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Abstract. Online marketplace designers frequently run randomized experiments to mea
sure the impact of proposed product changes. However, given that marketplaces are 
inherently connected, total average treatment effect (TATE) estimates obtained through 
individual-level randomized experiments may be biased because of violations of the sta
ble unit treatment value assumption, a phenomenon we refer to as “interference bias.” 
Cluster randomization (i.e., the practice of randomizing treatment assignment at the level 
of “clusters” of similar individuals) is an established experiment design technique for 
countering interference bias in social networks, but it is unclear ex ante if it will be effective 
in marketplace settings. In this paper, we use a meta-experiment or “experiment over 
experiments” conducted on Airbnb to both provide empirical evidence of interference 
bias in online marketplace settings and assess the viability of cluster randomization as a 
tool for reducing interference bias in marketplace TATE estimates. Results from our meta- 
experiment indicate that at least 20% of the TATE estimate produced by an individual- 
level randomized evaluation of the platform fee increase we study is attributable to interfer
ence bias and eliminated through the use of cluster randomization. We also find suggestive, 
nonstatistically significant evidence that interference bias in seller-side experiments is more 
severe in demand-constrained geographies and that the efficacy of cluster randomization at 
reducing interference bias increases with cluster quality.
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1. Introduction
Many of the world’s most highly valued and/or 
fastest-growing technology firms (e.g., Airbnb, Uber, 
Etsy) are online peer-to-peer marketplaces. These 
platforms create markets for many different types of 
goods, including transportation, accommodations, 
artisanal goods, and even dog walking. Like almost all 
technology firms, online peer-to-peer marketplaces 
typically rely on experimentation (or A/B testing) to 
measure the impact of proposed changes to the plat
form and develop a deeper understanding of their cus
tomers. However, a randomized experiment’s ability 
to produce an unbiased estimate of the total average 

treatment effect (TATE) relies on the stable unit treat
ment value assumption (SUTVA) (Rubin 1974), one 
component of which is the “no interference” assump
tion (Cox 1958). This assumption states that in any 
given experiment, each unit’s outcome is a function 
only of their own treatment assignment, not the treat
ment assignments of others.

Bias in TATE estimates because of interference, 
which we refer to in this paper as “interference bias,” is 
likely to occur in online marketplace settings because 
the buyers and sellers in marketplaces are inherently 
connected; different goods for sale in a marketplace are 
likely to complement or substitute for one another, and 

390 

MANAGEMENT SCIENCE 
Vol. 71, No. 1, January 2025, pp. 390–406 

ISSN 0025-1909 (print), ISSN 1526-5501 (online) https://pubsonline.informs.org/journal/mnsc 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
00

:4
04

1:
5c

06
:2

a0
0:

44
c:

42
02

:a
8b

a:
dd

b6
] 

on
 2

3 
Ju

ne
 2

02
5,

 a
t 1

4:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



sellers are likely to make strategic decisions based on 
the actions of their competitors. Previous work (Blake 
and Coey 2014, Fradkin 2015) suggests that naive 
experimentation in online marketplace settings can 
lead to TATE estimates that are overstated by up to 
100%, and as a result, a quickly emerging body of aca
demic research (Liu et al. 2021, Bojinov et al. 2022, 
Johari et al. 2022, Li et al. 2022, Bright et al. 2023) focuses 
on how to properly account for interference bias specifi
cally in the context of online marketplaces.1 Both 
researchers and academics consider this an important 
problem to solve because decision making based on 
experiment designs and analyses that fail to account for 
interference bias can have a nontrivial and negative 
financial impact for online marketplace firms.2 How
ever, there is still limited empirical work providing 
insight into the actual severity of interference bias, par
ticularly in seller-side experiments.

Interference bias as a general phenomenon is not 
unique to online marketplaces, and it has been well 
studied in the research literature on unipartite social 
networks; in such settings, interference arises because 
of interactions between individuals, often referred to as 
peer effects (Manski 2000, Moffitt 2001). For instance, 
the observed behavior of one’s peers can affect voting 
behavior (Bond et al. 2012), exercise habits (Aral and 
Nicolaides 2017), and mobility levels (Holtz et al. 2020). 
One tool for reducing interference bias in social net
work experiments is graph cluster randomization 
(GCR) (Ugander et al. 2013, Eckles et al. 2017), an exper
iment design technique in which the relevant network 
is clustered and the treatment assignment is then ran
domized at the cluster level as opposed to the individ
ual level. Although GCR is an established method in 
the network experimentation literature, it is unclear ex 
ante if cluster randomization will be an effective tool to 
reduce interference bias in online marketplaces. This is 
largely because of factors arising from the bipartite 
nature of online marketplaces; the mechanisms driving 
interference may be different than those in a social net
work setting,3 and the appropriate mathematical model 
of interference in marketplaces may deviate from the 
one used to model the “self-reinforcing” spillovers seen 
in many unipartite network settings (i.e., positive (neg
ative) direct effects lead to positive (negative) spillover 
effects).

In this paper, we use a randomized meta-experiment 
on Airbnb4 to simultaneously (1) provide empirical evi
dence of interference bias in an online marketplace 
seller-side pricing experiment and (2) propose and 
assess the viability of utilizing cluster randomization to 
reduce interference bias in such settings. We test for 
interference bias in a pricing experiment in particular 
because pricing experiments are of special interest to 
online marketplace intermediaries; experiments related 
to prices help firms better understand the price elasticity 

of their customers, which consequently, enables them to 
implement optimal pricing-related marketplace mecha
nisms, such as fee structures and seller pricing sugges
tions. Understanding customer price elasticities can 
also be beneficial to sellers, who set their own prices. 
Results from our meta-experiment indicate that cluster 
randomization is a viable tool for reducing interference 
bias in seller-side marketplace experiments and that 
interference bias would have accounted for at least 
19.76% of the “naive” TATE estimate produced by an 
individual-level randomized evaluation of the treat
ment intervention we study.

We begin by using a preexisting linear model of inter
ference to explore how online marketplace interference 
differs from social network interference and the impli
cations that this has for experiment design. Interference 
in this model is captured by a matrix B, which we refer 
to as the “interference matrix.” In order to construct an 
appropriate interference matrix for online marketplace 
settings, it is necessary to understand the mechanism(s) 
that drive interference. One possibility is that interfer
ence in online marketplaces operates via the same 
mechanism as social network interference (i.e., it is 
driven by sellers observing others’ actions and/or inter
acting). To assess whether this is plausible, we use pro
prietary data from Airbnb to measure the frequency 
with which Airbnb hosts search in their own geogra
phies and view the product detail pages (PDPs) of other 
listings. We find that over the course of a month, only 
13.3% of listing hosts searched for specific dates in their 
own geographies and only 21.3% of hosts had at least 
one PDP view in their own geography. These results 
suggest that it is unlikely that social influence is a signif
icant contributor to interference in online marketplaces. 
In contrast, a simple simulation of online marketplace 
dynamics that does not include any seller behavior (see 
Online Appendix B) produces results consistent with 
the existence of interference, suggesting that competi
tive dynamics are likely a contributor to marketplace 
interference. In other words, the amount of interference 
between listings is at least in part determined by the 
extent to which they co-occur within the consideration 
sets of shoppers.

