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This article develops a model of optimal government debt maturity in which
the government cannot issue state-contingent bonds and cannot commit to fis-
cal policy. If the government can perfectly commit, it fully insulates the economy
against government spending shocks by purchasing short-term assets and issuing
long-term debt. These positions are quantitatively very large relative to GDP and
do not need to be actively managed by the government. Our main result is that
these conclusions are not robust to the introduction of lack of commitment. Under
lack of commitment, large and tilted debt positions are very expensive to finance
ex ante since they exacerbate the problem of lack of commitment ex post. In con-
trast, a flat maturity structure minimizes the cost of lack of commitment, though
it also limits insurance and increases the volatility of fiscal policy distortions. We
show that the optimal time-consistent maturity structure is nearly flat because
reducing average borrowing costs is quantitatively more important for welfare
than reducing fiscal policy volatility. Thus, under lack of commitment, the govern-
ment actively manages its debt positions and can approximate optimal policy by
confining its debt instruments to consols. JEL Codes: E62, H21, H63.
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I. INTRODUCTION

How should government debt maturity be structured? Two
seminal papers by Angeletos (2002) and Buera and Nicolini (2004)
argue that the maturity of government debt can be optimally
structured so as to completely hedge the economy against fis-
cal shocks. This research concludes that optimal debt maturity
is tilted long, with the government purchasing short-term assets
and selling long-term debt. These debt positions allow the mar-
ket value of outstanding government liabilities to decline when
spending needs and short-term interest rates increase. Moreover,
quantitative exercises imply that optimal government debt posi-
tions, both short and long, are large (in absolute value) relative to
GDP. Finally, these positions are constant and do not need to be
actively managed since the combination of constant positions and
fluctuating bond prices delivers full insurance.

In this article, we show that these conclusions are sensitive to
the assumption that the government can fully commit to fiscal pol-
icy. In practice, a government chooses taxes, spending, and debt
sequentially, taking into account its outstanding debt portfolio,
as well as the behavior of future governments. Thus, a govern-
ment can always pursue a fiscal policy which reduces (increases)
the market value of its outstanding (newly issued) liabilities ex
post, even though it would not have preferred such a policy ex
ante. Moreover, the government’s future behavior is anticipated
by households lending to the government, which affects its ex
ante borrowing costs. We show that once the lack of commitment
by the government is taken into account, it becomes costly for the
government to use the maturity structure of debt to completely
hedge the economy against shocks; there is a trade-off between
the cost of funding and the benefit of hedging.1 Our main result is
that, under lack of commitment, the optimal maturity structure
of government debt is quantitatively nearly flat, so that the gov-
ernment owes the same amount to households at all future dates.
Moreover, debt is actively managed by the government.

We present these findings in the dynamic fiscal policy model
of Lucas and Stokey (1983). This is an economy with pub-
lic spending shocks and no capital in which the government

1. Our framework is consistent with an environment in which the legislature
sequentially chooses a primary deficit and the debt management office sequentially
minimizes the cost of financing subject to future risks, which is what is done in
practice (see the IMF report [2001]).
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chooses linear taxes on labor and issues public debt to finance gov-
ernment spending. Our model features two important frictions.
First, as in Angeletos (2002) and Buera and Nicolini (2004), we
assume that state-contingent bonds are unavailable, and that the
government can only issue real noncontingent bonds of all ma-
turities. Second, and in contrast to Angeletos (2002) and Buera
and Nicolini (2004), we assume that the government lacks com-
mitment to policy.

The combination of these two frictions leads to an inefficiency.
The work of Angeletos (2002) and Buera and Nicolini (2004) shows
that, even in the absence of contingent bonds, an optimally struc-
tured portfolio of noncontingent bonds can perfectly insulate the
government from all shocks to the economy. Moreover, the work
of Lucas and Stokey (1983) shows that, even if the government
cannot commit to a path of fiscal policy, an optimally structured
portfolio of contingent bonds can perfectly induce a government
without commitment to pursue the ex ante optimally chosen pol-
icy ex post.2 Even though each friction by itself does not lead to
an inefficiency, the combination of the two frictions leads to a non-
trivial trade-off between market completeness and commitment
in the government’s choice of maturity.

To get an intuition for this trade-off, consider the optimal
policy under commitment. This policy uses debt to smooth fiscal
policy distortions in the presence of shocks. If fully contingent
claims were available, there would be many maturity structures
that would support the optimal policy. However, if the government
only has access to noncontingent claims, then there is a unique
maturity structure which replicates full insurance. As has been
shown in Angeletos (2002) and Buera and Nicolini (2004), such
a maturity structure is tilted in a manner that guarantees that
the market value of outstanding government liabilities declines
when the net present value of future government spending rises.
If this occurs when short-term interest rates rise—as is the case in
quantitative examples with Markovian fiscal shocks—then the op-
timal maturity structure requires that the government purchases
short-term assets and sells long-term debt. Because interest rate
movements are quantitatively small, the tilted debt positions re-
quired for hedging are large.

2. This result requires the government to lack commitment to taxes or to
spending but not to both. See Rogers (1989) for more discussion.
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Under lack of commitment, such large and tilted positions
are very costly to finance ex ante if the government cannot
commit to policy ex post. The larger and more tilted the debt
position, the greater a future government’s benefit from pursu-
ing policies ex post which changes bond prices to relax the gov-
ernment’s budget constraint. To relax its budget constraint, the
government can either reduce the market value of its outstanding
long-term liabilities by choosing policies that increase short-term
interest rates, or it can increase the market value of its newly is-
sued short-term liabilities by choosing policies that reduce short-
term interest rates. If the government’s debt liabilities are mostly
long term, then the government will follow the former strategy
ex post. If its liabilities are mostly short term, then the govern-
ment will pursue the latter strategy ex post. Households pur-
chasing government bonds ex ante internalize the fact that the
government will pursue such policies ex post, and they therefore
require higher interest rates to lend to the government the more
tilted is the government’s debt maturity.

For this reason, the flatter the debt maturity—meaning the
smaller the difference between short-term and long-term debt—
the lower the cost of funding for the government. Such a flat ma-
turity maximizes the government’s commitment to future fiscal
policies by minimizing the benefit of any future deviations. How-
ever, a flatter debt maturity comes at the cost of lower insurance
for the government; the flatter the debt maturity, the smaller the
fluctuation in the market value of outstanding government liabil-
ities, and the more exposed is the government to fiscal shocks.

To assess optimal policy in light of this trade-off, we analyze
the Markov perfect competitive equilibrium of our model in which
the government dynamically chooses its policies at every date
as a function of payoff relevant variables: the fiscal shock and
its outstanding debt position at various maturities. Because a
complete analysis of such an equilibrium in an infinite horizon
economy with an infinite choice of debt maturities is infeasible,
we present our main result in three exercises.

In our first exercise, we show that optimal debt maturity is
exactly flat in a three-period example as the volatility of future
shocks goes to zero or as the persistence of future shocks goes to 1.
In both of these cases, a government under commitment financing
a deficit in the initial date chooses a negative short-term debt
position and a positive long-term debt position which are large
in magnitude. However, a government under lack of commitment
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chooses an exactly flat debt maturity with a positive short-term
and long-term debt position which equal each other.

In our second exercise, we show that the insights of the three-
period example hold approximately in a quantitative finite horizon
economy under fiscal shocks with empirically plausible volatility
and persistence. We consider a finite horizon economy since this
allows the government’s debt maturity choices to also be finite. We
find that, despite having the ability to choose from a flexible set
of debt maturity structures, the optimal debt maturity is nearly
flat, and the main component of the government’s debt can be
represented by a consol with a fixed nondecaying payment at all
future dates.

In our final exercise, we consider an infinite horizon economy,
and we show that optimal policy under lack of commitment can
be quantitatively approximated with active consol management,
so that the optimal debt maturity is again nearly flat. An infinite
horizon analysis allows us to more suitably capture quantitative
features of optimal policy and to characterize policy dynamics,
but it also comes at a cost of not being able to consider the en-
tire range of feasible debt maturity policies by the government.
We consider a setting in which the government has access to two
debt instruments: a nodecaying consol and a decaying perpetu-
ity. Under full commitment, the government holds a highly tilted
debt maturity, where each position is large in absolute value and
constant. In contrast, under lack of commitment, the government
holds a negligible and approximately constant position in the de-
caying perpetuity, and it holds a positive position in the consol
which it actively manages in response to fiscal shocks. We addi-
tionally show that our conclusion that optimal debt maturity is
approximately flat is robust to the choice of volatility and persis-
tence of fiscal shocks, to the choice of household preferences, and
to the introduction of productivity and discount factor shocks.

