
New News is Bad News

Paul Glasserman* Harry Mamaysky� Jimmy Qin�

August 29, 2023

Abstract

An increase in the novelty of news predicts negative stock market returns and

negative macroeconomic outcomes over the next year. We quantify news novelty –

changes in the distribution of news text – through an entropy measure, calculated

using a recurrent neural network applied to a large news corpus. Entropy is a better

out-of-sample predictor of market returns than a collection of standard measures.

Cross-sectional entropy exposure carries a negative risk premium, suggesting that

assets that positively covary with entropy hedge the aggregate risk associated with

shifting news language. Entropy risk cannot be explained by existing long-short

factors.
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1 Introduction

Several studies have documented that the sentiment of news text forecasts short-term

changes in asset prices, with negative news forecasting negative returns. We find that a

change in the distribution of news text — a measure of the novelty or unusualness of the

news rather than its sentiment — forecasts negative market returns and macroeconomic

outcomes over the subsequent year. Consistent with this pattern, we find that assets that

positively covary with our measure carry a negative risk premium: investors accept lower

compensation to hold assets that hedge the risk associated with a shift in the language

of news.

To motivate the idea, consider the string of words “the securities and exchange commis-

sion issued an.” What is the likelihood that the next word in the sentence is “agreement,”

“order,” “emergency,” or any other English language word? Using a recurrent neural net-

work re-estimated in rolling windows over 1.6 million Reuters news articles spanning a

period of 27 years, we can quantify exactly how this distribution evolves over time. For

example, the likelihood that the next word is “agreement” has a decreasing time trend,

while the likelihood that the next word is “order” has an increasing time trend. The likeli-

hood that the subsequent word is “emergency” spikes during the financial crisis and again

during the COVID-19 pandemic.1 Although in principle such shifts in language structure

could be neutral, we find that they generally contain negative news about markets and

the economy. This finding leads us to explore and subsequently uncover a rich structure

of risk pricing associated with exposures to the changing distribution of news language.
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The probability of “agreement”, “order”, and “emergency” following the string of words “the securities
and exchange commission issued an.” The distributional shift over time is estimated by a recurrent neural
network.

We refer to our measure as entropy; it can also be seen as a measure of the cross entropy

(or dissimilarity) between the current and past distributions of news text. Glasserman

and Mamaysky (2019) used an entropy measure to forecast volatility, rather than the

1The methodology to calculate these conditional probabilities is explained in Section 3.4.
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direction of returns. To estimate conditional word probabilities, they used the empirical

frequencies of word sequences in what is known as an n-gram method in the natural

language processing (NLP) literature; see Jurafsky and Martin (2023). Exact phrases,

like in the above example, occur rarely if they are more than a few words long, limiting

the accuracy of the n-gram method.

Here we use a far more powerful recurrent neural network (RNN) model with a long

short-term memory (LSTM) architecture (Mikolov et al. 2010, Hochreiter and Schmid-

huber 1997) to estimate conditional word probabilities and thus to calculate entropy.

Whereas in practice the n-gram approach conditions on only three or four words prior to

the predicted word, an RNN model captures far more contextual information in assigning

probabilities to words. We apply the RNN model with word embeddings that encode rich

information about the relationships between words, adding to the power of the method.

Unlike the latest and most complex large language models (like GPT-4, BERT, and their

relatives), our RNN can be trained relatively quickly. This allows us to retrain our RNN

monthly in rolling windows over our news data, and then use the most recent model to

assign an entropy score to the next month’s news articles, which reflects the degree to

which the text in these articles deviates from the RNN model’s conditional word distri-

butions. We can then assess the in- and out-of-sample forecasting performance of our

entropy measure.

Each month we calculate ENT, the change in our raw entropy measure over the previ-

ous 12 months. For simplicity, we often refer to ENT simply as entropy in the rest of the

paper. In in-sample regressions, we find that a one standard deviation increase in ENT

forecasts a 3% decline in cumulative S&P 500 returns over the next 12 months, even after

controlling for a large number of alternative predictors. The effect is highly statistically

significant.

To check out-of-sample predictability, we compare univariate forecasts for a large num-

ber of predictors; the out-of-sample R-squared for ENT is positive at multiple horizons but

overwhelmingly negative for the other predictors. In particular, entropy is the best out-

of-sample predictor of market returns when compared to a long list of variables proposed

in prior studies, including the inverse of the cyclically adjusted price-to-earnings ratio

of Campbell and Shiller (1988) CAPE, the variables tested in Welch and Goyal (2008),

Campbell and Thompson (2008), and David and Veronesi (2022), as well as economic

policy uncertainty (EPU, Baker et al. 2016), the VIX (Martin 2017), and the aggregate

consumption to wealth ratio of Lettau and Ludvigson (2001). We are careful to estimate

our RNN model in rolling windows to ensure the test is truly out-of-sample. Given the ex-
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tensive literature devoted to identifying successful out-of-sample risk premium forecasters,

the out-of-sample forecasting performance of ENT is remarkable.

If an increase in ENT forecasts a decline in the stock market, then an asset that

positively covaries with ENT provides a hedge against this deterioration in the investment

opportunity set. We, therefore, expect ENT to carry a negative risk premium: investors

will accept lower expected returns on assets that covary positively with ENT because

of the hedge they provide. This ICAPM-style (Merton 1973) argument provides the

intuition underlying the sign consistency property proposed by Maio and Santa-Clara

(2012). Through cross-sectional regressions that control for standard factors, we estimate

a monthly risk premium for ENT that is indeed negative, ranging from −0.06% to −0.09%

per unit standard deviation of cross-sectional entropy loading, depending on the choice

of test assets. While the magnitude of this risk premium is in line with that of the other

factors, none of the other cross-sectional pricing factors satisfy the Maio and Santa-Clara

(2012) consistency property that a factor’s market return forecasting direction and cross-

sectional risk premium have the same sign.

The structure of our ENT measure allows its decomposition into two components,

which we refer to as news updates and model updates. The first component measures the

change in entropy, holding the distributional model of text fixed, and the second measures

the change in the distributional model. The first component is thus more focused on the

novelty of the text in the current month. We find that the predictive power of entropy

stems primarily from the first component, which negatively forecasts future returns out-

of-sample and carries a negative cross-sectional risk premium.

Entropy and its news innovation component forecast year-ahead macroeconomic out-

comes. Increased entropy is associated with future increases in unemployment and the

VIX, and with future declines in industrial production, inflation, interest rates, and cor-

porate earnings. Consistent with an ICAPM-style hedging argument, market participants

are willing to accept lower expected returns for securities that hedge entropy risk. How-

ever, entropy also negatively forecasts aggregate market returns suggesting that markets

do not fully reflect the information content of entropy either because of investor informa-

tional constraints as in Sims (2003) or because of slow-moving institutional capital and

limits to arbitrage (Gabaix and Koijen 2021, Gromb and Vayanos 2010). While improv-

ing data and analytics may alleviate the former channel, the latter institutional-constraint

channel is likely to persist.

Lastly, we show that the replicating portfolio for our entropy measure cannot be ex-

plained by the multitude of existing long-short factors (Harvey et al. 2016, Feng et al.
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2020). Jensen et al. (2021) argue that most factor-based asset pricing results can be repli-

cated, and in doing so construct a database of over 150 long-short factor portfolios.2 Using

this database of over 150 long-short factors we show that our entropy-change replicating

portfolio is among the long-short portfolios that are most poorly explained by existing

factors. Furthermore, entropy appears largely unrelated to several measures of economic

uncertainty (Baker et al. 2016, Bekaert et al. 2022, Jurado et al. 2015, Azzimonti 2018,

David and Veronesi 2022) and contains information that is distinct from news sentiment.

Entropy, with its sign-consistent price of risk and out-of-sample forecasting performance,

is also largely unspanned by existing long-short factors and measures of uncertainty.

1.1 Literature Review

Our paper is related to the literature examining the impact of text similarity in financial

markets. Tetlock (2011) measures news staleness as the similarity of news stories to prior

news stories about the same firm, and finds that firms’ stock returns are less responsive

to stale news but that retail investors overreact to stale news. Cohen et al. (2020) show

that firms with quarter-over-quarter changes in the language of their 10-Ks and 10-Qs

experience significantly lower future stock return relative to non-changers, which they

interpret as market underreaction to the information content of corporate reports. Hoberg

and Phillips (2016, 2018) construct firm peer groups using textual similarity of product

descriptions contained in 10-K reports and show that there are cross-momentum effects

within text-based peer groups.

The traditional definition of dissimilarity has focused on differences in word counts

between small groups of related documents. Glasserman and Mamaysky (2019) extend

this concept to measure how unusual an article’s language is relative to the text of all

prior articles. They show that, at the firm-level and in aggregate, unusual news forecasts

increases in future realized and implied volatility. Prior measures of dissimilarity or infor-

mativeness suffer from several problems: word counts cannot account for article context

or synonyms, while the n-gram approach of Glasserman and Mamaysky (2019) suffers

from the sparsity issue that many feasible n-grams are never observed, especially for large

n. Our entropy methodology offers a dramatic improvement over prior efforts by using

word embeddings inside a deep-learning framework.

Our paper is related to a long literature in computer science and linguistics which aims

to create probabilistic models for text using deep learning. Hochreiter and Schmidhuber

2Chen and Zimmerman (2021) make a similar point and also provide factor-replication code and data.
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(1997) introduce the long short-term memory (LSTM) architecture, which revolutionized

the ability of recurrent neural networks to successfully model large text corpora (Charniak

2019). Pennington et al. (2014) introduces the GloVE model of word embeddings which

map words into a high-dimensional space where vector operations reflect the semantic

content of words. While the transformer underlying ChatGPT (Radford et al. 2019) is a

far larger model than the one we use, it has been trained on an extensive corpus obtained

from the internet, and therefore cannot be used for backtesting trading strategies because

the model contains future information when applied to historical data. Our approach,

while restricted to a smaller model and data set, is trained in rolling windows, and as such,

it makes forecasts using only data that would have been available to market participants

in real-time, which can be used for out-of-sample testing.

Several papers are concerned with aggregate measures of text or news flow. Jiang et al.

(2019) show that an index of aggregate manager sentiment, based on the text of firms’

10-Ks, 10-Qs, and conference calls, negatively forecasts stock returns, suggesting stock

investors overreact to the information content of management communication. Using a

dictionary-based approach, Shapiro et al. (2022) construct an aggregate economic senti-

ment measure from articles in 16 major U.S. newspapers and show that positive economic

news is associated with growth in future consumption, output, and real rates. Baker

et al. (2016) introduce the economic policy uncertainty (EPU ) measures which count the

number of times terms like uncertainty, economic, and legislation (and other similar word

combinations) appear in close proximity to each other in articles from 10 major U.S.

newspapers. They then use a weighted average of the frequency of major news discussing

economic policy uncertainty, expiring tax provisions, and forecaster disagreement about

government purchases to construct their measure. They show that EPU negatively fore-

casts investment, output, and employment, and at the firm-level EPU predicts “greater

stock price volatility and reduced investment and employment” for firms most heavily

exposed to government policy.

