong signs.
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Table 2: Equilibrium Predictions

Sender Receiver Correlation

Commitment Revision Guessing Coefficient

Treat. State Message State Message Mes. Guess φ = φB

r b n r b n

R 1 0 R 1 0 r red
V20 B x 1 − x B y 1 − y b blue 1

n blue

R 0 1 R 1 0 r red
V80 B 3/4 1/4 B 0 1 b blue 0.57

n red

R 0 1 r red
V100 B 1/2 1/2 b blue 1/2

n red

R 1 0 0 R 1 0 0 r blue
U20 B x x′ 1 − x − x′ B y y′ 1 − y − y′ b blue 0

n blue

R 1 0 0 R 1 0 0 r red
U80 B 3/8 5α/8 5(1 − α)/8 B 1 0 0 b blue 1/2

n blue

R 1 0 0 r red
U100 B 1/2 α/2 (1 − α)/2 b blue 1/2

n blue
In V20, x, y ∈ [0, 1]. In U20, 1 − ρ < ρx + (1 − ρ)y. In U80 and U100, α ∈ [0, 1].

instructions were read aloud, and subjects were randomly assigned a fixed role: sender or re-

ceiver. In each session, subjects played 25 paid rounds of the game described above, with

random rematching between rounds. Thus, for each treatment, we observe an average of 800

unique sender-receiver interactions. At the end of every round, complete feedback was pro-

vided to both senders and receivers. Appendix E.2 contains the instructions for one of our

treatments. In addition to their earnings from the experiment, subjects received a $10 show-up

fee. Average earnings, including the show-up fee, were $36.55, and ranged from $12 to $60.

On average, sessions lasted 100 minutes. Our statistical analysis focuses on the last ten rounds

to allow enough time for subjects to familiarize themselves with the interface and to learn the

relevant strategic forces in the task they faced.12

3.2 Computing the Correlations

We quantify the information transmitted between sender and receiver by computing the correla-

tions between state and action. State–action correlations have been extensively used in the ex-

perimental literature on communication.13 To compute these correlations, we take advantage of

12Nonetheless, our main results are qualitatively the same wheen we focus on the last 15 rounds.
13See, for instance, Forsythe et al. (1999), Cai and Wang (2006), and Wang et al. (2010).
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Figure 1: Predictions and Treatments.

our use of the strategy method in the communication and guessing stages to obtain significantly

more-precise measures of the correlation. However, in the revision stage, we observe only the

sender’s strategy conditional on the realized state θ. We circumvent this problem of missing

data by imputing the session-specific average behavior of the senders in the revision stage.14

In Section 2.2, we distinguished between the correlation φ and the Bayesian correlation

φB. The former uses the receiver’s observed behavior and can be viewed as a measure of

information received. The latter uses the behavior of a hypothetical Bayesian receiver, and

can be viewed as a measure of information sent. Theoretically, there is no difference between

φ and φB, as the receiver is assumed to be Bayesian in equilibrium. Empirically, however, φ

and φB can differ because the former compounds the potential mistakes that receivers make

when responding to the senders. For instance, if the sender truthfully discloses the state but

the receiver does not listen, we would have that φ = 0, despite a great deal of information

being sent to the receiver.15 As the central and the most novel aspect of our experiment is the

behavior of senders, we will focus most of our attention on the Bayesian correlation φB.

14This allows us to compute the correlations for each round, rather than taking averages across rounds. Through
simulations, we verified that this leads to a substantial improvement in precision. Imputing session-specific aver-
ages seems a natural choice: due to the random rematching, receivers should hold comparable beliefs when fac-
ing a sender in the experiment. Our results are, however, robust to different imputation methods. For example,
we can impute subject-specific averages and get essentially similar results. Also, it is important to note that the
results for treatments with ρ = 0.80 (where we perform the imputation) are similar to those with ρ = 1 (where we
do not need to use the imputation), suggesting the results are robust to our imputation method.

15The correlation φ can even be negative if the receiver were to grossly misinterpret the meaning of a message.
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3.3 Discussion of Design Choices

We briefly discuss our main design choices.

Treatments. It is instinctive to think of ρ ∈ {1/3, 2/3, 1} as natural parametric choices. How-

ever, it is important to take into account the theoretical thresholds ρ and ρ̄, defined in Section

2.2. In our experiment, µ0 = 1⁄3 and q = 1⁄2; thus, ρ = 1⁄2 and ρ̄ = 2⁄3. We choose ρ = 0.80 to

allow enough distance between the theoretical threshold ρ̄, which is key for verifiable informa-

tion, and the full-commitment benchmark. The choice of ρ = 0.20 ensures symmetry. In our

treatments, we do not include the extreme case of ρ = 0 for two main reasons. First, this case

is the only one for which there is experimental evidence already, both for verifiable and un-

verifiable information. Our main interest lies in treatments with partial and full commitment:

these cases have not been tested in the laboratory and offer a unique opportunity to study the

role of commitment in communication. Second, the equilibrium outcomes at ρ = 0 are identi-

cal to those at ρ = 0.20. In particular, the commitment power in treatments with ρ = 0.20 is so

low that they could be seen as proxies for U0 and V0.16

Human Receivers. Senders’ behavior is the central and more novel aspect of our experiment.

Of course, senders’ behavior depends on their expectation of how best to persuade receivers,

which in turn depends on the receivers’ observed behavior. One may think that there could

be advantages to automating receivers’ behavior to conform to the theory. We have three re-

sponses to this observation. First, we believe that senders’ beliefs about how receivers inter-

pret what message they see is central to understanding strategic communication. For instance,

the main experimental finding in the literature on disclosure games, namely the failure of un-

raveling, would likely go undetected in a world with automated receivers. Second, the imple-

mentation of automated Bayesian receivers in the lab is far from trivial as it requires an expla-

nation to senders of how the computer behaves. Failure to properly give this explanation de-

feats the potential purpose of introducing automated receivers. Moreover, it could generate de-

mand effects as well as introduce additional complexity. Third, as we show in Section 5.1 and

Appendix C, many of our receivers are non-Bayesian, but their behavior is systematic and is

monotone in information, a property that is sufficient for our comparative static exercise.

Message n. From a theoretical perspective, the inclusion of message n in treatments with un-

verifiable information may seem redundant. However, in the experiment, it allows us to switch

from unverifiable to verifiable information with minimal changes to our design. This increases

our ability to compare results between different communication rules. It is perhaps reassuring

16We discuss this further in Online Appendix D.5.
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to note that the majority of senders in treatments with unverifiable information employ a “nat-

ural” language—that is, message n is only marginally used.17

Natural Language. Instead of using abstract labels for the messages, we label messages with

colors that match the labels of the states—red and blue. In this way, messages can acquire a

literal meaning. The focus of the paper is not on whether people understand how to coordinate

on a language (Blume et al., 1998). Thus, we wished to remove one potential obstacle to

communication that would have complicated the subjects’ task and our analysis.

Additional Treatments. We conduct two robustness treatments, discussed in Appendix B.

In our main treatments, payoffs are specified so that the persuasion threshold is q = 1/2.

In an alternative payoff specification, we let q = 3/4. This allows us to test for changes in

informativeness while keeping commitment and communication rules fixed. We also study a

version of U100 with only two messages, r and b, and find that behavior in this robustness

treatment is in line with U100, with slightly less noise.

Sender’s Task. Our lab implementation of the sender’s task is faithful to the nature of the

game. In particular, the commitment stage involves a contingent choice, which is a random

message for each state, while the revision stage is a single choice made after having learned the

state. This could, in principle, make the commitment stage more complex for subjects than the

revision stage. However, this differential complexity is embedded in the nature of commitment

and not an artifact of the design.

Fixed Roles. Before the beginning of the experiment, subjects played two unpaid practice

rounds in which they played the game from both the sender’s and the receiver’s perspective.

Then, subjects were assigned to a fixed role—sender or receiver—and played that role for

the duration of the experiment. Because the tasks that subjects faced in our experiment were

nontrivial, we thought it would be important for them to gain relevant experience in their role.

Random Rematching. We chose to have random rematching of pairs of senders and receivers

to simulate a one-shot interaction, while still allowing subjects to gain experience. Note, for in-

stance, that experiments on duopoly games find that fixed pairing generates collusion, whereas

random pairing does not (Huck et al., 2001).

17More specifically, the average total probability of message n, across all treatments with unverifiable informa-
tion, is about 10%. In Appendix B.2, we compare U100 with a robustness treatment featuring a simpler message
space, M = {r, b} instead of M = {r, b, n}. We find that subjects’ behavior is highly comparable.
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4 Treatment Effects

In this section, we present the average treatment effects, which are in line with the main pre-

dictions of our theory. We discuss two main sets of results. In Section 4.1, guided by the pre-

dictions in Proposition 1 and Table 2, we look at how senders’ behavior changes between the

commitment and the revision stages as well as how receivers’ responsiveness to information

changes with commitment. In Section 4.2, we test Proposition 2 and analyze how the amount

of information sent changes as we vary the level of commitment. Recall that a useful feature

of our framework is that the predicted changes have opposite signs depending on verifiability.

We also document that subjects’ behavior is highly heterogeneous. The treatment effects that

we document are the result of the aggregation of different communication “styles.” Although

some subjects behave approximately as predicted by the theory, others either under- or over-

react to commitment and rules. In Section 5, we will focus on these deviations to better under-

stand their sources and implications.

4.1 Commitment and Subjects’ Behavior

4.1.1 Senders

We begin by focusing on sender behavior. We explore the simplest and most direct evidence to

test whether senders take advantage of commitment. By exploiting within-treatment variation

in treatments U80 and V80, we observe how a sender’s behavior changes between the com-

mitment and the revision stages. Proposition 1 and Table 2 govern our predictions, which have

opposite signs depending on whether the information is verifiable.18

Figure 2 displays the average difference in senders’ strategies between the revision and the

commitment stages in treatments U80 and V80. In the figure, a positive bar indicates a message

that, conditional on the state, is sent more often in the revision stage. A negative bar indicates

a message that is sent more often in the commitment stage.

Let us first consider treatment U80. Table 2 predicts that the sender should be more informa-

tive in the commitment stage than in the revision stage. In particular, when in the revision stage

she learns that the state is B, she should replace message b with message r. That is, she should

renege on her commitment to tell the truth. The results in the left panel of Figure 2 are very

18We focus on ρ = 0.80 rather than ρ = 0.20 because, when ρ > ρ̄ > ρ, the theory makes definite predictions
about how senders’ strategies and Bayesian correlations should change between stages.
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Figure 2: Sender’s Strategy: Commitment vs. Revision, ρ = 0.8

much in line with these predictions. Specifically, when the state is R, the equilibrium strategy

is predicted not to change between the commitment and the revision stages. That is, all three

bars should be of zero height. This is roughly what we observe in the data. Although statis-

tically significant changes occur for r and b, they are tiny in magnitude.19 Conversely, when

the state is B, message r should replace b in the revision stage, whereas message n should not

change. Again, qualitatively, this pattern is consistent with what we observe in the data. On

average, senders increase the frequency of message r at the expenses of b (p < 0.01). Over-

all, as predicted by Proposition 1, the average informativeness of senders’ strategies is sig-

nificantly higher (p < 0.01) in the commitment stage—φB(πC) = 0.43—than in the revision

stage—φB(πR) = 0.02.

We now turn to treatment V80 (right panel of Figure 2). Table 2 predicts the opposite type of

behavior compared to U80: the sender should be less informative in the commitment stage than

in the revision stage. In particular, when learning that the state is R, she should replace message

n with message r, thus revealing the state. Furthermore, when learning that the state is B, she

should replace message b with message n. These predicted changes are consistent with what we

observe in the data. On average, when the state is R, senders entering the revision stage increase

the likelihood of message r at the expense of message n. Instead, when the ball is B, they

increase the likelihood of message n at the expense of message b. Both changes are significant

19 Unless noted otherwise, all statistical results allow for random effects at the subject level and are clustered
at the session level. We include random effects to account for persistent heterogeneity across subjects; clustering
is motivated by potential session effects (see Fréchette, 2012). Results for alternative specifications are reported
in Appendix D.4. We note that the findings in the alternative specifications suggest that session effects are not
important in this setting. We have performed power calculations for key tests, for example, those associated with
Figures 2 and 3, and established that at the estimated effect size, the power of our tests is well above the typical
benchmark of 80%.
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at the 1% level. Overall, we find that the directions of the predicted changes are matched by

the data as shown. Moreover, as predicted by Proposition 1, the average informativeness of

senders’ strategies is significantly lower (p < 0.01) in the commitment stage—φB(πC) = 0.83—

than in the revision stage—φB(πR) = 0.99.20

From a quantitative point of view, unsurprisingly, sender average behavior falls short of

exactly matching the equilibrium predictions. It is perhaps more interesting to note that most of

the quantitative deviations come from behavior in the commitment stage. In contrast, average

behavior in the revision stage is quite close to the theory. One possible explanation for these

larger quantitative departures from the theory in the commitment stage is that this stage is more

complex.21 This distinction in the tendency of behavior to conform with theory in the two

different stages has important consequences, as we discuss in Section 5.

In sum, the joint qualitative evidence arising from treatments U80 and V80 suggests that

senders react to commitment and do so in ways that are consistent with the theory. One useful

feature of considering different communication rules is that they generate opposing predictions

within the same environment. On average, we see that senders exploit their commitment power

to strategically hide good news (i.e., m = n if θ = R) when information is verifiable, and

disclose bad news (i.e., m = b if θ = B) when information is unverifiable. Once in the revision

stage, these commitments are no longer optimal, and indeed senders partially renege on them.

We consistently observe the average informativeness of each stage changing as predicted.

4.1.2 Receivers

We now focus on receivers. Our goal is to evaluate the extent to which receivers respond to

sender commitment and whether these responses are consistent with the theory. To explicitly

test for this hypothesis we exploit across-treatment variations. We first introduce the idea of

interim and final posteriors. Fix a commitment strategy πC and a revision strategy πR. An in-

terim posterior is the belief that a Bayesian receiver would hold upon observing message if

it was generated from the commitment strategy alone. That is, the interim posterior ignores

20 We performed a similar analysis for U20 and V20 and found results that are roughly in line with those from
treatments with ρ = 0.80. However, the interpretation of these results is more delicate because, since ρ < ρ, these
treatments lack clear-cut guidance from the theory for what concerns the sender’s equilibrium strategy (see Table
2). Nonetheless, we still find that φB(πC) = 0.48 is higher than φB(πR) = 0.00 in U20 and that φB(πC) = 0.88 is
lower than φB(πR) = 0.94 in V20.

21Evidence of this differential complexity may also be deduced from the fact that behavior is more heteroge-
neous in the commitment stage than in the revision stage in both U80 and V80 treatments. For example, in U80,
the variance of commitment strategies is 0.43 while that of revision strategies is 0.28. The difference is significant
at the 1% level. Similarly, for V80, the variance of commitment strategies is 0.45 while that of revision strategies
is 0.23.
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the existence of the revision stage. The final posterior, instead, is the belief that such receiver

would hold given that the message is generated from ρπC + (1 − ρ)πR. That is, the final poste-

rior correctly takes into account the existence of the revision strategy πR. Clearly, interim and

final posteriors coincide when ρ = 1. More generally, given πC and πR, the higher the degree

of commitment ρ, the closer the interim posterior is to the final one. We use this simple ob-

servation to test whether receivers respond to differing levels of commitment. We should ob-

serve different guessing behavior at identical interim beliefs for different degrees of commit-

ment. In particular, at high levels of commitment, interim beliefs should be highly predictive

of receivers’ behavior; at low levels of commitment, they should not.22

This analysis is carried out in Figure 3. We look at how receivers’ responsiveness to interim

posteriors changes in treatments with low (ρ = 0.20) versus high (ρ = 1) commitment.23

We plot polynomial fits of the average receiver’s guess as a function of the interim posterior

induced by the observed sender’s πC, the strategy from the commitment stage, and message m.