Our results show that structuring government debt maturity
to resolve the problem of lack of commitment is more important
than structuring it to resolve the problem of lack of insurance. It
is clear that a flat debt maturity comes at a cost of less hedging.
However, substantial hedging requires massive and tilted debt po-
sitions. When the government lacks commitment, financing these
large positions can be very expensive in terms of average fiscal
policy distortions. Moreover, under empirically plausible levels of
volatility of public spending, the cost of lack of insurance under
a flat maturity structure is small. Therefore, the optimal policy
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pushes in the direction of reducing average fiscal policy distor-
tions versus reducing the volatility of distortions, and the result
is a nearly flat maturity structure.3

Our analysis implies that government debt management in
practice is much closer to the theoretically optimal policy under
lack of commitment versus that under full commitment. In the
United States, for example, government bond payments across
the maturity spectrum are all positive, small relative to GDP,
actively managed, and with significant comovement across matu-
rities. All these features are consistent with optimal policy under
lack of commitment. Nevertheless, while the optimal policy under
lack of commitment prescribes the issuance of consols, the highest
bond maturity for the U.S. government is 30 years. Determining
whether a maturity extension would move the U.S. government
closer to an optimal policy is a complicated question. The answer
depends in part on how to measure the maturity structure of the
government’s overall liabilities, which can additionally include
partial commitments to future transfers such as Social Security
and Medicare. Such an analysis goes beyond the scope of this
paper and is an interesting avenue for future research.

I.A. Related Literature

This paper is connected to several literatures. As discussed,
we build on the work of Angeletos (2002) and Buera and Nicolini
(2004) by introducing lack of commitment.4 Our model is most ap-
plicable to economies in which the risks of default and surprise in
inflation are not salient, but the government is still not commit-
ted to a path of deficits and debt maturity issuance. Arellano et al.
(2013) study a similar setting to ours but with nominal frictions
and lack of commitment to monetary policy.5 In contrast to Aguiar

3. The conclusion that the welfare benefit of smoothing economic shocks is
small relative to that of improving economic levels is more generally tied to the
insight in Lucas (1987).

4. Additional work explores government debt maturity maintaining the
assumption of full commitment, in environments with less debt instruments
than states (Shin 2007), in models with habits, productivity shocks and capital
(Faraglia, Marcet, and Scott 2010), in the presence of nominal rigidities (Lustig,
Sleet, and Yeltekin 2008), or in a preferred habitat model (Guibaud, Nosbusch,
and Vayanos 2013).

5. In addition, Alvarez, Kehoe, and Neumeyer (2004) and Persson, Persson,
and Svensson (2006) consider problems of lack of commitment in an environment
with real and nominal bonds of varying maturity where the possibility of sur-
prise inflation arises. Alvarez, Kehoe, and Neumeyer (2004) find that to minimize
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and Amador (2014), Arellano and Ramanarayanan (2012), and
Fernandez and Martin (2015)—who consider small open economy
models with the possibility of default—we focus on lack of com-
mitment to taxation and debt issuance, which affects the path of
risk-free interest rates. This difference implies that, in contrast
to their work, short-term debt does not dominate long-term debt
in minimizing the government’s lack of commitment problem. In
our setting, even if the government were to only issue short-term
debt, the government ex post would deviate from the ex ante opti-
mal policy by pursuing policies which reduce short-term interest
rates below the ex ante optimal level.6

More broadly, our article is also tied to the literature on op-
timal fiscal policy which explores the role of incomplete markets.
A number of papers have studied optimal policy under full com-
mitment when the government issues one-period noncontingent
bonds, such as Barro (1979) and Aiyagari et al. (2002).7 Bhandari
et al. (2015) generalize the results of this work by characterizing
optimal fiscal policy under commitment whenever the government
has access to any limited set of debt securities. As in this work, we
find that optimal taxes respond persistently to economic shocks,
though in contrast to this work, this persistence is due to the lack
of commitment by the government as opposed to the incomplete-
ness of financial markets due to limited debt instruments.

Other work has studied optimal policy in settings with lack
of commitment, but with full insurance (e.g., Krusell, Martin, and
Rı́os-Rull 2006; Debortoli and Nunes 2013). We depart from this
work by introducing long-term debt, which in a setting with full
insurance can imply that the lack of commitment friction no longer
introduces any inefficiencies.

Our article proceeds as follows. In Section II, we describe the
model and define the equilibrium. In Section III, we show that the

incentives for surprise inflation, the government should only issue real bonds.
Barro (2003) comes to a similar conclusion.

6. In a small open economy with default, the risk-free rate is exogenous and the
government’s ex post incentives are always to issue more debt, increasing short-
term interest rates (which include the default premium) above the ex ante optimal
level. For this reason, short-term debt issuance ex ante can align the incentives
of the government ex ante with those of the government ex post. Niepelt (2014),
Chari and Kehoe (1993a, 1993b), and Sleet and Yeltekin (2006) also consider the
lack of commitment under full insurance, though they focus on settings that allow
for default.

7. See also Farhi (2010).
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optimal debt maturity is exactly flat in a three-period example. In
Section IV, we show that the optimal debt maturity is nearly flat
in a finite horizon economy with unlimited debt instruments and
in an infinite horizon economy with limited debt instruments. Sec-
tion V concludes. The Appendix and the Online Appendix provide
all of the proofs and additional results not included in the text.

II. MODEL

II.A. Environment

We consider an economy identical to that of Lucas and Stokey
(1983) with two modifications. First, we rule out state-contingent
bonds. Second, we assume that the government cannot commit to
fiscal policy. There are discrete time periods t = {1, ..., ∞} and a
stochastic state st ∈ S which follows a first-order Markov process.
s0 is given. Let st = {s0, ..., st} ∈ St represent a history, and let
π (st+k|st) represent the probability of st+k conditional on st for
t + k � t.

The resource constraint of the economy is

(1) ct + gt = nt,

where ct is consumption, nt is labor, and gt is government spend-
ing.

There is a continuum of mass 1 of identical households that
derive the following utility:

(2) E

∞∑
t=0

βt [u (ct, nt) + θt (st) v (gt)] , β ∈ (0, 1) .

u(·) is strictly increasing in consumption and strictly decreasing
in labor, globally concave, and continuously differentiable. v(·) is
strictly increasing, concave, and continuously differentiable. Un-
der this representation, θ t(st) is high (low) when public spending
is more (less) valuable. In contrast to the model of Lucas and
Stokey (1983), we have allowed gt in this framework to be chosen
by the government, as opposed to being exogenously determined.
We allow for this possibility to also consider that the government
may not be able to commit to the ex ante optimal level of public
spending. In our analysis, we also consider the Lucas and Stokey
(1983) environment in which there is no discretion over govern-
ment spending, and we show that all of our results hold.

https://academic.oup.com/qje
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Household wages equal the marginal product of labor (which
is 1 unit of consumption) and are taxed at a linear tax rate τ t.
bt+k

t � 0 represents government debt purchased by a representa-
tive household at t, which is a promise to repay 1 unit of consump-
tion at t + k > t, and q t+k

t is its price at t. At every t, the household’s
allocation {ct, nt, {bt+k

t }∞k=1} must satisfy the household’s dynamic
budget constraint

(3) ct +
∞∑

k=1

q t+k
t

(
bt+k

t − bt+k
t−1

) = (1 − τt) nt + bt
t−1.

Bt+k
t � 0 represents debt issued by the government at t with a

promise to repay 1 unit of consumption at t + k > t. At every
t, government policies {τt, gt, {Bt+k

t }∞k=1} must satisfy the govern-
ment’s dynamic budget constraint

(4) gt + Bt
t−1 = τtnt +

∞∑
k=1

q t+k
t

(
Bt+k

t − Bt+k
t−1

)
.
8

The economy is closed, which means that the bonds issued by
the government equal the bonds purchased by households:

(5) bt+k
t = Bt+k

t ∀t, k.

Initial debt {Bk−1
−1 }∞k=1 is exogenous.9 We assume that there

exist debt limits to prevent Ponzi schemes:

(6) Bt+k
t ∈ [

B, B
]
.

8. We follow the same exposition as in Angeletos (2002) in which the govern-
ment restructures its debt in every period by buying back all outstanding debt
and then issuing fresh debt at all maturities. This is without loss of generality. For
example, if the government at t − k issues debt due at date t of size Bt

t−k which it
then holds to maturity, then all future governments at date t − k + l for l = 1, ...,
k − 1 will choose Bt

t−k+l = Bt
t−k, implying that Bt

t−k = Bt
t−1.