Brogaard and Detzel (2015) test the asset pricing implications of EPU and show that

it positively forecasts market returns but carries a negative cross-sectional price of risk.3

Based on these findings, EPU does not satisfy the Maio and Santa-Clara (2012) sign

property which suggests that if EPU positively forecasts future returns, it should have a

positive cross-sectional price of risk. When controlling for other forecasting variables and

3Lin (2022) is a related paper that shows that another economic uncertainty index positively forecasts
stock market volatility, but does not earn a significant price of covariance risk in a cross-section of 25
Fama-French size and book-to-market sorted portfolios, which is also a violation of the ICAPM sign
property proposed in Maio and Santa-Clara (2012).
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for ENT, we also find that EPU forecasts returns positively and that it carries a negative

risk premium, but the forecasting results are not consistent and don’t hold out-of-sample,

and the negative risk premium is not significant in all specifications. In contrast, ENT

is a significant return forecaster in- and out-of-sample, satisfies the ICAPM-style sign

property, and has a significant price of risk across different specifications.

It is natural to contrast our entropy measure with measures of model uncertainty.

Among others, Hansen and Sargent (2008), Aı̈t-Sahalia et al. (2021), and Brenner and

Izhakian (2018) link risk premia to uncertainty, distinguishing uncertainty about the true

model and ambiguity about the true outcome probabilities from the market or economic

volatility. An increase in ENT might suggest heightened uncertainty, but theory com-

monly associates uncertainty with a positive risk premium, and we find a negative risk

premium for ENT.

The remainder of this paper proceeds as follows. Section 2 discusses the data we use. In

Section 3, we define the entropy measure and compare several estimation methods. Section

4 provides an empirical assessment of the forecasting power of entropy for future market

returns. Section 5 investigates the cross-sectional association between aggregate entropy

and returns. Section 6 decomposes entropy into news and model innovation components,

investigates the macroeconomic forecasting properties of entropy, and discusses potential

channels for why entropy forecasts market returns. Section 7 offers some robustness checks

and Section 8 concludes. Technical details and supplementary results are included in an

Online Appendix.

2 Data and Variable Construction

We construct our entropy measure using the Thomson Reuters News Feed Direct archive

from January 1996 to December 2022, which is the time frame of our analysis. We removed

articles that represent multiple rewrites of the same initial story, retaining only the first

article in a given chain.4 We only kept news articles that were written in English and

discussed S&P500 companies.5 We excluded articles with headlines containing certain

keywords such as “shh margin trading”, “nyse”, “imbalance”, “machine generated”, and

“research alert;” these keywords typically signal messages that are not really news articles

4Thomson Reuters tracks articles by assigning a Primary News Access Code (PNAC). Articles that
share the same PNAC are duplicates. This generally happens when there is an update to the coverage
of the same event.

5A detailed description of the article selection methodology is in Glasserman et al. (2023). The
methodology involves mapping Reuters company names to CRSP company names using fuzzy matching.
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or exhibit irregularities. For example, “machine generated” articles were produced using

algorithms or automated processes, rather than being created manually by human writers

and editors. As such, their content may not have the same level of context, nuance, or

analysis as content created by human writers. “[R]esearch alert” articles present hundreds

of duplications. We further discarded articles with fewer than 30 words. This filtering

process leaves us 1,642,517 articles. Figure 1 depicts the number of articles and average

article length per month, respectively. The monthly article count increased from 1996 and

peaked in the early 2000s, remaining steady until 2010 before gradually decreasing. The

average number of words per article steadily increased from 1996, reaching an approximate

steady-state level of 250 words per article in the early 2000s, with fluctuations observed

after 2013.

We retrieve the Chicago Board Options Exchange’s CBOE Volatility Index (VIX )

from the Federal Reserve Economic Data (FRED) server. We write VIX2 for the square

of VIX. We include additional uncertainty measures from Bekaert et al. (2022) (BEX )

and Jurado et al. (2015) (JLN ), and the Azzimonti (2018) Partisan Conflict Index (PCI ),

all of which can be retrieved from the David and Veronesi (2022) review article data set.

As a proxy for the risk-free rate, we use the market yield on U.S. Treasury securities at

ten-year (DGS10 ) and two-year (DGS2 ) constant maturity, also obtained from FRED.

We construct the 2s-10s spread, DGS10-2, as DGS10 minus DGS2. As conditioning

variables for stock returns, we include the monthly S&P 500 dividend yield (DY ), monthly

cyclically adjusted PE ratio for the S&P 500 (CAPE ), and the consumption-wealth ratio

(CAY ). We also use daily and monthly returns of Fama and French (2015) 5 factor model

(MKT, SMB, HML, RMW, CMA) and the momentum factor (UMD).6 MKT refers to

the CRSP value-weighted index return net of the risk-free rate. We write Return1 for the

market return of the previous month, Return12 for the cumulative market return of the

previous 12 months excluding the most recent month, and Return60 for the cumulative

market return of the previous 60 months including the most recent month. Similarly,

we construct SMB60 (HML60, RMW60, CMA60, UMD60 ) as the SMB (HML, RMW,

CMA, UMD) factor return of the previous 60 months. We use the last 60-month lagged

factor returns in the forecasting regressions in Section 4 to convert factor returns to state

variables as suggested by Maio and Santa-Clara (2012).7

6They are obtained from the Nasdaq Data Link https://data.nasdaq.com/, Robert Shiller’s website
http://www.econ.yale.edu/~shiller/data.htm, Martin Lettau’s website https://sites.google.

com/view/martinlettau/data, and Ken French’s website http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/biography.html respectively.
7Maio and Santa-Clara (2012) use 60-month lagged returns for two factors, but use a different con-

struction for converting SMB and HML to state variables. For consistency, we use the 60-month lagged

7
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3 The Entropy Measure

We build upon and extend the idea from Glasserman and Mamaysky (2019) to construct

an entropy score for the unusualness of news text as a market signal. A text is considered

unusual if it has a low likelihood relative to a model of language probability. This problem

has been studied in the natural language processing literature on word prediction; see, in

particular, Chapter 3 of Jurafsky and Martin (2023).

3.1 The Entropy of Text

Our goal is to estimate the probability of a new set of articles (an evaluation text) under a

probability model P estimated from past articles (referred to as the reference text or train-

ing corpus). We can represent an evaluation text as a sequence of N words w1w2 · · ·wN .

Its probability is given by the product of conditional probabilities

P(w1 · · ·wN) =
N∏
k=1

P(wk|w1 · · ·wk−1), (1)

in which the first factor is P(w1), the unconditional marginal probability of word w1. The

average negative log probability per word is then given by

− 1

N
lnP(w1 · · ·wN) = − 1

N

N∑
k=1

lnP(wk|w1 · · ·wk−1). (2)

If P correctly models the word-generating process, and if this process is stationary and

ergodic, then (2) converges to the entropy of the process as N increases (see Section 3.8

of Jurafsky and Martin 2023). For fixed N , (2) measures the cross-entropy between the

empirical distribution of the evaluation text and the model P. For brevity, we will refer to
(2) as the entropy of the evaluation text w1 · · ·wN . High entropy means low probability

and thus signals an unusual text, relative to P.
To calculate entropy, we need a model or estimate for P. The n-gram approach (often

with n equal to four or five) truncates the conditioning on the right side of (2) to the

n − 1 words immediately preceding wk and thus misses additional context provided by

words that came earlier. The n-gram approach estimates conditional probabilities of the

form P(wk|wk−n+1 · · ·wk−1) as the ratio of the number of occurrences of the sequences

wk−n+1 · · ·wk−1wk and wk−n+1 · · ·wk−1, with adjustments to the numerator and denom-

returns for all factors.
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inator for strings that were never previously observed, which we refer to as the sparsity

issue. Choosing a larger n captures more conditioning information but makes it more

likely that the conditioning sequence has rarely or never been observed before. The in-

ability to condition on a large number of prior words leads to approximation errors in

(2).

3.2 A Neural Network Approach

A neural network approach to modeling the probability P addresses the two shortcomings

(approximation and sparsity) of the n-gram method. Recurrent Neural Networks (RNNs)

are a type of neural network specifically designed for modeling sequential data, such as

language. RNNs process input sequences one element at a time while maintaining an

internal state that captures the context of the preceding elements in the sequence. This

enables the network to capture complex dependencies between elements in the sequence,

making them particularly useful for tasks like language modeling, where understanding

the context of a word is critical for predicting the subsequent word in the sequence. We use

an RNN with an LSTM (long short-term memory) architecture to incorporate additional

conditioning information. Charniak (2019) provides an excellent introduction.

Illustration of RNN model with LSTM architecture. h contains the model’s hidden state and c contains
the long-term memory.

The above figure illustrates the evolution of the RNN model. The state of the RNN has

two components, h and c. The h component is a vector of numerical values summarizing

the context of the input sequence processed up to that point. It serves as a summary of

the past inputs seen by the RNN up to the current time step and is updated iteratively

as the RNN processes each word in the input sequence. The cell state, denoted by c, is

an internal memory that stores and propagates information across time steps to capture

long-term dependencies; this is the distinguishing feature of the LSTM structure. It

allows the RNN to learn and remember long-term dependencies by regulating the flow of

information through a mechanism called the “gates.” The cell state is updated in parallel
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with the hidden state and is used to decide what information to retain, forget, or update.

The state of the RNN is updated after each word is read. Each word is represented

through a word embedding (shown in the figure as the e), which is a vector of numerical

values that encodes information about the meaning and use of the word. We use the

well-known GloVe word embeddings (Pennington et al. 2014), which map each word to a

100-dimensional vector.8

At each step, the current state (h, c) determines a probability distribution over the

model’s vocabulary, which assigns a probability to each possible next word. The RNN

thus embodies a model of P. Once the RNN is trained, we evaluate the probabilities of

the form P(wk|w1 · · ·wk−1) by feeding the embeddings of w1, . . . , wk−1 into the RNN and

then evaluating the RNN’s conditional distribution P(·|w1 · · ·wk−1) at each observed word

wk. Unlike the n-gram approach, the conditional probabilities returned from the RNN

reflect information from a very large number of prior words in the document.

Each of the arrows in the LSTM figure corresponds to a combination of linear and

nonlinear transformations involving a large number of parameters. These are described in

more detail in Section A2 of the Online Appendix. Training the RNN means calibrating

these parameters to a reference or training text, a process we turn to next.

3.3 Model Training and Updating

Our neural network consists of an embedding (input) layer, an LSTM layer, and a fully

connected (output) layer. The embedding layer maps words to their vector representa-

tions. The LSTM layer models temporal dependencies between words in a document.

We set the dimension of the h and c vectors at 16. The LSTM layer, whose architec-

ture is detailed in Section A2 of the Online Appendix, contains four W matrixes which

transform word embeddings into an internal state and have dimension 16 × 100, four U

matrixes which transform the internal state and have dimension 16 × 16, and four bias

vectors of dimension 16 each. The total number of parameters in the LSTM layer is

4× (1600+256+16) = 7,488. The output of the LSTM consists of a fully connected layer

which maps the final hidden state h into a probability distribution over the vocabulary of

10,000 words. This layer contains a 10, 000× 16 matrix Us which transforms the state h

to 10,000 outputs and a 10,000-length bias vector for a total of 170,000 parameters. Thus

the network has 177,488 parameters which must be trained.

All articles in the corpus are preprocessed by removing all punctuation strings and

8We obtain these from https://nlp.stanford.edu/projects/glove/.
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converting text to lowercase. We retain only the 10,000 most frequent words in the whole

corpus, representing all other words as “UNK” for unknown words. We chunk each article

into segments of 100 words.9 Training the RNN uses mini-batches, which are subsets of

the entire dataset. The model’s likelihood function is evaluated on the mini-batch, and

parameter updates occur using the average gradient from each mini-batch item. This

process requires specifying a batch size and the number of epochs. The batch size is the

number of 100-word segments in a mini-batch. A larger batch size typically results in

more stable updates to the weights but requires more memory and may lead to longer

training times. Conversely, a smaller batch size allows for faster training times but may

cause more fluctuations in weight updates. We choose a batch size of 128, i.e., the model

updates its parameters after processing each mini-batch of 128 samples, each of length

100 words. An epoch is a full pass through the training set, during which the network

processes every sequence of words in the training set once. Increasing the number of

epochs can lead to better convergence of the network weights and improved performance

on the validation set, but it also increases the risk of overfitting. We choose the number

of epochs to be 50. These values for the batch size and number of epochs are standard

(see Goodfellow et al. 2016, Keskar et al. 2016).