We begin by comparing treatments U20 and U100. Our focus is on message m = r. In U20,

the interim posterior should have little or no impact on the receiver’s guess because it is likely

that message r did not come from the observed πC. Therefore, the interim posterior is likely

to be far from the final posterior. By contrast, in U100, the interim posterior should have a

substantial positive effect on the probability that the receiver guesses red (Table 2). Indeed,

interim and final posteriors coincide in this case. We report our results in the left panel of

Figure 3. Consistent with the predictions, the estimated receivers’ response is mostly flat in

U20 and unresponsive to interim beliefs, whereas it is strictly increasing in U100.24

Similar—if not stronger—evidence is found when comparing V20 and V100 (right panel

of Figure 3). By the nature of verifiable information, messages r and b induce trivial interim

beliefs of either 1 or 0. For this reason, we focus on message n, which is the one requiring

receivers to be sophisticated. We find that receivers’ guessing behavior in V20 is quite flat in

the interim posterior. In contrast, responsiveness is strong and positive for treatment V100.25

22An alternative approach to address the same question is to study how how receivers respond to identical com-
mitment strategies πC— as opposed to induced interim beliefs—in treatments with high versus low commitment.
However, the space of commitment strategies is considerably larger and more complex than that of induced pos-
teriors, which is [0, 1].

23In Online Appendix D, Figure D17 performs the same exercise by comparing ρ = 0.20 and ρ = 0.80.
24The linearity in posteriors may be suggestive of probability matching. In Appendix C.1, we show that,

instead, it results from aggregating the behavior of receivers who employ heterogeneous threshold strategies.
25The probability that the receiver guesses red when the interim posterior is below 1/2 does not differ statisti-

cally between ρ = 0.2 and ρ = 1, both for the case with unverifiable information (left panel) and verifiable infor-
mation (right panel). Instead, for interim posteriors above 1/2, we find a statistically significant difference in both
cases (p < 0.01). Perhaps more importantly, the magnitude of the change—below and above 1/2—is sizable: 56
versus 14 percentage points in the verifiable case, and 40 versus 6 percentage points in the unverifiable case.
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Figure 3: Receiver’s Response to Persuasive Messages: ρ = 0.2 vs. ρ = 1

Overall, the joint evidence coming from Figure 3 suggests that, on average, receivers react

to commitment in ways that are consistent with the theory. They correctly anticipate senders’

incentives to renege on their commitments. As a consequence, receivers understand that mes-

sages inducing identical interim beliefs should be treated differently for different degrees of

commitment.26 Although this shows that receivers react to commitment, their behavior could

still be far from Bayesian. Indeed, in line with a large body of experimental literature, Figure

3 suggests that this may be the case. We return to this point in Section 5 when we explore in

detail the main quantitative deviations that we observe.

4.2 Commitment and Information Transmitted

The starkest prediction of our theory concerns how the correlation changes with the level of

commitment under verifiable and unverifiable information. Proposition 2 predicts that equi-

librium correlation should increase with commitment under unverifiable information, whereas

it should decrease with commitment under verifiable information. To test this prediction, we

compute the Bayesian correlation φB(ρπC + (1 − ρ)πR), which captures the amount of informa-

tion sent. In Figure 4, we plot the cumulative distribution function (CDF) of the sender aver-

ages. That is, each dot represents the average Bayesian correlation induced by a sender in one

of the treatments.

Two patterns emerge from this figure. First, when information is unverifiable (left panel), we

26 In Online Appendix D.6, we apply methods from Caplin and Martin (2021) to reach a similar conclusion.
We find that receivers’ behavior reveals that they are better informed in U100 rather than in U20.
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Figure 4: Cumulative Distribution of Sender-Average φB(πC, πR) by Treatment

observe a noticeable first-order stochastic increase in the information sent under U100 and U80

relative to U20. That is, the Bayesian correlation increases in commitment not only on average

but at all percentiles of the distribution. Moreover, U80 and U100 are unranked, as predicted by

the theory (Figure 1). Second, when information is verifiable (right panel), we observe a first-

order stochastic decrease in informativeness of V100 relative to V20. This change is relatively

less pronounced in V80 relative to V20. Nonetheless, informativeness appears to decrease in

commitment not just on average, but at all (or most, for V80) percentiles of the distribution.

Again, this is consistent with the theory.

To provide further evidence on these comparative statics, we study an alternative measure

of information sent. For every strategy profile (πC, πR), we compute ψB = Em(µ(m, πC, πR|θ =

R)−Em(µ(m, πC, πR)|θ = B),which is the divergence between the expected posterior conditional

on the states.27 The left panel of Figure 5 displays the kernel density estimates of the expected

posteriors conditional on θ = R (in solid black) and on θ = B (dashed gray). The vertical dashed

lines indicate the theoretical predictions. For instance, in U100, Em(µ(m, πC, πR|θ = R) = 1/2

because in equilibrium message r is sent with probability 1 and induces a posterior of 1/2.

Instead, Em(µ(m, πC, πR|θ = B) = 1/4, because in equilibrium messages r and b are sent with

50% probability and induce posteriors of 1/2 and 0, respectively.

In Figure 5, we see a sizable shift of the kernel distributions in the direction predicted by the

theory, for both verifiable and unverifiable information. When commitment rises from U20 to

U100, the two distributions become more spread out. In contrast, when commitment falls from

V20 to V100, the posteriors move closer, as predicted by theory. These shifts are quantified in

27In Online Appendix D.2, we show that ψB is proportional to the posterior variance and, like φB, it is a
completion of the Blackwell order on the senders’ strategies.
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Figure 5: On the left: Kernel Density of Expected Posterior Conditional on State. On the
right: Average Differences in Expected Posteriors Conditional on State (theoretical values in
parentheses)

the right panel of Figure 5, which reports the average ψB as well as the average expected pos-

teriors. The table shows that the data move in the right direction for both verifiable and unver-

ifiable treatments, but that the mean difference is much closer to the theoretical predictions in

the case of the unverifiable treatments than in the case of verifiable treatments.

Overall, the findings from Figure 4 and Figure 5 validate the contrasting comparative statics

of Proposition 2. The theory is consistent with the main qualitative features of how senders’

behavior changes with commitment and rules. Under verifiable information, senders use com-

mitment to decrease the total amount of information they convey to receivers. Under unveri-

fiable information, senders use commitment to increase the total amount of information they

convey to the receivers. This contrasting use of commitment that we observe in the data sug-

gests that, on average, sender behavior is consistent with the main strategic tension that under-

lies our model.

5 Understanding Departures from Theory

In the previous section, we showed evidence of treatment effects that match the main qualita-

tive predictions of the model. Qualitatively, senders and receivers react to variations in com-

mitment in the predicted ways. These treatment effects, however, hide substantial heterogene-

ity at the subject level which generates quantitative deviations from the theory. In this section,
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Table 3: Average Bayesian Correlations φB

φB – Theoretical Predictions

Degree of Commitment ρ

ρ = 0.2 ρ = 0.8 ρ = 1

Verifiable 1 0.57 0.50

Unverifiable 0 0.50 0.50

φB – Observed

Degree of Commitment (ρ)

ρ = 0.2 ρ = 0.8 ρ = 1

Verifiable 0.90 ≈ 0.85 > 0.77
∨ ∨ ∨

Unverifiable 0.00 < 0.32 ≈ 0.34

Notes: Symbol “>” indicates p < 0.01. Green symbol: as predicted. Red symbol: not as predicted.

we document and offer an explanation for these deviations.

We begin by looking at the average Bayesian correlation by treatment. Table 3 reports

the predicted Bayesian correlations (left panel) and the observed ones (right panel), averaged

across sessions and subjects. These correlations move in the predicted direction as commit-

ment changes. Moreover, in treatments with partial commitment, we note that more informa-

tion is conveyed by the senders under verifiable information than under unverifiable informa-

tion, in line with Section 4.2 and with our theory. However, Table 3 also highlights important

quantitative deviations.

For each communication rule, the observed changes are more muted relative to the theoretical

predictions. In the case of unverifiable information for example, the observed increase in φB

from U20 to U100 is only 68% of the change predicted by the theory. In the case of verifiable

information, the theory predicts that, moving from V20 to V100, we should observe a drop of

0.50 in the Bayesian correlation. Instead, in the data the corresponding reduction is only 0.13,

or 26% of the predicted change. In particular, we find that, when commitment is high, senders

tend to overcommunicate in treatments with verifiable information and undercommunicate in

treatments with unverifiable information.

As a consequence of this phenomenon, verifiability affects the amount of information con-

veyed even when the theory predicts it should not. Most notably, Proposition 2 predicts that

treatments V100 and U100 should generate identical Bayesian correlations. Instead, the ob-

served Bayesian correlations are 0.77 and 0.34, respectively. This gap (significant at p < 0.01)

represents a remarkable deviation from the theory. Furthermore, by comparing the black lines

on the left and right panels of Figure 4, we can see that there is a gap at all percentiles of the

distribution of φB, not just on average. More generally, in all treatments with high commitment,

thus including V80 and U80, we observe that the Bayesian correlation is higher than predicted

when information is verifiable whereas it is lower than predicted when information is unverifi-

able. We refer to these quantitative departures from the theory as the information gap.
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In principle, this information gap could be due to anomalous behavior on the part of receivers,

or of senders, or both. In Section 5.1, we explore receiver behavior and argue that, despite there

being some observed departures from the Bayesian benchmark, it is unlikely that receivers are

primarily responsible for this gap. In Section 5.2, we turn our attention to sender behavior. We

show evidence of a behavioral bias that could explain the information gap. We call this bias

commitment blindness and show that indeed it generates contrasting effects on the information

transmitted depending on the communication rule and that it is therefore capable of generating

the information gap. Finally, in Section 5.3, we estimate a structural model that accounts for

such heterogeneity in sender behavior and show that it is capable of replicating in large part

the observed deviations.

5.1 Can Receiver Behavior Explain the Information Gap?

Although Section 4.1.2 illustrates that receivers do react to commitment, a large body of ex-

perimental literature suggests that their behavior is likely to be non-Bayesian.28 In Appendix

C, we take a detailed look at receivers’ behavior. Our analysis reveals that receiver behavior is

indeed non-Bayesian. Yet, it is quite systematic. For example, most receivers behave in a way

that is highly consistent with a “threshold” strategy: they guess red if the posterior is higher

than some receiver-specific threshold. However, our analysis suggests that receiver behavior is

unlikely to be the main explanation for the information gap. We discuss three main reasons for

this conclusion.

First, we note that this gap cannot be directly determined by receivers’ non-Bayesian behav-

ior. Indeed, we expressed these gaps in terms of φB, the Bayesian correlation coefficient. By

construction, this measure is immune to receivers’ mistakes, as explained in Section 3.29

Second, we consider the possibility that the information gap could be indirectly generated

by receivers, through the influence they exert on senders’ strategies. For example, suppose that

receivers are inherently skeptical of message n and respond to it by guessing blue regardless

of the posterior (e.g., as in Jin et al., 2020). In treatments with unverifiable information, such

a bias would have negligible consequences on senders’ behavior: message n can be avoided in

equilibrium and indeed is not used often in the data. In contrast, in treatments with verifiable

information, message n plays a key role in the nature of the game. In the presence of such

28See, e.g., Charness and Levin (2005) and Holt (2007, Chapter 30) for an overview of such literature.
29When we explicitly include receivers’ behavior—that is, when we compute φ instead of φB—we find infor-

mativeness gaps of similar magnitudes. In particular, we find that φ is 0.22 and 0.68 for treatments U100 and
V100, respectively. Similarly, we find that φ is 0.19 and 0.78 for treatments U80 and V80, respectively.
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Figure 6: Sender’s Empirical Expected Payoff

a bias against message n, the sender’s optimal strategy in V100 must be fully informative,

thus contributing to the information gap. However, we do not see evidence of such a bias

among receivers in our data. Data show that receivers respond in similar ways to message

n in treatments with verifiable information and r in treatments with unverifiable information.

This can be seen in Figure 3. The dashed lines report receivers’ responsiveness to message

r in U100 (left panel) and n in V100 (right panel), controlling for their induced posterior.

Receivers’ responsiveness does not appear to be significantly different in the two cases, and

they are highly responsive to the induced posterior for both messages.

Third, the information gap could be indirectly generated by receivers’ non-Bayesian behav-

ior, but in ways that are more complicated than our previous argument. To address this point,

we estimate a simple model of receivers’ behavior and then compute the sender’s empirical

best response. To be concise, we focus attention on treatments with full commitment. In Fig-

ure 6, we report the expected payoff that a sender would earn by playing various commitment

strategies πC when facing a typical receiver in our sample. For each treatment, we first fit a pro-

bit model to estimate the probability that a = red given the message m, its induced posterior,

and a subject fixed effect. Second, we use the estimated model to compute the expected pay-

off that a sender would earn when choosing various commitment strategies πC. More specif-

ically, we define a class of information structures parametrized by x ∈ [0, 1]. This class is

rich enough to approximate most of the observed strategies, including the equilibrium strate-

gies for these treatments. In particular, for U100, we consider strategies such that πC(r|R) = 1

and πC(b|B) = 1 − πC(r|B) = x. For V100, we consider strategies such that πC(n|R) = 1 and

πC(b|B) = x. In both U100 and V100, πC is the equilibrium strategy when x = 1/2 (Table 2);

it is uninformative when x = 0; it is fully informative when x = 1. More generally, φB(πC) is

weakly increasing in x.
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Figure 6 shows that receiver behavior leads to a payoff function for the sender that is flat-

ter than it would be if all receivers were fully Bayesian. Moreover, for both treatments, the

sender’s best response to the receivers’ behavior requires x > 1/2. This is intuitive: x = 1/2 is

a knife-edge condition that leaves a Bayesian receiver just indifferent. Although receivers do

not conform with the Bayesian paradigm, the vast majority of them are more likely to guess

red following a message that carries evidence that favors state R. This monotone responsive-

ness in induced beliefs is a milder rationality requirement than Bayesianism, and it has been

documented in other experiments (see Camerer, 1998, for a discussion). Importantly, as shown

by Figure 6, the extent of monotonicity displayed in our experiment is sufficient to confirm a

key insight from models of communication under commitment, namely the fact that the best-

response involves some degree of strategic obfuscation.30 This analysis allows us to conclude

that, given behavior by receivers in our data, an uninformative πC is worse than a fully infor-

mative πC, which is in turn worse than commitment to mixing. The finding that senders’ em-

pirical expected payoff is nonmonotone in the amount of information conveyed to the receiver

is consistent with a key force of the theory.

Returning to the information gap, Figure 6 shows that receiver behavior alone appears in-

sufficient to explain the large gaps in φB that we documented in Table 3. If senders were best-

responding to the typical receiver behavior, we would observe φB(πC) = 0.60 in treatment

U100 and φB(πC) = 0.75 in treatment V100. This explanation is, therefore, unsatisfactory on

two levels. First, it captures only a small fraction (35%) of the observed gap. Second, the em-

pirical best response for U100 would lead to an increase in informativeness, rather that the de-

crease that we observe in U100.