Another difference between social network interfer
ence and online marketplace interference is that in most 
social network settings, positive (negative) direct effects 
beget positive (negative) spillover effects, whereas we 
expect positive (negative) direct effects to create nega
tive (positive) spillover effects in online marketplaces. 
We extend a result from Eckles et al. (2017) and show 
that in the presence of both same-signed and opposite- 
signed spillovers, cluster randomization will always 
reduce the bias of the difference-in-means TATE esti
mator. In doing so, we derive a closed-form expression 
for the expected amount of interference bias remaining 
under a given clustering; this expression is a function of 
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interference matrix B and can be used to evaluate the 
“quality” of a given set of clusters.

Building on these insights, we present results from 
an in vivo meta-experiment or “experiment over ran
domized experiments” (Saveski et al. 2017) conducted 
on Airbnb. The treatment intervention we study in 
this meta-experiment is a change to Airbnb’s platform 
fee structure; more specifically, hosts in the treatment 
group were charged higher platform fees than hosts in 
the control group. The meta-experiment design ran
domly assigned clusters of Airbnb listings to one of two 
randomization schemes; 25% of clusters were random
ized at the individual level (i.e., treatment is randomly 
assigned to listings at the individual level), whereas the 
remaining 75% of clusters were cluster-randomized 
(i.e., treatment is randomly assigned to listings at the 
cluster level). Using this design, we obtain separate 
TATE estimates in the individual-level and cluster- 
randomized treatment arms and then test for a statisti
cally significant difference between the two. Results 
from the individual-level randomized meta-treatment 
arm (i.e., the “naive” experiment design) suggest that 
the treatment led to a statistically significant loss of 
0.345 bookings per listing over the course of the ex
periment. However, when we compare this TATE 
estimate with the estimate produced by the cluster- 
randomized meta-treatment arm, we find that 19.76% 
of the individual-level TATE estimate is eliminated 
by cluster randomization and attributable to interfer
ence bias. We also find suggestive, nonstatistically sig
nificant evidence that interference bias is more severe 
in demand-constrained geographies and that the bias 
reduction from cluster randomization is larger in geog
raphies with “higher-quality” clustering.

Situating our work within the broader literature 
focused on interference bias in online marketplace 
experiments, we provide an estimate of the potential 
severity of interference bias in such settings and evalu
ate the efficacy of cluster randomization at reducing 
said bias. We believe that there is not a one-size-fits-all 
solution to interference bias in marketplace experi
ments and that each proposed solution (including our 
solution) has its strengths and weaknesses. Cluster 
randomization works well in marketplaces without 
centralized matching (in contrast to Bright et al. 2023), 
for treatment interventions that must be randomized 
at the seller level (in contrast to Johari et al. 2022), and 
in marketplaces that are susceptible to intertemporal 
spillovers (in contrast to Bojinov et al. 2022). Nonethe
less, cluster randomization brings with it substantial 
reductions in statistical power, and many of our theo
retical results apply only to treatment interventions 
that uniformly increase or decrease demand but not a 
mixture of both. We consider both of these weaknesses 
promising avenues for future research.

2. Related Literature
The research in this paper connects to three bodies of 
academic literature: one on interference bias in online 
marketplace experiments, one on interference in net
works, and one on pricing-related interventions in 
online marketplaces.

2.1. Interference Bias in Online Marketplace 
Experiments

Our work is most closely related to an emerging body of 
research focused on the phenomenon of interference- 
related estimation bias in TATE estimates when conduct
ing experiments in online marketplace settings. This issue 
was first identified by Blake and Coey (2014) and shortly 
thereafter identified by Fradkin (2015), who both report 
that naive marketplace experimentation can yield TATE 
estimates that are overstated by up to 100%. In the inter
vening years, a number of experiment design-based solu
tions to this problem have been proposed (Liu et al. 2021, 
Bojinov et al. 2022, Johari et al. 2022, Li et al. 2022),5
including “two-sided randomization” (Johari et al. 2022) 
and “switchback” experimentation (Bojinov et al. 2022).6

Although each proposed solution to marketplace inter
ference has appealing attributes, none of them offer a 
“silver bullet” solution. For instance, under two-sided 
randomization, both buyers and sellers are randomly 
assigned at the individual level to treatment or control, 
and the treatment intervention is only delivered to buyer- 
seller pairs in which both the seller and the buyer have 
been assigned to the treatment. Two-sided randomiza
tion is especially well suited to corporate experimentation 
settings, where existing experimentation tooling is often 
built specifically with individual randomization in mind. 
Johari et al. (2022) show that this design reduces bias in 
TATE estimates due to interference without much loss of 
precision. However, not all treatment interventions can 
be delivered at the buyer-seller dyad level (e.g., a new 
tool for setting prices can only be delivered at the seller 
level, and a new search algorithm can only be delivered 
at the buyer level). In a switchback experiment design 
(Bojinov et al. 2022), time is discretized, and the experi
ment designer randomizes the treatment assignment that 
is delivered to the entire marketplace at each time step. 
Although switchback experiments have appealing statis
tical properties, they can produce an inconsistent user 
experience for marketplace participants, and they are dif
ficult to implement when markets do not clear quickly, 
creating “carryover” or temporal spillover effects. This is 
the case in marketplaces such as Airbnb, where guests 
often visit the site multiple times over the course of days 
or weeks before making a booking.

2.2. Interference in Networks
The aforementioned papers focus on solving the problem 
of interference bias in online marketplace experiments, 
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which is uniquely difficult because of the bipartite nature 
of marketplaces. However, the problem of estimation 
bias in TATE estimates arising from SUTVA violations is 
well studied in settings that are not bipartite. Researchers 
focused on this topic have developed statistical tests for 
the existence of interference (Rosenbaum 2007, Aronow 
2012, Bowers et al. 2013, Athey et al. 2018), techniques for 
conducting valid causal inference in the presence of inter
ference (Hudgens and Halloran 2008, Tchetgen and Van
derWeele 2012, Aronow and Samii 2017, Chin 2019, Sävje 
et al. 2021), and experiment designs that account for inter
ference (Sinclair et al. 2012, Imai et al. 2013, Ugander et al. 
2013, Liu and Hudgens 2014, Eckles et al. 2017, Saveski 
et al. 2017, Baird et al. 2018, Basse and Feller 2018, Ariel 
et al. 2019).

Our work is most closely related to that of Ugander 
et al. (2013), Eckles et al. (2017), and Saveski et al. 
(2017), which all focus on experiment designs that 
deliver cluster-randomized treatment to networks with 
the aim of obtaining less-biased TATE estimates. Ugan
der et al. (2013) propose GCR, an experiment design in 
which after clustering a network, treatment assignment 
is randomized at the cluster level. The authors show 
that under certain conditions, GCR eliminates interfer
ence bias and produces unbiased TATE estimates. 
Eckles et al. (2017) build on this work by showing 
through simulation that in instances where the condi
tions outlined in Ugander et al. (2013) do not hold, 
GCR can still greatly reduce interference bias, although 
it does not eliminate it entirely.7 Saveski et al. (2017) 
conduct a “meta-experiment” on LinkedIn that com
pares the TATE estimate obtained under individual- 
level randomization with that obtained under GCR. 
This paper makes two contributions to the literature: 
providing a method to test for interference bias in net
work settings and reporting results that highlight the 
efficacy of GCR at reducing said bias.

In their totality, these papers provide a thorough 
exploration of GCR as a method for reducing interfer
ence bias in network settings. However, because of the 
bipartite nature of marketplaces, differences in the 
mechanisms driving interference, and differences in 
the appropriate way to mathematically model said 
interference, it is unclear ex ante if cluster randomiza
tion will be as effective in the marketplace setting. 
Thus, in this work, we propose cluster randomization 
as a method to reduce interference bias in marketplace 
experiments and test its efficacy using a Saveski-style 
meta-experiment.