9. Our model implicitly allows the government to buy back the long-term
bonds from the private sector. While ruling out bond buybacks is interesting, 85%
of countries conduct some form of bond buyback and 32% of countries conduct
them on a regular basis (see the OECD report by Blommestein, Elmadag, and
Ejsing 2012). Note furthermore, that even if bond buyback is not allowed in our
environment, a government can replicate the buyback of a long-term bond by
purchasing an asset with a payout on the same date (see Angeletos 2002). See
Faraglia et al. (2014) for a discussion of optimal policy under commitment in the
absence of buybacks.
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We let B be sufficiently low and B be sufficiently high so that
equation (6) does not bind in our theoretical and quantitative
exercises.

A key friction in this environment is the absence of state-
contingent debt, since the value of outstanding debt Bt+k

t is in-
dependent of the realization of the state st + k. If state-contingent
bonds were available, then at any date t, the government would
own a portfolio of bonds {{Bt+k

t−1|st+k}st+k∈St+k}∞k=0, where the value of
each bond payout at date t + k would depend on the realization
of a history of shocks st+k ∈ St+k. In our discussion, we will refer
back to this complete market case.

The government is benevolent and shares the same prefer-
ences as the households in equation (2). We assume that the gov-
ernment cannot commit to policy and therefore chooses taxes,
spending, and debt sequentially.

II.B. Definition of Equilibrium

We consider a Markov perfect competitive equilibrium
(MPCE) in which the government must optimally choose its pre-
ferred policy—which consists of taxes, spending, and debt—at ev-
ery date as a function of current payoff-relevant variables: the cur-
rent shock and current debt outstanding. The government takes
into account that its choice affects future debt and thus affects the
policies of future governments. Households rationally anticipate
these future policies, and their expectations are in turn reflected in
current bond prices. Thus, in choosing policy today, a government
anticipates that it may affect current bond prices by impacting
expectations about future policy. We provide a formal definition of
the equilibrium in the Appendix.

While we assume for generality that the government can
freely choose taxes, spending, and debt in every period, we also
consider cases throughout the draft in which the government does
not have discretion in either setting spending or in setting taxes.
These special cases highlight how the right choice of government
debt maturity can induce future governments to choose the com-
mitment policy.

II.C. Primal Approach

Any MPCE must be a competitive equilibrium. We follow Lu-
cas and Stokey (1983) by taking the primal approach to the charac-
terization of competitive equilibria since this allows us to abstract
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away from bond prices and taxes. Let

(7)
{{

ct
(
st) , nt

(
st) , gt

(
st)}

st∈St

}∞
t=0

represent a stochastic sequence, where the resource constraint
equation (1) implies

(8) ct
(
st) + gt

(
st) = nt

(
st) .

We can establish necessary and sufficient conditions for equa-
tion (7) to constitute a competitive equilibrium. The household’s
optimization problem implies the following intratemporal and in-
tertemporal conditions, respectively:

1 − τt
(
st) = −un,t

(
st

)
uc,t (st)

and

q t+k
t

(
st) =

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
uc,t (st)

.(9)

Substitution of these conditions into the household’s dynamic bud-
get constraint implies the following condition:

uc,t
(
st) ct

(
st) + un,t

(
st) nt

(
st)

+
∞∑

k=1

∑
st+k∈St+k

βkπ
(
st+k|st) uc,t+k

(
st+k) Bt+k

t

(
st)

=
∞∑

k=0

∑
st+k∈St+k

βkπ
(
st+k|st) uc,t+k

(
st+k) Bt+k

t−1(st−1).(10)

Forward substitution into the above equation and taking into ac-
count the absence of Ponzi schemes implies the following imple-
mentability condition:

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st) [

uc,t+k
(
st+k) ct+k

(
st+k)

+ un,t+k
(
st+k) nt+k

(
st+k)]

=
∞∑

k=0

∑
st+k∈St+k

βkπ
(
st+k|st) uc,t+k

(
st+k) Bt+k

t−1

(
st−1

)
.(11)
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By this reasoning, if a stochastic sequence in equation (7) is gen-
erated by a competitive equilibrium, then it necessarily satisfies
equations (8) and (11). We prove in Online Appendix A that the
converse is also true, which leads to the following proposition that
is useful for the rest of our analysis.

PROPOSITION 1 (Competitive Equilibrium). A stochastic sequence
equation (7) is a competitive equilibrium if and only if it sat-
isfies equation (8) ∀st and ∃{{{Bt+k

t−1(st−1)}∞k=0}st−1∈St−1}∞t=0 which
satisfy equation (11) ∀st.

A useful corollary to this proposition concerns the relevant
implementability condition in the presence of state-contingent
bonds, Bt+k

t |st+k, which provide payment at t + k conditional on
the realization of a history st+k.

COROLLARY 1. In the presence of state-contingent debt, a stochastic
sequence equation (7) is a competitive equilibrium if and only
if it satisfies equations (8) ∀st and (11) for st = s0 given initial
liabilities.

If state-contingent debt is available, then the satisfaction of
equation (11) at s0 guarantees the satisfaction of equation (11) for
all other histories st, since state-contingent payments can be freely
chosen so as to satisfy equation (11) at all future histories st.

In the Appendix, we show how the primal approach can be
used to represent the MPCE recursively.

III. THREE-PERIOD EXAMPLE

We turn to a simple three-period example to provide intuition
for our quantitative results. This example allows us to explicitly
characterize government policy both with and without commit-
ment, making it possible to highlight how dramatically different
optimal debt maturity is under the two scenarios.

Let t = 0, 1, 2 and define θL and θH with θH = 1 + δ and θL =
1 − δ for δ ∈ [0, 1). Suppose that θ0 > θH, θ1 = θH with probability
1
2 and θ1 = θL with probability 1

2 . In addition, let θ2 = αθH + (1 −
α)θL if θ1 = θH and θ2 = αθL + (1 − α)θH if θ1 = θL for α ∈ [0.5, 1).
Therefore, all of uncertainty is realized at date 1, with δ capturing
the volatility of the shock and α capturing the persistence of the
shock between dates 1 and 2.

Suppose that taxes and labor are exogenously fixed to some
τ and n, respectively, so that the government collects a constant

https://academic.oup.com/qje
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revenue in all dates. Assume that the government’s welfare can
be represented by

(12) E

∑
t=0,1,2

βt [
(1 − ψ) log ct + ψθtgt

]

for ψ ∈ [0, 1]. We consider the limiting case in which ψ → 1, and
we let β = 1 for simplicity. There is zero initial debt and all debt is
repaid in the final period. Thus, the implementability conditions
at date 0 and date 1 are given, respectively, by

c0 − n(1 − τ )
c0

+ E

(
c1 − n(1 − τ )

c1
+ c2 − n(1 − τ )

c2

)
� 0,(13)

c1 − n(1 − τ )
c1

+ c2 − n(1 − τ )
c2

�
B1

0

c1
+ B2

0

c2
.(14)

In this environment, the government does not have any discretion
over tax policy, and any ex post deviation by the government is
driven by a desire to increase spending since the marginal bene-
fit of additional spending always exceeds the marginal benefit of
consumption.

III.A. Full Commitment

This section shows analytically that a government with com-
mitment chooses highly tilted and large debt positions to fully
insulate the economy from shocks. Angeletos (2002) proves that
any allocation under state-contingent debt can be approximately
implemented with noncontingent debt. This implies that there
is no inefficiency stemming from the absence of contingent debt.
Our example explicitly characterizes these allocations to provide
a theoretical comparison with those under lack of commitment.

Let us consider an economy under complete markets. From
Corollary 1, the only relevant constraints on the planner are the
resource constraints and the date 0 implementability constraint
(13), which holds with equality. The maximization of social welfare
under these constraints leads to the following optimality condition

(15) ct = 1

θ
1
2

t

n (1 − τ )
3

E

⎛
⎝ ∑

k=0,1,2

θ
1
2

k

⎞
⎠ ∀t.
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Equation (15) implies that in the presence of full insurance, spend-
ing is independent of history and depends only on the state θ t,
which takes on two possible realizations at t = 1, 2.

This allocation can be sustained even if state-contingent
bonds are not available. From Proposition 1, it suffices to show
that the additional constraint (14) is also satisfied. This is possi-
ble by choosing appropriate values of B1

0 and B2
0 which simultane-

ously satisfy equation (14) (which holds with equality) and (15).
It can also be shown that

B1
0 < 0 and B2

0 > 0.

Intuitively, the net present value of the government’s primary
surpluses at t = 1 is lower if the high shock is realized under the
solution in equation (15). To achieve this full insurance solution
with noncontingent debt, the government must choose the ma-
turity structure so that the market value of the government’s
outstanding bond portfolio at t = 1 is lower if the high shock is
realized. This market value at t = 1 is given by

(16) B1
0 + c1

c2
B2

0.

Since the shock is mean-reverting, it follows from equation (9)
that the one-period bond price at t = 1, c1

c2
is lower if the shock

is high. As such, choosing B1
0 < 0 < B2

0 provides insurance to the
government. How large are the debt positions required to achieve
full insurance? The below proposition shows that the magnitude
of these positions can be very high.