Overall, the three points above suggest that receivers’ nonequilibrium behavior is insufficient

to explain the informativeness gap. As we show in the remainder of the section, a bias in sender

behavior is likely to be the primary driver of these observed deviations.

5.2 Commitment Blindness

In this section, we introduce a simple bias in senders’ behavior that can explain a large part of

the informativeness gap. We begin by noting that senders employ heterogeneous communica-

tion “styles,” as already illustrated in Figure 4. Understanding the sources of this heterogeneity

is key to explaining the information gap.

30Relatedly, de Clippel and Zhang (2020) explore the relative robustness of the Bayesian persuasion model if
the receiver is non-Bayesian.
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To this end, we introduce the notion of commitment blindness. We say that a sender is

commitment blind if she behaves under commitment as if she had no commitment power at

all. More specifically, her commitment strategy is the equilibrium strategy of a hypothetical

game in which there is no commitment so that there is only a revision stage (i.e., a game with

ρ = 0). Commitment blindness has very different implications on the Bayesian correlation φB,

depending on the communication rule. Specifically, when information is unverifiable, ρ = 0

is equivalent to a cheap talk game and any equilibrium strategy involves babbling. Such a

strategy is uninformative (φB = 0). If instead information is verifiable, ρ = 0 is equivalent

to an information disclosure game and the equilibrium strategy involves unraveling; hence, it

is fully informative (φB = 1). If some of the senders were indeed commitment blind, their

behavior could contribute to the information gap that we have documented. Indeed, relative to

the theoretical prediction with fully rational senders, this bias tends to increase φB in treatments

with verifiable information and to decrease it in treatments with unverifiable information.

Note that commitment blindness is different from lying aversion and leads to different impli-

cations. To see this, consider a sender who is fully averse to lying, regardless of her commit-

ment power. First, when information is unverifiable, such a sender would play highly informa-

tive strategies in the commitment stage, in contrast with commitment blindness. Second, her

behavior would increase the observed φB rather than decreasing it and, thus, it cannot generate

the information gap that we observe in the data.

We exploit our experimental design to detect the presence of senders who display commit-

ment blindness. This evaluation can only be done in treatments with partial commitment. In-

deed, one needs to observe how the same sender behaves in two different commitment scenar-

ios: with and without commitment power. We focus our attention on treatments U80 and V80

and compare how sender behavior changes between the commitment and the revision stages.31

We seek to identify senders who (i) play the same strategy in both commitment and revision

stages, and, (ii) play the equilibrium strategy in the revision stage as defined in Table 2.

In contrast to the previous discussion, we now want to understand more deeply the nature

of heterogeneity in senders’ behavior, and we do so by considering fully disaggregated data.32

Our goal is to identify the most representative strategies (πC, πR) played in the treatments under

consideration. Such an analysis presents a technical challenge, as senders’ strategies are com-

plex and high-dimensional objects. To organize the observed strategies, we use a standard ma-

31We focus on ρ = 0.80 instead of ρ = 0.20 because the information gap is a departure from the theory only for
treatments with high commitment.

32It is then natural for the purposes of this section to impute revision-stage missing data using averages at the
subject level rather than at session level (see Section 3.2).
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Figure 7: Treatment U80 – Clustering of Senders’ Strategies

chine learning algorithm, k-means, to cluster strategies into four representative groups.33 We

cluster the strategies by treatment and report the results in Figures 7 and 8 for treatments U80

and V80, respectively. To visualize all the data, we plot the clustered strategies onto two sep-

arate panels, one for πC and one for πR. The representative strategies that emerge from the al-

gorithm are indicated with larger markers. Note that strategies (πC, πR) that appear similar in

the commitment (revision) stage may belong to different clusters because they differ in the re-

vision (commitment) stage.34

We begin our analysis with treatment U80, that is, Figure 7. The strategies indicated by red

circles are those compatible with commitment blindness. The representative strategy consists

of sending message r regardless of the state, in both the commitment and the revision stage.

This strategy coincides with equilibrium behavior in the revision stage (Table 2). As expected,

this strategy is almost completely uninformative (φB = 0.01). This strategy is also quite com-

mon: 30% of the observed strategies are of this kind. We now discuss the remaining clusters

of Figure 7. The strategies indicated by blue squares are compatible with equilibrium behav-

ior and are the most prevalent ones. These strategies drive most of the treatment effects doc-

umented in Section 4. Note that their induced Bayesian correlation, φB = 0.51, is remarkably

close to the equilibrium prediction of 0.50. Strategies indicated by yellow triangles are consis-

33The k-means algorithm (see, MacQueen, 1967; Hastie et al., 2009; Murphy, 2012) is a commonly used
method to cluster data. The procedure finds k clusters and their “centers” to minimize the total within-cluster
variance. We set k = 4 and input an 8-dimensional vector of entries: (πC(m|θ), πR(m|θ)) for m ∈ {r, b} and θ ∈
{R, B}. Our conclusions from this exercise are robust to the choice of a different number of clusters. In Appendix
D.7, we estimate a Gaussian mixture model to explore how confidently each observation is assigned to its cluster.

34We present data at the observation level, but these clusters capture persistent sender types, with a typical
sender playing in the same cluster more than 80% of the time.
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tent with a weak form of lying aversion and are not prevalent in our data. Finally, strategies

marked by green diamonds belong to a residual cluster that cannot be grouped in any of the

categories above. We interpret these residual strategies as noise.

We now turn to the analysis of sender behavior in treatment V80 (Figure 8). Again, strate-

gies indicated by red circles are those compatible with commitment blindness. The representa-

tive strategy consists of sending message r given R, and n given B, in both the commitment and

the revision stages. This coincides with equilibrium behavior in the revision stage (Table 2).

In contrast to U80, commitment-blind strategies are highly informative (φB = 0.94). In terms

of prevalence, 33% of the observed strategies are of this kind. We now discuss the remaining

clusters of Figure 8. Strategies indicated by blue squares are consistent with equilibrium be-

havior. They react to commitment and induce a Bayesian correlation of φB = 0.57, which co-

incides with the equilibrium prediction. Strategies indicated by purple stars also react to com-

mitment and play the equilibrium strategy in the revision stage but fail to conceal information

in the commitment stage. As a result, they induce higher than optimal levels of Bayesian cor-

relation, that is, φB = 0.89. Together, these last two clusters we discussed represent 45% of the

data and drive the treatment effects documented in Section 4. Finally, strategies indicated by

yellow triangles are consistent with a weak form of lying aversion and induce high Bayesian

correlation, that is, φB = 0.93.

In sum, we have documented the existence of a behavioral type that is consistent with com-

mitment blindness. Such behavior has opposite implications depending on the communica-

tion rule. Under unverifiable information, the behavior of these senders decreases the average

Bayesian correlation φB. Under verifiable information, this behavior increases φB. Thus, a sin-
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gle behavioral bias can explain the main departures from equilibrium documented in Table 3.

We conclude our discussion by emphasizing some caveats. We have documented a specific

behavioral bias without offering an explanation for why some subjects are biased in such way.

For instance, we cannot distinguish whether commitment blindness is rooted in the fact that

some senders misunderstand the meaning or the technology of commitment—which is what we

emphasized above—or if they hold wrong beliefs about receivers’ behavior. Likewise, it could

be that these subjects engage in a specific form of backward anchoring, where behavior in the

commitment stage imitates that in the revision stage.35 Finally, the differential complexity of

the commitment and the revision stages may contribute to the prevalence of this bias.36 Our

experimental design is not set up to discriminate between these alternatives but we believe that

it would be fruitful to explore them in future work.

5.3 QRE: Quantifying Departures From Equilibrium

In this final part of the section, our goal is to quantitatively reproduce the information gap

with a structural model. The model we estimate has two components. First, it accounts for

the heterogeneity in senders’ behavior that we documented in Section 5.2. Second, it accounts

for noisy players’ behavior by using a quantal-response equilibrium (QRE) model (see, e.g.,

Goeree et al., 2016). With the estimated model, we compute the implied correlations and show

that they account for about 70% to 80% of the observed information gap.

In a QRE, players make mistakes when responding to their beliefs, which however correctly

account for the mistakes that other players make. Two technical challenges make the esti-

mation of our structural model nontrivial. First, senders choose among a continuum of high-

dimensional strategies and, second, our game is multi-stage and has incomplete information.

We address the first challenge by using the same k-means algorithm that we discussed in Sec-

tion 5.2. We address the second challenge by using the methodology in Bajari and Hortacsu

(2005). In the following paragraphs, we explain these two points in more detail. For simplicity,

our analysis focuses on treatments U100 and V100. Although a similar analysis could be per-

formed under partial commitment, the focus on full commitment significantly simplifies our

35 We examined the class of “inertial” strategies, which are defined as those for which the Euclidean distance
between πC and πR is especially small. We find that commitment-blind strategies make up an overwhelming
majority of these inertial strategies.

36In Appendix B.1, we report the results of a treatment that is identical to U100 except for the fact that the
receivers have a higher persuasion threshold, q = 3⁄4 instead of q = 1⁄2. From the sender’s point of view, the
complexity of these two treatments is similar. Nonetheless, we find that the data corroborate the theoretical
predictions.
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estimations. Moreover, the observed information gap in these treatments is maximal, so it is

the one that is more interesting to explain.

Discretization of Senders’ Strategies. To estimate QRE, we first need to discretize senders’

strategy space into k representative strategies. Because our focus is on treatments with full

commitment, the relevant strategy space is only comprised of the commitment-stage strategy,

πC ∈ Π. To find the k representative strategies, we use the same k-means algorithm discussed in

the previous section, and we set k = 4.37 Importantly, we compute the representative strategies

separately for each treatment. This allows us to capture the very different ways in which senders

play in treatments with verifiable and unverifiable information, as shown in Section 5.2. In

particular, it allows us to capture the different implications of commitment blindness for these

two treatments.

Multi-Stage QRE. We assume that each player has a treatment-specific type, λS ≥ 0 for the

sender and λR ≥ 0 for the receiver, and that these are common knowledge between players.

We begin by describing the receiver behavior. Denote by U(a | πC,m) = µ(m, πC)1(a = red) +

(1−µ(m, πC))1(a = blue) the receiver’s expected payoff from choosing action a conditional on

observing the sender’s commitment strategy πC and the realization of message m. The QRE

model assumes that a receiver of type λR guesses red with probability:

P(red | πC,m, λR) =
eλRU(red | πC ,m)

eλRU(red | πC ,m) + eλRU(blue | πC ,m) .

That is, the receiver can make mistakes, that is, choose a suboptimal action, and the probability

of doing so decreases in λR as well as in the utility difference between the actions. We now

turn to the sender behavior. Given the behavior of the receiver, the sender’s expected utility

from choosing strategy πC is V(πC |λR) =
∑
θ,m µ0(θ)πC(m|θ)P(red|πC,m, λR). That is, the sender

takes the receiver’s mistakes into account when computing her expected payoff from playing a

certain strategy. The probability that a sender of type λS ≥ 0 chooses πC is then given by

Q(πC |λS , λR) =
eλS V(πC |λR)∑

πC∈Πk
eλS V(πC |λR) ,

where Πk denotes the discretized set of sender strategies discussed in the previous paragraph.

In sum, the model is pinned down by three parameters: Πk, which we compute via the k-

means algorithm; and λS and λR, which we estimate via maximum likelihood. The parameters

(λS , λR) capture the extent to which players best respond to their opponent’s behavior. At one

37Figure D18, in Online Appendix D, reports k-means clusters for treatments U100 and V100. Our results in
this section are robust to choosing a different k.
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Table 4: QRE-Implied Correlations

Bayesian Correlation φB Correlation φ

Treatment QRE-Implied Observed QRE-Implied Observed

V100 0.72 0.77 0.64 0.68

U100 0.41 0.34 0.26 0.22

extreme, as λi → ∞, the player in role i never makes a mistake. At the other extreme, when

λi = 0, the player in role i randomizes uniformly across all available strategies.

Estimation. We now describe how we estimate λS and λR. Recall that in treatments U100

and V100, the receiver observes the strategy πC chosen by the sender. Whether this strategy

was chosen by mistake is irrelevant for the receiver, who simply responds to πC and its realized

message m as described above. In other words, the receiver faces a single-agent decision

problem. Thus, we can estimate λR independently of λS . In contrast, the sender moves before

the receiver and, thus, the estimated value of λS will depend on the true λR. We consistently

estimate V(πC |λR) for each strategy πC ∈ Πk by computing the empirical average of the sender’s

expected payoff across the strategies that belong in the same cluster as πC (Bajari and Hortacsu,

2005). Using maximum likelihood, it is then straightforward to estimate (λ̂S , λ̂R).38

Simulation. Given these estimates, we simulate a large dataset with 104 hypothetical sender-

receiver interactions. Each interaction comprises of a random θ, a strategy πC chosen according

to Q, a message m, and a final guess a chosen according to P. With this dataset, we can

compute the correlation φ̂ and Bayesian correlation φ̂B.

In Table 4, we report both the QRE-implied correlations as well as the observed ones. The

main conclusion from this table is that the structural model we estimated generates correlations

that are remarkably close to those we observed. In particular, the model explains between

70% and 80% of the observed information gap. It is useful to point out that, in the procedure

described above, we fit data in two separate steps. First, we use the data from each treatment

to compute Πk from the k-means algorithm. That is, the representative strategies of treatment

U100 are allowed to differ from those for treatment V100. We do so because, as revealed

by our analysis in Section 5.2, communication rules affect senders’ play in a substantial and

unpredicted way. Second, we use the data again to estimate treatment-specific types (λ̂S , λ̂R).

By doing so, we allow the model to account for the mistakes that senders and receivers make

when choosing their strategies. Thanks to the combination of these ingredients, the model

is able to generate correlations that fit the observed data and replicate to a large extent the

38When k = 4, we find that (λ̂S , λ̂R) = (0.41, 1.68) for U100 and (λ̂S , λ̂R) = (0.21, 1.28) for V100.
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information gap.

5.4 Alternative Approaches

We now briefly discuss whether other theories could in principle account for the information

gap: level-k, other-regarding preferences, and lying aversion. Although behaviors compatible

with these theories may be present in our data to some extent, we argue that they are not the

most natural avenues to explore, as they either fail to account for some of the key deviations

from rational behavior, or they would need to be enhanced relative to their standard specifica-

tions.

Let us begin by considering a simple level-k model, which is a useful way to model strategic

uncertainty.39 A key starting point in such a model is the specification of how level-0 players

behave. Importantly, in treatments U100 and V100, receivers do not face strategic uncertainty.

Rather, they observe the strategy that the sender played and which message realized from it.

In other words, these receivers face a single-agent decision problem, and it is not clear how

to model their level-0 behavior. This observation implies that there is not much scope for

the interesting feedback that sometimes occurs in a level-k analysis: any departure from the

theory would be determined by assumptions about level-0 senders. Regarding senders, we have

already discussed in Section 5.3 the consequences of noisy behavior. Two alternative types of

level-0 senders are (i) truthtellers or (ii) senders who always send the same message regardless

of the state. The first alternative would lead to an increase in correlation, both for U100 and

V100; the second would lead to a decrease in correlation, both for U100 and V100. Therefore,

these alternatives would lead to a unidirectional change in correlations that would not help

close the information gap.