2.3. Pricing-Related Interventions in Online 
Marketplaces

Finally, our research connects to the literature on 
pricing-related interventions in online marketplaces. It 
is important for both platform intermediaries and plat
form sellers to understand the price elasticity of their 

customers; sellers would like to price effectively, 
whereas intermediaries would like to implement effec
tive fee structures (Choi and Mela 2019) and pricing- 
related marketplace mechanisms. For instance, in 
recent years, a growing number of online marketplaces 
have launched machine learning-based pricing inter
ventions (Ifrach et al. 2016, Ye et al. 2018, Dubé and 
Misra 2023, Filippas et al. 2023). Many pricing interven
tions are tested and launched using randomized experi
ments; however, if the TATE estimates produced by 
these experiments are biased, marketplace designers 
may misestimate price elasticities and/or launch sub
optimal policies. For instance, in Online Appendix A, 
we use a simple economic model to show that setting 
platform fees based on biased elasticity estimates 
reduces firm profits. These losses have the potential to 
wipe out the positive impacts typically associated with 
A/B testing (Feit and Berman 2019, Azevedo et al. 
2020). Our work confirms that interference can bias 
TATE estimates when conducting pricing-related 
experiments in online marketplaces and establishes 
that cluster randomization can be an effective tool to 
reduce this bias.

3. Interference Bias in Online 
Marketplaces

Before presenting the results of our meta-experiment, 
we first explore the ways in which interference bias in 
marketplaces differs from interference bias in social 
networks and the implications this has for experiment 
design. The basis for this exploration is the following 
linear parametric model of interference, which is stud
ied in, for example, Eckles et al. (2017) and Pouget- 
Abadie et al. (2018):

Yi(Z) � αi + βZi + γρi + ɛi, (1) 

where Yi is the outcome of seller i, Z is the treatment 
assignment vector, β is the “direct” effect of the treat
ment, γ is the “indirect” effect of the treatment, ρi is the 
percentage of seller i’s competitors/neighbors that are 
treated, and ɛi ~ N(0, 1) is independent of ρi. The same 
linear outcome model can be represented in the follow
ing way:

E[Yi(Z)] � αi +
X

j∈V
BijZj, (2) 

where Zj indicates the treatment assignment of seller j 
and B is an “interference matrix” capturing the strength 
of the interference between seller i and seller j.

3.1. Does “Seller Influence” Drive Interference?
The notation makes it clear that in order to reduce 
interference bias through experiment design, it is help
ful to have some idea how to construct an appropriate 
interference matrix, B. In other words, it is helpful to 
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understand the mechanisms that drive interference. 
Here, we investigate whether interference in online 
marketplaces operates via a similar mechanism to 
interference in social networks (i.e., it is driven by sell
ers observing the behavior of other sellers and chang
ing their behavior in response). To do so, we reference 
the search and PDP view activity of Airbnb listing 
hosts in this paper’s meta-experiment in the month 
prior to the meta-experiment’s launch (February 16, 
2019 to March 15, 2019). We find that the overwhelm
ing majority of Airbnb hosts do not search in their own 
geographies or view the PDPs of competitors, suggest
ing that the “seller influence” mechanism is unlikely 
to play a major role in driving spillovers in our con
text. More specifically, in the month preceding our 
meta-experiment, only 20.1% of listing hosts searched 
at least once in their own geography, and only 12% 
searched at least once for specific dates in their own 
geography. Among hosts who ran at least one search 
in their own geography, the median host searched 
only eight times. Furthermore, only 21.3% of hosts had 
at least one PDP view to a within-geography listing 
that was not their own. Among hosts who had at least 
one PDP view to a within-geography listing that was 
not their own, the median host carried out four PDP 
views across three distinct listings. More detailed data 
on search and PDP view activity in the month preced
ing our meta-experiment are shown in Figure 1. Given 
these results, in conjunction with the facts that (1) like 
our meta-experiment, many experiments run for much 
shorter periods of time than 30 days and (2) treatment 
interventions such as the one we study in our meta- 
experiment, are often subtle and unlikely to be noticed 
by hosts after just a few search sessions or PDP views, 
we consider it likely that interference in online market
places is driven not by “seller influence” but instead, 
by the fact that sellers co-occur in the consideration 
sets of potential buyers and compete with each other 
for transactions.8

3.2. Modeling Interference in Online Marketplaces
Another point of contrast between interference in 
online marketplaces and interference in many social 
network settings is the nature of the interference 
between units. Many network experiments study treat
ment interventions with “self-reinforcing” spillovers 
(i.e., treatment interventions in which positive (nega
tive) treatment interventions have positive (negative) 
spillovers (put differently, β and γ in Equation (1) have 
the same sign)). For instance, a vaccination encourage
ment intervention might increase vaccination rates not 
only among those that are treated but also among their 
peers. Similarly, in a social media setting, we would 
typically expect an intervention that increases the post
ing activity of treated users to also increase the posting 
activity of treated users’ peers.

In contrast, many potential marketplace treatment in
terventions act on seller outcomes in such a way that β 
and γ have opposite signs because sellers and buyers 
compete with one another. For instance, if an intervention 
caused treated Airbnb hosts to raise (lower) their prices, 
this could lead to an decrease (increase) in demand for 
their listings and consequently, an increase (decrease) in 
demand for their competitors’ listings.9 This is exactly the 
pattern we observe in the fee meta-experiment results 
presented in Section 5. Although the TATE of increasing 
platform fees is negative (we estimate a TATE of �0.277 
bookings per listing in the cluster-randomized meta- 
treatment arm), the bias we observe makes the estimated 
treatment effect larger in magnitude (we estimate a 
TATE of �0.345 bookings per listing in the individual- 
level randomized meta-treatment arm). We hypothesize 
that this is because Airbnb customers are more likely to 
see a mixture of treatment and control listings under 
individual-level randomization, and customers who see 
such a mixture may shift their business from higher fee 
listings to lower fee listings.

Eckles et al. (2017) show that when β and γ have the 
same sign (i.e., when spillovers are “self-reinforcing”), 
cluster randomization will always reduce the bias of 
the TATE estimator relative to individual-level ran
domization. However, they stop short of proving that 
this is true in cases where the direct and indirect treat
ment effects point in opposite directions as is likely to 
be the case in online marketplace settings. We introduce 
the following proposition, which extends theorem 2.1 
from Eckles et al. (2017) and shows that cluster random
ization is guaranteed to reduce the bias of TATE esti
mates, even in cases where the direct and indirect 
effects of a treatment intervention (captured by the 
interference matrix) have opposite signs.

Proposition 1. Assume we have a linear outcome model 
for all sellers i ∈ S that is a function of the form

E[Yi(Z)] � αi +
X

j∈V
BijZj, (3) 

where Zj indicates the treatment assignment of seller j and B 
is a matrix in which all of the diagonal entries have the same 
sign and all of the off-diagonal entries have the same sign. 
Then, for any mapping of sellers to clusters C(·), the absolute 
bias of the difference-in-means TATE estimate under cluster 
randomization, τ̂cr, is less than or equal to the absolute bias of 
the difference-in-means TATE estimate under individual-level 
randomization, τ̂ind, with a fixed treatment probability p.