PROPOSITION 2 (Full Commitment). The following characterizes
the unique solution under full commitment:

i. (deterministic limit) As δ → 0,

B1
0 = −n(1 − τ )

θ
1
2

0 + 2
3

(2α − 1) + (1 − α)

1 − α
< 0 and(17)

B2
0 = n (1 − τ )

θ
1
2

0 + 2
3

− (1 − α)

1 − α
> 0.(18)
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ii. (full persistence limit) As α → 1,

B1
0 → −∞ and B2

0 → ∞.

The first part of Proposition 2 characterizes the optimal
value of the short-term debt B1

0 and the long-term debt B2
0

as the variance of the shock δ goes to 0. There are a few
points to note regarding this result. First, it should be high-
lighted that this is a limiting result. At δ = 0, the optimal val-
ues of B1

0 and B2
0 are indeterminate. This is because there is

no hedging motive, and any combination of B1
0 and B2

0 which
satisfies

(19) B1
0 + B2

0 = 2n(1 − τ )
θ

1
2

0 − 1
3

is optimal, since the market value of total debt—which is what
matters in a deterministic economy—is constant across these com-
binations. Therefore, the first part of the proposition characterizes
the solution for δ arbitrarily small, in which case the hedging mo-
tive still exists, leading to a unique maturity structure. Second,
in the limit, the debt positions do not go to 0, and the govern-
ment maintains a positive short-term asset position and a neg-
ative long-term debt position. This happens since, even though
the need for hedging goes to 0 as volatility goes to 0, the volatil-
ity in short-term interest rates goes to 0 as well. The size of a
hedging position depends in part on the variation in the short-
term interest rate at date 1 captured by the variation in c1

c2
in

the complete market equilibrium. The smaller this variation, the
larger is the required position to generate a given variation in
the market value of debt to generate insurance. This fact implies
that the positions required for hedging do not need to go to 0 as
volatility goes to 0. As a final point, note that the debt positions
can be large in absolute value. For example, since θ0 > 1 and α �
0.5, B1

0 < −n(1 − τ ) and B2
0 > n(1 − τ ), so that the absolute value

of each debt position strictly exceeds the disposable income of
households.

The second part of the proposition states that as the persis-
tence of the shock between dates 1 and 2 goes to 1, the mag-
nitude of the debt positions chosen by the government explodes
to infinity, so that the government holds an infinite short-term
asset position and an infinite long-term debt position. As we
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discussed, the size of a hedging position depends in part on the
variation in the short-term interest rate at date 1 captured by
the variation in c1

c2
in the complete market equilibrium. As the

persistence of the shock goes to 1, the variation in the short-term
interest rate at date 1 goes to 0, and since the need for hedg-
ing does not go to 0, this leads to the optimality of infinite debt
positions. Under these debt positions, the government can fully
insulate the economy from shocks since equation (15) continues
to hold.

The two parts of Proposition 2 are fairly general and
do not depend on the details of our particular example.
These results are a consequence of the fact that fluctua-
tions in short-term interest rates should go to 0 as the
volatility of shocks goes to 0 or the persistence of shocks
goes to 1. To the extent that completing the market using
maturities is possible, the reduced volatility in short-term in-
terest rates is a force which increases the magnitude of op-
timal debt positions required for hedging. In addition, note
that our theoretical result is consistent with the quantita-
tive results of Angeletos (2002) and Buera and Nicolini (2004).
These authors present a number of examples in which volatil-
ity is not equal to 0 and persistence is not equal to 1, yet
the variation in short-term interest rates is very small, and
optimal debt positions are very large in magnitude relative
to GDP.

III.B. Lack of Commitment

We now show that optimal policy changes dramatically once
we introduce lack of commitment. We solve for the equilibrium
under lack of commitment by using backward induction. At date
2, the government has no discretion in its choice of fiscal policy,
and it chooses c2 = n(1 − τ ) + B2

1.
Now consider government policy at date 1. The government

maximizes its continuation welfare given B1
0 and B2

0, the resource
constraint, and the implementability condition (14). Note that
if n(1 − τ ) + Bt

0 � 0 for t = 1, 2, then no allocation can satisfy
equation (14) with equality. Therefore, such a policy is infeasible
at date 0 and is never chosen. The lemma below characterizes
government policy for all other values of {B1

0, B2
0}.
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LEMMA 1. If n(1 − τ ) + Bt
0 > 0 for t = 1, 2, the date 1 government

under lack of commitment chooses:

ct = 1
2

(
n (1 − τ ) + Bt

0

θt

) 1
2

×
⎡
⎣ ∑

k=1,2

θ
1
2

k

(
n (1 − τ ) + Bk

0

) 1
2

⎤
⎦ for t = 1, 2.(20)

If n(1 − τ ) + Bt
0 � 0 for either t = 1 or t = 2, the date 1 govern-

ment can maximize welfare by choosing ct arbitrarily close to
0 for t = 1, 2.

Given this policy function at dates 1 and 2, the government
at date 0 chooses a value of c0 and {B1

0, B2
0} given the resource con-

straint and given equation (13) so as to maximize social welfare.10

We proceed by deriving the analog of Proposition 2 but removing
the commitment assumption. We conclude by discussing optimal
debt maturity away from those limiting cases.

1. Deterministic Limit. If we substitute equation (20) into
the social welfare function (12) and date 0 implementability con-
dition (13), we can write the government’s problem at date 0 as:

max
c0,B1

0,B2
0

−θ0c0 − 1
2

E

⎡
⎣ ∑

t=1,2

θ
1
2

t
(
n (1 − τ ) + Bt

0

) 1
2

⎤
⎦

2

(21)

s.t. c0 = n (1 − τ )

3 − 2n(1 − τ ) E

⎡
⎣∑

t=1,2 θ
1
2

t
(
n (1 − τ ) + Bt

0

)− 1
2

∑
t=1,2 θ

1
2

t
(
n (1 − τ ) + Bt

0

) 1
2

⎤
⎦

.(22)

i. Optimality of a Flat Maturity Structure. Proposition 3
states that as the volatility of the shock δ goes to 0, the unique

10. It is straightforward to see that the government never chooses n(1 − τ ) +
Bt

0 � 0 for either t = 1 or t = 2. In that case, ct is arbitrarily close to 0 for t = 1,
2, which implies that equation (13) is violated since a positive value of c0 cannot
satisfy that equation. Therefore, date 0 policy always satisfies n(1 − τ ) + Bt

0 > 0
for t = 1, 2 and equation (20) applies.
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optimal solution under lack of commitment admits a flat maturity
structure with B1

0 = B2
0. It implies that for arbitrarily low levels

of volatility, the government will choose a nearly flat maturity
structure, which is in stark contrast to the case of full commit-
ment described in Proposition 2. In that case, debt positions take
on opposing signs and are bounded away from 0 for arbitrarily low
values of volatility.

PROPOSITION 3 (Lack of Commitment, Deterministic Limit). The
unique solution under lack of commitment as δ → 0 satisfies

(23) B1
0 = B2

0 = n (1 − τ )
θ

1
2

0 − 1
3

= 1
2

B > 0.

When δ goes to 0, the cost of lack of commitment also goes to
0. The reason is that, as in Lucas and Stokey (1983), the govern-
ment utilizes the maturity structure of debt in order to achieve the
same allocation as under full commitment characterized in equa-
tion (15). More specifically, while the program under commitment
admits a unique solution for δ > 0, when δ = 0, any combination
of B1

0 and B2
0 satisfying

B1
0 + B2

0 = B

is optimal. Whereas the government with commitment can choose
any such maturity, the government under lack of commitment
must by necessity choose a flat maturity in order to achieve the
same welfare.

Why is a flat maturity structure optimal as volatility goes to
0? To see this, let δ = 0, and consider the incentives of the date
1 government. This government—which cares only about raising
spending—would like to reduce the market value of what it owes
to the private sector which from the intertemporal condition can
be represented by

(24) B1
0 + c1

c2
B2

0.

Moreover, the government would also like to increase the market
value of newly issued debt, which can be represented by

(25)
c1

c2
B2

1.
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If debt maturity were tilted toward the long end, then the date
1 government would deviate from a smooth policy so as to reduce
the value of what it owes. For example, suppose that B1

0 = 0 and
B2

0 = B. Under commitment, it would be possible to achieve the
optimum under this debt arrangement. However, under lack of
commitment, equation (20) implies that the government deviates
from the smooth ex ante optimal policy by choosing c1 < c2. This
deviation, which is achieved by issuing higher levels of debt B2

1
relative to commitment, serves to reduce the value of what the
government owes in equation (24), therefore freeing up resources
to be utilized for additional spending at date 1.