Other-regarding preferences have been successfully used to understand important patterns

in a variety of experiments (see Cooper and Kagel, 2016). However, the information gap en-

tails departures that, in some cases, go in a direction that is opposite to the common predic-

tion of such models—namely, away from equating players’ payoffs. For instance, in U100, a

commitment-blind sender plays an uninformative strategy and thus earns the lowest possible

payoff (see Figure 6), while the receiver can secure an expected payoff of $1.33 (or $2 times

2/3) by guessing blue. By playing the empirical best response, the sender would instead in-

crease her payoffs away from zero, while also increasing the payoff for the receiver. This sug-

gests that commitment-blind senders do not behave in a way that is compatible with the spirit

39Crawford et al. (2013) reviews this literature. In cheap talk games, Cai and Wang (2006), Kawagoe and
Takizawa (2009), and Wang et al. (2010) discuss level-k models.
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of many models of other-regarding preferences. Of course, this literature is incredibly rich, and

there may be additional and more-complex types of behaviors that could be useful to explore

in the future.

Finally, lying aversion has been studied in the context of cheap talk experiments (e.g.,

Gneezy, 2005; Sánchez-Pagés and Vorsatz, 2007; Hurkens and Kartik, 2009). Lying aversion

is consistent with the fraction of subjects who always tell the truth, as discussed in Section

5.2. However, such behavior is markedly different from the behavior of a commitment-blind

sender, especially in treatments with unverifiable information. More importantly, it leads to

implications that are, in principle, different from the observed departures: as mentioned earlier,

lying aversion contributes to inflating the correlation in treatments with unverifiable informa-

tion, whereas the opposite happens in the data.
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A Equilibrium Refinement and Proofs

In this section, we formally present the refinement, illustrate two examples of PBE that fail it,

and characterize the set of equilibria that survive it. We begin with a formal definition of PBE

for our framework. Recall that, in the commitment stage, the sender chooses an information

structure πC ∈ Π. Then, at every history π′C, the sender observes θ and chooses a revision strat-

egy, denoted ζR(π′C) ∈ Π, which possibly depends on π′C. In the last stage, the receiver observes

the history (m, π′C) and responds by guessing a ∈ {aH, aL}. We denote her (possibly mixed)

strategy by σ(m, π′C). A system of beliefs µ assigns a posterior probability to θH conditional on

every message m, possibly as a function of π′C and ζR(π′C).

Definition 1. Fix (Π, ρ, q). The tuple (πC, ζR, σ, µ) is a Perfect Bayesian Equilibrium if

(1) πC maximizes
∑
θ,m µ0(θ)

(
ρπC(m|θ) + (1 − ρ)ζR(πC)(m|θ)

)
v(σ(m, πC));

(2) For all (π′C, θ),
∑

m ζR(π′C)(m|θ)v
(
σ(m, π′C)

)
≥

∑
m πR(m|θ)v

(
σ(m, π′C)

)
for all πR;

(3) For all (m, π′C), σ(m, π′C) = aH only if µ(m, π′C, ζR(π′C)) ≥ q;

(4) For all (m, π′C), the posterior belief µ(m, π′C, ζR(π′C)) is computed given ρπ′C +(1−ρ)ζR(π′C)

using Bayes’ rule whenever possible.40

We refine the set of PBE by assuming that, in both the commitment and the revision stage,

the sender breaks indifference in favor of strategies that send message m = θH conditional on

θH with higher probability. More formally, a PBE (π∗C, ζ
∗
R, σ

∗, µ∗) satisfies the refinement if the

following holds. In the revision stage, at any history (π′C, θH), if there is a strategy π′R that leads

to the same continuation payoff as ζ∗R(π′C), then ζ∗R(π′C)(θH |θH) ≥ π′R(θH |θH). For example, if

there is a message m , θH such that σ∗(m, π′C) = σ∗(θH, π
′
C), then ζ∗R(π′C)(m|θH) = 0. In the

commitment stage, if there is a strategy π′C that leads to the same continuation payoff as π∗C,

then ρπ∗C(θH |θH) + (1 − ρ)ζ∗R(π∗C)(θH |θH) ≥ ρπ′C(θH |θH) + (1 − ρ)ζ∗R(π′C)(θH |θH).

The idea behind our refinement rests on two forces. On the one hand, the sender may suffer

a small psychological cost when not telling the truth. Thus, whenever indifferent, she could

break ties in favor of being honest. On the other hand, the sender may believe that a small

fraction of receivers is naive and reads messages at face value. That is, these receivers respond

to message θH by guessing aH. Thus, whenever indifferent, the sender may break ties in favor

40 Recall that, when information is verifiable, we assume that µ(θH , πC , πR) = 1 and µ(θL, πC , πR) = 0, for all
πC and πR. We find this assumption in the spirit of Battigalli and Siniscalchi (2002).
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of sending message θH regardless of the state. Similar forces have been considered in the

literature (e.g., see Chen (2011) and Hart et al. (2017); for experiments, see Cai and Wang

(2006) and Blume et al. (2020)) and are especially prominent in experimental settings like ours,

in which messages are coded with literal meanings. It is difficult from an abstract perspective

to evaluate the weight that a sender may give to each of these two forces. However, conditional

on state θH, the two forces go in the same direction, and thus their effect is unambiguous: By

sending message θH, the θH-type sender is both honest and opportunistic. We view this as a

justification for assuming that, in this case, the sender will break ties in favor of sending such a

message. Instead, conditional on the state θL, the sender could break ties either by being honest

(i.e., m = θL) or by sending the opportunistic message (i.e., m = θH). The effect is ambiguous.

In this case, it seems reasonable to impose no restriction and let the sender randomize if so she

desires. In a nutshell, we imagine our senders thinking that it cannot hurt to tell the truth when

it is convenient.41

In the rest of this appendix, we refer to this tie-breaking rule with the acronym TWC, which

stands for “truthful when convenient.” A TWC equilibrium is a PBE that satisfies TWC. The

next result shows that this tie-breaking rule is powerful enough to select a unique equilibrium

outcome for each ρ. Throughout this appendix, we will make repeated use of the two thresholds

introduced in Section 2.2, namely ρ := q−µ0
q(1−µ0) and ρ̄ =

q(1−µ0)
q(1−µ0)+(1−q)µ0

. Moreover, we say that an

equilibrium achieves full-commitment correlation (FCC) if the state-action correlation is equal

to √qρ. This benchmark is the correlation achieved by any PBE under full commitment and

unverifiable information.

Theorem 1. TWC equilibria exist.

(Unverifiable) If ρ < ρ, all TWC equilibria have zero correlation. If ρ ≥ ρ, they all

achieve FCC.

(Verifiable) If ρ < ρ̄, all TWC equilibria have correlation one. If ρ ≥ ρ̄, their correlation

is equal to
(q(1−ρ(1−ρ)

q+ρ(1−q)

) 1
2 .

The proof of this result is in Appendix A.1. Appendix D.3 presents two examples—for

unverifiable and verifiable information, respectively—that indicate why Theorem 1 can fail

without the tie-breaking rule imposed by our refinement.

41Our data provide support for this refinement. First, we find that message r has a significant, albeit small,
positive effect on the probability that the receiver guesses red, even when controlling for the induced posterior.
Second, in the revision stage, senders send message r conditional on R with a median probability equal to 1.
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A.1 Proofs

Proof of Theorem 1.

Unverifiable Information.

Case ρ < ρ. Let information be unverifiable and ρ < ρ. We begin by showing that no TWC

equilibrium can have nonzero correlation. Let (πC, ζR, σ, µ) be a TWC equilibrium. Let πR =

ζR(πC) and σ = (·, πC). Suppose by way of contradiction that φ(πC, πR, σ) > 0. Since q > µ0,

this implies that action aH is chosen with strictly positive probability. Let ∅ , M̄ ( M be the

set of messages such that σ(m, πC) = aH, for m ∈ M̄. Note that condition (2) in Definition 1

implies that
∑

m∈M̄ πR(m|θ) = 1 for all θ. Similarly, condition (3) implies that µ(m, πC, πR) ≥ q,

for m ∈ M̄. Note that the probability of θH conditional on receiving a message in M̄ is

Pr(θH |M̄) =
µ0(ρ

∑
m∈M̄ πC(m|θH) + (1 − ρ))

µ0(ρ
∑

m∈M̄ πC(m|θH) + (1 − ρ)) + (1 − µ0)(ρ
∑

m∈M̄ πC(m|θL) + (1 − ρ))
≤

µ0

µ0 + (1 − µ0)(1 − ρ)
<

µ0

µ0 + (1 − µ0)(1 − ρ)
= q.

The first equality follows from Bayes’ rule. The first inequality holds because Pr(θH |M̄) is

maximized when
∑

m∈M̄ πC(m|θH) = 1 and
∑

m∈M̄ πC(m|θL) = 0. The third inequality holds be-

cause ρ < ρ. The last equality can be verified by substituting the expression for ρ. How-

ever, Bayes’ rule implies that, for appropriately chosen positive weights (βm)m∈M̄, Pr(θH |M̄) =∑
m∈M̄ βmµ(m, πC, πR).42 Since, by assumption, µ(m, πC, πR) ≥ q for m ∈ M̄, we have Pr(θH |M̄) ≥

q, a contradiction. Therefore, M̄ = ∅, that is σ(m, πC) = aL for all m. This implies that

φ(πC, πR, σ) = 0.

We are left to show that a TWC equilibrium (πC, ζR, σ, µ) exists. Fix any history π′C. When

ρ < ρ, Lemma 2 in Appendix D.1 can be specialized to show that the continuation TWC equi-

librium (πR, σ(·, π′C), µ(·, π′C, πR)) given π′C that this lemma constructs is such that σ(m, π′C) = aL

for all m.43 This implies that for all π′C, the sender earns 0. Therefore, she is indifferent among

all π′C. By the TWC refinement, the sender breaks indifference as follows. Let (x, y) ∈ [0, 1]

satisfy (1− ρ) < ρx + (1− ρ)y. The sender chooses πC defined as πC(θH |θH) = 1, πC(θH |θL) = x,

42More specifically, if M̄ = {m′}, then βm′ = 1; if M̄ = {m′,m′′}, then βm′ :=
∑
θ µ0(θ)(ρπC (m′ |θ)+(1−ρ)πR(m′ |θ))∑
θ µ0(θ)(ρ

∑
m∈M̄ πC (m|θ)+(1−ρ)) and

βm′′ = 1 − βm′ .
43In reference to the three cases discussed in 2, note that: Case 1 and Case 3.ii lead to σ(m, π′C) = aL for all m

with no further qualification; For Case 2.(i) note that, if ρ < ρ, πR(θH |θ) = 1 for all θ implies that µ(θH , πC , πR) < q,
regardless of π′C . Therefore, in this case σ(m, π′C) = aL for all m; Finally, in Case 2.(ii) and Case 3.(i), ρ < ρ
implies that Λ′ < (1 − ρ)ρ/ρ and δ∗ < δ∗. Therefore, σ(m, π′C) = aL for all m.
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and πC(θL|θL) = x′. This leads to a revision stage in which she chooses ζR(πC) = πR defined as

πR(θH |θH) = 1, πR(θH |θL) = y, and πR(θL|θL) = y′.

Case ρ ≥ ρ.We first show that all TWC equilibria must achieve FCC. Suppose by contradiction

that there is a TWC equilibrium (πC, ζR, σ, µ) such that, letting πR = ζR(πC) and σ = σ(·, πC) be

the on-path strategies, φ(πC, πR, σ) , √qρ. We want to show that the sender has a profitable

deviation π̂ in the commitment stage. Let π̂C(θH |θH) = 1, π̂C(θH |θL) = x, and π̂C(θL|θL) =

1 − x, where x := 1
ρ
(ρ − ρ) ∈ [0, 1]. Let π̂R = ζR(π̂C). Let M̂ := {m | µ(m, π̂C, π̂R) ≥

q and m has positive probability}. First, we show that M̂ , ∅. Suppose that is not the case. If

M̂ = ∅, σ(m, π̂C) = aL for all m and, thus, the θH-type sender in the revision stage is indifferent

between all messages. Since the equilibrium satisfies TWC, π̂R(θH |θH) = 1. However,

µ(θH, π̂C, π̂R) =
µ

µ + (1 − µ)(ρx + (1 − ρ)πR(θH |θL))
≥

µ

µ + (1 − µ)(ρx + (1 − ρ))
= q.

Therefore, M̂ , ∅. Next, we show that θH ∈ M̂. By way of contradiction, suppose instead that

θH < M̂. Then, since M̂ , ∅, it must be that π̂R(θH |θ) = 0 for all θ (Condition 2 in Definition

1). However, in this case,

µ(θH, π̂C, π̂R) =
ρµ

ρµ + (1 − µ)ρx
≥ q.

Therefore, θH ∈ M̂. Finally, we show that M̂ = {θH}. Note that, since q > µ0, M̂ ( M.

Therefore, suppose m′ , θH and m′ ∈ M̂. Since the equilibrium is truth-leaning, π̂R(θH |θH) = 1.

Let π̂R(m′|θL) = a′ and π̂R(θH |θL) = 1 − a′. If m′ = θL, µ(θL, π̂C, π̂R) = 0 and, thus, m′ < M̂. If

m′ = n, then either m′ has zero probability (if a′ = 0) or m′ = θL, µ(θL, π̂C, π̂R) = 0 (if a′ > 0).

In either case, m′ < M̂. Therefore, we conclude that M̂ = {θH}. This uniquely pins down the

revision strategy π̂R, which is π̂R(θH |θ) = 1, for all θ. Letting σ̂ = σ(·, π̂C) is easy to verify that

φ(π̂C, π̂R, σ̂) =
√qρ and that π̂C leads to a continuation equilibrium in which the sender earns

her first-best payoff µ0/q. In contrast, the sender expects to earn a strictly lower payoff on the

equilibrium path of (πC, ζR, σ, µ). This is because, by assumption, φ(πC, πR, σ) , √qρ, which

implies (see Lemma 1 in Appendix D.1) that the sender earns a payoff strictly lower than µ0/q.

Therefore, π̂C is a strictly profitable deviation and, thus, (πC, ζR, σ, µ) is not a TWC equilibrium.

Next, we show that a TWC equilibria exists. For each history π′C, let us define a continuation

TWC equilibrium as described in Lemma 2. On the equilibrium path, instead, the sender

chooses π̂C, as was defined above. This strategy leads to ζR(π̂C) = π̂R, again as defined above.

Note that these two strategies have πC(θH |θH) = πR(θH |θH) = 1 and, thus, they (trivially) satisfy

the TWC refinement. Conditional on these strategies, the receiver chooses aH if m = θH

41



and chooses aL otherwise. Finally, the receiver’s beliefs are pinned down by Bayes’ rule if

m ∈ {θH, θL} and are equal to zero otherwise. It is easy to verify that these strategies define a

TWC equilibrium.

Finally, suppose that (π′C, ζ
′
R, σ

′, µ′) is another TWC equilibrium. We argue that π′C(θH |θH) =

1. Suppose that is not the case. Above, we showed that all TWC equilibria achieve FCC. This

implies that, in the commitment stage, the sender is indifferent between playing π′C or deviating

to π̂C. Since π′C(θH |θH) < 1 she breaks ties in favor of π̂C, which instead has π̂R(θH |θ) = 1.

Therefore, (π′C, ζ
′
R, σ

′, µ′) does not satisfy TWC, a contradiction. �

Verifiable Information.

We begin by proving an ancillary result. Fix ρ ∈ [0, 1). For every πC, we want to show

that there exists a continuation TWC equilibrium (πR, σ, µ). We do so by construction. Fix

any πC. Verifiability requires that µ(θH, πC, πR) = 1 and µ(θL, πC, πR) = 0 (see footnote 40).