Proof. The proof is given in Online Appendix C. w

Proposition 1 establishes that cluster randomization 
will never increase TATE estimation bias, but it does 
not provide any guidance on how to construct clusters. 
In any given marketplace setting, there will exist many 
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different ways to cluster sellers. For instance, an experi
ment designer might cluster sellers based on seller- 
level attributes, observed rates of seller co-occurrence 
in search, or estimated crossprice elasticities, to name a 
few possibilities. However, not all clustering will be 
equally effective at reducing TATE estimation bias. For 
instance, if a given approach to clustering produces 
clusters that are essentially random, bias reduction will 
be very close to zero, whereas if a given clustering does 
a very good job of capturing the relevant marketplace 
dynamics, bias reduction has the potential to be much 
larger. Given this fact, it is natural for an experiment 
designer to want to identify the clustering that will lead 
to the greatest reduction in estimation bias.

Unfortunately, there is not a singular optimal method 
for clustering; the most effective clustering strategy will 
vary depending on the specific research context and the 
treatment intervention being studied. Considering this, 
it is necessary to develop a concept of “cluster quality” 
that is adaptable to different contexts and takes into 
account the relevant interference matrix, B, for a specific 
experiment. Thankfully, our proof of Proposition 1 pro
vides a valuable resource. The left-hand side of the final 
inequality in this proof helps us quantify the bias of the 

difference-in-means TATE estimator within a given 
clustering. This bias quantification can be used as an 
indicator of the quality for a defined set of clusters, 
represented as C(·).

Definition 1. The quality of a given set of clusters, 
QC(B), is defined as

QC(B) �
XN

i�1

XN

j�1
Bij1

�
C(i)≠ C(j)

�
�
�
�
�
�
�

�
�
�
�
�
�
: (4) 

Although in theory, Definition 1 provides a context- 
independent measure of cluster quality, in practice 
the relevant interference matrix B for a given research 
setting and treatment intervention is almost never 
observable to experiment designers. However, as long 
as the experiment designer is able to construct some 
proxy matrix P that is an appropriate transformation 
of B, it follows directly from Proposition 1 that QC(P)
can still be used to determine which one of two sets of 
clusters, C1 and C2, produces more biased difference- 
in-means TATE estimates.10

Proposition 2. Given two matrices B and P of the same 
dimensions with all their elements bounded between 0 and 1, 

Figure 1. (Color online) Airbnb Host Search and PDP View Behavior in their Own Markets 

Notes. Panel (a) shows the distribution of PDP views to within-geography listings, whereas panel (b) shows the distribution of unique within- 
geography listings with at least one PDP view. Panel (c) shows the distribution of within-geography searches, whereas panel (d) shows the distri
bution of within-geography searches with dates. Searches with dates are generally considered to be higher intent to book.
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and for each element Pij there exists a corresponding element 
Bij such that Pij � f (Bij), where f is a convex and monotoni
cally increasing function, then,

QC1(P) ≤ QC2(P) ⇒QC1(B) ≤ QC2(B): (5) 

These results suggest that (1) for seller-side market
place interventions that uniformly increase or decrease 
demand for treated sellers, cluster randomization should 
always reduce interference bias, regardless of cluster 
quality (although bias reductions will increase with clus
ter quality), and that (2) after identifying a set of clusters, 
C(·), an experiment designer can assess their quality by 
calculating QC(P) given they are able to identify an 
appropriate proxy matrix P.11 In Section 5.4, we investi
gate how cluster quality moderates the extent to which 
cluster randomization reduces interference bias in our 
meta-experiment. The measure of cluster quality used in 
this analysis is calculated using a proxy matrix P based 
on listing co-occurrence in searcher-level PDP view ses
sions. The intuition behind this choice is that in order for 
two Airbnb listings to compete with one another for 
bookings, they need to co-occur in searchers’ consider
ation sets. In Online Appendix F, we provide more detail 
on how we calculated this particular QC(P) using brows
ing data from Airbnb.

4. Platform Fee Meta-experiment
Although the theoretical results in the previous section 
suggest that cluster randomization should reduce inter
ference bias in seller-side marketplace experiments, it is 
unclear if this is true in practice. Furthermore, even if 
interference bias in seller-side marketplace experiments 
is a theoretical concern, it may not be a practical one if 
the severity of interference bias is small. If the magni
tude of interference bias is small and/or cluster ran
domization is not an effective bias reduction technique, 
cluster randomization may not be worth implementing; 
cluster randomization is more logistically complicated, 
and many industry experimentation tools do not easily 
support cluster randomization.

In this section, we describe the design of an in vivo 
meta-experiment conducted on Airbnb’s platform in 
March 2019.12 By analyzing this meta-experiment, we 
obtain an empirical lower bound on the severity of 
interference bias in a “naive” individual-level random
ized pricing experiment on Airbnb and also measure 
the extent to which cluster randomization reduces that 
bias.13

4.1. Treatment Intervention
The treatment intervention we study in our meta- 
experiment was a change to Airbnb’s platform fees for 
guests. Airbnb’s fees for guests were visible in three dif
ferent locations throughout the booking process. First, 
guest platform fees were included in the total price 

shown to guests when a listing appeared in search (the 
upper panel in Figure 2). Second, if a guest opened the 
“price breakdown” tooltip on any search result, they 
were shown a price breakdown that separated out the 
nightly price and the guest platform fee (the lower 
panel in Figure 2). Finally, when viewing a listing’s 
PDP, a detailed pricing breakdown (including fees) 
was displayed next to the “Request to Book” button 
(Figure 3).

Our meta-experiment targeted long-tenured listings 
(i.e., listings that had been listed on Airbnb as of a cer
tain cutoff date). Listings in the treatment had their 
guest fees increased relative to the status quo, whereas 
listings in the control had their fees decreased relative to 
the status quo. Less-tenured listings (i.e., listings cre
ated after the cutoff date) did not have their fees chan
ged14 relative to the status quo.15

4.2. Experiment Design
Our meta-experiment design is extremely similar to the 
“experiment over experiments” design described in 
Saveski et al. (2017). First, Airbnb listings were sorted 
into clusters using the process described in Section 
4.2.1. Clusters were then randomly assigned to one of 
two meta-treatment arms: individual-level randomiza
tion (25% of clusters) or cluster randomization (75% 
of clusters). Within the individual-level randomized 
meta-treatment arm, treatment was randomly assigned 
to listings at the individual level. Within the cluster- 
randomized meta-treatment arm, treatment was ran
domly assigned to listings at the cluster level. The entire 
meta-experiment design is summarized in Figure 4.

Each meta-treatment arm can be analyzed as a stand- 
alone experiment that produces a TATE estimate, and 
then, by jointly analyzing the data from meta-treatment 
arms, we are able to measure whether there is a statisti
cally significant difference between these two esti
mates. In order to increase statistical power for this 
comparison, we arranged our clusters into strata and 
used post-stratification (Miratrix et al. 2013) when ana
lyzing our data. The process we used to generate those 
strata is described in Section 4.2.3.