At the beginning of each epoch, the entire training dataset is randomly shuffled and

divided into mini-batches without replacement.10 During each epoch, the model processes

one mini-batch at a time and updates its weights using backpropagation for each length-

100 element of the mini-batch.11 This process is repeated for all the mini-batches in the

dataset until the entire dataset has been used for training in that epoch. Since the dataset

is shuffled at the beginning of each epoch, the composition of the mini-batches changes

from epoch to epoch, providing the model with a diverse set of samples to learn from.

This shuffling means that, during training, the network state from 100-word sequence A

that precedes 100-word sequence B in the same article will not carry over from A to B.

We initialize the training using the first six months of data (January 1996 – June

9For segments containing fewer than 100 words (at the end of articles, for example), we pad zero
vectors to the actual words. When a batch of sequences is passed through the model, fixed-size length
sequences allow the model to use vectorized operations and take advantage of hardware optimizations
(i.e., parallel processing on GPUs). This results in faster training times and more efficient use of available
computational resources.

10If the dataset is not perfectly divisible by the batch size, only the last batch in an epoch will contain
fewer samples than the specified batch size.

11We train the model using the categorical cross-entropy loss function and the Adam optimizer (Kingma
and Ba 2014). The optimization uses gradient descent with backpropagation: the loss function is com-
puted for each step in the sequence of words in the training text, and gradients are backpropagated
through the entire sequence, updating the weights of the model at each time step to reduce the loss
function Werbos (1990).
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1996) to compute the entropy for all articles in the following month (July 1996). Write

m[t−6,t−1] for the RNN model trained using articles in the six months prior to t, and write

m[t−6,t−1](t) for the equal-weighted average entropy score of articles in month t using the

RNN model trained over the prior six months. We do this to detect month t articles that

may seem unusual based on information known only prior to month t.

Suppose in month t we have nt articles in the archive, and the i-th article, represented

by wti1wti2 · · ·wtiNti
of length Nti. By forming the sample counterpart of (2), the entropy

of this article calculated using model m[t−6,t−1] is

Hti = − 1

Nti

Nti∑
k=1

ln(pxtik
tik ) (3)

where ptik is the output of a vector of length 10,000 when we feed wti1wti2 · · ·wti(k−1)

into m[t−6,t−1], xtik is the position of word wtik in the vector, and pxtik
tik is the estimated

probability of the k-th word being wtik given the preceding words. Thus,

m[t−6,t−1](t) =
1

nt

nt∑
j=1

Htj = − 1

nt

nt∑
j=1

1

Ntj

Ntj∑
k=1

ln(p
xtjk

tjk ) (4)

Unlike in model training, we keep track of the internal network state (h, c) in calculating

all ptjk ∈ R10,000 vectors when assigning probabilities to the words in article j in month t.

The state of the RNN is then reset to zero before calculating the entropy of article j + 1.

From August 1996 onward, in order to calculate the entropies for all articles in month t,

we first retrain the model m[t−7,t−2] to obtain an updated model m[t−6,t−1]. The retraining

starts from the parameter values obtained in m[t−7,t−2] and updates the values by running

the parameter optimization on new text in month t− 1 together with randomly sampled

text from month t − 2 to month t − 6. In particular, we take all articles from month

t− 1, half of the articles randomly sampled from month t− 2, one-quarter of the articles

randomly sampled from month t − 3, and so on until 1
25

of the articles are randomly

sampled from month t− 6. Each retraining happens with batches of 128 length-100 word

sequences with 50 epochs. Our main variable of interest, monthly entropy or ENTt, is

the difference between the average entropy in month t and month t− 12, using the most

recently available model at each time, or

ENTt ≡ m[t−6,t−1](t)–m[t−18,t−13](t− 12) (5)
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Our first observation is for July 1997.

The major benefit of using a relatively small language model, with “only” 177,488

parameters, is that we are able to estimate it in rolling windows, which means that ENTt

would have been available to market participants in real-time.12 Furthermore, ENTt can

be decomposed into a new information component and a model update component, a

feature of the model we exploit in Section 6.

3.4 Data Overview

Table 1 shows the summary statistics of variables used in subsequent analysis. All our

analysis takes place at a monthly frequency. ENT ranges from -0.140 to 0.188, with a

mean close to 0 and a standard deviation of 0.061. The table also shows statistics for the

Economic Policy Uncertainty (EPU ) index of Baker et al. (2016) and the San Francisco

Fed’s News Sentiment (SEN ) index introduced by Shapiro et al. (2022). EPU is a well-

known measure that is plausibly related to ENT, and thus we pay special attention to

EPU in our analysis. SEN is also a related news-based measure. The construction of the

EPU and SEN indexes is described in Online Appendix Section A3.

The time series of ENT and EPU are plotted in the top-left panel of Figure 2 as solid

dark red and dashed light red lines, respectively. While ENT and EPU sometimes exhibit

similar patterns (e.g., during the 2007–08 financial crisis), they often diverge. The time

series of ENT and SEN are plotted in the top-right panel of Figure 2 as solid dark red and

dashed light red lines, respectively. The peaks in ENT mostly coincide with either peaks

or troughs in the sentiment measure. For example, during the 2007–08 financial crisis

period, SEN is very negative while ENT is high. The time series of ENT and VIX are

plotted in the bottom-left panel of Figure 2 as solid dark red and dashed light red lines,

respectively. The peaks of VIX often coincide with peaks of ENT, particularly during the

financial crisis period.

Figure 3 reports the average contemporaneous correlations between ENT and other

control variables. ENT is not very correlated with any other control variables; its strongest

correlation (0.394) is with DY. ENT has little correlation with EPU (0.115) and SEN

(-0.280). The bottom-right panel of Figure 2 plots ENT and 12-month ahead cumulative

returns. There appears to be some tendency for large positive next-12-month returns to

occur at times of low entropy, and for low future returns to occur at times of moderate

to high entropy. We investigate this tendency more formally in Section 4.

12Running on a GPU server with four NVIDIA T4 cards requires 21 hours to estimate the model in
all rolling windows.
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Figure 2 shows that January 2007, November 2010, and October 2014 were all months

with large ENT peaks (and, interestingly, all of these were also low EPU months). Table 2

shows sample articles with high entropies from each of these months. We saw in the

example of Section 1 how the conditional probabilities of words can change over time.

We now give examples of how these changes contribute to the peaks in ENT through the

entropy calculated in (3):

� In January 2007, there were several high-entropy news articles related to Fannie

Mae and Freddie Mac. In one such article, the phrase “lack of progress in rein-

ing in mortgage lenders Fannie Mae and Freddie Mac leaves the economy at” was

followed by the word “risk.” But in January 2007, the word “risk” was perceived

by the model to be unlikely in the context of this phrase, giving the sentence high

entropy.13 As illustrated in the middle panel of Figure 4, the conditional probability

of “risk” increased dramatically through the mortgage crisis in late 2007 and the

conservatorship of Fannie Mae and Freddie Mac by the U.S. government in 2008.

The initial high entropy score thus signaled an important shift in the news.

This distributional shift can also be illustrated through the string of words “Fannie

Mae and Freddie Mac growth will be” from another article in January 2007. The

actual next word was “muted.” The word clouds in Figure 5 compare the conditional

distributions of the next word as calculated in December 2006 (left panel) and

December 2008 (right panel). The onset of the global financial crisis in between

these dates is clearly reflected in the word clouds, where the sizes of words reflect

their relative likelihoods under the models estimated at each date.

� In late November 2010, there were high entropy articles discussing Ireland’s financial

strains. In one such article, the phrase “the Euro falls to a 5 week low on growing

concerns Ireland will be forced to” was followed by the word “default.” But “default”

had low conditional probability under the October 2010 model, thus giving the

sentence high entropy. The right panel of Figure 4 shows how the conditional

probability of “default” changed over time, and became much higher by 2012 and

again in 2014. In this example, as in the previous examples, the initial increase

in entropy signaled a change in the distribution of text associated with economic

developments.

13The conditional probability is calculated by feeding the embeddings of the preceding string of words
(e.g., “lack of progress in reining in mortgage lenders Fannie Mae and Freddie Mac leaves the economy
at”) into the RNN model from the prior month (e.g., December 2006) and then evaluating the probability
at the target word (e.g., “risk”).
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� Lastly, the ENT peak in October 2014 we observed in Figure 2 coincides with the

Fed’s ending of QE3. Many moderate to high entropy articles from that month

mentioned QE.

4 Time Series of Returns

In this section, we present evidence that entropy forecasts future market returns, and we

compare entropy with other predictors from the literature.

4.1 In-Sample Regressions

We estimate a variety of time-series forecasting regressions of the form

Rt+1,t+12 = β0 + βENTENTt + γ⊤Controlt + ϵt (6)

where Rt+1,t+12 is the cumulative market return from month t + 1 to month t + 12 and

ENTt is the entropy measure in month t. Controlt contains sentiment (SEN ), squared

implied volatility (VIX2 ), interest rates (DGS10 and DGS10-2 ), the dividend yield (DY ),

the difference between actual consumption and the consumption level predicted by wealth

and income (CAY ), the market return of the previous month (Return1 ), the cumulative

market return of the previous 12 months excluding the most recent month (Return12 ),

the cumulative returns of the Fama-French five factors (Fama and French 2015) and

momentum over the previous 60 months (Return60, SMB60, HML60, RMW60, CMA60,

and UMD60 ). As explained in Section 2, using the 60-month lagged returns converts

factors to state variables, as suggested in Maio and Santa-Clara (2012). We also use

1/CAPE, the inverse of the cyclically adjusted price-to-earnings ratio, as a forecasting

variable because, together with the rate variables, these span the excess earnings yield

forecasting variable from the Fed model proposed in Maio (2013).

Column (1) of Table 3 reports the coefficient estimates (and t-statistics) for Equa-

tion (6), after scaling each coefficient estimate by the standard deviation of the indepen-

dent variable.14 A one standard deviation increase in entropy predicts a 2.821% decrease

in the 12-month ahead cumulative market return. Column (2) replaces ENT in Equa-

tion (6) with EPU. The results show that EPU positively predicts future market returns,

14Table A1 in the Online Appendix shows the unscaled coefficient estimates for Equation (6). Table 3
shows that CAY forecasts 12-month ahead market return negatively, whereas Lettau and Ludvigson 2001
find that CAY forecasts returns positively. We verified that, as a standalone forecaster, CAY forecasts
return positively when restricted to the pre-2002 period but negatively in the full sample.
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which is consistent with Brogaard and Detzel (2015). Column (3) includes both ENT

and EPU in a single regression model. After controlling for these other measures ENT

still forecasts future market returns, and the standardized coefficient for ENT (-2.607%)

is nearly unchanged from column (1).