Therefore, σ(θH, πC) = aH and σ(θL, πC) = aL and therefore, the TWC refinement requires that

πR(θH |θH) = 1. We are left to determine δ := πR(n|θL), σ(n), and µ(n, πC, πR). To simplify

notation, let πC(n|θH) = x, πC(n|θL) = y. Note that, since information is verifiable, πC is

uniquely pinned down by (x, y) ∈ [0, 1]2. Define Φ =
ρ

1−ρ ((1 − ρ)x − y). If Φ ≥ 1, we let δ = 1

and σ(n, πC) = aH. In this case, it is easy to verify that µ(n, πC, πR) ≥ q, which is pinned down

by Bayes’ rule. If Φ ∈ [0, 1), we let δ ∈ (Φ, 1] and σ(n, πC) = aL. It is easy to verify that, in

this case, µ(n, πC, πR) < q, which is pinned down by Bayes’ rule. If Φ < 0, we let δ ∈ [0, 1]

and σ(n, πC) = aL. Then, once again, µ(n, πC, πR) < q, which is pinned down by Bayes’ rule.

Finally, there is one more continuation equilibrium to discuss. If x = y = 0 (and, thus, Φ = 0),

we let δ = 0 and σ(n, πC) = aL. In this case, we can set µ(n, πC, πR) < q, which is not pinned

down by Bayes’ rule. In each of the cases above, it is straightforward to verify that the triple

(πR, σ, µ) is a continuation TWC equilibrium given πC.

We now prove the statement of the Theorem.

Case ρ < ρ̄. We begin by showing that a TWC equilibrium (π∗C, ζ
∗
R, σ

∗, µ∗) exists. We do so by

construction. For all πC, note that Φ < 1. Indeed, Φ =
ρ

1−ρ ((1− ρ)x− y) ≤ ρ

1−ρ (1− ρ), since Φ is

maximized when x = 1 and y = 0, and ρ

1−ρ (1 − ρ) < 1 if ρ < 1
2−ρ = ρ̄. Therefore, the argument

above allows us to pin down a continuation TWC equilibrium (πR, σ, µ) given every πC. Since

Φ < 1, for each πC σ(m) = aH if and only if m = θH. Therefore V =
∑
θ,m µ0(θ)(ρπC(m|θ) + (1−

ρ)πR(m|θ))v(σ(m)) = µ0(1 − ρx). In the commitment stage, it is thus optimal to set x∗ = 0 and

y∗ ∈ [0, 1]. This characterizes the enitre set of TWC equilibria. Moreover, it is straightforward

to verify that all these equilibria have correlation 1, since the receiver plays aH if and only if

θ = θH.
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Case ρ ≥ ρ̄. Suppose πC is such that Φ < 1. Then, as before, the sender’s expected payoff is

V<1 = µ0(1 − ρx). Suppose, instead, πC is such that Φ ≥ 1. Then, since in this case δ = 1 and

σ(n) = aH, V≥1 =
∑
θ,m µ0(θ)(ρπC(m|θ) + (1 − ρ)πR(m|θ))v(σ(m)) = µ0 + (1 − µ0)(1 − ρ(1 − y)).

Note that V≥1 > V<1. Therefore, equilibrium behavior in the commitment stage requires that

the sender maximizes y while satisfying Φ ≥ 1. Since Φ is decreasing in y, this entails setting

Φ = 1, which leads to setting x = 1 and y = 1− ρ− 1−ρ
ρ

. Note that y ≥ 0 since ρ ≥ ρ̄. Summing

up, when ρ ≥ ρ̄, on the equilibrium path of all TWC equilibria, the sender plays the same

strategies (π∗C, π
∗
R), characterized by x∗ = 1, y∗ = 1 − ρ − 1−ρ

ρ
, and δ∗ = 1, while the receiver

responds with σ∗(m, π∗C) = aL if m = θL and aH otherwise. Therefore, all such equilibria induce

the same correlation, which is φ(π∗C, π
∗
R, σ

∗) =
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 , or equivalently

( q(1−ρ(1−ρ)

q+ρ(1−q)

) 1
2 . �

Proof of Proposition 1. Suppose that information is unverifiable and 1 > ρ ≥ ρ. Let

(πC, ζR, σ, µ) be a TWC equilibrium. The proof of Theorem 1 establishes that πC(θH |θH) = 1.

Let M̄ be the set of messages inducing action aH in equilibrium. Since the equilibrium cor-

relation is strictly positive (Theorem 1), M̄ , ∅, that is, at least one message leads to action

aH. Moreover, since πC(θH |θH) = 1, θH ∈ M̄. Thus, the TWC refinement requires that the

on-path revision strategy πR satisfies πR(θH |θH) = 1. This implies that M̄ = {θH} and, thus,

πR(θH |θL) = 1. In turn, this implies that, in the commitment stage, the sender finds it optimal

to choose πC(θH |θL) =
ρ−ρ

ρ
, leading to µ(θH, πC, πR) = q. Letting δ ∈ [0, 1], the remainder of

the commitment strategy is given by πC(θL|θL) =
δρ

ρ
and πC(θL|θL) =

(1−δ)ρ

ρ
. Using the definition

of φB, it is straightforward to compute the Bayesian correlations induced by πC and πR respec-

tively. Consider the commitment stage strategy πC. For all δ, a hypothetical Bayesian receiver

would choose aH conditional on m = θH and aL otherwise. Therefore, φB(πC) =
( µ0ρ

ρ−ρ(1−µ0)

) 1
2 .

Note that φB(πC) > 0 since ρ ≥ ρ. Consider the revision stage. Since πR(θH |θ) = 1 for all θ, a

hypothetical Bayesian receiver would choose aL conditional on all messages. Thus, φB(πR) = 0.

We conclude that φB(πC) > φB(πR).

Suppose instead that information is verifiable and let 1 > ρ > ρ̄. Let (πC, ζR, σ, µ) be a TWC

equilibrium. The proof of Theorem 1 shows that, on the equilibrium path of any TWC equi-

librium the sender plays the same strategies (πC, πR). For the commitment stage, we have that

πC(n|θH) = 1, πC(n|θL) = 1 − ρ − 1−ρ
ρ
. Given πC, a hypothetical Bayesian receiver would guess

aH conditional on receiving message θH or n, and she would guess aL otherwise. Therefore,

it is easy to verify that φB(πC) =
µ0(1−ρ(1−ρ))

ρ−(1−µ0)(1−ρ(1−ρ) . Note that φB(πC) < 1 since ρ > ρ̄. For the

commitment stage, we have πR(θH |θH) = 1 and πR(n|θL) = 1. Given such a πR, a hypothetical

Bayesian receiver would guess aH conditional on receiving message θH and aL otherwise. It is

immediate to see that φB(πR) = 1. We conclude that φB(πC) < φB(πR). �
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Proof of Proposition 2. The statement of the proposition directly follows from Theorem 1.

When information is unverifiable, we established that, letting (πC, ζR, µ, σ) be a TWC equilib-

rium and (πC, πR, σ) the strategy profile that is played on the equilibrium path,

φ(πC, πR, σ) =

 0 if ρ < ρ√qρ if ρ ≥ ρ.

Therefore, when information is unverifiable, the equilibrium correlation weakly increases in

ρ. Conversely, assume that information is verifiable. Theorem 1 established that, letting

(πC, ζR, µ, σ) be a TWC equilibrium and (πC, πR, σ) the strategy profile that is played on the

equilibrium path,

φ(πC, πR, σ) =

 1 if ρ < ρ̄(q(1−ρ(1−ρ)

q+ρ(1−q)

) 1
2 if ρ ≥ ρ̄.

It is easy to verify that
q(1−ρ(1−ρ)

q+ρ(1−q) is decreasing in ρ. Finally, consider the extreme case where

ρ = 1. In this case,
(q(1−ρ(1−ρ)

q+ρ(1−q)

) 1
2 =

√qρ. �
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B Additional Treatments

B.1 U100H – Changing Receiver’s Incentives

In this section, we test a different comparative static result: instead of varying the degree of com-
mitment or the communication rules, we change the alignment between the sender’s and the re-
ceiver’s preferences. More precisely, we increase the persuasion threshold q. As we explain below,
this can be done experimentally by changing the preferences of the receiver. Formally, the predic-
tion that we test is the following.

Proposition 3. Fix q′ > q > µ0 and consider any ρ ≥ q′−µ0
q′(1−µ0) . Equilibrium correlation under q′ is

strictly higher than under q, irrespective of the rules of communication.

This result shows that when ρ is sufficiently high, an increase in q increases equilibrium correla-
tion, irrespective of the communication rules. In particular, when ρ = 1, raising q strictly increases
the equilibrium correlation for both verifiability scenarios.

Based on this idea, we designed an additional treatment with full commitment (ρ = 1) and
unverifiable information. We label this treatment U100H and compare it directly to U100.2 Payoffs
are as follows. As in all other treatments, the receiver earns nothing if she guesses incorrectly.
In contrast to our main treatments however, the receiver earns $2 if she correctly guesses that
θ = B, but only 67¢ if she correctly guesses that θ = R. This payoff structure increases the
persuasion threshold from q = 1/2 to q = 3/4. Since the receiver is harder to persuade, the sender
is automatically worse off relative to U100. Therefore, to improve the comparability between
treatments, we also modify the sender’s payoff in U100H. In particular, she earns $3 (instead of
$2) whenever a = red. In this way, her expected equilibrium payoff is the same for U100 and
U100S . In equilibrium, the sender chooses πC(r|R) = 1 and πC(b|B) = 5/6 and the predicted
Bayesian correlation is φB(πC) = 5/

√
40 ≈ 0.79.

The left panel of Figure B9 reports the main clusters of senders’ behavior in treatment U100H.
These are computed through a k-means algorithm, as described in Section 5.2. A large fraction
of senders, indicated by a blue square, choose strategies that are close to equilibrium behavior. A
smaller but significant fraction of senders, indicated by a purple star, choose a strategy that would
be close to equilibrium behavior in U100 but is not informative enough to persuade a Bayesian
receiver in U100H. The strategies summarized by the red circle capture commitment blindness,
while those summarized by the green diamond capture a cluster of residual strategies that should
be interpreted as noise. When comparing these clusters with those computed for treatment U100

2We conducted four sessions of U100H, each with 16–20 subjects (72 in total). The sessions lasted approxi-
mately 100 minutes. Subjects earned on average $32, including a show-up fee of $10. On average, senders and
receivers made $23 and $40, respectively.
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Figure B9: Strategy Clusters (left) and CDFs of Posterior Divergence ψB (right)

(Figure D18, right panel) or U80 (Figure 7), we observe an overall shift toward more-informative
strategies, as predicted by the theory (upper-right corner).

Quantifying this shift is complicated by the fact that receivers’ preferences between U100 and
U100H have changed. Therefore, Bayesian correlations φB have to be computed using different
utilities for the receiver in the two treatments. For example, a posterior of 0.74 leads to a = red for
the Bayesian receiver of treatment U100, but a = blue for that of treatment U100H. To avoid this
problem, we measure information sent using ψB, the divergence between the expected posterior
conditional on the states that we introduced in Section 4.2. Recall that ψB is proportional to the
variance of the induced posteriors (see Online Appendix D.2). As such, it is independent of u and,
thus, it is a more appropriate measure when comparing data from treatments that feature different
q’s. The divergence ψB in U100 is 0.30 (predicted 0.25); in U100H, it is 0.42 (predicted 0.63).
The increase from U100 to U100H is significant (p < 0.01), in line with Proposition 3. Moreover,
the sender-by-sender CDF of ψB increases from U100 to U100H in a first-order stochastic sense,
as reported in the right panel of Figure B9.

Finally, the comparison between U100 and U100H also speaks to the question of the relation-
ship between subjects’ behavior and the complexity of our design. Although the complexity of the
senders’ task changes between the commitment and the revision stages and perhaps even with vary-
ing levels of commitment and communication rules this complexity should be the same in U100
and U100H. Therefore, this comparison, in which the data corroborate the theoretical prediction
of Proposition 3, should be immune to a “complexity critique.”

B.2 U100S – Simplifying the Message Space

In our main treatments, senders can choose among three messages: r, b, and n. In theory, when
information is unverifiable, one of these messages is redundant and its presence does not change
the equilibrium outcome. From a design perspective, message n is important as it allows a clean

2
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comparison between treatments with and without verifiable information. In this section, we explore
the effect of removing this redundant message in a treatment with unverifiable information and
full commitment. Every other aspect of this treatment, which we label U100S , is identical to
U100.3 Implicitly, this is also a test of how the complexity of subjects’ tasks affect their behavior.
It is reasonable to think that treatment U100 is more complex than U100S for both senders and
receivers. If complexity was a major factor affecting subjects’ behavior, one would expect to see
differences in U100S and U100. Our main conclusion from the comparison of U100 and U100S
is that adding message n increases the noise but does not significantly alter the average behavior.

We begin by comparing the senders’ behavior in treatments U100 and U100S . The left panel of
Figure B10 reports the main clusters for these treatments computed through a k-means algorithm,
as in Section 5.2. Solid markers indicate the representative strategies for U100S . Hollow markers
indicate those for U100. This panel shows that the strategies that senders play in these two treat-
ments are highly comparable, despite the difference in the message space. We note that the behav-
ior in U100S is less noisy than in U100. This can be deduced from the fact that the residual cluster,
indicated by green diamonds, has a lower frequency in U100S (12.9%) relative to U100 (21.1%).
There is a higher frequency of senders who approximately best respond to receiver U100S rela-
tive to U100. From Figures 6 and C11, we can deduce that in these treatments the best response
involves a combination of blue squares and yellow triangles. These represent 63.5% and 44% of
the data in U100S and U100, respectively. This last observation is also reflected in the average
Bayesian correlation that is induced by senders in these two treatments. We find that φB(πC) = 0.41
in U100S . This is significantly lower (p < 0.01) than the equilibrium prediction of 0.5, but higher
than in U100 (p < 0.05). We conclude that senders’ behavior in U100S is qualitatively compara-
ble to U100, but it is cleaner and less noisy than in U100.

3We conducted four sessions of U100S , each with 14–20 subjects (17.5 on average per session) for a total
of 70 subjects. In addition to their earnings from the experiment, subjects received a $10 show-up fee. Average
earnings, including the show-up fee, were $34 (ranging from $14 to $52) per session.
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We now compare receivers’ behavior in treatments U100 and U100S . The right panel of Figure
B10 reports the average receivers’ responsiveness to Bayesian posteriors belonging to four key
intervals (horizontal axis). We focus attention on the posteriors induced by message m = r, the
potentially persuasive message. The receivers’ behavior in the intervals is not significantly different
in the two treatments considered We conclude that receivers do not seem to react in unexpected
ways to the presence of the redundant message n.

C A Closer Look at Receivers’ Behavior

We take advantage of the relative simplicity of treatment U100S , introduced in Appendix B.2, to
take a closer look at receivers’ behavior. At the end of this section, we partially expand this analysis
to our main treatments.

We begin by describing some aggregate features of the data in U100S . First, receivers’ respon-
siveness is monotonic in the induced posterior. That is, on average, receivers are more persuaded
to guess red by messages that carry more evidence in favor of the state being R. As highlighted
in Sections 4.1.2 and 5.1, this is a robust feature of receivers’ behavior that also holds in our main
treatments, including U100S . For U100S , this is illustrated graphically in Figure B10 when m = r.
When pooling message r and b, we find that, for posteriors above 1

2 , receivers guess red 57% of the
time, whereas they guess red only 11% of the time for posteriors below 1

2 (p ≤ 0.01).