4.2.1. Generating Hierarchical Listing Clusters. The 
first step in the design of our meta-experiment was 
arranging listings into clusters. There are many differ
ent ways to sort listings into clusters (e.g., the simula
tion described in Online Appendix B takes a graph- 
clustering approach to generating clusters; edges were 
drawn between listings that share observable traits, and 
the resulting graph was clustered using Louvain cluster
ing (Blondel et al. 2008)). For our meta-experiment we 
took an approach to clustering that made use of technical 
infrastructure that already existed at Airbnb. The first 
step in the process of generating these clusters was gen
erating a dense, 16-dimensional demand embedding for 
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each listing. Listings were then arranged into hierarchical 
clusters based on their location in that 16-dimensional 
space. Finally, a maximum cluster size was chosen in 
order to determine which subset of the hierarchical clus
ters to use in our meta-experiment.16

We generated demand embeddings for each Airbnb 
listing using a process similar to the one described in 
Grbovic and Cheng (2018). The training data used to gen
erate our demand embeddings consisted of sequences 
of listings that individual users viewed in the same 
search session. If, for instance, a user viewed listings LA, 
LB, and LC in one search session, this would generate the 
sequence

< LA, LB, LC > : (6) 

We used a word2vec-like architecture (Mikolov et al. 
2013b) to estimate a skip-gram model (Mikolov et al. 
2013a) on these data. Given S sequences of listings, the 
skip-gram model attempts to maximize the objective 
function

J � maxW, V
X

s∈S

1
|s |
X| s |

i�1

X

�k≤ j≤ k, k≠0
log p(Li+j |Li), (7) 

where k is the size of a fixed moving window over the list
ings in a session, W and V are weight matrices in the 
word2vec architecture, and p(Li+j |Li) is the hierarchical 
softmax approximation to the regular softmax expression. 

The objective function was augmented by including 
listing-level attributes (e.g., a listing’s geography) in the 
search session sequences. The model was then trained 
using a geography-level negative sampling approach.

After listing embeddings were generated using the 
aforementioned approach, a recursive partitioning tree 
(Kang et al. 2016) was used to arrange the Airbnb listings 
into hierarchical clusters. The algorithm starts from a sin
gle cluster containing all listings and then recursively 
bisects clusters into two subclusters. The algorithm stops 
bisecting subclusters when the tree reaches a depth of 20 
or when a new subcluster will contain fewer than 20 list
ings. Listings can then be assigned to clusters of arbitrary 
maximum size by applying a cut to the hierarchy of clus
ters generated by the recursive partitioning tree. Figure 5
depicts example clusters generated using this method in 
the San Francisco Bay area. Using an ad hoc approach, 
we chose a cluster size threshold of 1,000 for the fee 
meta-experiment. This ad hoc approach is described in 
Online Appendix D.

4.2.2. Treatment Assignment Randomization. After 
each Airbnb listing was assigned to a cluster, 75% of clus
ters were randomly assigned to the “meta-treatment” 
(cluster randomization), and 25% of clusters were ran
domly assigned to the “meta-control” (individual-level 
randomization). Within the meta-control arm, Bernoulli 
individual-level randomization was used to assign 50% 

Figure 2. (Color online) Airbnb Guest Platform Fees in Search 

Notes. The upper panel shows a typical search result on Airbnb at the time of the experiment. In this case, the guest platform fee was included in 
the total price of $508. The lower panel shows what was displayed to guests after clicking the “price breakdown” tooltip; the guest platform fee 
(listed here as a service fee of $58) was broken out from the total nightly price.
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of listings to the treatment and 50% of listings to the con
trol. Within the meta-treatment arm, Bernoulli cluster 
randomization was used to assign 50% of clusters to the 
treatment and 50% of clusters to the control. Each listing 
in a meta-treatment cluster was assigned the treatment 
assignment corresponding to its cluster.

4.2.3. Strata for Poststratification. In our meta-experiment 
analysis, we use post-stratification (Miratrix et al. 2013) 
to increase statistical power. The strata we use for this 
purpose were generated using a multivariate blocking 
procedure (Moore 2012). As a first step, we collected pre
treatment listing-level data for the period running from 
January 16, 2019 to February 17, 2019. Across this period, 
we calculated cluster-level summary statistics: the aver
age number of nights booked per listing, the average 
number of bookings per listing, the average gross guest 
spend per listing, and the number of nonexperimental 
holdout listings in the cluster.17 After centering and scal
ing each of these metrics, we calculated the Mahalanobis 
distance (Mahalanobis 1936) between each pair of clus
ters. Finally, we used an optimal greedy algorithm to 
arrange clusters into strata of maximum size n � 8.

4.3. Experiment Preliminaries
The meta-experiment was run from March 16, 2019 
to March 21, 2019 on a sample of 2,602,782 listings.18

Of those listings, 647,377 were assigned to the listing- 
randomized meta-control arm, and the remaining 
1,955,405 were assigned to the cluster-randomized meta- 
treatment arm. Within the listing-randomized meta- 
treatment arm, 323,734 listings were assigned to the 
control, and 323,643 listings were assigned to the treat
ment. Within the cluster-randomized meta-treatment 
arm, 2,981 clusters were assigned to the treatment, and 
2,979 clusters were assigned to the control, resulting in 
979,015 listings assigned to the treatment and 976,390 
listings assigned to the control. In total, across both 
meta-treatment arms, 1,300,124 listings were assigned to 
the control, and 1,302,568 listings were assigned to the 
treatment. We check for balance on pretreatment out
come variables between the meta-treatment and meta- 
control clusters and between the control and treatment 
groups in both meta-treatment arms (see Table 1); we do 
not detect any statistically significant differences, indi
cating that our randomization procedure was sound.

5. Results
In this section, we present results from the fee meta- 
experiment. We focus on a single outcome metric, 
bookings, but the results for two alternative outcome 
metrics, nights booked and gross guest spend, are qual
itatively similar and can be found in Online Appendix 
E. Because relative to the control, the treatment increased 
fees, we expect the TATE on bookings to be negative.

We first present the results from separately analyz
ing the individual-level randomized and cluster- 
randomized arms of the meta-experiment. Although 
the individual-level randomized arm will have ample 
statistical power, we expect its TATE estimate to suffer 
from interference bias. On the other hand, analysis of 
the cluster-randomized arm should provide a less 
biased estimate of the TATE because the amount of 
marketplace interference will be reduced, but it will 
also have less precision. Simply comparing the point 
estimates obtained independently from the two meta- 
treatment arms is not sufficient to rigorously measure 
interference bias. In order to do so, we proceed to 
jointly analyze both the individual-level randomized 
and cluster-randomized meta-treatment arms. Finally, 
we investigate the extent to which our results vary as a 
function of (1) the level of supply or demand constrain
edness in an Airbnb marketplace and (2) the geography- 
level quality of our clusters.

5.1. Individual-Level and 
Cluster-randomized Results

We analyze both the individual-level randomized and 
cluster-randomized meta-treatment arms separately by 

Figure 3. (Color online) Airbnb Guest Platform Fees on the 
Product Detail Page 

Note. The section of the Airbnb product detail page that provided a 
full pricing breakdown for would-be guests, in this pricing break
down, the guest platform fee (listed here as a service fee) is $58.
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Figure 4. (Color online) The Experiment Design Process 

$

$

$

$
$

$

...

(a) (b) (c)

Stratum 3

......

(e)

...

(d)

Post-stratification

Experiment Design

control

treatment

meta-control

meta-treatment
Stratum 1

Stratum 2

Notes. In panel (a), we use listing-level co-occurrence in search in order to learn “demand embeddings” (panel (b)). A hierarchical clustering algo
rithm is then applied to those embeddings in order to generate clusters (panel (c)). Clusters are randomly assigned to meta-treatment or meta- 
control (panel (d)); within meta-control, treatment is assigned at the individual-listing level, whereas in meta-treatment, treatment is assigned at 
the cluster level (panel (e)). We arrange clusters into strata after treatment assignment to facilitate post-stratification (Miratrix et al. 2013).