Analogously, if debt maturity were tilted toward the short
end, then the government would deviate from a smooth policy
so as to increase the value of what it issues. For example, sup-
pose that B1

0 = B and B2
0 = 0. As in the previous case, this debt

arrangement would implement the optimum under commitment.
However, rather than choosing the ex ante optimal smooth policy,
the date 1 government lacking commitment chooses policy accord-
ing to equation (20) with c1 > c2. This deviation, which is achieved
by issuing lower levels of debt B2

1 relative to commitment, serves
to increase the value of what the government issues in equation
(25), therefore freeing up resources to be utilized for additional
spending at t = 2.

It is only when B1
0 = B2

0 = B
2 that there are no gains from

deviation. In this case, it follows from equation (20) that B2
1 = B2

0,
and therefore any deviation’s marginal effect on the market value
of outstanding debt is perfectly outweighed by its effect on the
market value of newly issued debt. For this reason, a flat debt
maturity structure induces commitment.

ii. Trade-off between Commitment and Insurance. What this
example illustrates is that, whatever the value of δ, the govern-
ment always faces a trade-off between using the maturity struc-
ture to fix its problem of lack of commitment and using the ma-
turity structure to insulate the economy from shocks. Under lack
of commitment, the date 1 short-term interest rate captured by c2

c1

is rising in B2
0 and declining in B1

0 and this follows from equation
(20). The intuition for this observation is related to our discussion
in the previous section.11

11. One natural implication of this observation is that the slope of the yield
curve at date 0 is increasing in the maturity of debt issued at date 0. Formally,



74 QUARTERLY JOURNAL OF ECONOMICS

A flat maturity structure minimizes the cost of lack of com-
mitment. Equation (15) implies that the solution under full com-
mitment requires c1

c2
= ( θ2

θ1
)

1
2 ). From equation (20), this can only be

true under lack of commitment if B1
0 = B2

0 since in that case,

(26)
c1

c2
=

(
θ2

θ1

) 1
2
[(

n(1 − τ ) + B1
0

)
(
n(1 − τ ) + B2

0

)] 1
2

.

Therefore, the short-term interest rate at date 1 under lack of
commitment can only coincide with that under full commitment
if the chosen debt maturity is flat under lack of commitment.12

In contrast, a tilted maturity structure minimizes the cost of
incomplete markets. To see this, let cH

t and cL
t correspond to the

values of c at date t conditional on θ1 = θH and θ1 = θL, respectively,
under full commitment. From equation (15), under full commit-
ment it is the case that cH

1
cL

1
= ( θ L

θ H )
1
2 and cH

2
cL

2
= [( αθ L+(1−α)θ H )

(αθ H+(1−α)θ L )]
1
2 . From

equation (20), this cannot be true under lack of commitment if
B1

0 = B2
0. The variance in consumption at date 1 under lack of

commitment could only coincide with that under full commitment
if the chosen debt maturity under lack of commitment is tilted.

Thus, the government at date 0 faces a trade-off. On the one
hand, it can choose a flat maturity structure to match the short-
term interest rate between dates 1 and 2 which it would prefer
ex ante under full commitment. On the other hand, it can choose
a tilted maturity structure to try to mimic the variance in con-
sumption at dates 1 and 2 which it would prefer ex ante under
full commitment. This is the key trade-off between insurance and
commitment that the government considers at date 0. We formally
analyzed this trade-off through a second-order approximation to
welfare in a neighborhood of the deterministic case (δ = 0). We
found that, up to this approximation, for any value of the variance
δ > 0 the cost of lack of commitment is of higher order importance
than the cost of lack of insurance. Thus, the debt maturity should

starting from a given policy, if we perturb B1
0 and B2

0 so as to keep the primary

deficit fixed at date 0, one can show that
q1

0
q2

0
is strictly increasing in B2

0. This result

is in line with the empirical results of Guibaud, Nosbusch, and Vayanos (2013)
and Greenwood and Vayanos (2014).

12. This observation more generally reflects the fact that, conditional on B1
0 =

B2
0, the government under full commitment and the government under lack of

commitment always choose the same policy at date 1.
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be structured to fix the problem of lack of commitment, and should
therefore be flat.13

2. Full Persistence Limit. In the previous section, we consid-
ered an economy in which the volatility of the shock is arbitrarily
low, and we showed that optimal policy is a flat debt maturity
which minimizes the cost of lack of commitment. In this section,
we allow the volatility of the shock to take on any value, and we
consider optimal policy as the persistence of the shock α goes to 1.

PROPOSITION 4 (Lack of Commitment, Full Persistence Limit). The
unique solution under lack of commitment as α → 1 satisfies

(27) B1
0 = B2

0 = n (1 − τ )
θ

1
2

0 − 1
3

= 1
2

B > 0.

This proposition states that as the persistence of the shock α

goes to 1, the unique optimal solution under lack of commitment
admits a flat maturity structure with B1

0 = B2
0. This means that for

arbitrarily high values of persistence, the government will choose
a nearly flat maturity structure, which is in stark contrast to the
case of full commitment described in Proposition 2. In that case,
debt positions are tilted and arbitrarily large in magnitude since
B1

0 diverges to minus infinity and B2
0 diverges to plus infinity as α

approaches 1. Given equation (15) which holds under full commit-
ment and equation (20) which holds under lack of commitment,
this proposition implies that under lack of commitment, the gov-
ernment no longer insulates the economy from shocks, since the
level of public spending at dates 1 and 2 is no longer responsive
to the realization of uncertainty at date 1. Therefore, as α goes to
1, the cost of lack of commitment remains positive.

The reasoning behind this proposition is as follows. As persis-
tence in the shock between dates 1 and 2 goes to 1, the government
at date 0 would prefer to smooth consumption as much as possible
between dates 1 and 2. From equation (20), the only way to do this
given the incentives of the government at date 1 is to choose a flat
debt maturity with B1

0 = B2
0. Clearly, choosing B1

0 = B2
0 reduces

hedging, since from equation (20) it implies that consumption,
and therefore public spending, is unresponsive to the shock. If the

13. Details regarding this exercise are in Online Appendix B.

https://academic.oup.com/qje
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government were to attempt some hedging as under commitment
with B1

0 < 0 and B2
0 > 0, it would need to choose debt positions of

arbitrarily large magnitude, since the variation in the short-term
interest rate at date 1 across states diminishes as persistence
goes to 1. From Lemma 1, if B1

0 � −n(1 − τ ), this leads the date
1 government to choose c1 and c2 arbitrarily close to 0, but this
is infeasible from the perspective of period 0 since there does not
exist a level of c0 high enough to satisfy equation (13) in that case.

Since any hedging has an infinite cost in the limit, the date
0 government chooses to forgo hedging altogether and instead
chooses a flat debt maturity which induces the date 1 government
to implement a smooth consumption path. While under commit-
ment such a smooth consumption path could be implemented with
a number of maturity structures, under lack of commitment it can
only be implemented with a flat debt position. In doing so, the gov-
ernment minimizes the welfare cost due to lack of commitment.14

3. Discussion. The two limiting cases described provide ex-
amples in which the optimal debt maturity under lack of commit-
ment is flat. In the case where the volatility of the shock goes to
0, the benefit of hedging goes to 0, and for this reason, the gov-
ernment chooses a flat maturity structure to minimize the cost
of lack of commitment. A similar reasoning applies in the case
where the persistence of the shock goes to 1, since the cost of any
hedging becomes arbitrarily large. The optimal maturity under
lack of commitment is thus in stark contrast to the case of full
commitment. In that case, the government continues to hedge in
the limit by choosing large and tilted debt positions.

Our examples more broadly show that any attempt to
hedge by the government will be costly in terms of commit-
ment. A tilted maturity creates a greater scope for deviation
ex post, and this is costly from an ex ante perspective. For-
mally, a tilted maturity induces the date 1 government to de-
viate to a policy that reduces the right-hand side of equation
(14); doing so causes the left-hand side of equation (13) to

14. One can easily show using numerical methods that the results in Proposi-
tions 3 and 4 do not depend on the particular preference structure. In general, in a
three-period economy with exogenous tax rates or exogenous spending, a smooth
policy between dates 1 and 2 can only be guaranteed with a flat maturity structure.
Moreover, as persistence goes to 1, any hedging has an infinite cost in the limit.
Our example allows us to show the optimality of a flat maturity theoretically since
we are able to solve for the date 1 policy in closed form using Lemma 1.



OPTIMAL TIME-CONSISTENT GOVERNMENT DEBT MATURITY 77

also become lower. Therefore, by relaxing the implementability
condition at date 1, the date 1 government is tightening the
implementability condition at date 0, which can directly reduce
the ex ante welfare at date 0. In the following section we explore
the quantitative implications of this insight once we move away
from the limiting cases in our three-period example.