The extent of monotonicity that we observe in receivers’ behavior is sufficient to confirm one
of the main insights from models of communication under commitment, namely that the best re-
sponse involves some degree of strategic obfuscation: an uninformative πC is worse than a fully
informative πC , which is worse than using commitment to randomize. In Figure C11, we replicate
the same exercise performed in Figure 6 for U100S . As was the case for U100 and V100, we find
that senders’ empirical expected payoff is nonmonotone in the amount of information conveyed to
the receiver, in line with the theory.

Monotonicity is, of course, a mild requirement for receivers’ rationality. A Bayesian receiver
should choose a = red for any posterior µ(m, πC) ≥ 1

2 and a = blue otherwise. The aggregate
evidence presented in Figure B10 fails to satisfy this stronger requirement of rationality. Further-
more, receivers respond to the color of the message independently of the posterior this color con-
veys. When µ(m, πC) ≥ 1

2 , receivers guess a = red 62% of the time if m = r and 38% of the time if
m = b. In contrast, when µ(m, πC) < 1

2 , receivers guess a = red 21% if m = r and 5% of the time
if m = b. These differences, which are significant at the 1% level, are inconsistent with the behav-
ior of a Bayesian receiver. Even when provided with conclusive evidence that the state is R, that
is, even when µ(m, πC) ≈ 1, some receivers nonetheless guess blue at least some of the time. To
summarize, at the aggregate level, receivers are non-Bayesian, an observation that is in line with a
large body of experimental literature (e.g., Charness and Levin, 2005; Holt, 2007, Ch. 30).
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Figure C12: Estimated Thresholds: Ac-
tual Receivers vs Bayesians

To understand better whether the deviations are driven by a few subjects or shared by most, we
look at individual behavior. We demonstrate that, despite not being Bayesian, receivers react to
information as summarized by the posterior belief in systematic ways. In particular, we consider the
possibility that subjects follow (potentially different) threshold strategies. A µ̄-threshold strategy,
for µ̄ ∈ [0, 1], consists of guessing a = red if and only if µ(m, πC) ≥ µ̄. When µ̄ = 1

2 , the receiver
is Bayesian. When µ̄ , 1

2 the receiver is non-Bayesian, but behaves systematically: she requires
stronger or weaker than needed evidence to choose a = red. Given our data, we can estimate a
receiver-specific threshold that rationalizes the greatest fraction of her guesses.

The relevant data for the estimation of threshold strategies comprises pairs of induced posteriors
µ and guesses a for each receiver and message. We look for a threshold µ̄ ∈ [0, 1] that minimizes
#{a , 1{µ ≥ µ̄}} where a takes a value of 1 for red and 0 for blue. In other words, we find
the threshold µ̄ that rationalizes the greatest number of choices a receiver has made.4 We refer to
the fraction of choices properly accounted for by the threshold as the precision of µ̄. Given that
the sample is finite and thresholds exist on the unit interval, there will be an infinite number of
thresholds with the same precision. For instance, imagine a hypothetical sample comprising only
two observations: a receiver that guessed red given a posterior of 0.7 and guessed blue when the
posterior was 0.4. In this case, any threshold µ̄ ∈ [0.4, 0.7] would have the same precision, namely
1. We report the midpoints of the estimated ranges.

The theory assumes receivers are Bayesian. However, notice that even a Bayesian receiver is
unlikely to yield a threshold of 0.5. This is because the sample is finite. For instance, in the two-
observation example proposed above, the estimated threshold is 0.55, even if the agent behaves as
a Bayesian. To account for this, we compare thresholds for the receivers in our experiment with
the hypothetical thresholds that we would estimate given the observed sample if the receivers were
Bayesian.

4This method akin to perceptrons in machine learning; see, for instance, Murphy (2012).
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Figure C13: Estimated Threshold: Actual Re-
ceivers Against Bayesian
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Figure C14: Estimated Threshold and Preci-
sion

Figure C12 plots the estimated threshold for each receiver (vertical axis) against those that we
would have estimated from the same data if receivers were Bayesian (horizontal axis). We find
that the behavior of many subjects is consistent with a threshold strategy. Almost half the receivers
(46%) display behavior that is always consistent with a threshold strategy, and almost nine out
of ten receivers (89%) behave consistently with a threshold strategy for more than 80% of their
guesses (see Figure C16). Figure C12 reveals substantial heterogeneity in receivers’ behavior (re-
latedly, see also (Ambuehl and Li, 2018)). Dots lying above the 45-degree line indicate receivers
who are reluctant to guess red, even when a Bayesian would conclude that there is enough evi-
dence. By contrast, the points below the 45-degree line indicate subjects who are too eager to guess
red, despite insufficient evidence from the perspective of a Bayesian agent. The aggregation of this
heterogeneous behavior is partly responsible for the smoothness of aggregate responses to the pos-
terior that is displayed in Figure B10 (right panel). Also note that Figure C12 shows a sizable frac-
tion of receivers who exhibit behavior consistent with the Bayesian benchmark: one-quarter of the
receivers have thresholds within 5 percentage points of being consistent with a Bayesian receiver;
the number increases to one-third if we are more permissive and allow for a band of 10 percentage
points around the Bayesian receiver.

Overall, this threshold analysis reveals three important aspects of receivers’ behavior. First, the
majority of receivers appear to behave in systematic ways, as summarized by threshold strategies.
Second, there is substantial heterogeneity in the thresholds: some receivers are skeptical, some
are approximately Bayesian, some others are gullible. Third, virtually all receivers respond to
information in monotonic ways. It is thanks to this that the senders’ empirical best responses
(Figure C11) are qualitatively in line with the theory.
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C.1 Threshold Strategies in Main Treatments

Figures C13 and C14 illustrate the best-fitting thresholds and their precisions for the main treat-
ments. Unlike for U100S , the main treatments feature a larger message space (three versus two).
Thus, there are more choices to rationalize and achieving high precision is more difficult. Nonethe-
less, precision is still high: the treatment with the lowest precision still has 81% of subjects with
80% precision; across all treatments, 90% of subjects meet that criteria.

Figure C14 also shows that precision is particularly high when information is verifiable: 55%
of receivers always choose in a way that is consistent with a threshold. That number is 24% for
the treatments with unverifiable messages. From Figure C13, we deduce that receiver behavior is
highly heterogeneous. A nontrivial fraction of subjects are close to the behavior Bayesian receivers
would exhibit. There is also a substantial fraction of subjects who are skeptical, that is, they re-
quire higher-than-needed evidence to guess red, and there is a fraction of subjects who are instead,
gullible. Finally, note that in the treatment that comes closest to the setup of a cheap talk experi-
ment, namely U20, all receivers that are not compatible with the Bayesian benchmark are classi-
fied as gullible. This is in line with one of the main findings in Cai and Wang (2006). Overall, the
aggregation of this heterogeneous behavior is partly responsible for the linearity of aggregate re-
sponses to the posterior that is displayed in Figure 3.5

Finally, in all treatments, receivers’ responsiveness is monotone increasing in information. How-
ever, there are some expected differences between communication rules. As Figure C15 illustrates,
in treatments with verifiable information, receivers are more likely to guess a = red conditional
on any message m that leads to a posterior above 3/4. This is in part because in these treatments
the frequency of extreme posteriors, that is µ = 1, is higher, since information is verifiable. Con-
versely, the frequency of a = red conditional on any message m that leads to a posterior below 1/4

5This linearity may appear consistent with probability matching. That is, subjects guess red with a probability
equal to the posterior belief. To test for this, we compute for each subject the mean-squared error (MSE) of the
predicted guess using the estimated threshold strategies and compare it with the MSE of the probability-matching
model. Across all treatments, we find that for about 84% of the receivers, threshold strategies have lower MSE
than probability matching.
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is lower in the verifiable treatments (it is already very low in the unverifiable treatments). Again,
this is in part because the frequency of extreme posteriors, in this case µ = 0, is higher in treat-
ments with verifiable information.

D Additional Material

D.1 Remaining Proofs

Lemma 1. Suppose information is unverifiable. Fix an arbitrary ρ ∈ [0, 1]. Fix (πC , πR) and define
σ(m) = aH if and only if µ(m, πC , πR) ≥ q. Then

φ(πC , πR, σ) ,
√

qρ ⇒
∑
θ,m

µ0(θ)(ρπC(m|θ) + (1 − ρ)πR(m|θ))v(σ(m)) < µ0/q.

Proof. We begin by noting that, if σ(m) = aL for all m, then V = 0 and, thus, the claim holds.
Therefore, suppose that there is ∅ , M′ ( M such that σ(m) = aH for m ∈ M′. Fix m′ ∈ M′ and
m′′ ∈ M \ M′. Let π be defined as π(m′|θ) =

∑
m∈M′

(
ρπC(m|θ) + (1 − ρ)πR(m|θ)) and, similarly,

π(m′′|θ) =
∑

m∈M\M′
(
ρπC(m|θ) + (1 − ρ)πR(m|θ)), for all θ. By construction, π gives strictly posi-

tive probability to only two messages, m′ and m′′, inducing actions aH and aL, respectively. More-
over, π and (πC , πR) are equivalent in the sense that

∑
θ,m µ0(θ)π(m|θ)v(σ(m)) = V and φ(π, σ) =

φ(πC , πR, σ). Therefore, it is enough to show that φ(π, σ) , √qρ implies that V < µ0/q. To do
so, we will argue that V ≥ µ0/q implies φ(π, σ) =

√qρ. Let V ≥ µ0/q. Since µ0/q is the high-
est achievable payoff under full commitment, it must be that V = µ0/q. To simplify notation, let
πC(m′|θH) = x and πC(m′′|θL) = y. With this, V = µ0x + (1−µ0)(1−y) = µ0/q, which can be rewrit-
ten as

1 − ρ

1 − q
(1 − qx) = 1 − y.

Note that since σ(m′) = aH , µ(m′, π) ≥ q or equivalently (1 − ρ)x ≥ 1 − y. Together, these two
equations imply that x = 1 and thus that y = ρ. Note that these values are indeed compatible with
σ(m′′) = aL, since in this case µ(m′′, π) < q. Finally, note that φ(π, σ) can be written as

φ(π, σ) =
√
µ0(1 − µ0)

xy − (1 − x)(1 − y)
√

V(1 − V)
=

√
qρ,

where the last equation is obtained by substituting the values for x and y. �

Lemma 2. Suppose information is unverifiable. Fix ρ ∈ [0, 1). For every πC , there exists a contin-
uation TWC equilibrium (πR, σ, µ).

Proof: Fix πC and 0 ≤ ρ < 1. We consider three cases.
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Case 1. Suppose that µ(m, πC) < q for all m that have strictly positive probability under πC .
Define πR(θH |θ) = 1 for all θ. Note that such πR is trivially compatible with the TWC refinement.
Moreover, define σ(m) = aL for all m. To complete the proof, we define µ(m, πC , πR) for all m.
If m has zero probability under ρπC + (1 − ρ)πR, we simply let µ(m, πC , πR) = 0. If instead m has
strictly positive probability under ρπC + (1 − ρ)πR, we consider two cases. First, suppose m , θH.
In this case, πR(m|θ) = 0 for all θ, and thus µ(m, πC , πR) = µ(m, πC) < q. Second, suppose m = θH.
To simplify notation, denote πC(θH |θH) = x and πC(θH |θL) = y. Note that µ(θH , πC , πR) < q can be
rewritten as

(1 − ρ)x − y < 0 <
1 − ρ
ρ

ρ.

If x = y = 0, the inequality holds as the left-hand-side is equal to zero. If instead x + y > 0, then
m = θH has strictly positive probability under πC . By assumption then µ(θH, πC) < q, which implies
that (1 − ρ)x − y < 0. Therefore, µ(θH, πC , πR) < q.

Case 2. Suppose that there is a unique m′ with strictly positive probability under πC such that
µ(m′, πC) ≥ q.

(i). If m′ = θH , define πR(θH |θ) = 1 for all θ. If µ(θH , πC , πR) ≥ q define σ(θH) = aH , otherwise,
define σ(θH) = aL. For all m , m′, let σ(m) = aL. If there is m , m′ with zero probability
under ρπC + (1 − ρ)πR, let µ(m, πC , πR) = 0. We have defined a triple (πR, σ, µ) that is a
continuation TWC equilibrium given πC .

(ii). Conversely, let m′ , θH. To simplify notation, let πC(θH |θH) = x, πC(m′|θH) = x′, and
πC(m′′|θH) = x′′. Similarly, let πC(θH |θL) = y, πC(m′|θL) = y′, and πC(m′′|θL) = y′′. Clearly,
x+x′+x′′ = y+y′+y′′ = 1. Define Λ = (1−ρ)x−y, Λ′ = (1−ρ)x′−y′, and Λ′′ = (1−ρ)x′′−y′′.
Note that our assumption on the interim beliefs µ(m, πC) implies that Λ < 0, Λ′ ≥ 0, and
Λ′′ < 0.

– Suppose Λ′ ≥
1−ρ
ρ
ρ. Define πR(m′|θ) = 1 for all θ and σ(m) = aH if and only if m = m′.

We have defined a triple (πR, σ, µ) that is a continuation TWC equilibrium given πC .

– Conversely, suppose Λ′ < 1−ρ
ρ
ρ. Define πR(θH |θH) = 1, πR(θH |θL) = δ, and πR(m′|θL) =

1 − δ. By construction, µ(θH , πC , πR) is strictly decreasing in δ, µ(m′, πC , πR) is strictly
increasing in δ, Instead, µ(m′′, πC , πR) = µ(m′′, πC) < q and it is independent of δ.
Define δ∗ = max{0, ρ

1−ρΛ + 1− ρ} and δ∗ = 1− ρ
1−ρΛ′. Since 0 ≤ Λ′ < 1−ρ

ρ
ρ, δ∗ ∈ [0, 1].

Similarly, since Λ < 0, δ∗ ∈ [0, 1]. Suppose δ∗ < δ∗. Then, let δ ∈ (δ∗, δ∗). By
construction, µ(m, πC , πR) < q for all m. In this case, letting σ(m) = aL for all m
concludes the proof, namely we have defined a triple (πR, σ, µ) that is a continuation
TWC equilibrium given πC . Conversely, suppose δ∗ ≥ δ∗. Then, let δ ∈ [δ∗, δ∗]. By
construction, µ(m, πC , πR) ≥ q for m ∈ {θH,m′}. In this case, letting σ(m) = aL if and
only if m = m′′ concludes the proof.
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Case 3. Finally, we consider the case in which there are exactly two messages with strictly positive
probability under πC such that µ(m′, πC) ≥ q. Denote the set of such messages M̄ ( M.

(i). Suppose θH ∈ M̄. Without loss of generality, let m′ ∈ M̄. By the martingale property,
µ(m′′, πC) < q for m′′ ∈ M \ M̄. Define πR(θH |θH) = 1, πR(θH |θH) = δ, and πR(θH |θL) = 1− δ.
As for Case 2, µ(θH, πC , πR) is strictly decreasing in δ, while µ(m′, πC , πR) is strictly increas-
ing in δ. Instead, µ(m′′, πC , πR) = µ(m′′, πC) < q and independent of δ. Moreover, since
by assumption µ(θH , πC) ≥ q, if δ = 0, µ(θH, πC , πR) ≥ q. Similarly, since by assumption
µ(m′, πC) ≥ q, if δ = 1, µ(θH , πC , πR) ≥ q. Let δ∗ be the unique δ such that µ(θH, πC , πR) = q.
Similarly, let δ∗ be the unique δ such that µ(θH , πC , πR) = q. Suppose δ∗ < δ∗. Then, let
δ ∈ (δ∗, δ∗). By construction, µ(m, πC , πR) < q for all m ∈ M̄ = {θH ,m′}. In this case, letting
σ(m) = aL for all m concludes the proof. Conversely, suppose δ∗ ≥ δ∗. Then, let δ ∈ [δ∗, δ∗].
By construction, µ(m, πC , πR) ≥ q for m ∈ M̄ = {θH ,m′}. In this case, letting σ(m) = aL if
and only if m = m′′ concludes the proof.