Figure 5. (Color online) These Maps Illustrate Clusters Generated Using the Hierarchical Clustering Scheme Described in This 
Paper 

Source. Srinivasan (2018).
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estimating the following model on listing-level data,

Yi � α + βTi +
X

l
γl1(Bi � l) + δXi + ɛi, (8) 

where Yi is the number of bookings; Ti is the treatment 
assignment for listing i; Bi is a variable indicating which 
stratum listing i’s cluster belongs to; Xi is a vector 
consisting of listing i’s pretreatment bookings, nights 
booked, gross guest spend, calendar nights available, 
and geography-level number of searches per available 
night in the month prior to the meta-experiment; and 
ɛi is an error term. For the cluster-randomized meta- 
treatment arm, we cluster standard errors at the Airbnb 
listing cluster level.19

Table 2 shows the TATE estimate for bookings in both 
the individual-level randomized (column (1)) and cluster- 
randomized (column (2)) meta-treatment arms. In the 
individual-level randomized meta-treatment arm, the 
TATE is �0.345 bookings per listing, whereas in the 
cluster-randomized meta-treatment arm, the TATE is 
�0.277 bookings per listing. Both of these TATE estimates 
are statistically significant at the 95% confidence level.

5.2. Joint Analysis
In order to determine whether the difference between the 
TATE estimates generated by the two meta-treatment 
arms is statistically significant, we estimate the model

Yi � α + (β + νMi)Ti + ξMi +
X

l
γl1(Bi � l) + δXi + ɛi,

(9) 

where Yi is the outcome of interest, Mi is a binary vari
able set to one when listing i is in the individual-level 
meta-treatment arm and zero when i is in the cluster- 
randomized meta-treatment arm, Ti is a binary vari
able set to one when listing i is exposed to the treat
ment, Bi is a variable indicating the stratum of clusters 

to which listing i belongs, Xi is a vector consisting 
of listing i’s pretreatment variables, and ɛi is the error 
term. Standard errors are clustered at the individual 
level for listings in the individual-level randomized 
meta-treatment arm and at the Airbnb listing cluster 
level for listings in the cluster-randomized meta- 
treatment arm.20

Table 1. Confirming Balance Between Conditions

Individual-level randomized Cluster-randomized Meta-experiment

Control Treatment p-value Control Treatment p-value Meta-control Meta-treatment p-value

Pretreatment statistics
Bookings 11.864 11.882 0.78 11.760 11.572 0.49 11.790 11.666 0.65

(26.275) (26.174) (10.559) (10.256) (10.664) (10.408)

Nights Booked 44.984 44.953 0.90 43.288 42.497 0.37 43.195 42.893 0.73
(101.570) (102.677) (34.339) (33.646) (34.517) (33.994)

Gross Guest Spend 5,920.370 5,934.694 0.72 5,554.392 5,399.833 0.37 5,587.642 5,477.087 0.53
(15,751.420) (15,824.250) (6,764.090) (6,412.172) (6,953.921) (6,590.321)

Nindividuals 323,734 323,643
Nclusters 2,979 2,981 1,987 5,960

Notes. This table tests for statistically significant differences in pretreatment outcomes between treatment and control in the individual-level 
randomized meta-treatment arm, treatment and control in the cluster-randomized meta-treatment arm, and meta-treatment and meta-control. 
Each comparison uses a two-sided t-test. Analysis is conducted at the individual level within the meta-control arm and at the cluster level within 
the meta-treatment arm and when comparing the two meta-treatment arms.

Table 2. The TATE Results Obtained by Analyzing the 
Two Meta-treatment Arms Separately

Dependent variable: Bookings

Individual-level 
randomized Cluster-randomized

(1) (2)

Treatment �0.345*** �0.277***
(0.013) (0.012)

Pretreatment bookings 0.174*** 0.175***
(0.001) (0.001)

Pretreatment nights booked �0.003*** �0.003***
(0.000) (0.000)

Pretreatment gross guest spend �0.000*** �0.000***
(0.000) (0.000)

Pretreatment nights available 0.002*** 0.001***
(0.000) (0.000)

Pretreatment searches/night 0.267*** 0.033**
(0.027) (0.015)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. No Yes
R2 0.408 0.405
Adjusted R2 0.407 0.405

Notes. Individual-level randomized results are found in column (1), 
and cluster-randomized results are found in column (2). F.E., fixed 
effect; s.e., standard error.

**p < 0.05; ***p < 0.01.
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In the model, β measures the “true” effect of the 
treatment, and ν measures the difference between the 
estimated effect of the treatment in the individual- 
level randomized arm and the estimated effect of the 
treatment in the cluster-randomized arm. In other 
words, ν should measure the extent to which cluster 
randomization reduces interference bias and also pro
vide a lower bound on the amount of interference bias 
in the individual-level randomized meta-treatment 
arm.21 Once we have estimated Equation (9), our esti
mate of the interference bias is

Ω �
ν̂

ν̂ + β̂
, (10) 

which is the percentage of the listing randomized meta- 
treatment arm TATE estimate that does not appear in 
the cluster-randomized meta-treatment arm TATE esti
mate. We calculate standard errors on this quantity 
using the delta method (we use the deltamethod 
function in the R library msm).

Column (1) of Table 3 and Figure 6 show the results 
from estimating Equation (9) on our entire sample. We 
estimate that the “true” TATE is �0.277 bookings 
per listing, whereas �0.068 bookings per listing of 
the TATE measured in the listing randomized meta- 
treatment arm is because of interference bias. Plugging 
these point estimates into Equation (10), we estimate 
that 19.76% (69:06%) of the TATE estimate achieved 
through the individual-level randomized experiment 
is because of interference bias and was eliminated 
through cluster randomization.

5.3. The Moderating Effect of Supply and 
Demand Constrainedness

We hypothesize that the extent to which the TATE esti
mate under listing-level randomization suffers from 
interference bias will depend on marketplace conditions. 
More specifically, we expect that interference bias will 
be larger in geographies that are demand constrained 
and smaller in geographies that are supply constrained. 
The intuition for this is as follows; in an extremely 

Table 3. Summary of the Meta-experiment Results for the Number of Bookings

Dependent variable: Bookings

Overall Supply constrained Demand constrained Low-quality clusters High-quality clusters
(1) (2) (3) (4) (5)

Treatment �0.277*** �0.433*** �0.140*** �0.360*** �0.196***
(0.012) (0.022) (0.011) (0.019) (0.016)

Individual-level Randomized 0.021 0.019 0.013 0.021 0.015
(0.014) (0.025) (0.014) (0.022) (0.018)

Individual-level Randomized × Treatment �0.068*** �0.059* �0.056*** �0.063** �0.069***
(0.018) (0.031) (0.018) (0.027) (0.023)

Pretreatment bookings 0.175*** 0.174*** 0.175*** 0.172*** 0.178***
(0.001) (0.001) (0.001) (0.001) (0.001)

Pretreatment nights booked �0.003*** �0.003*** �0.003*** �0.003*** �0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Pretreatment gross guest spend �0.000*** �0.000*** �0.000*** �0.000*** �0.000***
(0.000) (0.000) (0.000) (0.000) (0.000)

Pretreatment nights available 0.001*** 0.003*** 0.000*** 0.002*** 0.001***
(0.000) (0.000) (0.000) (0.000) (0.000)

Pretreatment searches/night 0.050** 0.021** 0.775*** 0.203*** 0.028**
(0.020) (0.010) (0.062) (0.024) (0.013)

Interference bias estimate, % 19.76 12.05 28.65 14.98 25.92
(69.06) (611.55) (614.91) (611.69) (615.14)

Stratum F.E. Yes Yes Yes Yes Yes
Robust s.e. Yes Yes Yes Yes Yes
Semiclustered s.e. Yes Yes Yes Yes Yes
R2 0.405 0.404 0.365 0.408 0.402
Adjusted R2 0.405 0.404 0.364 0.407 0.402

Notes. Column (1) presents the overall results. Columns (2) and (3) explore heterogeneity with respect to supply/demand constrainedness. 
Columns (4) and (5) explore heterogeneity with respect to cluster quality. F.E., fixed effect; s.e., standard error.