IV. QUANTITATIVE EXERCISE

We first consider a finite horizon economy. The advantage of a
finite horizon over an infinite horizon is that it is computationally
feasible to allow the government to choose any arbitrary debt
maturity structure. We then move to consider an infinite horizon
economy with limited debt instruments which allows us to more
suitably capture the quantitative features of optimal policy and to
characterize policy dynamics. We show in these exercises that the
optimal debt maturity is nearly flat. We conclude by discussing
the policy implications of our analysis.

We use the same parameterization as in Chari, Christiano,
and Kehoe (1994). More specifically, we set the per period payoff
of households to

(28)
c1−σc

t − 1
1 − σc

+ η
(1 − nt)1−σl − 1

1 − σl
+ θt

g1−σg
t − 1
1 − σg

,

with σ c = σ l = σ g = 1. η = 3.33 since this value implies that hours
worked n = 0.23 under full commitment. Each period is a year, and
hence β = 0.9644 such that the riskless rate is 4%. We consider an
economy with two shocks θL and θH following a symmetric first-
order Markov process. The levels and persistence of the shocks
imply that, under full commitment, the average spending to out-
put ratio is 0.18, the standard deviation of spending equals 7%
of average spending, and the autocorrelation of spending is 0.89.
All these values match the statistics and steady state values in
Chari, Christiano, and Kehoe (1994). We set θ0 = θH.

IV.A. Finite Horizon Analysis

We begin our quantitative analysis in a finite horizon econ-
omy with t = 0, ..., T, where the set of available maturities is un-
restricted. To compare our results with those of the three-period
example of Section III in which a flat debt maturity (i.e., B1

0 = B2
0)

is optimal, we allow the government at every date t to issue a
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consol BL
t � 0 which represents a promise by the government to

pay a constant amount BL
t at each date t + k for k = {1, ..., T

− t}. In addition, the government can issue a set of zero-coupon
bonds {Bt+k

t }T −t−1
k=1 . We can exclude T-period zero-coupon bonds BT

t
because these securities are redundant given the presence of the
consol BL

t .
It follows that the dynamic budget constraint of the govern-

ment equation (4) for t < T − 1 can be rewritten as:

(29)

gt + Bt
t−1 + BL

t−1 = τtnt +
T −t−1∑

k=1

q t+k
t

(
Bt+k

t − Bt+k
t−1

) + qL
t

(
BL

t − BL
t−1

)
,

where qL
t corresponds to the price of the consol. This budget con-

straint takes into account that, at date t, the government: (i)
makes a flow payoff to households equal to Bt

t−1 + BL
t−1 according

to their holdings of one-period bonds and consols, (ii) exchanges
old zero-coupon bonds Bt+k

t−1 for new zero-coupon bonds Bt+k
t at

price q t+k
t , and (iii) exchanges old consols BL

t−1 for new consols BL
t

at price qL
t . In this environment, a flat debt maturity—which we

found to be optimal in the theoretical example of Section III—
corresponds to one in which Bt+k

t = 0 ∀k.15

We choose initial conditions such that, under full commit-
ment, the value of debt equals 2.1% of the net present value of
output, out of which 28% has a maturity of less than one year, and
the rest is equally distributed across the remaining maturities.16

Our main results are unaffected by our choice of initial conditions,
as we show below. All debt must be repaid in the terminal date.
As in the theoretical example of Section III, we let θT be deter-
ministic from the point of view of the government at T − 1, and
equal to its expected value conditional on the realization of θT−1.
This modification implies that full hedging is possible under full
commitment, so that any inefficiencies in our setting arise purely

15. At t = T − 1, the dynamic budget constraint is gt + Bt
t−1 + BL

t−1 = τtnt +
qL

t (BL
t − BL

t−1), since there are no zero-coupon bonds that can be issued.
16. These values are consistent with our parameterization of the infinite-

horizon economy which matches the U.S. data from 1988 to 2007 described in the
next section. Given a discount factor β = 0.9644, a debt equal to 2.1% of the net
present value of output corresponds to a debt to GDP ratio of roughly 60% in an
infinite horizon economy.
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from the lack of commitment. All of our results continue to hold if
θT is instead stochastically determined.

Table I summarizes the main results. Panel A describes our
results in a three-period economy, and Panel B describes our re-
sults in a four-period economy. In all cases, we display bond posi-
tions as a fraction of GDP, and with some abuse of notation in the
text the bond positions B represent B normalized by GDP. Panel
A describes the benchmark simulation under full commitment. In
this case, B1

0 = −10,057 and BL
0 = 5,120 (percent of GDP). These

large magnitudes are consistent with the analysis of Angeletos
(2002) and Buera and Nicolini (2004). In the case of lack of com-
mitment, B1

0 = 0.07 and BL
0 = 2.32, so that optimal debt maturity

is nearly flat. This characterization is consistent with that of our
theoretical three-period model in Section III in which the optimal
debt maturity is exactly flat.

In Panel B, we find similar results if the horizon is extended
to a four-period economy. In this circumstance, the optimal matu-
rity structure at date 0 under commitment is indeterminate since
there are more maturities than shocks. If confined to a one-period
bond and a consol, the government chooses a one-period bond
equal to −7,317% of GDP and a consol equal to 2,529% of GDP. In
contrast, under lack of commitment, B1

0 = −0.04, B2
0 = 0.00, and

BL
0 = 2.41, so that the optimal maturity structure is nearly flat.

Moreover, the optimal government debt maturity is even more flat
at date 1, since B2

1 = 0.00 and BL
1 = 2.44.

In the second, third, and fourth columns of Table I, we con-
sider the robustness of our results as we increase the volatility
and decrease the persistence of shocks, since this moves us fur-
ther away from the limiting cases considered in Section III. We
find that the optimal debt maturity under lack of commitment
remains nearly flat if the standard deviation of shocks is 2 and
4 times larger than in the benchmark simulation. We find the
same result if shocks have 0 persistence and are i.i.d.

In the last two columns of Table I, we explore whether our
results depend on the initial tilt of the maturity structure. We
consider an extreme case where the majority of the debt consists
of one-period bonds, so that these constitute 72% instead of 28%
of liabilities, and the total amount of debt is unchanged. We find
that under lack of commitment, the optimal debt maturity at date
0 remains nearly flat both in the three-period and four-period
models, though it is less flat than in the benchmark case since
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the one-period bond B1
0 is larger in absolute value. This is in part

because the initial debt position is itself highly tilted and there is
a large flattening out which occurs during the initial period. In the
four-period model, the optimal debt maturity becomes even more
flat with time (date 1 policies involve a nearly flat maturity with
B2

1 = 0.05 and BL
1 = 2.59). In the last column, we consider the

consequences of having initial debt be exactly flat, and we find
that the optimal maturity structure under lack of commitment is
nearly flat in all cases.

In the bottom of Panel B, we consider the consequences of
restricting the set of maturities to a one-year bond and a consol.
We find that our main results continue to hold in this case and
that the optimal debt maturity is nearly flat even under these
restricted set of debt instruments.

Our quantitative result from the finite horizon environment
are in line with our theoretical results. The optimality of a flat
debt maturity emerges because of the combination of two forces.
First, substantial hedging requires massive and tilted debt po-
sitions, as has been shown in Angeletos (2002) and Buera and
Nicolini (2004). Due to their size, financing these positions can be
very expensive in terms of average tax distortions because of the
lack of commitment by the government. Second, under empirically
plausible levels of volatility of public spending, the cost of lack of
insurance under a flat maturity structure is small. Therefore, the
optimal policy pushes in the direction of reducing average tax
and spending distortions versus reducing the volatility of these
distortions, and the result is a nearly flat maturity structure.

IV.B. Infinite Horizon Analysis

The previous section suggested that quantitatively, a govern-
ment lacking commitment should principally issue consols in a
finite horizon economy. We now consider the robustness of this
result in an infinite horizon. In an infinite horizon economy, the
set of tradeable bonds is infinite, and to facilitate computation, we
reduce the set of tradeable bonds in a manner analogous to the
work of Woodford (2001) and Arellano et al. (2013). Namely, we
consider an economy with two types of bonds: a decaying perpetu-
ity and a nondecaying consol. We allow for a nondecaying consol
since our analysis of the previous sections suggests that the opti-
mal debt maturity is nearly flat. We then consider whether or not



82 QUARTERLY JOURNAL OF ECONOMICS

the government makes use of the nondecaying perpetuity in its
financing strategy.