(ii). Finally, suppose that θH < M̄ = {m′,m′′}. We first consider a simpler problem, in which
m′ and m′′ are treated as a single message, labeled m̄. To this purpose, define π̄C(m̄|θ) =

πC(m′|θ) + πC(m′′|θ) and π̄C(θH |θ) = πC(θH |θ) for all θ. Define π̄R(θH |θH) = 1, π̄R(θH |θL) = δ,
and π̄R(m̄|θL) = 1 − δ. Our goal is to find δ̄ such that µ(m, π̄C , π̄R) < q for m ∈ {θH , m̄}. These
two inequalities are equivalent to

ρ

1 − ρ

(
(1 − ρ)x − y

)
+ 1 − ρ < δ and δ < 1 −

ρ

1 − ρ

(
(1 − ρ)x̄ − ȳ

)
,

respectively. Therefore, such a δ̄ exists if ρ
1−ρ ((1 − ρ)(x + x̄) − (y − ȳ)) < ρ, which always

holds (recall that, by construction, x + x̄ = 1 = y + ȳ). To complete the proof, we now define
πR(θH |θ) = π̄R(θH |θ), πR(m′|θL) = α(1 − δ̄), and πR(m′′|θL) = (1 − α)(1 − δ̄). Our goal is to
find a ᾱ ∈ [0, 1] such that µ(m, πC , πR) < q for m ∈ {m′,m′′}. Begin by noting that:

1 − δ̄ >
ρ

1 − ρ

(
(1 − ρ)x̄ − ȳ

)
=

ρ

1 − ρ

(
(1 − ρ)x′ − y′

)
︸                     ︷︷                     ︸

A≥0

+
ρ

1 − ρ

(
(1 − ρ)x′′ − y′′

)
︸                      ︷︷                      ︸

B≥0

= A + B.

Also, note that µ(m′, πC , πR) < q iff A < α(1 − δ̄). Similarly, µ(m′, πC , πR) < q iff B <

(1 − α)(1 − δ̄). To find ᾱ, define g(α) = α(1 − δ̄) − A and f (α) = (1 − α)(1 − δ̄) − B and let
ᾱ be the unique solution to g(α) = f (α), namely that is ᾱ =

(1−δ̄)+A−B
2(1−δ̄) . Since A, B ≥ 0 and

A + B < 1 − δ̄, then A < 1 − δ̄ and B < 1 − δ̄. This implies that ᾱ ∈ [0, 1]. Finally, note that
g(ᾱ) = f (ᾱ) > 0, implying that µ(m, πC , πR) < q for m ∈ {m′,m′′}. �

Proof of Proposition 3. Assume that information is unverifiable. Fix q′ > q > µ0. Consider ρ ≥
ρ′ := q′−µ0

q′(1−µ0) . Since q′ > q, ρ′ > ρ := q−µ0
q(1−µ0) and, thus, ρ ≥ ρ as well. By Theorem 1, all equilibria
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when the persuasion threshold is q′ are FCC, namely they induce correlation
√

q′ρ. Similarly, all

equilibria when the persuasion threshold is q are FCC, namely they induce correlation √qρ. Since
q′ > q, the equilibrium correlation induced when the persuasion threshold is q′ is higher than that
induced when the persuasion threshold is q. �

D.2 Correlation and Blackwell Informativeness

D.2.1 The Informativeness of an Outcome

Fix µ0 ∈ (0, 1), ρ ∈ [0, 1], and Π. Fix strategies (πC , πR, σ). Let the outcome induced by (πC , πR, σ)
be the function η : Θ → ∆(A), defined as η(a|θ) =

∑
m
(
ρπC(m|θ) + (1 − ρ)πR(m|θ)

)
σ(a|m), for all

a and θ. We can think of an outcome η as an information structure on its own, which could be
informative about θ. It is as if an external observer were to learn about θ only by observing the
action a taken by the receiver. Say that an outcome η′ is Blackwell more-informative than η if there
is a garbling g : A → ∆(A) such that η(a|θ) =

∑
a′ g(a|a′)η′(a′|θ) for all a and θ. The next result

shows that the correlation φ is a completion of the Blackwell order on the space of outcomes.

Remark 1. Let (πC , πR, σ) and (π′C , π
′
R, σ

′) be two strategy profiles and η and η′ their respective out-
comes. Suppose that η′ is Blackwell more-informative than η. Then, φ(π′C , π

′
R, σ

′) ≥ φ(πC , πR, σ).

Proof: Let η be the outcome induced by (πC , πR, σ). To simplify notation, define α = η(aH |θH) and
β = η(aH |θL). The correlation is equal to

φ(πC , πR, σ) =

√
µ0(1 − µ0)√

(µ0α + (1 − µ0)β)(1 − µ0α − (1 − µ0)β)
(α − β).

Consider an external observer with prior belief µ0 that the state is θH. She observes the realized
action a from η. The distribution of the observer’s posterior belief is:

µ(θH |a) =


µ0α

µ0α + (1 − µ0)β
with prob. Pr(aH) = µ0α + (1 − µ0)β

µ0(1 − α)
µ0(1 − α) + (1 − µ0)(1 − β)

with prob. Pr(aL) = µ0(1 − α) + (1 − µ0)(1 − β)

The variance of such distribution is:

Va∼η(µ(θH |a)) = Ea∼η(µ(θH |a)2) − Ea∼η(µ(θH |a))2

= Ea∼η(µ(θH |a)2) − µ(θH)2

= µ(θH)2
( α2

µ(θH)α + µ(θL)β
+

(1 − α)2

1 − µ(θH)α − µ(θL)β
− 1

)
=

µ(θH)2µ(θL)2

(µ0α + (1 − µ0)β)(1 − µ0α − (1 − µ0)β)
(α − β)2,
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where we used the fact that Ea∼η(µ(θH |a)) = µ0, by the martingale property. Therefore, we have
established that

φ(πC , πR, σ) =

√
Va∼η(µ(θH |a))
µ0(1 − µ0)

.

That is, for any µ0 and (πC , πR, σ), the state-action correlation φ is proportional to the standard
deviation of the distribution of the implied posterior beliefs.

We can now prove the claim. Fix outcomes η′ and η. By Blackwell and Girshick (1979, Theorem
12.2.2), η′ is Blackwell more informative than η if and only if, for all convex functions f : ∆(Θ)→
R,

Ea∼η′
(

f (µ(θH |a))
)
≥ Ea∼η

(
f (µ(θH |a))

)
.

Note that, in particular, f (µ(θH |a) = (µ(θH |a) − µ(θH))2 is convex and that

Ea∼η

(
f (µ(θH |a))

)
= Va∼η(µ(θH |a)).

Therefore, if η′ is Blackwell more informative than η, then

Va∼η′(µ(θH |a)) ≥ Va∼η(µ(θH |a)) ⇒

√
Va∼η′(µ(θH |a))
µ0(1 − µ0)

≥

√
Va∼η(µ(θH |a))
µ0(1 − µ0)

,

which implies that φ(π′C , π
′
R, σ

′) ≥ φ(πC , πR, σ). �

D.2.2 The Informativeness of a Sender’s Strategy

In the paper, we distinguish between the information “sent” by the sender and the information “re-
ceived” by the receiver. The latter is measured by φ and must inevitably rely on the entire outcome
η, which combines the observed strategies of both sender and receiver. To measure information
“sent,” instead, there are at least two natural directions, which we are both explored in the paper
and give results that are qualitatively similar.

The first approach is to use φB, the informativeness of the hypothetical outcome induced by the
sender’s strategy and that of a Bayesian receiver who best responds to it. It is immediate to see
that Remark 1 extends to the Bayesian correlation φB. More specifically, we can show that the
correlation measure φB is a completion of the Blackwell order on the space of outcomes that are
induced by a strategy profile (π, σB).

The second approach consists of using the variance of the distribution of Bayesian posteriors
that are induced by the sender’s strategy. In the next remark, we show that this alternative measure
of information “sent” is proportional to the posterior divergence ψB, which we used in Section 4.2.
Fix µ0 and a sender’s strategy π : Θ → ∆(M). Strategy π ∈ Π can indicate a commitment-stage
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strategy, a revision-stage strategy, or a mixture of the two. To simplify notation, denote by µ(m) the
posterior belief that θ = θH conditional on observing message m under π.6 Recall that the posterior
divergence is defined as ψB(π) = Em∼π(µ(m)|θH) − Em∼π(µ(m)|θL). The next result shows that ψB is
a completion of the Blackwell order on the space of strategies π. To do so, the proof illustrates that
ψB(π) is proportional to the variance of the distribution of the posterior beliefs induced by π.

Remark 2. Let π, π′ : Θ → ∆(M). Suppose that π′ is Blackwell more informative than π. That is,
suppose there exists a garbling g : M → ∆(M) such that π(m|θ) =

∑
m′ g(m|m′)π′(m′|θ) for all m

and θ. Then ψB(π′) ≥ ψB(π).

Proof. Let µ0 ∈ (0, 1). We rewrite ψB(π) as a convex function of posteriors µ(m):

ψB(π) = Em(µ(m)|θH) − Em(µ(m)|θL)
=

∑
m

µ(m)π(m|θH) −
∑

m

µ(m)π(m|θL)

=
∑

m

µ(m)
(
π(m|θH) − π(m|θL)

)
=

∑
m

µ(m)
(π(m|θH)

Prπ(m)
−
π(m|θL)
Prπ(m)

)
Prπ(m)

=
∑

m

µ(m)
(µ(m)
µ0
−

1 − µ(m)
(1 − µ0)

)
Prπ(m)

=
∑

m

µ(m)2 − µ(m)µ0

µ0(1 − µ0)
Prπ(m)

=
Vm∼π(µ(m))
µ0(1 − µ0)

.

The variance Vm∼π(µ(m)) is a convex function µ(m). By Blackwell and Girshick (1979, Theorem
12.2.2), if π′ is Blackwell more-informative than π, ψB(π′) ≥ ψB(π). �

These results indicate that both φB and ψB are valid ways to quantify the amount of information
sent by senders. In Section 4.2, we discuss both measures and argue that they lead to qualitatively
similar conclusions. It is useful to discuss their similarities and differences. First, φB can be directly
compared to φ, while ψB cannot. In the data, we find that the average φ−φB is negative, suggesting
that receivers further garble the information they have received. Second, φB exploits the fact that
we know u, whereas ψB is “utility-free.” This is important because not all information is useful to
our receivers. Let us consider an example. Fix µ0 = 1⁄3 and q = 1⁄2. Let π be uninformative, in the
sense that µ(m) = µ0 for all m. Let π′ induce posterior µ(m) = 2⁄5 with probability 5⁄6 and posterior is
µ(m) = 0 with remaining probability. None of these strategies can change the receiver’s behavior,
since q > µ(m) for all m. Clearly, π′ is Blackwell more informative than π. Both ψB and φB agree
with this order. However, ψB(π′) > ψB(π) whereas φB(π′) = φB(π). The reason for this is that π′

does not contain information that is more useful to our receivers than π.

6Without loss of generality, let µ(m) = 0 if m has zero probability under π.
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D.3 Examples that Fail the Refinement

We present two examples—for unverifiable and verifiable information, respectively—that indicate
why Theorem 1 can fail without the tie-breaking rule imposed by our refinement. These examples
illustrate that, in the absence of a refinement, there are equilibria that feature behavior that is some-
what unreasonable.

Example 1: Unverifiable Information.

Let information be unverifiable. Assume ρ = 3
5 , q = 1

2 , and µ0 = 1
3 . Note that, in this case, ρ > ρ.

Consider the pair of sender’s strategies (πC , πR) in Table D5. Given these strategies, note that beliefs
satisfy µ(θH, πC , πR) < q and µ(θL, πC , πR) < q. That is, despite πC being fully revealing, the sender’s
behavior in the revision stage entirely garbles the information transmitted in the commitment stage.

Table D5

πC m = θH m = θL m = n

θH 1 0 0

θL 0 1 0

πR m = θH m = θL m = n

θH 0 1 0

θL 1 0 0

When ρ = 3
5 , it can be shown that for all commitment strategies π′C , there exists a retaliatory

strategy π′R, similar to the one from Table D5, that garbles the information contained in π′C . That
is, the pair (π′C , π

′
R) induces the receiver to choose aL conditional on all messages. This means that

a PBE with correlation zero exists, even if, in this case, ρ > ρ. Similarly, we can show that a PBE
with correlation higher than FCC exists. The particularly strange behavior that characterizes these
PBE is ruled out by the TWC refinement. For example, consider the history in which the pair of
strategies in Table D5 is played by sender. As argued, the θH-type sender in the revision stage is
indifferent between sending message θH and θL, given that both lead to action aL. In this case, the
refinement requires that the sender breaks ties in favor of message θH, that is, sets πR(θH |θH) = 1.

Example 2: Verifiable Information.

Now assume that information is verifiable. As above, let ρ = 3
5 , q = 1

2 , and µ0 = 1
3 . Consider the

pair of strategies (πC , πR) that is described in Table D6. Conditional on πC , there exists a continua-
tion PBE in which πR is played, and σ(m) = aH if m ∈ {θH , n} and aL otherwise. In such a contin-
uation equilibrium, the sender of type θH is indifferent between the two feasible messages θH and
n, as they both lead to aH (see footnote 40). Note that the profile of strategies (πC , πR, σ) achieves
FCC. This PBE, however, fails the TWC refinement. Indeed, the θH-type sender is indifferent in
the revision stage between sending message n and the verifiable message θH . In this case, the re-
finement requires that the sender breaks ties in favor of message θH , that is, sets πR(θH |θH) = 1 , 0
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Figure D17: Receiver’s Response to Persuasive Messages: ρ = 0.2 vs. ρ = 0.80
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Figure D18: k-Means – Representative Strategies in Treatments with Full Commitment
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Table D6

πC m = θH m = θL m = n

θH 0 0 1

θL 0 5
6

1
6

πR m = θH m = θL m = n

θH 0 0 1

θL 0 0 1

D.4 Statistical Tests

The p-values reported in the main text are obtained by regressing the variable of interest on the
relevant regressor (sometimes an indicator variable) with subject-level random effects and cluster-
ing of the variance-covariance matrix at the session level. This specification has the advantage of
being uniform (the same throughout the paper), it directly accounts for heterogeneity across sub-
jects via the random effects (as the paper documents, there is clear evidence of heterogeneity be-
tween subjects), and it permits unmodeled dependencies between observations from the same ses-
sion (see Fréchette, 2012, where such possibilities are discussed). However, it does not directly ac-
count for the fact that we are often dealing with a limited dependent variable. Also, clustering with
a small number of clusters can lead to insufficient corrections (see Cameron and Miller, 2015, for a
survey). But this observation relies mostly on simulations that do not necessarily mirror the situa-
tion of most laboratory experiments. In particular, the extent of the problem is found to depend on
the size of the within-session correlation (see, for example, Carter et al., 2017). For many experi-
ments, such correlation can be expected to be low (once the appropriate factors are controlled for).
Hence, we are more concerned with controlling for the source of dependencies across the observa-
tions of a given subject than for the within-session correlations (see also Appendix A.4 of Embrey
et al. (2017) for a discussion of these issues).