*p < 0.1; **p < 0.05; ***p < 0.01.
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supply-constrained geography, all listings will eventu
ally get booked, which will push the interference bias 
to zero, whereas in an extremely demand-constrained 
geography, only “more appealing” listings (i.e., only 
those in the treatment or control depending on the treat
ment intervention) will be booked, maximizing interfer
ence bias. Simulation-based evidence motivating this 
hypothesis can also be found in Johari et al. (2022).

To test this hypothesis, we re-estimate Equation (9) 
separately for listings that are above/below the median 
listing in terms of the supply constrainedness of their 
geography. Our measure of “supply constrainedness” 
is relatively crude but effective; we divide the number 
of searches occurring in a given geography in the 
month prior to our meta-experiment by the number of 
calendar nights available in the geography at the outset 
of the month prior to our meta-experiment. Columns 
(2) and (3) of Table 3 display our results for supply- 
constrained and demand-constrained geographies, re
spectively; these results are also visualized in Figure 7. 
We estimate that 12.05% (611.55%) of the listing-level 
randomized TATE estimate in supply-constrained geo
graphies can be attributed to interference bias, whereas 
28.65% (614.91%) of the listing-level randomized TATE 
estimate in demand-constrained geographies can be 
attributed to interference bias. Although these results 
are consistent with both our hypothesis and the results 
reported in Johari et al. (2022), the difference between 
these two point estimates is not statistically significant 

(see column (1) of Table H.9 in the online appendix), 
and hence, these results should only be considered 
suggestive.

5.4. The Moderating Effect of Cluster Quality
We also hypothesize that geographies with higher- 
quality clusters (as defined in Definition 1) should see 
a greater reduction in interference bias. Using a pro
cess described in Online Appendix F, we construct a 
geography-level measure of cluster quality. Under this 
measure, which uses a proxy for the “true” interference 
matrix B based on user-level PDP view sessions, a given 
clustering is considered “higher quality” if listings tend 
to co-occur with listings from the same cluster in user- 
level PDP view sessions. We proceed to split listings 
into those that are above or below the median listing 
in terms of geography-level clustering quality and sep
arately estimate Equation (9) on these two samples. Col
umns (4) and (5) of Table 3 display our results for low- 
quality and high-quality clustering, respectively; these 
results are also visualized in Figure 7. We find that clus
tering reduces the TATE estimate by 25.92% (615.14%) 
in geographies with high-quality clusters and reduces 
the TATE estimate by 14.98% (611.69%) in geographies 
with low-quality clusters. As was the case for our hetero
geneity analysis with respect to supply constrainedness, 
although these results are consistent with our hypothe
sis, we consider them suggestive because the differ
ence between these two estimates of interference bias 

Figure 6. (Color online) Coefficient Estimates for the Joint Analysis of the Fee Meta-experiment 

Notes. Error bars represent 95% confidence intervals. The dotted line corresponds to a treatment effect of zero bookings per listing. The shaded 
area corresponds to values that are below the minimum detectable effect (MDE) (80% power, 95% confidence).

Holtz et al.: Reducing Interference Bias in Online Marketplace Experiments 
402 Management Science, 2025, vol. 71, no. 1, pp. 390–406, © 2024 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
00

:4
04

1:
5c

06
:2

a0
0:

44
c:

42
02

:a
8b

a:
dd

b6
] 

on
 2

3 
Ju

ne
 2

02
5,

 a
t 1

4:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



reduction is not statistically significant (see column (2) 
of Table H.9 in the online appendix).22

6. Discussion
In this paper, we have highlighted the ways in which 
interference bias in online marketplaces differs from 
interference bias in social networks and presented 
results from an in vivo meta-experiment conducted on 
Airbnb. Results from this meta-experiment provide 
empirical evidence that interference has the potential to 
cause substantial statistical bias in online marketplace 
seller-side experiment TATE estimates and establish 
that cluster randomization is a promising tool for 
reducing said bias. More specifically, we find that at 
least 19.76% of the TATE estimate obtained from our 
individual-level randomized meta-treatment arm was 
because of interference bias. We also find suggestive, 
nonstatistically significant evidence that interference 
bias is more severe in demand-constrained geographies 
and that higher-quality clusters lead to greater bias 
reduction in TATE estimates.

Although our results show that there can be a sizable 
amount of interference bias in online marketplace 
experiments, it is possible that different treatment inter
ventions in different marketplaces would be less (or 
more) prone to estimation bias. Although we are unable 
to make evidence-based claims on this topic, we believe 
that the analyses described in this paper provide some
thing of a road map for researchers and firms hoping to 
assess the potential severity of interference bias in their 
setting and/or use cluster randomization to mitigate it. 

For instance, researchers might begin by estimating 
the potential financial impact of interference bias in 
their setting (Online Appendix A), conducting obser
vational analysis to better understand the potential 
mechanisms driving interference in their setting (Sec
tion 3.1), and/or running simulated experiments (On
line Appendix B).

When interference bias seems worth accounting for, 
an appropriate next step would be to weigh the pros 
and cons of cluster randomization relative to other 
proposed solutions, such as two-sided randomization 
(Johari et al. 2022) and switchback experimentation 
(Bojinov et al. 2022). In general, both two-sided random
ization and switchback experimentation will reduce 
TATE estimation bias relative to the individual-level 
randomized baseline. The extent to which this bias 
reduction comes at the price of reduced statistical power 
depends on the amount of supply-demand imbalance 
(in the case of two-sided randomization) or the strength 
of temporal “carryover” effects (in the case of switch
back experimentation). There are also some treatment 
interventions for which switchback experimentation 
and/or two-sided randomization may not be viable (for 
instance, data-driven decision-making aids cannot be 
assigned at the buyer-seller dyad level as is required for 
two-sided randomization). Beyond relying on domain 
knowledge and intuition, managers and researchers 
may find it informative to run simulated experiments 
that make reasonable assumptions about, for example, 
the strength of carryover effects or the types of sellers 
that might interfere with one another and compare the 

Figure 7. (Color online) Reduction in Bias from Cluster Randomization 

Note. This graph visualizes the reduction in interference bias from cluster randomization that we estimate across different samples: overall, 
listings in supply-constrained geographies, listings in demand-constrained geographies, listings in geographies with low-quality clusters, and 
listings in high-quality clusters.
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bias and statistical power of different experiment de
signs and treatment effect estimators in these simula
tions. As previously mentioned, relative to alternatives, 
our belief is that cluster randomization is well suited to 
seller-side interventions that are susceptible to intertem
poral spillovers.

In cases that are best suited to cluster randomization, 
researchers can consider many different sets of clusters 
and either calculate and compare the “quality” of 
said clusters (Online Appendix F) or conduct a meta- 
experiment using the design described in Pouget- 
Abadie et al. (2018) to identify which clustering will 
provide the greatest bias reduction. Having chosen a set 
of clusters, one can imagine either running a straightfor
ward cluster-randomized experiment to obtain a TATE 
estimate or conducting a meta-experiment similar to 
our experiment (Section 4.2) to obtain a lower bound on 
the actual amount of interference bias present.