Let BS
t−1 � 0 denote the value of the coupon associated with

the decaying perpetuity issued by the government at t − 1. More-
over, let BL

t−1 � 0 denote the value of the coupon associated with
the nondecaying consol issued by the government at t − 1. It
follows that the dynamic budget constraint of the government
becomes:

(30) gt + BS
t−1 + BL

t−1 = τtnt + qS
t

(
BS

t −γ BS
t−1

)
+ qL

t

(
BL

t −BL
t−1

)
.

The only difference relative to equation (29) relates to the de-
caying perpetuity. Besides the consol, the government exchanges
nondecayed perpetuities γ BS

t−1 for new perpetuities BS
t at price

qS
t , where γ ∈ [0, 1).

We focus on an MPCE in which the value and policy functions
are differentiable. We cannot prove that this MPCE is unique, but
we have verified that our computational algorithm converges to
the same policy when starting from a large grid of many different
initial guesses.17 In our benchmark simulation we let γ = 0, so that
BS represents a one-year bond. We choose initial debt positions
to match the U.S. statistics for the period 1988–2007, with an
average market value of total debt of 60% of GDP, out of which
28% has maturity of less than one year.18

1. Benchmark Simulation. Figure I displays the path of the
one-year bond and the consol relative to GDP. The left panel shows
the path of these quantities under full commitment. From t � 1
onward, the value of BS is −2,789% of GDP and the value of BL is
102% of GDP. The price of the consol is significantly higher than
that of the one-year bond, which explains why the position is sig-
nificantly lower; in fact, the market value of the consol is 2,858% of
GDP. These large and highly tilted quantities are consistent with
previous results under commitment. These debt positions are not
actively managed and are constant over time.

17. Further details regarding our computational method are available in the
Online Appendix.

18. This calculation ignores off-balance sheet liabilities, such as unfunded
mandatory spending obligations which are significantly more long term. Taking
this additional debt into account and changing initial conditions would not change
our main conclusion that the optimal debt maturity under lack of commitment is
nearly flat.

https://academic.oup.com/qje
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FIGURE I

Debt Positions with and without Commitment

The figure shows the optimal debt positions over time with commitment (left
panel) and without commitment (right panel). For the case with lack of commit-
ment we report averages across 1,000 simulations.

The right panel considers the economy under lack of commit-
ment, and in this scenario debt is actively managed from t � 1
onward. Since it is actively managed, we plot the average value of
debt for each time period taken from 1,000 simulations. Between
t = 1 and t = 100, the average value of BS is −0.01% of GDP and
the average value of BL is 2.22% of GDP.19 Therefore, the maturity
structure of debt is approximately flat. Also, the total amount of
debt maturing in one period (i.e., the value one-period bond plus
the coupon payment of the consol) is positive and equals 2.21% of
GDP. At the same horizon, a government with commitment would
instead hold assets with a value of about 26 times the GDP.

Figure II considers an equilibrium sequence of shocks and
shows that BS is approximately 0 and constant in response to
shocks, whereas BL is actively managed. More specifically, the
level of the consol rises (declines) during high (low) spending
shocks. This pattern occurs because the government runs larger
deficits (surpluses) when spending is high (low). Therefore, in con-
trast to the case of full commitment, the government actively
manages its debt which primarily consists of consols.

19. We calculate the average starting from t = 1 rather than t = 0 since the
simulation suggests that debt quickly jumps towards its long-run average between
t = 0 and t = 1.
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FIGURE II

Active Debt Management

The figure shows the evolution of debt positions for a particular sequence of
shocks. The shaded areas indicate periods in which the fiscal shock is low.

Figure III presents the path of policy under this se-
quence of shocks. Whereas taxes are nearly constant under full
commitment—which is consistent with the complete market re-
sults of Chari, Christiano, and Kehoe (1994)—they are volatile
and respond persistently to shocks under lack of commitment.
More specifically, during periods of high (low) expenditure, taxes
jump up (down) and continue to increase (decrease) the longer the
fiscal shock persists. Periods of high (low) expenditure are periods
with lower (higher) primary surpluses in the case of full commit-
ment and lack of commitment, but in contrast to the case of full
commitment, under lack of commitment the surplus responds per-
sistently to shocks. This persistence is reflected in the total market
value of debt, which contrasts with the transitory response of the
market value of debt in the case of full commitment.20

20. Shin (2007) considers a model under full commitment and shows that if
there are N possible states of the shock but at any moment only N1 < N can be
reached, then N1 bonds of different maturities can provide full insurance. Such a
model would require active management of debt positions. Our model under lack
of commitment also captures the active management of debt. This result, however,
is not achieved by limiting the maturities available; instead it follows from the
trade-off between hedging and the cost of borrowing.
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FIGURE III

Fiscal Policy without Commitment

The figure shows the evolution of public expenditure, tax rates, total debt, and
primary surpluses for a particular sequence of shocks.

We can calculate the welfare cost of lack of commitment in this
setting. In particular, we compare welfare under full commitment
to that under lack of commitment and report the welfare difference
in consumption equivalent terms. We find that this welfare cost is
0.0038%. As a comparison, the welfare cost of imposing a balanced
budget on a government with full commitment is 0.04%, more than
10 times larger.21 These numbers mean that the welfare cost of
lack of commitment is very low—as long as the maturity is chosen
optimally which implies a nearly flat maturity.

In addition, we can compute the welfare cost of imposing a
completely flat maturity. To do this, we compare welfare under
lack of commitment when the government can freely choose BS

to that when BS is constrained to 0 in all periods (so that debt
issuance is exactly flat). We find that the difference in welfare

21. This corresponds to the cost of forcing a government to set BS
t = BS

−1 and
BL

t = BL
−1 ∀t.
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FIGURE IV

Debt Positions with Different Debt Maturities

The figure shows the optimal debt positions with commitment (left column) and
without commitment (right column) under alternative values for the decay rate of
the perpetuity. For the case with lack of commitment we report averages across
1,000 simulations of 200 periods.

is less than 0.00001%. This negligible welfare cost implies that
optimal policy under lack of commitment can be approximated by
constraining debt issuance to consols.

2. Robustness: Alternative Debt Maturities. One limitation
of our infinite horizon analysis is that we have restricted the hori-
zon of the short-term debt instrument. We now show that the
optimal maturity structure is flat even if alternative horizons are
considered. Figure IV displays the average values of BS and BL

under commitment and under lack of commitment for different
values of γ (the decay rate of the perpetuity BS).22 Under full
commitment, the optimal value of BL is positive and nearly un-
changed by different values of γ , whereas the optimal value of
BS is negative, large, and decreasing in magnitude as γ rises. The
reason is that the higher is γ , the lower is the decay rate of BS and
the higher its price, implying that a smaller position is required
for hedging. In contrast, under lack of commitment, the average
value of the perpetuity BS is 0 regardless of the value of γ , and

22. For this exercise, the initial conditions are calculated for each γ so as to
keep fixed the market value of initial debt.
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FIGURE V

Debt Positions under Alternative Variances and Persistences of Fiscal Shocks

The figure shows the optimal debt positions with commitment (left) and without
commitment (right) under alternative values for the standard deviation (top row),
and persistence (bottom row) of public expenditure. For the case with lack of
commitment we report averages across 1,000 simulations of 200 periods.

the value of the consol BL is large and unaffected by γ . As such,
the optimal debt maturity remains flat, even when considering
alternative debt maturities.

3. Robustness: Variance and Persistence of Fiscal Shocks.
The quantitative results are consistent with the theoretical re-
sults from the three-period model which considered the limiting
cases as volatility declined to 0 and persistence increased to 1. A
natural question concerns the degree to which our results depend
on the parameterization of public spending shocks. To explore this
question, we return to the benchmark environment with γ = 0 and
choose different values of volatility and persistence for the public
spending shock.

Figure V displays the average values of BS and BL under
different assumptions for the shocks’ process. In the case of full
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TABLE II
DEBT POSITIONS WITH ALTERNATE SHOCKS

Commitment Lack of commitment

Benchmark Benchmark 20 shocks w/Fiscal shock w/Prod. shock

Panel A: Fiscal shocks
One-year bond −2,789.46 −0.005 −0.005 — —
Consol 101.76 2.22 2.23 — —

Panel B: Productivity shocks
One-year bond −13.49 −0.007 −0.007 −0.028 —
Consol 2.71 2.21 2.24 2.15 —

Panel C: Discount factor shocks
One-year bond 0.00 0.000 0.000 0.062 −0.014
Consol 2.26 2.26 2.36 2.24 2.15

Notes. The table reports the average debt position (% of GDP) over 1,000 simulations of 200 periods. The
shock processes follow discrete Markov-chains with 2 states (first and second columns), 20 states (third
column), and 4 states (last two columns).

commitment, debt positions are large and tilted independently of
the volatility and persistence of the shocks. Moreover, consistent
with our three-period example, debt positions become arbitrarily
large as the autocorrelation of the shock goes to 1. In contrast, the
optimal maturity structure under lack of commitment is nearly
flat for all volatilities and persistence levels of public spending.
We additionally find that the debt positions decrease in size as
volatility increases, and this occurs because the volatility of the
marginal utility of consumption increases, which facilitates hedg-
ing through the consol with a smaller position. As such, our re-
sult is robust to changes in the stochastic characteristics of fiscal
shocks.