The full-sample analysis incorporates data from the COVID-19 period, which raises the

concern that this time period may disproportionately impact our results. To address this

concern, we replicate the analyses detailed in the first three columns using pre-COVID-19

data, which are presented in columns (4)–(6). In the pre-COVID-19 analysis, entropy is

calculated up to the end of 2018 and used to predict through the end of 2019. We find

that ENT consistently and negatively forecasts 12-month ahead cumulative returns: a

one standard deviation increase in entropy is associated with a 2.7% year-ahead negative

market return. Conversely, EPU does not significantly predict market returns once the

COVID-19 period is dropped from the analysis.

4.2 Out-of-Sample Regressions

We saw in the previous section that an increase in entropy negatively forecasts future

market returns in in-sample regressions. We now examine whether entropy provides out-

of-sample predictability.

Let Rt+1,t+12 denote the cumulative return over months t+ 1, · · · , t+ 12. For a fixed

training window of length h, for each t, we run the univariate regression

Rt−i−11,t−i = αt + βtENTt−i−12 + ϵt−i−12, i = 1, 2, . . . , h, (7)

estimating α̂t and β̂t from the h monthly observations in the training window (we discuss

the choice of h momentarily). Then we predict the future return Rt+1,t+12 as R̂t+1,t+12 =

α̂t + β̂tENTt. The out-of-sample R-squared is calculated as

1− MSE(Rt+1,t+12 − R̂t+1,t+12)

MSE(Rt+1,t+12 − 1
h

∑h
i=1Rt−i−11,t−i)

(8)

where the numerator is the mean square error of predicting with the model in (7), and

the denominator is the mean square error based on using past historical means to forecast

future returns. In other words, we are comparing the prediction accuracy of a model

which uses ENTt to make a conditional return forecast versus a model which just uses

the rolling mean over the past h months. If predictions using entropy are better than the

rolling mean predictions, we will get a positive out-of-sample R-squared. If predicting
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with entropy is worse than using historical means, we will get a negative out-of-sample

R-squared.

Table 4 shows the out-of-sample R-squared of entropy as well as all other control

variables we used in the in-sample analysis. Each variable is used separately in univariate

regressions of the form in (7). Each column represents a different choice of window length

h ∈ {12, 15, 18, 21, 24} months, for estimation of the forecasting model in (7). In the first

row, we see that entropy produces a positive out-of-sample R-squareds in four out of the

five estimation windows, and the out-of-sample R-squareds range from 0.024 (with h = 15

months) to 0.051 (with h = 21 months). In the second row, we see that ENT NEWS,

which captures the part of entropy due to news innovation while holding the text model

fixed (we formally define ENT NEWS in Section 6) produces a positive out-of-sample R-

squareds in all five estimation windows, with the out-of-sample R-squareds ranging from

0.060 (with h = 24 months) to 0.096 (with h = 18 months). In fact, this news innovations

measure outperforms all other predictors, most of which have negative R-squareds in

all estimation windows. Only two other measures have non-negative out-of-sample R-

squareds: Return60 produces positive R-squareds in all estimation windows and RMW60

produces positive R-squareds for estimation window lengths of 18, 21, and 24 months.

Table A4 in the Online Appendix shows the average of βt from (7) for each of the

training horizons used in the out-of-sample forecasting. The average forecasting coeffi-

cients associated with entropy are all negative and are highly statistically significant for

horizons of 15 months and above. Though the βt’s vary over time, the average rolling

entropy forecasting coefficient for future returns is consistent with the full sample results

in Table 3.

Given the difficulty of out-of-sample market return forecasting (Welch and Goyal 2008,

Campbell and Thompson 2008), the performance of ENT and ENT NEWS in our out-

of-sample tests is remarkable.

5 Cross-Section of Returns

According to the argument in Maio and Santa-Clara (2012), the sign with which an

ICAPM state variable forecasts aggregate market returns should match the cross-sectional

risk price associated with that variable. If entropy negatively forecasts the return of the

aggregate stock market, then high entropy is associated with an unfavorable investment

opportunity set for investors. In this case, securities that do well during high entropy

times provide a useful hedge, and should therefore earn a negative risk premium. In this
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section, we investigate how exposure to entropy is priced in the cross-section of stock

returns.

In examining how entropy is priced in the cross-section of expected stock returns, we

want to test whether entropy is a priced risk factor and estimate the price of aggregate

entropy risk. According to the Merton (1973) ICAPM framework, in equilibrium, an

asset’s risk premium is determined by its conditional variances with ex-post market returns

and innovations of state variables of the form

Et[ri,t+1 − rf,t+1] = βCovt(ri,t+1, rm,t+1) + γCovt(ri,t+1,∆xt+1) (9)

where ri,t+1 is the ex-post return on asset i, rf,t+1 is the risk-free rate, rm,t+1 is the ex-post

market return, and xt is state variable that affect the investment opportunity set. The

coefficients β and γ are risk premia. Equation (9) – which reproduces equation (8) of Maio

and Santa-Clara (2012) – states that investors receive compensation for the covariance of

stock returns with variables that impact future market returns. Based on the argument of

Maio and Santa-Clara (2012), if ∆xt forecasts stock returns positively, then an ICAPM-

type argument suggests that stocks that positively covary with ∆xt should earn positive

risk premia because they add to investor risk. On the other hand, if, like a change in

entropy, ∆xt forecasts future negative stock returns, then stocks that covary positively

with ∆xt hedge against unfavorable changes in the investment opportunity set and should

earn negative risk premia. The ICAPM sign property of Maio and Santa-Clara (2012)

can be summarized as:

sgn(γ) =

{
+ if ∆xt predicts market returns positively,

− if ∆xt predicts market returns negatively.
(10)

We have seen that entropy forecasts a decline in market returns, so we expect it to carry

a negative risk premium.

5.1 Factor-Mimicking Portfolios

Because ENT and EPU are not directly tradeable, we approximate them with factor-

mimicking portfolios, as follows. In the first step, we extract innovations from the ENT

and EPU time series by fitting an AR(p) model. The number of lags in the AR model

is determined by minimizing the Bayesian information criterion (BIC). The final models
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are AR(12) for ENT and AR(1) for EPU :

ENTt = βENT,0 +
12∑
i=1

βENT,iENTt−i + γENTMKTt−1 + ϵENT,t

EPUt = βEPU,0 + βEPU,1EPUt−1 + γEPUMKTt−1 + ϵEPU,t

(11)

Following Breeden et al. (1989), Lamont et al. (2001), Ang et al. (2006), in the second

step, we create the mimicking factor FENT (FEPU ) to track innovations in ENT (EPU )

by estimating the coefficient bENT (bEPU) in the following regressions

ϵ̂ENT,t = aENT + b⊤ENTXt + uENT,t

ϵ̂EPU,t = aEPU + b⊤EPUXt + uEPU,t

(12)

where ϵ̂ENT,t and ϵ̂EPU,t denote the innovations of ENT and EPU from (11), and Xt

denotes the excess returns on a set of base assets. We estimate (12) over the full sample

and construct factor mimicking portfolios as follows

FENT,t = b̂⊤ENTXt

FEPU,t = b̂⊤EPUXt

(13)

where b̂ENT and b̂EPU are the coefficient estimates from (12). SinceXt represents the excess

returns of base assets portfolios, the coefficient vectors {bENT , bEPU} can be interpreted

as weights of a zero-cost portfolio with returns given by (13).

We consider four sets of base assets: the 25 Fama-French portfolios sorted by size

and momentum, size and book to market, size and investment, and size and profitability,

respectively. In the risk premia tests of the next section, the base assets are selected to

correspond to the test assets in the Fama and MacBeth (1973) analysis. Table 5 shows

summaries of the Fama and French (2015) factor and momentum returns, as well as those

of the ENT and EPU factor replicating portfolios using different base assets.

5.2 Factor Risk Premia

To estimate the risk premium associated with the entropy factor mimicking portfolio, we

run a Fama and MacBeth (1973) analysis using MKT (market minus risk-free), SMB,

HML, RMW, CMA, UMD, as well as FEPU and FENT as the factors. To properly reflect

estimation risk from the first stage regressions, we use the following general method of
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moments (GMM) system in our estimation

E[ri,t − αi − β⊤
i ft] = 0 i = 1, 2, · · · , N

E[(ri,t − αi − β⊤
i ft)ft] = 0K i = 1, 2, · · · , N (14)

E[β(r − β⊤λ)] = 0K

where ri,t is the excess return of test asset i on day t, βi is a K by 1 vector of factor

loadings for test asset i, ft is a K by 1 vector of factors, and 0K is a K by 1 vector

of zeros. In addition, β = [β1 β2 · · · βN ] is the K × N matrix of the N test asset

betas, r is a vector of the N test asset average excess returns, and λ is a K by 1 vector

of factor risk premia.15 The parameters of the system are {α1, · · · , αN , β1, · · · , βN , λ}.
The first two moment conditions, which correspond to the first-stage Fama-MacBeth

regressions, exactly identify α and β. The last moment condition represents the second

stage regressions, with no constant, which pin down the prices of risk. See Cochrane 2009

page 241 for details.

Table 6 shows the risk premia from (14), but scaled by the standard deviations of

the first-stage betas to highlight the magnitudes of the effects.16 Columns (1) – (4) show

monthly risk premia using different sets of 25 Fama-French portfolios as the base and test

assets: size-momentum, size-book/market, size-investment, and size-profitability. We see

that of the four sets of test assets, FENT carries a negative and significant risk premium

in all cases, with the monthly risk premium for a standard deviation increases in entropy

beta ranging from -0.060% to -0.091%. The magnitude of the entropy risk premium is

on par with that of the other factors, suggesting the risk compensation associated with

hedging entropy risk is economically large.

In comparison, FEPU carries a negative and significant risk premium in two out of

the four tests as well, with a risk premium ranging from -0.063% to -0.083% per unit of

standard deviation of EPU betas. The sign and the magnitude of the FEPU risk premium

are consistent with the results in Brogaard and Detzel (2015) (compare Panel B of their

Table 5 against the unscaled risk premia for FEPU in Table A5 of the Online Appendix).

Among the five factors of Fama and French (2015), only MKT has a significant risk

premium for more than two out of four test assets, with a risk premium ranging from

0.048% to 0.083%. The momentum factor carries a positive and significant risk premium

in two tests: 0.083% for size and book-to-market portfolios and 0.064% for size and

15The risk premia λ in (14) differ from γ in (9) in that they are premia on regression coefficients rather
than covariances.

16Table A5 in the Online Appendix shows the raw risk premia.
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investment portfolios.

Column (5) of Table 6 shows the sign of the ICAPM property from (10). The determi-

nation of whether a factor forecasts year-ahead market returns positively or negatively is

based on the forecasting regression in (6), shown in column (3) of Table 3. A “+” or “–”

in column (5) of Table 6 corresponds to significant positive and negative coefficients at

5% level, respectively; a blank indicates a lack of significance in the forecasting regression.

The ICAPM sign property posits that any significant coefficients in columns (1) – (4) of

Table 6 should have the same signs as the corresponding entry in column (5).17 ENT is

the only factor for which this property holds. CMA has positive signs in column (5) but

only one out of the four tests shows a significant risk premium.

5.3 Which Securities Hedge Entropy Risk

In light of the price of entropy risk results from the prior section, we now investigate which

types of securities are useful for entropy risk hedging. We use decile portfolios from uni-

variate sorts on size, book/market, operating profitability, and investment obtained from

Ken French’s website as test assets, and estimate their loadings on FENT. In particular,

we estimate each asset i’s factor exposures using a full-sample time-series regression:

ri,t = βi,0 + βi,F1F1,t + · · ·+ βi,F8F8,t + ϵi,t

where ri,t is the excess return of asset i on day t, Fi,t is the day-t return on factor i, and

the indices j = 1, . . . , 8 refer to MKT, SMB, HML, RMW, CMA, UMD, FEPU, and FENT,

respectively. For this analysis, FEPU and FENT were constructed using 100 base assets,

corresponding to the 25 size-X sorted portfolios for X ∈ {momentum, book/market,

investment, profitability}. Each βi,Fj
is asset i’s loading on factor j. From this set of

equations, we compute estimates β̂i,F1 , . . . , β̂i,F8 of the factor loadings for each asset i.