We believe that our work leaves open multiple prom
ising avenues for future research, the most pressing of 
them being the development of methods to increase the 
statistical power of cluster-randomized experiments in 
online marketplaces. Even in cases where cluster ran
domization is well suited to the treatment intervention 
under evaluation, one major barrier to the adoption of 
cluster randomization in online marketplaces is the fact 
that clustering greatly reduces the precision of TATE 
estimates. Loss of statistical power because of clustering 
can also make it difficult to estimate the severity of 
interference bias. This is evidenced by the fact that the 
confidence interval around our interference bias esti
mate is still quite wide, despite our meta-experiment 
including over 2 million Airbnb listings.23 Future work 
might focus on, for example, using meta-experiments to 
estimate underlying structural parameters of market
places (such as price elasticities) and subsequently, 
using those structural parameter estimates to optimize 
the design of future experiments and/or predict the 
amount of interference bias associated with other poten
tial treatment interventions.

Furthermore, the results we present in Section 3.2
are somewhat specific to treatment interventions that 
lead to uniform increases/decreases in demand. How
ever, many treatment interventions of interest, includ
ing algorithmic pricing interventions (Ifrach et al. 
2016, Ye et al. 2018, Dubé and Misra 2023, Filippas et al. 
2023), increase demand for some sellers while decreas
ing demand for others. Future research might explore 
theoretical guarantees around cluster randomization in 
marketplaces when treatment interventions are more 
complicated than those considered in this paper and/or 
conduct meta-experiments similar to our experiment 
to assess the efficacy of cluster randomization when 
the treatment intervention under evaluation is more 
complex.
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Endnotes
1 A working version of our paper predates this work and is cited by 
much of this research.
2 In Online Appendix A, we use a simple economic model to 
explore the potential financial ramifications of misestimating price 
elasticities for an online marketplace intermediary.
3 As a result, if an experiment designer was to try and create a 
“network” of sellers and perform GCR, it is not immediately obvi
ous how edges between sellers should be defined.
4 Airbnb is an online marketplace for accommodations and experi
ences. More than 6 million listings appear on Airbnb, and since the 
company’s founding in 2008, over 1 billion guest arrivals have 
occurred on the platform (Airbnb 2019).
5 Cluster randomization was first proposed as a solution to interfer
ence bias in online marketplaces in Holtz (2018), an unpublished 
master’s thesis. The main results from Holtz (2018) now appear in 
Online Appendix B.
6 Analysis-based solutions to the problem have also been suggested 
(e.g., in Bright et al. 2023).
7 One drawback of assigning treatment at the cluster level is that most 
treatment effect estimators will have less statistical power than under 
an individual-level randomized design. However, techniques, such as 
regression adjustment (Gerber and Green 2012) and pre- and post- 
stratification (Moore 2012, Miratrix et al. 2013), can be used in tandem 
with cluster randomization to mitigate the loss of statistical power.
8 The notion that spillovers in online marketplaces are driven by 
competitive dynamics is consistent with the simulation results found 
in Online Appendix B.
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9 It is also possible that Airbnb hosts in a given geography could 
serve as complements to each other. For instance, guests may 
describe their positive (negative) experience with a given listing to 
their peers, which could increase (decrease) demand for similar list
ings. However, we consider it much more likely that accommoda
tions on Airbnb are substitutes and assume this to be the case 
throughout the rest of this work.
10 Note that because B is typically not observable, the statement 
that a given proxy matrix P is an appropriate transformation of B 
will almost always rely on a set of modeling assumptions that are 
not empirically testable.
11 Alternatively, Pouget-Abadie et al. (2018) propose a meta- 
experiment design that can be used to empirically compare the effi
cacy of different sets of clusters at reducing TATE bias.
12 We roughly follow the meta-experiment design introduced by 
Saveski et al. (2017). Pouget-Abadie et al. (2018) propose a similar 
“experiment over experiments” design. meta-experiment designs, 
such as these, can be thought of as special cases of the randomized 
saturation designs discussed in, for example, Baird et al. (2018).
13 This meta-experiment was motivated by the simulation-based 
work found in Online Appendix B. Although simulation-based 
work is helpful for conducting preliminary analysis, we believe that 
our meta-experiment provides value above and beyond simulation- 
based work because any simulation-based study of interference in 
marketplaces (including our study) will rely on assumptions about 
consumer behavior, the nature of the interference between units, etc.
14 Because of our non-disclosure agreement with Airbnb, we are 
unable to disclose the exact magnitude of the fee changes in this 
experiment, nor are we able to disclose the cutoff date used to deter
mine whether listings were long tenured. Furthermore, all of our 
outcome variables (bookings, nights booked, gross guest spend) are 
multiplied by a random constant.
15 Because our meta-experiment only impacts fees for long-tenured 
listings, we restrict our analysis data set to long-tenured listings. 
However, the clusters used in our experiment include all listings, 
regardless of tenure on the platform.
16 We believe that providing guidance on cluster construction is 
beyond the scope of this paper given that the “optimal” set of clus
ters for cluster randomization will vary depending on the research 
setting and the treatment intervention of interest. However, the 
cluster quality metric provided in Definition 1 can be a useful tool 
for adjudicating between two candidate sets of clusters. We also 
believe that the analyses and theoretical results in this paper pro
vide a road map of sorts that other researchers can draw on when 
designing clusters for the purpose of a cluster-randomized market
place experiment. We discuss this point further in Section 6.
17 At the time of our meta-experiment, experiments on Airbnb 
excluded listings in a long-term experiment holdout group as well 
as listing in Airbnb’s “Plus” tier.
18 Shortly after the meta-experiment’s conclusion, a “reversal experi
ment” was run from April 15, 2019 to April 22, 2019. In the reversal 
experiment, listings that had been assigned the treatment condition 
in the meta-experiment were assigned the control and vice versa. 
The purpose of the reversal experiment was to mitigate any potential 
negative impact of the meta-experiment on Airbnb hosts.
19 In order to increase statistical power, our preferred model specifi
cation is Equation (8), which utilizes post-stratification (Miratrix 
et al. 2013) through the inclusion of stratum-level indicators. Results 
obtained from estimating a more straightforward model that 
regresses bookings only on treatment assignment can be found in 
Table H.7 in the online appendix.
20 In order to increase statistical power, our preferred model speci
fication is Equation (9), which utilizes post-stratification (Miratrix 

et al. 2013) through the inclusion of stratum-level indicators. 
Results obtained from estimating a more straightforward model 
that regresses bookings only on meta-treatment assignment, treat
ment assignment, and their interaction can be found in Table H.8 
in the online appendix.
21 Recall that even when using cluster randomization, TATE esti
mates will likely remain biased to some extent because any given 
clustering will do an imperfect job of capturing every pair of listings 
that interfere with one another.
22 We conduct the same analysis with an alternate definition of cluster 
quality that is based on observable listing attributes as opposed to con
sumer search data. To construct this alternative measure, we classify 
two listings as “substitutable” if they are in the same geography-level 
decile for the following three variables: share of five stars trips, person 
capacity, and price. At the geography level, we then calculate the aver
age percentage of a listing’s “substitutable” listings (including itself) 
that are in the same cluster. Table H.10 in the online appendix shows 
our results using this alternative cluster quality measure; they are qual
itatively similar to those found in Table 3.
23 To further emphasize this point, let us provide an explanatory anec
dote; prior to the meta-experiment reported in this paper, we con
ducted a different pricing-related meta-experiment on Airbnb with a 
milder treatment intervention. Because the treatment intervention was 
milder, this meta-experiment was underpowered to detect interference 
bias, despite having a sample size in the millions.
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