In Table D7 we document the robustness of the tests reported in the text by exploring alternative
specifications. These include directly accounting for the limited nature of the dependent variable by
using a probit or Tobit when appropriate. When possible we also report bootstrapped estimates that
have been shown to perform better when the number of clusters is small (cluster-adjusted t-statistics
or CAT) and that allow for subject-specific fixed-effects (Ibragimov and Müller, 2010). When we
report those we also include results from a standard subject specific fixed-effects estimation with
session clustering to provide a benchmark. As can be seen, p-values are not systematically larger
for CATs than with the “standard” clustering, nor are they very different when estimating a probit
or tobit.7 As a whole, results are fairly robust: out of the 28 hypotheses tested, for only five of them
are results not the same for all tests reported (in the sense of being consistently significant–or not–
at the 10% level). The few cases in which there are differences are for the most part not difficult
to make sense of. Two of them involve comparing V80 and V100, where the difference is small in

7Note that if a tobit could have been estimated but is not reported, it means that the dependant variable was
not actually censored.
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Table D7: p-Values of Statistical Tests

Model Linear Linear Pr(T)obit Pr(T)obit Linear Linear
Subject RE RE RE RE FE FE
Session Cluster RE Cluster RE Cluster Cluster

Bootstrap CATs

Test

Left panel Figure 2, all bars = 0 when ball is R 0.000 0.000
Left panel Figure 2, all bars = 0 when ball is B 0.000 0.000

Right panel Figure 2, r message bar = 0 when ball is R 0.000 0.000
φB

C = φB
R in U80 0.000 0.000 0.000 0.996

φB
C = φB

R in V80 0.000 0.000 0.006 0.000
Pr

(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U20 0.053 0.002 0.083 0.004 0.150 0.126

Pr
(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U100 0.000 0.000 0.024 0.000 0.040 0.021

Pr
(
red|m = r, µ < 1

2 ,U20
)

= Pr
(
red|m = r, µ < 1

2 ,U100
)

0.627 0.535 0.718 0.610
Pr

(
red|m = r, µ ≥ 1

2 ,U20
)

= Pr
(
red|m = r, µ ≥ 1

2 ,U100
)

0.000 0.001 0.002 0.003
Pr

(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V20 0.038 0.002 0.133 0.006 0.257 0.163

Pr
(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V100 0.000 0.000 0.000 0.000 0.022 0.014

Pr
(
red|m = r, µ < 1

2 ,V20
)

= Pr
(
red|m = r, µ < 1

2 ,V100
)

0.566 0.674 0.536 0.452
Pr

(
red|m = r, µ ≥ 1

2 ,V20
)

= Pr
(
red|m = r, µ ≥ 1

2 ,V100
)

0.000 0.000 0.000 0.000
φ(V20) = φ(V80) 0.217 0.215
φ(V80) = φ(V100) 0.001 0.020 0.258 0.451
φ(U20) = φ(U80) 0.002 0.001
φ(U80) = φ(U100) 0.696 0.676 0.486 0.441
φ(V20) = φ(U20) 0.000 0.000
φ(V80) = φ(U80) 0.000 0.000

φ(V100) = φ(U100) 0.000 0.000 0.000 0.000
φB(V20) = φB(V80) 0.156 0.130
φB(V80) = φB(V100) 0.032 0.052 0.608 0.648
φB(U20) = φB(U80) 0.000 0.000
φB(U80) = φB(U100) 0.957 0.925 0.711 0.661
φB(V20) = φB(U20) 0.000 0.000
φB(V80) = φB(U80) 0.000 0.000

φB(V100) = φB(U100) 0.000 0.000 0.000 0.000

magnitude. Hence, whether or not the difference is statistically significant is not clear, but either
way it is not large. In most other cases, the p-values are either under the 0.1 cutoff or just slightly
above.

D.5 V0 and U0

In Table D8, we report the average revision-stage strategies πR, for treatments U20 and V20. This
stage of these treatments represents the closest point in our data to the hypothetical treatments U0
and V0. For U20, the table shows that the average revision strategy is akin to babbling. In particu-
lar, all messages lead to a posterior belief that is well below the persuasion threshold q = 1/2 (re-
call that in the experiment the prior is µ0 = 1/3). Therefore, following each message, a Bayesian
receiver would always guess blue. For V20, the same table shows that the R-type sender almost al-
ways sends message r, while the B-type sender mostly sends message n. Given this, a Bayesian re-
ceiver would almost fully learn the state. In other words, unraveling would happen most of the time.
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Table D8: Average Revision-Stage Strategies in U20 and V20

U20

πR m = θH m = θL m = n

θH .89 .06 .05

θL .64 .24 .12

V20

πR m = θH m = θL m = n

θH .92 0 .08

θL 0 .25 .75

D.6 Receivers’ Behavior and Revealed Information

In this section, we apply methods from Caplin and Martin (2021) to study whether the receivers’
behavior reveals that they are indeed better informed in U100 vs U20. We observe the behavior
of receivers who take guesses upon receiving information from two different experiments, labeled
E20 and E100. Is the receiver more informed under one or the other experiment? The answer to
this question is trivial if we know the utility of the receiver and which experiments she observed.
In our setting, these are all details of the problem that we know. However, in this appendix, we
will assume that we do not know what the “true” utility function of the receiver is. Instead, let
us assume that the receiver earns an unknown payoff u(xr) ∈ R, when correctly guessing that the
state is R, that she earns u(xb) ∈ R when correctly guessing that the state is B, and that she earns
u(x0) ∈ R when guessing incorrectly. Note that we allow u(xr), u(xb), and u(x0) to be positive or
negative. Similarly, we may not know how the receivers truly understand the experiments E20 and
E100. Thus, we assume that we do not observe them.

Because the space of strategies is extremely large, we will focus attention on the subset of com-
mitment strategies that satisfies πC(r|R) ≥ .95 and πC(b|B) ≥ .95. We do not know what the re-
ceiver understands from these strategies, whether she misinterprets them entirely, or how this de-
pends on the treatment. This is what we seek to study.8

For each treatment, we observe a state-dependent stochastic choice (SDSC) dataset, which con-
sists of a large number of guesses, a ∈ {red, blue}, taken by the receiver conditional on the state,
θ ∈ {R, B}. Such a dataset can be summarized in a matrix Pi = (Pi(a, θ))a∈A,θ∈Θ where i ∈ {20, 100}.
Based on the comparison between P20 and P100, we would like to conclude that the receiver is “re-
vealed to be more informed” under E100 rather than E20, consistent with our conclusion from Sec-
tion 4. In Table D9, we report P20 and P100 computed from our treatments U20 and U100.

Without loss of generality, we can normalize one of the unknowns, so let u(x0) = 0. Following
Caplin and Martin (2021), we can use NIAS (No Improving Action Switches) inequalities to find
the set of utilities u for which there are experiments consistent with P20 and P100. This amounts
to finding the set of utilities (u(xr), u(xr)) ∈ R2 such that, for all i ∈ {20, 100}, and for all a, a′ ∈

8Our conclusion in this exercise is unchanged if we study the receiver’s behavior unconditional on πC .
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Table D9

U20

P20 a = Red a = Blue

θ = R .13 .20

θ = B .13 .54

U100

P100 a = Red a = Blue

θ = R .25 .08

θ = B .04 .63

{Red, Blue}, the following inequality is satisfied:

Pi(a,R)u(x(a,R)) + Pi(a, B)u(x(a, B)) ≥ Pi(a,R)u(x(a′,R)) + Pi(a, B)u(x(a′, B)).

In the formula above, we defined x(Red,R) = xr, x(Blue, B) = xb, and x0 otherwise. These four
NIAS inequalities lead to the following system:

u(xr) ≥ 4
25u(xb)

u(xr) ≤ 63
8 u(xb)

u(xr) ≥ u(xb)
u(xr) ≤ 54

20u(xb)

whose set of solutions is: {u(xr), u(xb) ∈ R2
+ : u(xb) ≤ u(xr) ≤ 54

20u(xb)}. Note that all utilities
consistent with NIAS satisfy u(xr) ≥ 0 and u(xb) ≥ 0. Therefore, we can conclude that:∑

θ,a

P100(a, θ)u(x(a, θ)) ≥
∑
θ,a

P20(a, θ)u(x(a, θ)).

In other words, the value of information in U100 is higher than that in U20. This shows that
receivers are revealed to be on average more informed under E100 rather than E20, corroborating
our evidence from Section 4.1.2.

D.7 Gaussian Mixture Model

The k-means algorithm does not allow for confidence intervals. One may wonder how confidently
each observation is assigned to its cluster. To answer this question, we estimated a Gaussian mix-
ture model (GMM) in which the centroid of each cluster is given and computed with k-means (i.e.,
they are those in Figures 7 and 8) while the variance of each cluster is estimated from the data. That
is, we estimate a GMM with a single parameter for the variance of the errors. With this model, we
can compute the posterior probabilities of each assignment, which capture how confidently we can
assign an observation to its cluster.

Figure D19 plots the posterior assignments of the clusters computed in that fashion for treat-
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Figure D19: Posteriors Probabilities of k-Means Assignments for U80 (left panel) and V80
(right panel)

ments U80 (left panel) and V80 (right panel) As can be seen, the posterior for the vast majority of
observed strategies is extremely high. Note that, in each of the eight clusters, at least three-quarters
of the strategies are classified with a posterior that is above 90%; and for six of the eight clusters
that is true for more than 90% of the strategies. In fact, for half of the clusters less than 5% of the
strategies are classified with a probability below 90%. This exercise shows that the cluster assign-
ment from Section 5.2 is quite robust.

E Design

E.1 Graphical Interface

Figures E20 and E21 shows the software interface of our experiment. More specifically, Figures
E20 show the commitment, revision, and guessing stages. To avoid any possible framing, the
experiment referred to the first two with more neutral labels, “Communication” and “Update.”
Figure E21 shows the feedback screen, where all relevant information is reported to both players.

E.2 Sample Instructions

In this section, we reproduce instructions for one of our treatments, V80. These instructions were
read out aloud so that everybody could hear. A copy of these instructions was handed out to the
subject and available at any point during the experiment. Finally, while reading these instructions,
screenshots similar to those in Figures E20 and E21 were shown with a projector to ease the expo-
sition and the understanding of the tasks.

Welcome:

You are about to participate in a session on decision-making, and you will be paid for your participation with

cash vouchers (privately) at the end of the session. What you earn depends partly on your decisions, partly on the

decisions of others, and partly on chance. On top of what you will earn during the session, you will receive an
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Figure E20: Sample Screenshots, U80: Commitment, Revision, and Guessing Stages
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Figure E21: Sample Screenshots, U80. Feedback

additional $10 as show-up fee.

Please turn off phones and tablets now. The entire session will take place through computers. All interaction

among you will take place through computers. Please do not talk or in any way try to communicate with other

participants during the session. We will start with a brief instruction period. During the instruction period you

will be given a description of the main features of the session. If you have any questions during this period, raise

your hand and your question will be answered privately.

Instructions

You will play for 25 matches in either of two roles: sender or receiver. At the beginning of every Match one

ball is drawn at random from an urn with three balls. Two balls are Blue and one is Red. The receiver earns $2

if she guesses the right color of the ball. The sender’s payoff only depends on the receiver’s guess. She earns $2

only if the receiver guesses Red. Specifically, payoffs are determined illustrated in Table E10.

If Ball is Red If Ball is Blue

If Receiver guesses Red Receiver Sender Receiver Sender
$2 $2 $0 $2

If Receiver guesses Blue Receiver Sender Receiver Sender
$0 $0 $2 $0

Table E10: Payoffs

The sender learns the color of the ball. The receiver does not. The sender can send a message to the receiver.

The messages that the sender can choose among are reported in Table E11.

If Ball is Red:

− Message: “The Ball is Red.”

− No Message.

If Ball is Blue:

− Message: “The Ball is Blue.”

− No Message.

Table E11: Messages

Each Match is divided in three stages: Communication, Update and Guessing.
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1. Communication Stage: before knowing the true color of the ball, the sender chooses a Communication

Plan to send a message to the receiver.

2. Update Stage: A ball is drawn from the urn. The computer reveals its color to the sender. The sender can

now Update the plan she previously chose.

3. Guessing Stage: The actual message received by the receiver may come from the Communication stage or

the Update stage. Specifically, with probability 80% the message comes from the Communication Stage

and with probability 20% it comes from the Update Stage. The receiver will not be informed what stage

the message comes from. The receiver can see the Communication Plan, but she cannot see the Update.

Given this information, the receiver has to guess the color of the ball.

At the end of a Match, subjects are randomly matched into new pairs. We now describe what happens in each

one of these stages and what each screen looks like.

Communication Stage: (Only the sender plays)

In this stage, the sender doesn’t yet know the true color of the ball. However, she instructs the computer on what

message to send once the ball is drawn. In the left panel, the sender decides what message to send if the Ball is

Red. In the right panel, she decides what message to send if the Ball is Blue. We call this a Communication Plan.

Every time you see this screen, pointers in each slider will appear in a different random initial position. The

position you see now is completely random. If I had to reproduce the screen once again I would get a different

initial position. By sliding these pointers, the sender can color the bar in different ways and change the probabil-

ities with which each message will be sent. The implied probabilities of your current choice can be read in the

table above the sliders.

When clicking Confirm, the Communication Plan is submitted and immediately reported to the receiver.

Update Stage: (Only the sender plays)

In this Stage, the sender learns the true color of the ball. She can now update the Communication Plan she

selected at the previous stage. We call this decision Update. The receiver will not be informed whether at this

stage the sender updated her Communication Plan.

Guessing Stage. (Only the receiver plays)

While the sender is in Update Stage, the receiver will have to guess the color of the ball. On the left, she can see

the Communication Plan that the sender selected in the Communication Stage. By hovering on the bars, she can

read the probabilities the sender chose in the Communication Stage. Notice that the receiver cannot see whether

and how the sender updated her Communication Plan in the Update Stage. On the right, the receiver needs to

express her best guess for each possible message she could receive. We call this A Guessing Plan. Notice that

once you click on these buttons, you won’t be able to change your choice. Every click is final.

How is a message generated?

See attached table.

Practice Rounds:

Before the beginning of the experiment, you will play 2 Practice rounds. These rounds are meant for you to

familiarize yourselves with the screens and tasks of both roles. You will be both the sender and the receiver at

23



With 80% probability

The message is sent according to
Communication Plan

(Remember: Communication Plan is always
seen by the Receiver)

With 20% probability

The message is sent according to
Update

(Remember: Update is never seen by the
Receiver)

the same time. All the choices that you make in the Practice Rounds are unpaid. They do not affect the actual

experiment.

Final Summary:

Before we start, let me remind you that.

− The receiver wins $2 if she guesses the right color of the ball.

− The sender wins $2 if the receiver says the ball is Red, regardless of its true color.

− There are three balls in the urn: two are Blue (66.6% probability), one is Red (33.3% probability). After

the Practice rounds, you will play in a given role for the rest of the experiment.

− The message the receiver sees is sent with probability 80% using Communication Plan and with probability

20% using Update.

− The choice in the Communication Stage is communicated to the receiver. The choice in the Update stage

is not.

− At the end of each Match you are randomly paired with a new player.
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