In Figure 6, we show the FENT loadings (β̂i,F8) corresponding to each test asset. The

first panel shows these loadings for size-sorted portfolios. The U-shaped pattern indi-

cates that small and large companies hedge entropy risk, while medium-sized firms are

negatively correlated with entropy innovations. Companies sorted on momentum (left

panel, middle row) show that past losers hedge entropy risk while past winners do poorly

during high entropy times, though the effect is non-monotonic. Companies sorted on

book/market (right panel, middle row) show a similar pattern of exposures to the size-

17Recall that UMD60 in Table 3 corresponds to UMD in Table 6, Return60 corresponds to MKT, and
so on. ENT and EPU are the state variable equivalents of FENT and FEPU.
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sorted portfolios, with growth firms (low book/market) and value firms (second highest

book/market) having positive entropy betas, and all other portfolios having negative

entropy betas.18 In contrast, sorting on investment (left panel, bottom row) yields an

inverted U-shape, indicating that very low and very high investment companies do poorly

during times of high entropy, while medium-investment firms do well. The bottom right

panel shows that companies with high operating profitability offer a hedge to entropy

risk, while less profitable companies are entropy-risky. As a robustness check, Figure A4

in the Online Appendix repeats the analysis in each panel of Figure 6 but using FENT

constructed from different base assets. The results are similar.

6 Channels

We’ve shown that entropy negatively and robustly forecasts aggregate market returns

both in- and out-of-sample. Furthermore, entropy is a priced cross-sectional risk and is

the only factor in our analysis that satisfies the Maio and Santa-Clara (2012) ICAPM sign

property between its forecasting direction for the market (negative) and its cross-sectional

price of risk (also negative). In this section, we investigate some potential mechanisms

underlying these findings. First, we show that entropy can be decomposed into a news

innovation component and a model innovation component, and that the news innovation

part plays a large role in our findings. Second, we study how entropy and its different

components forecast macroeconomic outcomes, and speculate on how this translates to

market return predictability.

6.1 Entropy Decomposition

We decompose the entropy measure from Equation (5) into two parts

ENTt = ENT NEWSt + ENT MODELt. (15)

The first part is

ENT NEWSt = m[t−18,t−13](t)–m[t−18,t−13](t− 12)

18We interpret the highest book/market decile as distressed, rather than value, stocks with extreme
high book values relative to market values.
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which uses the text model from one year prior to month t, but applies it to month t news

flow. This captures the change in the information content of news. The second part is

ENT MODELt = m[t−6,t−1](t)–m[t−18,t−13](t)

which looks at the difference between month t entropy as seen through the lens of today’s

and the year prior’s text models. In order to understand what drives the predictive

power of ENT, we replace ENTt by ENT NEWSt and ENT MODELt, and repeat the

time series prediction of 12-month ahead cumulative returns in-sample as in Section 4.1

and out-of-sample as in Section 4.2.

Online Appendix Table A2 columns (1) and (2) show the in-sample results, where

the coefficient estimates are normalized by the standard deviation of the independent

variables.19 Column (1) indicates that a standard deviation increase in ENT NEWS is

associated with a -1.433% market return over the next 12 months. A standard-deviation

increase in ENT MODEL, column (2), is associated with a -1.393% next 12-month return.

However, neither effect is significant.

Table 4 presents the out-of-sample R-squareds for ENT NEWS and ENT MODEL.

ENT NEWS produces a positive out-of-sample R-squared irrespective of the model es-

timation window length, with the largest R-squared of 0.096 occurring at an estimation

window length of 18 months. On the other hand, ENT MODEL never produces a positive

out-of-sample R-squared. The predictive power of ENT for future market returns comes

from the change in the information content of news rather than from the year-over-year

change in the model. We return to this finding in Section 6.2.

While ENT NEWS is a very robust forecaster of year-ahead market returns, the di-

rection of forecastability fluctuates over time. This can be seen by the negative, but

insignificant average βt coefficient from (7) for ENT NEWS shown in Table A4 of the

Online Appendix. While the average direction of forecastability from ENT NEWS to

year-ahead market returns is negative, there are also times when this sign is positive,

which renders the average impact of the effect only marginally significant.

Next, we explore whether ENT NEWS and ENT MODEL are priced cross-sectionally.

We construct factor-mimicking portfolios for these two components of ENT using the

procedure from Section 5.1. The base assets for the factor mimicking portfolios and the

test assets are the 25 Fama-French portfolios: size-momentum, size-book-to-market, size-

investment, and size-profitability. For all tests, the base assets are the same as the test

19Online Appendix Table A3 shows the unscaled results.
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assets.

Table 7 shows that FENT NEWS has a negative risk premium in three out of the four

cases, ranging from -0.055% to -0.060% per month.20 Though it is negative in all cases,

the risk premium is significant for the book-to-market, investment, and profitability sorts,

but not for momentum. The magnitudes of the risk premia are again large in comparison

to those associated with the other factors, and are consistent with the results in Table

6, where we use FENT instead of FENT NEWS. Column (5) shows that none of the factors

satisfy the ICAPM property in (10) when the signs of the coefficients in the forecasting

regression in (6) are obtained from column (1) of Table A3. However, as Tables A3 and

A4 show, the general predictive sign of ENT NEWS for future market returns is negative,

though marginally significant.

Tables A7 (scaled coefficients) and A8 (unscaled) of the Online Appendix show that

ENT MODEL is not associated with a significant risk premium. And this part of entropy

does not forecast future market returns in- or out-of-sample. The evidence points to

the market demanding a negative risk premium for securities that help hedge the part

of entropy – ENT NEWS, or news innovation – which is useful for forecasting market

returns in our out-of-sample tests.

6.2 Entropy and Macro Outcomes

Having established that the predictive power of ENT stems largely from year-over-year

news innovation, we now explore whether such changes in news flow predict economic

fundamentals. We estimate time-series forecasting regressions of the form

Yt+12 = β0 + βENTENTt + γ⊤Controlt + βY Yt + ϵt. (16)

The dependent variable21 in our analysis is one of:
20Tables A6 of the Online Appendix shows the unscaled results.
2112-month real earnings per share inflation-adjusted, constant May 2023 dollars.

24



Variable Description Units

EPU economic policy uncertainty standard units

UNRATE unemployment rate percent

INDPRO YOY year-over-year change in industrial production percent

CPI YOY year-over-year change in the Consumer Price Index percent

DGS10, DGS2 10-year and 2-year Treasury yield percent

DGS10-2 10-year minus 2-year slope percent

VIX CBOE Volatility Index percent

EPS S&P500 last-twelve-month earnings per share dollars

For each dependent variable, we use the lagged value of entropy (ENTt), the lagged value

of the variable in question, and the lagged values of all other dependent variables as

controls.

Table 8 summarizes the results. Each column of Table 8 corresponds to one of the

above dependent variables. The first set of rows of the table shows the βENT coefficient

from (16), scaled by the full-sample standard deviation of entropy, and the associated

t-statistic. The second set of rows shows the results of (16) where ENTt is replaced with

the news innovation part of entropy, ENT NEWSt. The third set of rows shows the results

for ENT MODELt.
22

The table shows that the forecasting results for ENT and ENT NEWS are very sim-

ilar. An increase in either measure positively forecasts the unemployment rate and the

VIX volatility index, and negatively forecasts industrial production, CPI, the level of

interest rates, and the S&P 500 earnings per share. There is a weak positive forecasting

relationship from these two entropy measures for EPU, and no relationship for the 2s-10s

curve. ENT MODEL does not significantly forecast any of the macro outcomes variables,

with the exception of the VIX, where the relationship is negative, not positive as with the

other entropy measures. Overall, entropy and its news innovation component robustly

forecast negative economic outcomes one year ahead.

6.3 Discussion

As in the return forecasting regressions, high ENT and high ENT NEWS significantly

forecast negative macroeconomic outcomes. On the other hand, the model innovation part

22The full results reporting the scaled coefficients are in Online Appendix Tables A9–A11. The full
results reporting the raw coefficients are in Online Appendix Tables A12–A14.
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of entropy (ENT MODEL) does not forecast macroeconomic outcomes. Furthermore, ex-

posure to both ENT and ENT NEWS receives a significant and negative cross-sectional

risk premium, while ENT MODEL is not a priced risk. The evidence points to a some-

what puzzling finding. Market participants understand that there is predictability from

entropy (newness of news) to future market and macroeconomic outcomes because they

are willing to give up expected returns to hold securities that allow them to hedge this

risk. However, the aggregate market does not react to this information instantaneously,

which is why entropy and its news innovation component forecast year-ahead market re-

turns. One may have expected entropy to forecast aggregate market returns positively,

as market participants demand compensation to hold risky assets heading into difficult

economic periods. However, we do not find this result. Instead, our finding of aggregate

underreaction is consistent with recent evidence of asset-class-level macro momentum

(Brooks et al. 2023).

The non-instantaneous reaction of markets to entropy may have two causes. First,

consistent with the rational inattention theory of Sims (2003), market participants may

not have been aware of times of high news entropy. Since our entropy measure is difficult

to observe – depending on tens of thousands of articles today and one year ago, as well as

sophisticated NLP techniques – it is possible that, historically, market participants were

not immediately aware of high entropy times. Even if such times were only identifiable

after the fact, securities that did well in these ex-post high entropy periods (see discussion

in Section 5.3), may have been bid up by investors in anticipation of similar hedging

properties in the future. Thus it is possible to observe cross-sectional entropy risk premia

even if market participants could not observe entropy in real-time. With advances in

computational linguistics and data availability, this channel may or may not be as relevant

in the future.

The second, arguably more enduring, reason for such underreaction, is a combination

of slow-moving institutional capital (Gabaix and Koijen 2021, Glasserman et al. 2023)

with limits to arbitrage (Gromb and Vayanos 2010). Institutions may be constrained by

mandate to not deviate excessively from a particular set of portfolio targets, for example,

a risk level consistent with a 60/40 stock/bond portfolio. Even if such institutions begin

to believe that markets will not do well over the next year, the amount of uncertainty

around that belief is still large (recall that even the highest out-of-sample R-squareds

for year-ahead market returns in Table 4 are less than 10%). Such institutions may need

board or investment consultant approval before they can change their portfolio allocations,

and these approvals may be slow in coming. Arbitrage capital, like actively managed
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mutual funds or hedge funds, may not be big enough relative to the amount of capital

controlled by constrained institutions to provide a sufficient offset. As such, macro-level

information may take time to work its way into stock prices. This channel is unlikely to

be impacted by the availability of better or faster information, suggesting that market

return forecastability by entropy may be a persistent market phenomenon.

7 Robustness

In this section, we check whether entropy is spanned by existing risk factors, whether the

entropy risk premium can be explained by a news sentiment risk premium, and whether

other measures of uncertainty span entropy or can explain the forecasting power of entropy

for market returns.

7.1 Existing Pricing Factors

Entropy is distinctive because of its impressive in- and out-of-sample forecasting power

for market returns, the fact that it is the only factor that satisfies the ICAPM sign

property of (10), and its macroeconomic forecasting ability. However, it is possible that

the information content of entropy is spanned by one of the multitude of existing factors

in the literature. To check for this, we use the 153 value-weighted factors discussed in

Jensen et al. (2022), whose daily returns are available at https://jkpfactors.com/. We

augment this set of factors with the ENT and EPU factor replicating portfolios, FENT

and FEPU, using size-momentum as the base assets.23 We regress each of the 155 factor

return series on the remaining 154 factors.

In Figure 7 we show these R-squareds for each factor, ranked from low to high. Factors

close to the lower left corner are not well explained by the existing factor zoo, while factors

close to the upper right corner are largely spanned by existing, alternative factors. We

label the top and bottom five factors based on this spanning R-squared measure and also

indicate ENT by red text. FENT, the entropy mimicking portfolio with size-momentum

as the base assets, has the seventh lowest R-squared among the 155 factors. This shows

that ENT conveys novel information relative to existing factors.

23The results for the other base assets are similar.
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7.2 Economic Sentiment

Another well-known news-based variable is SEN, the San Francisco Fed’s news sentiment

index. The main return forecasting results in Table 3 show that entropy is a strong

forecaster of year-ahead market returns even after controlling for the information content

of SEN, while SEN is not a significant return forecaster when ENT is included in the

set of forecasting variables. Similarly, Table 4 shows that SEN is a poor out-of-sample

forecaster of market returns. Online Appendix Tables A15 (scaled coefficients) and A16

(unscaled) show the Fama-MacBeth risk premium analysis which includes FSEN, the SEN

replicating portfolio constructed using the method described in Section 5.1, in addition

to the other factor exposures. Exposure to SEN carries a positive and significant risk

premium in two out of the four tests but does not satisfy the ICAPM property because

it is not a significant in-sample market return forecaster. Even in the presence of FSEN,

exposure to FENT continues to carry a negative and significant risk premium, consistent

with the results of Section 5.2.

7.3 Other Uncertainty Measures

Another concern is that entropy may be spanned by other uncertainty measures studied

in the literature. To check for this, we utilize measures of macroeconomic uncertainty

discussed in the survey article David and Veronesi (2022).24 In particular, we consider the

Bekaert et al. (2022) (BEX ) uncertainty measure of time-varying risk aversion, the Jurado

et al. (2015) (JLN ) variable which provides econometric estimates of the conditional

volatility of the purely unforecastable component of the future values of “hundreds of

macroeconomic and financial indicators,” the Azzimonti (2018) Partisan Conflict Index

(PCI ) which tracks the degree of disagreement among U.S. politicians at the federal level,

as well as ENT, EPU, SEN, and VIX.

We regress each of the seven uncertainty measures on the other six uncertainty mea-

sures and calculate the resultant R-squared. In Figure 8 we show these R-squareds for

each uncertainty measure, ranked from lowest to highest. Variables close to the lower left

corner are not well explained by the remaining ones, while variables close to the upper

right corner are largely spanned by the remaining measures. ENT, indicated by a red dot,

has the lowest R-squared (0.13) among all considered uncertainty measures, while EPU

has the highest R-squared (0.70). The second smallest is PCI, whose R-squared of 0.47

is still substantially greater than that of ENT. Our entropy measure is the one that is

24All the data used in this part of the analysis are available from the survey article.
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furthest removed from the information content of standard measures of uncertainty.

We expand the in-sample analysis of Section 4.1 to include multiple uncertainty mea-

sures along with the more standard controls used previously in Table 3. We estimate a

variety of time-series forecasting regressions of the form

Rt+1,t+12 = β0 + βENTENTt + η⊤Uncertaint + γ⊤Controlt + ϵt (17)

where Rt+1,t+12 is the cumulative market return from month t + 1 to month t + 12 and

ENTt is the entropy measure in month t. Uncertaint contains non-text-based uncertainty

measures: BEX, JLN, PCI, and squared implied volatility (VIX2 ). Controlt contains in-

terest rates (DGS10 and DGS10-2 ), the dividend yield (DY ), the difference between

actual consumption and the consumption level predicted by wealth and income (CAY ),

the inverse of the cyclically adjusted price-to-earnings ratio (1/CAPE ), the market re-

turn of the previous month (Return1 ), the cumulative market return of the previous 12

months excluding the most recent month (Return12 ), the cumulative returns of the Fama-

French five factors (Fama and French 2015) and momentum over the previous 60 months

(Return60, SMB60, HML60, RMW60, CMA60, and UMD60 ). These are the forecasting

variables used in the analysis in Table 3.

Columns (1) and (2) of Table 9 report the scaled coefficient estimates (and t-statistics)

for (17), without and with the uncertainty controls.25 A one standard deviation increase

in entropy predicts a 2.266%-2.530% decrease in the 12-month ahead market return.

Columns (3) and (4) replace ENT in (17) with two text-based measures: economic policy

uncertainty (EPU ) and sentiment (SEN ). The results show that EPU positively predicts

future market returns but SEN does not have a significant impact. Columns (5) and (6)

include all text-based uncertainty measures ENT, EPU, and SEN in a single regression

model, again without and with uncertainty controls. After controlling for these other

measures ENT still forecasts future market returns, and the standardized coefficients for

ENT (from -2.306% to -2.413%) are nearly unchanged from columns (1) and (2). In all

cases, introducing uncertainty controls (Columns 2, 4, 6) does not meaningfully change

the results without the uncertainty controls (Columns 1, 3, 5).

We also replicate the analysis in Section 4.2 to test if any of the uncertainty measures

are robust out-of-sample forecasters of aggregate market returns. The results for BEX,

JLN, PCI and VIX2 in Table 4 show that none of the uncertainty measures forecast

market returns out-of-sample.

25The full regression results are shown in Table A17 (scaled coefficients) and Table A18 (raw coefficients)
of the Online Appendix.
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8 Conclusion

This paper combines natural language processing with the tools of empirical asset pricing

to investigate a novel aspect of how news affects prices at the aggregate level. We use

a recurrent neural network to derive entropy, a measure of the novelty or unusualness of

aggregate news. This measure extends the prior literature (Glasserman and Mamaysky

2019) by applying modern NLP tools to solve the sparsity and context problems with

prior entropy measures.

We show that entropy negatively forecasts next twelve-month market returns, even

after controlling for a multitude of known in-sample return forecasters. In particular,

entropy does better than either economic policy uncertainty or news sentiment in our in-

sample tests. In an out-of-sample market forecasting horse race, we find that, remarkably,

entropy is the best forecaster of year-ahead market returns out of a large set of candidate

variables.

Using a Fama-MacBeth GMM framework, we show that entropy has a negative risk

price in the cross-section of portfolio returns. Together with the finding that entropy

forecasts market returns negatively, it turns out entropy is the only factor in our study

that is consistent with the Maio and Santa-Clara (2012) ICAPM sign property. Entropy

thus proxies for a factor that negatively impacts investors’ opportunity set and investors

are willing to give up expected return to hedge against entropy innovations.

We show that entropy can be decomposed into one part that reflects the change in

news flow and the other part that reflects the change in the text model, and that it is

the former, change-in-news, that accounts for entropy’s time series forecasting properties

and its cross-sectional risk pricing. We further show that the factor mimicking portfolio

for entropy is among the least well-spanned out of 155 long-short factors we obtain from

Jensen et al. (2022).

The forecasting power of entropy for future market returns likely stems from its ability

to forecast future fundamental variables. Both entropy and its news innovation component

positively forecast 12-month ahead unemployment and volatility, and negatively forecast

industrial production, inflation, interest rates, and S&P500 corporate earnings. While

entropy risk is priced, markets appear to not fully react to the information content of

entropy either because of informational constraints or because of slow-moving institutional

capital.

Our paper opens up several interesting directions for future work. First, the field of

natural language processing is witnessing rapid advances which may produce more success-

ful network architectures than recurrent neural networks for measuring news unusualness
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(e.g., Mikolov et al. 2010, Lee et al. 2017, Devlin et al. 2018, Xiong et al. 2019). Second,

our analysis focuses on the impact of entropy at the aggregate level, while there may also

be interesting applications at the level of individual stocks (Glasserman and Mamaysky

2019). Finally, our entropy factor replicating portfolio should be a useful factor for asset

pricing models.
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Figure 1: Thomson Reuters News Feed Direct archive articles characteristics from January
1996 to December 2022.
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Figure 2: The top-left panel plots ENT and EPU. The top-right panel plots ENT and
SEN. The bottom-left panel plots ENT and the VIX index. The bottom-right panel plots
ENT and 12-month ahead cumulative returns on the CRSP value-weighted index (ends
on December 2021). In all cases, ENT is plotted as the solid line, with the other series
plotted as the dashed line. Data are shown on a monthly frequency. The blue dots on
each series correspond to the months January 2007, November 2010, and October 2014,
which are discussed in Section 3.4.
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Figure 3: Correlations at monthly observation using data from July 1997 to December 2022, inclusive.
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Figure 4: The left panel plots the probability of “muted” following “fannie mae and freddie
mac growth will be.” The middle panel plots the probability of “risk” following “lack of
progress in reining in mortgage lenders fannie mae and freddie mac leaves the economy
at.” The right panel plots the probability of “default” following “growing concerns Ireland
will be forced to.” The red dot in each panel marks the date the corresponding sentence
appears in the database.

Figure 5: The most probable 100 words following the string of words “fannie mae and
freddie mac growth will be” under the December 2006 model (left panel) and under
the December 2008 model (right panel). The size of each word is proportional to its
probability.
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Figure 6: The first panel shows loadings on FENT of 10 portfolios sorted on size. The
other panels show loadings on FENT of portfolios sorted on momentum, book/market,
investment, and operating profitability, respectively. For each panel, we construct FENT

using 100 base assets: 25 portfolios formed on size-momentum, size-book/market, size-
investment, and size-profitability. The methodology is described in Section 5.3.

39



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R-
sq

ua
re

d

seas_16_20an
seas_11_15an

seas_6_10an

seas_2_5an
sti_gr1a

ENT

op
_at

op
_at

l1

at_
me

tur
no

ve
r_1

26
d

zer
o_t

rad
es_

12
6d

Figure 7: In-sample R2, ordered from lowest to highest, of regressing each 153 value-
weighted factors in Jensen et al. (2022) plus FENT and FEPU on all other factors using
the OLS model. Top and bottom five factors based on this spanning R-squared measure
are annotated. Five factors with the highest R-squared are zero trades 126d (number of
zero trades with turnover as tiebreaker, 6 months), turnover 126d (share turnover), at me
(assets to market), ivol ff3 21d (idiosyncratic volatility from the Fama-French 3-factor
model), op atl1 (ball operating profit scaled by lagged assets), and op at (ball operating
profit to assets). Five factors with the lowest R-squared are aseas 2 5an (year 2-5 lagged
returns, annual), seas 6 10an (year 6-10 lagged returns, annual), sti gr1a (change in short-
term investments), seas 11 15an (year 11-15 lagged returns, annual), seas 16 20an (year
16-20 lagged returns, annual). The entropy mimicking portfolio, FENT, ranks as the
seventh lowest R-squared among all 155 factors.

40



ENT PCI JLN BEX VIX SEN EPU

0.2

0.3

0.4

0.5

0.6

0.7

0.13

0.47

0.58
0.61

0.64

0.68
0.7

R-
sq
ua
re
d

Figure 8: In-sample R2, ordered from lowest to highest, of regressing each variable on
all other variables using OLS model. Included measures of macroeconomic uncertainty,
ranked from lowest to highest, are entropy (ENT, marked in red), the Azzimonti (2018)
Partisan Conflict Index (PCI ), the Jurado et al. (2015) (JLN ) uncertainty measure, the
Bekaert et al. (2022) (BEX ) uncertainty measure, the Chicago Board Options Exchange’s
CBOE Volatility Index (VIX ), the Shapiro et al. (2022) news sentiment index (SEN ),
and the Baker et al. (2016) Economic Policy Uncertainty (EPU ).
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Table 1: This table presents summary statistics of variables at the monthly frequency used in this study, including entropy
measure (ENT ), the first part of the decomposition of entropy (ENT NEWS ), the second part of the decomposition of entropy
(ENT MODEL), economic policy uncertainty (EPU ), sentiment (SEN ), squared implied volatility (VIX2 ), market yield on
U.S. treasury securities at 10-year constant maturity (DGS10 ), market yield on U.S. treasury securities at 10-year constant
maturity minus 2-year constant maturity (DGS10-2 ), the dividend yield (DY ), the difference between actual consumption
and the consumption level predicted by wealth and income (CAY ), the inverse of the cyclically adjusted price-to-earnings
ratio (1/CAPE ), the market return of the previous month (Return1 ), the cumulative market return of the previous 12 months
excluding the most recent month (Return12 ), the cumulative returns of the Fama-French five factors and momentum factor
over the previous 60 months (Return60, SMB60, HML60, RMW60, CMA60, and UMD60 ).

mean std min 25% 50% 75% max

ENT −0.0073 0.0613 −0.1404 −0.0499 −0.0135 0.0322 0.1881
ENT NEWS 0.1542 0.0795 −0.0310 0.0965 0.1384 0.2023 0.4708
ENT MODEL −0.1615 0.0413 −0.3006 −0.1830 −0.1563 −0.1343 −0.0733
EPU 120.1456 45.0389 57.2026 88.2728 109.7164 144.1681 350.4598
SEN 0.0225 0.1964 −0.6361 −0.1022 0.0377 0.1775 0.4019
BEX 0.4059 0.2150 0.0878 0.2820 0.3624 0.4875 1.6233
JLN 0.6704 0.1245 0.5299 0.5924 0.6310 0.6920 1.2166
PCI 116.1411 38.9802 34.7400 84.6175 107.6350 143.0900 271.2900
VIX2 492.9679 474.4772 102.5248 209.2536 375.2209 600.2726 3927.3970
DGS10 3.4407 1.4030 0.5600 2.3500 3.4405 4.4775 6.6200
DGS10-2 1.1069 0.8725 −0.7200 0.2725 1.1010 1.8200 2.8700
DY 1.8094 0.3790 1.1100 1.6100 1.8200 2.0000 3.6000
CAY −0.0072 0.0188 −0.0444 −0.0232 −0.0049 0.0073 0.0227
1/CAPE −0.1132 0.1674 −0.5346 −0.2539 −0.0567 0.0366 0.0659
Return1 0.6438 4.6863 −17.2300 −2.0200 1.2300 3.4800 13.6500
Return12 8.0261 17.0219 −42.8302 0.0748 9.8582 18.0511 59.6603
Return60 51.4848 52.2836 −36.2647 1.3241 55.0996 95.4152 178.0090
SMB60 9.4205 25.0681 −50.7400 −7.8025 7.7350 20.6425 78.2400
HML60 6.6328 27.9585 −53.4300 −12.5600 2.2200 26.3650 91.0700
RMW60 19.8381 15.8996 −25.4300 7.1425 20.2550 30.6275 80.4300
CMA60 12.8265 22.5871 −19.2300 −2.5200 7.1000 21.6575 76.0000
UMD60 24.4751 34.9969 −49.7600 2.1925 18.9050 48.9200 108.9900
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Table 2: Illustrative examples of high entropy articles. The table shows articles from three distinct months (first column)
when ENT were high: January 2007, November 2010, and October 2014. Within each month, articles are ranked from
the highest to lowest based on their raw entropy scores (last column). The displayed headlines (second column) and first
sentences (third column) are from selected articles, whose entropy scores are within the top 1% for their respective month.

Month Headline Body (first sentence) Score
2007-01 Freddie sells more than half $7 bln

notes overseas

Freddie Mac says it sold 58% of its $4 billion 2-year notes to overseas investors, with central

bankers taking 46% of the offering.

6.200

2007-01 US House sends business issues to Sen-

ate for action

Raising the minimum wage, changing Medicare drug purchasing and other initiatives important

to the business community are landing on the U.S. Senate’s doorstep, having won rapid passage

since Jan. 9 in the House of Representatives.

6.016

2007-01 UBS sees narrow GSE debt spreads

through 2007

Agency and mortgage securities yield spreads will stay narrow through most of this year, UBS

strategists Laurie Goodman and Ivan Hrazdira said in an investor conference call.

5.936

2007-01 Fed’s Poole says lag in GSE reform

leaves crisis risk

Lack of progress in reining in mortgage lenders Fannie Mae and Freddie Mac leaves the economy

at risk of possible financial crisis, St. Louis Federal Reserve Bank President William Poole said

on Wednesday.

5.754

2010-11 U.S. as Currency Manipulator? It’s a

Bit Rich

Breakingviews U.S. Editor Rob Cox says the Fed’s QE policy fits its mandate, despite China’s

criticism over what it called an “indirect currency manipulation.”

6.384

2010-11 Ireland Makes Concessions to Restore

Confidence

Following S&P’s downgrade of Ireland’s credit rating to single A, the Ireland government said

it will reduce current spending, cut minimum wage and maintain its debated corporate tax at

12.5 percent.

6.266

2010-11 QE2 Critics Put Easing on Agenda at

G20 Meeting in Seoul

Emerging market economies critical of the Fed’s asset-purchase program have said quantitative

easing threatens to flood their economies with excess liquidity.

6.191

2010-11 Euro Slumps on Irish Debt Fears The euro falls to a 5-week low on growing concerns Ireland will be forced to default on its debts. 5.912

2014-10 Wall St declines after Fed ends bond-

buying program

U.S. stocks fell on Wednesday, adding to their earlier declines after the Federal Reserve ended

its monthly bond purchase program, as had been expected.

4.524

2014-10 Futures lower, investors look ahead to

GDP data

U.S. stock index futures were slightly lower on Thursday as investors looked ahead to a report

on economic growth and continued to digest recent comments from the Federal Reserve.

4.187

2014-10 Wall St flat after GDP, but Visa lifts

Dow

U.S. stocks were mostly flat on Thursday, as a strong read on third-quarter economic growth

raised new questions about monetary policy, though strong results at Visa single-handedly put

the Dow in positive territory.

4.116
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Table 3: In-sample predictions of 12-month ahead cumulative market returns. Returns are
measured in percent. Return60, SMB60, . . . , UMD60 convert factor returns to state vari-
ables as explained in Section 2. The pre-COVID period ends in 2019, i.e., the year-ahead
returns on the left-hand side of the regression in Equation (6) do not extend past 2019.
The coefficient estimates have been normalized by the standard deviation of the right-
hand side variables. Robust t-statistics are in parentheses and are based on Newey–West
standard errors with four lags.

12-Month Ahead Cumulative Return

Full sample Pre-COVID
(1) (2) (3) (4) (5) (6)

ENT −2.821∗∗∗ −2.607∗∗∗ −2.728∗∗∗ −2.694∗∗∗

(−3.358) (−3.055) (−2.999) (−2.973)
EPU 3.841∗∗∗ 3.436∗∗∗ 1.239 0.937

(3.185) (2.889) (0.946) (0.750)
SEN 0.399 2.518 1.744 3.274∗ 4.411∗∗ 3.484∗

(0.231) (1.479) (1.032) (1.782) (2.365) (1.868)
VIX2 3.856∗∗∗ 2.217∗ 2.699∗∗ 1.613 0.712 1.376

(2.703) (1.696) (2.011) (1.246) (0.529) (1.051)
DGS10 −1.204 −1.550 −0.557 −0.480 −1.304 −0.281

(−0.927) (−1.101) (−0.423) (−0.406) (−0.984) (−0.236)
DGS10-2 −4.269∗∗∗ −4.762∗∗∗ −3.682∗∗∗ −1.722 −2.839∗ −1.647

(−3.139) (−3.299) (−2.709) (−1.194) (−1.883) (−1.131)
DY 16.164∗∗∗ 16.153∗∗∗ 16.894∗∗∗ 16.679∗∗∗ 16.462∗∗∗ 16.906∗∗∗

(8.529) (8.288) (8.984) (10.353) (9.268) (9.981)
CAY −6.445∗∗∗ −4.317∗∗ −5.803∗∗∗ −3.963 −2.283 −3.950

(−3.319) (−1.994) (−2.936) (−1.486) (−0.780) (−1.473)
1/CAPE −3.402 −2.516 −3.607∗ −2.462 −1.639 −2.601

(−1.625) (−1.095) (−1.734) (−1.194) (−0.703) (−1.244)
Return1 3.168∗∗∗ 3.164∗∗∗ 3.098∗∗∗ 2.396∗∗∗ 2.415∗∗∗ 2.441∗∗∗

(5.700) (5.633) (5.507) (3.721) (3.735) (3.756)
Return12 9.248∗∗∗ 8.939∗∗∗ 9.046∗∗∗ 8.242∗∗∗ 8.063∗∗∗ 8.220∗∗∗

(6.554) (6.220) (6.436) (6.181) (6.007) (6.149)
Return60 −4.773∗ −4.365 −3.460 −4.381 −5.662 −3.911

(−1.691) (−1.552) (−1.214) (−1.107) (−1.421) (−0.989)
SMB60 −14.645∗∗∗ −15.086∗∗∗ −14.077∗∗∗ −12.970∗∗∗ −14.321∗∗∗ −12.898∗∗∗

(−5.406) (−5.738) (−5.267) (−5.090) (−5.646) (−5.084)
HML60 −7.100∗∗∗ −5.980∗∗ −5.795∗∗ −5.927∗∗ −5.986∗∗ −5.650∗∗

(−2.688) (−2.216) (−2.229) (−2.090) (−2.088) (−2.001)
RMW60 4.574∗∗ 4.101∗ 4.779∗∗ 6.382∗∗∗ 5.579∗∗ 6.396∗∗∗

(2.014) (1.841) (2.172) (2.849) (2.398) (2.873)
CMA60 19.474∗∗∗ 19.598∗∗∗ 18.537∗∗∗ 14.566∗∗∗ 15.994∗∗∗ 14.562∗∗∗

(5.472) (5.848) (5.329) (4.040) (4.480) (4.027)
UMD60 −0.606 0.139 −0.093 0.112 0.346 0.217

(−0.388) (0.090) (−0.061) (0.074) (0.218) (0.144)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: This table shows out-of-sample R-squareds, calculated using (8), of 12-month
ahead market return forecasts using monthly rolling estimates of (7) inX-month windows.
The different Xs correspond to the columns of the table. The methodology is explained
further in Section 4.2. The data series are explained in Section 2.

Out-of-Sample R-Squareds

Prediction Window in Months

12 15 18 21 24

ENT −0.019 0.024 0.047 0.051 0.046
ENT NEWS 0.069 0.087 0.096 0.091 0.060
ENT MODEL −0.074 −0.061 −0.059 −0.057 −0.084
EPU −0.272 −0.322 −0.414 −0.417 −0.478
SEN −0.595 −0.642 −0.678 −0.668 −0.607
VIX2 −1.320 −1.626 −1.813 −2.130 −2.422
DGS10 −0.214 −0.221 −0.284 −0.296 −0.312
DGS10-2 −0.246 −0.400 −0.511 −0.605 −0.637
DY −2.001 −1.982 −1.722 −1.580 −1.767
CAY −0.123 −0.141 −0.137 −0.136 −0.138
1/CAPE −1.597 −1.964 −2.227 −2.269 −2.170
Return1 −0.059 −0.081 −0.075 −0.050 −0.060
Return12 −1.805 −1.691 −1.157 −0.855 −0.749
Return60 0.038 0.001 0.075 0.087 0.027
SMB60 −0.427 −0.532 −0.568 −0.573 −0.584
HML60 −0.799 −0.797 −0.826 −0.935 −1.082
RMW60 −0.170 −0.124 0.020 0.054 0.049
CMA60 −0.913 −0.977 −1.023 −1.143 −1.232
UMD60 −0.732 −0.705 −0.546 −0.481 −0.460
BEX −1.206 −1.326 −1.715 −2.034 −2.237
JLN −2.037 −1.999 −1.887 −1.754 −1.493
PCI −0.133 −0.125 −0.158 −0.163 −0.216
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Table 5: This table presents summary statistics of variables at the daily frequency used in this study, including Fama-
French five factors market return minus risk-free rate (MKT ), small minus big (SMB), high minus low (HML), robust minus
weak (RMW ), conservative minus aggressive (CMA), and momentum factor (UMD). FEPU Momentum represents the economic
policy uncertainty factor mimicking portfolio using size-momentum returns as base asset. FENT , FENT NEWS , FENT MODEL

represent entropy, news updates, and model updates mimicking portfolios. We also use size-book to market, size-investment,
and size-profitability returns as base assets.

mean std min 25% 50% 75% max

MKT 0.0294 1.2682 −12.0000 −0.5100 0.0700 0.6300 11.3500
SMB 0.0090 0.6425 −4.5500 −0.3500 0.0200 0.3800 5.7100
HML 0.0062 0.7828 −5.0000 −0.3400 −0.0100 0.3200 6.7400
RMW 0.0173 0.5487 −3.0100 −0.2500 0.0100 0.2800 4.5200
CMA 0.0136 0.4606 −5.8700 −0.2100 0.0000 0.2200 2.5300
UMD 0.0171 1.0637 −14.3700 −0.4200 0.0700 0.5200 7.1200
FEPU Momentum −0.0954 2.5804 −22.3755 −1.4273 −0.1415 1.2136 20.5997
FENT Momentum −0.0001 0.0035 −0.0246 −0.0018 −0.0000 0.0016 0.0367
FENT NEWS Momentum −0.0001 0.0029 −0.0218 −0.0015 −0.0001 0.0014 0.0325
FENT MODEL Momentum −0.0000 0.0018 −0.0129 −0.0009 0.0000 0.0010 0.0102
FEPU BM −0.0547 2.0073 −13.2736 −1.0804 −0.0717 0.9715 16.7301
FENT BM −0.0001 0.0027 −0.0183 −0.0016 −0.0001 0.0014 0.0218
FENT NEWS BM −0.0001 0.0028 −0.0164 −0.0016 −0.0001 0.0015 0.0187
FENT MODEL BM −0.0000 0.0017 −0.0120 −0.0010 0.0000 0.0009 0.0100
FEPU INV −0.0207 2.2522 −18.3677 −1.2390 −0.0525 1.1925 18.1130
FENT INV −0.0001 0.0029 −0.0287 −0.0017 −0.0002 0.0014 0.0199
FENT NEWS INV −0.0001 0.0034 −0.0290 −0.0020 −0.0002 0.0017 0.0276
FENT MODEL INV 0.0000 0.0019 −0.0114 −0.0011 −0.0000 0.0011 0.0093
FEPU OP −0.0039 1.9306 −15.5703 −0.9966 −0.0204 0.9854 14.9994
FENT OP −0.0001 0.0032 −0.0236 −0.0018 −0.0001 0.0016 0.0181
FENT NEWS OP −0.0001 0.0032 −0.0232 −0.0018 −0.0001 0.0016 0.0207
FENT MODEL OP −0.0000 0.0015 −0.0100 −0.0009 −0.0000 0.0008 0.0087
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Table 6: Fama-MacBeth regressions using MKT (market minus risk-free rate), SMB
(small minus big), HML (high minus low), RMW (robust minus weak), CMA (conservative
minus aggressive), UMD (momentum factor), all of which are obtained from French’s
website, along with factor mimicking portfolios with base assets corresponding to the
test assets. The first four columns represent different base assets: size–momentum, size–
book/market, size–investment, and size–profitability. The last column represents the sign
of the corresponding coefficient in Table 3 for forecasting 12-month ahead market returns
if that coefficient is significant at 5% level. Risk premia coefficients are in percent per
month. The risk premia coefficients are scaled by the standard deviations of betas in the
first stage of Fama-MacBeth. General method of moments t-statistics are in parentheses.

Fama-MacBeth Factor Risk Premia (scaled coefficients)

Base Assets the Same as Test Assets: Size -

Momentum Book/Market Investment Profitability Mkt-RF

(1) (2) (3) (4) (5)

MKT 0.048∗ 0.083∗∗ 0.064∗∗ 0.056∗∗

(1.681) (2.189) (2.023) (1.997)
SMB 0.100 0.067 0.008 0.079 –

(1.371) (0.907) (0.108) (1.051)
HML 0.078∗ 0.048 0.136∗∗∗ 0.041 –

(1.754) (0.601) (2.879) (0.905)
RMW −0.066 0.062 −0.018 0.119∗ +

(−1.050) (1.283) (−0.337) (1.953)
CMA 0.078∗∗ −0.007 0.065 0.018 +

(2.142) (−0.166) (1.498) (0.438)
UMD 0.149 0.083∗∗∗ 0.064∗∗ 0.029

(1.342) (2.896) (2.346) (0.928)
FEPU −0.063∗ −0.083∗∗ −0.008 −0.013 +

(−1.746) (−2.342) (−0.326) (−0.432)
FENT −0.060∗ −0.066∗∗ −0.091∗∗∗ −0.082∗∗ –

(−1.757) (−2.398) (−2.669) (−2.175)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Fama-MacBeth regressions using MKT (market minus risk-free rate), SMB
(small minus big), HML (high minus low), RMW (robust minus weak), CMA (conservative
minus aggressive), UMD (momentum factor), all of which are obtained from French’s
website, along with factor mimicking portfolios with base assets corresponding to the
test assets. The first four columns represent different base assets: size–momentum, size–
book/market, size–investment, and size–profitability. The last column represents the sign
of the corresponding coefficient in Table A2 for forecasting 12-month ahead market returns
if that coefficient is significant at 5% level. Risk premia coefficients are in percent per
month. The risk premia coefficients are scaled by the standard deviations of betas in the
first stage of Fama-MacBeth. General method of moments t-statistics are in parentheses.

Fama-MacBeth Factor Risk Premia (scaled coefficients)

Base Assets the Same as Test Assets: Size -

Momentum Book/Market Investment Profitability Mkt-RF

(1) (2) (3) (4) (5)

MKT 0.050∗ 0.077∗∗ 0.053∗∗ 0.051∗∗

(1.720) (2.157) (2.022) (2.000)
SMB 0.093 0.071 0.010 0.082 –

(1.287) (0.966) (0.131) (1.095)
HML 0.081∗ 0.054 0.133∗∗∗ 0.035

(1.780) (0.684) (2.766) (0.758)
RMW −0.065 0.067 −0.014 0.122∗∗

(−1.038) (1.316) (−0.265) (1.978)
CMA 0.071∗∗ −0.013 0.063 0.009 +

(2.055) (−0.326) (1.457) (0.216)
UMD 0.148 0.086∗∗∗ 0.066∗∗ 0.030

(1.335) (3.032) (2.332) (0.937)
FEPU −0.063∗ −0.083∗∗ −0.013 −0.009 +

(−1.764) (−2.297) (−0.484) (−0.311)
FENT NEWS −0.044 −0.060∗∗ −0.055∗∗ −0.059∗

(−1.426) (−2.237) (−2.000) (−1.771)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: In-sample predictions of 12-month ahead economic policy uncertainty (EPU ) and fundamental variables including
unemployment rate (UNRATE ), year-over-year change of industrial production (INDPRO YOY ), year-over-year change of
the consumer price index (CPI YOY ), interest rates (DGS10, DGS2, and DGS10-2 ), the Chicago Board Options Exchange’s
CBOE Volatility Index (VIX ), and the S&P500 earnings per share (EPS ). The columns correspond to different dependent
variables in (16). Each specification includes the lagged value of the dependent variable in question and the lagged value
of all other macro variables as controls. The lagged value of one entropy measure (ENT, ENT NEWS, or ENT MODEL) is
also used as a control, corresponding to each row. The coefficient estimates have been normalized by the standard deviation
of entropy, ENT NEWS, or ENT MODEL respectively. This table summarizes results in Online Appendix Tables A9, A10,
and A11. Robust t-statistics are in parentheses and are based on Newey–West standard errors with four lags.

Macro Forecasting Using Entropy and Other Macro Controls

12-Month Ahead Macro Variables

EPU UNRATE INDPRO YOY CPI YOY DGS10 DGS2 DGS10-2 VIX EPS

ENT 11.936 0.723∗∗∗ −1.348∗∗∗ −0.371∗∗ −0.261∗∗∗ −0.371∗∗∗ 0.049 1.571∗∗∗ −4.890∗∗

(1.608) (4.050) (−3.248) (−2.183) (−3.569) (−3.552) (0.807) (3.360) (−2.239)

ENT NEWS 7.779 0.642∗∗∗ −1.213∗∗∗ −0.356∗ −0.182∗∗ −0.351∗∗∗ 0.065 2.059∗∗∗ −5.242∗∗

(1.333) (4.441) (−2.809) (−1.906) (−2.509) (−3.133) (0.999) (3.786) (−2.068)

ENT MODEL 3.892 −0.079 0.178 0.090 −0.063 0.080 −0.045 −1.397∗∗ 2.197
(0.530) (−0.486) (0.441) (0.606) (−1.009) (0.762) (−0.791) (−1.994) (0.909)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: In-sample predictions of 12-month ahead market returns, measured in percent,
using the specification in (17). Uncertainty measures include Bekaert et al. (2022) (BEX ),
Jurado et al. (2015) (JLN ), the Azzimonti (2018) Partisan Conflict Index (PCI ), and
squared implied volatility (VIX2 ). The other control variables are explained in Section
2. Full results are shown in Online Appendix Table A17. The coefficient estimates have
been normalized by the standard deviation of the right-hand side variables. Unscaled full
results are shown in Online Appendix Table A18. Robust t-statistics are in parentheses
and are based on Newey–West standard errors with four lags.

In-Sample Return Forecasting with Uncertainty Controls

12-Month Ahead Cumulative Return

(1) (2) (3) (4) (5) (6)

ENT −2.266∗∗ −2.530∗∗∗ −2.306∗∗ −2.413∗∗∗

(−2.545) (−3.040) (−2.522) (−2.709)
EPU 4.839∗∗∗ 3.674∗∗ 4.686∗∗∗ 3.531∗∗

(3.928) (2.502) (3.924) (2.385)
SEN 2.091 2.319 1.319 1.821

(1.212) (1.465) (0.768) (1.158)

Other Uncertainty No Yes No Yes No Yes
Controls Yes Yes Yes Yes Yes Yes
Adj. R2 0.648 0.671 0.657 0.667 0.666 0.677

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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