4. Robustness: Additional Shocks. We have thus far consid-
ered an economy in which the shocks to the economy are fiscal.
In Table II, we show that our main result—that the optimal debt
maturity is flat—is robust to the introduction of productivity and
discount factor shocks. We consider each shock in isolation in the
first two columns. We then increase the number of realization of
shocks in the third column (so that the number of shock realiza-
tions exceeds the number of debt instruments), and in the last two
columns we consider combinations of different shocks.

Panel A reports the debt position in our benchmark model
with fiscal shocks θ t and replicates our results described in the
previous sections. Panel B introduces a productivity shock in an
environment in which θ t is constant and equal to its average
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value. More specifically, we replace nt in the resource constraint
equation (1) with Atnt, where At captures the productivity of labor
and therefore equals the wage. Let At = {AL, AH} follow a sym-
metric first-order Markov process with unconditional mean equal
to 1. We choose AL, AH, and the persistence of the process so that,
as in Chari, Christiano, and Kehoe (1994), the standard deviation
of At equals 0.04 and the autocorrelation equals 0.81. The first
column of Panel B shows that, consistently with the results in
Buera and Nicolini (2004), under commitment the average debt
positions are tilted, though the magnitudes of debt are smaller
than those under fiscal shocks. In the second column, it is clear
that optimal debt positions under lack of commitment are nearly
flat.

Panel C of Table II introduces a discount factor shock in an
economy in which θ t and At are constant and equal to the average
value. We replace the utility function in equation (28) with

ζt

[
c1−σc

t − 1
1 − σc

+ η
(1 − nt)1−σl − 1

1 − σl
+ θt

g1−σg
t − 1
1 − σg

]

for some ζ t = {ζL, ζH} which follows a first-order Markov process.
ζ t represents a discount factor shock, which can impact the vari-
ance of short-term interest rates without affecting the time series
properties of other variables in the model. As discussed in An-
geletos (2002) and Buera and Nicolini (2004), the large size of the
debt positions required for hedging under commitment is driven
in part by the fact that fluctuations in short-term interest rates
are small in the benchmark economic environment. Introducing
the discount factor shock allows us to increase the volatility of
interest rates and determine whether the optimality of a flat debt
maturity in our setting depends on the presence of low interest
rate volatility.

To that end, we choose the stochastic properties of ζ t so that
under commitment, the mean of the one-year interest rate is 4%,
its standard deviation is 0.73% of the mean, and its persistence
is 0.78, which matches the properties of the real one-year interest
rate in the United States from 1988 to 2007.23 The first column
of Panel C shows that in this situation, the maturity structure
is exactly flat under commitment, and this is because optimal

23. The real interest rate is calculated as the difference between the nominal
one-year rate and realized inflation (GDP deflator).
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policy is smooth from date 1 onward. As such, a flat debt maturity
allows the market value of the consol to fluctuate one-to-one with
the present value of future surpluses. Analogous logic implies that
optimal debt maturity is flat under lack of commitment, where a
flat maturity also mitigates the commitment problem.

In the third column of Table II, we increase the number of
shocks so that these exceed the number of debt instruments. In
each panel, we extend the environment by allowing the shocks
to take on 20 realizations that approximate a Gaussian AR(1)
process. This exercise is performed while preserving the mean,
standard deviation, and persistence of the shocks. We find that
our results are unchanged and that the optimal debt maturity
remains flat under lack of commitment.

The last two columns of Table II consider our results in en-
vironments with two types of shocks, where we take all combina-
tions of the shocks previously analyzed. This allows us to analyze
situations where the government may have greater incentives for
hedging, even under lack of commitment. For instance, the combi-
nation of discount factor shocks with either fiscal or productivity
shocks means that the fluctuations in the government’s financing
needs come hand in hand with larger fluctuations in short-term
interest rates. These larger interest rate fluctuations imply that
hedging does not require very large debt positions and is there-
fore less expensive. In fact, in all the situations considered, we find
that the maturity is slightly more tilted, but it remains nearly flat.

In Panel B, we consider an environment with fiscal and pro-
ductivity shocks, where we set Corr(θ t, At) = −0.33 so that our
simulation matches the correlation between total factor produc-
tivity (TFP) and primary deficits in the United States from 1988 to
2007.24 We find that the optimal debt maturity continues to be ap-
proximately flat, though it is a little more tilted in comparison to
the case in which the impact of each shock is assessed separately.

In Panel C, we consider an environment with fiscal shocks
and discount factor shocks. We set Corr(θ t, ζ t) = −0.51 so that our
simulation matches the correlation between real interest rates
and primary deficits in the United States from 1988 to 2007. In
this case, the maturity structure is slightly more tilted than in
the case which excludes the discount factor shock (the one-year
bond is 0.068% of GDP), but the optimal debt maturity remains

24. The series of the TFP shock and the primary deficit are taken from the
World Penn Table and the U.S. Office of Management and Budget, respectively.
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TABLE III
DEBT POSITIONS WITH COMMITMENT TO SPENDING (LUCAS AND STOKEY 1983 MODEL)

Commitment Lack of commitment

Benchmark Benchmark 20 Shocks

Panel A: Fiscal shocks
One-year bond − 2,789.32 − 0.006 − 0.008
Consol 101.76 2.22 2.21

Panel B: Productivity shocks
One-year bond − 90.06 − 0.062 − 0.060
Consol 5.54 2.24 2.31

Panel C: Discount factor shocks
One-year bond 0 0 0
Consol 2.27 2.27 2.37

Notes. The table reports the average debt position (% of GDP) over 1,000 simulations of 200 periods, for
a model with exogenous public expenditure. The shock processes follow discrete Markov-chain with 2 states
(first and second columns) or 20 states (third column). In the model with fiscal shocks (Panel A), public
expenditure takes the same values as in the model with endogenous spending of Table II under commitment.
With different shocks (Panels B and C), public expenditure is fixed at the average of the values taken in the
corresponding endogenous spending models under commitment.

essentially flat.25 In the final column of Panel C, we consider an
environment with productivity and discount factor shocks, and we
set Corr(At, ζ t) = −0.43, so that our simulation matches the cor-
relation between total factor productivity and real interest rates.
We find that the maturity is slightly more tilted than in the case
which excludes the discount factor shock, but it remains approxi-
mately flat.

5. Robustness: Commitment to Spending. We have so far
considered an economy in which the government lacks commit-
ment to taxes, spending, and debt issuance. Instead, in the econ-
omy of Lucas and Stokey (1983), public spending is exogenous and
can therefore not be chosen by the government. Table III shows
that our results hold, even if the government is able to commit to
the level of spending, as is the case in their model. Under commit-
ment the optimal maturity structure is tilted, and the optimal tilt

25. The optimal debt maturity is tilted to the short end in this case since there
is a negative correlation between interest rates and the government’s financing
needs. We have also explored the extent to which one can put an upper bound
on the degree of tilt in the government’s debt maturity. For example, in the case
when interest rates and fiscal shocks are perfectly positively correlated, the value
of the one-year bond is −0.23 and the consol is 2.14% of GDP, so that even in this
extreme case, the bulk of public debt is in the consol.
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FIGURE VI

Debt Positions under Alternative Preferences

The figure shows the optimal debt positions with commitment (left) and without
commitment (right) under alternative values for the risk aversion (top row) and
curvature of leisure (bottom row). For the case with lack of commitment we report
averages across 1,000 simulations of 200 periods.

is extremely sensitive to the particular type of shocks affecting the
economy. Instead, with lack of commitment the maturity remains
nearly flat under all types of shocks considered.

6. Robustness: Alternate Preferences. We now consider the
robustness of our results to other preference specifications. The
top panel of Figure VI considers the consequences of altering the
coefficient of relative risk aversion σ c. In the case of full commit-
ment, lower values of σ c generate larger and more tilted debt po-
sitions. A lower value of σ c reduces the volatility in the marginal
utility of consumption and therefore makes it more difficult to
achieve significant hedging with smaller positions. In the case of
lack of commitment, a similar force emerges since both the tilt and
size of debt positions rise. Note however that, quantitatively, the
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maturity structure remains nearly flat as σ c declines. The reason
is that even though more tilted positions are useful for hedging,
more tilted positions also exacerbate the problem of lack of com-
mitment, so that the best way to deal with this problem is to still
choose a nearly flat maturity structure.

The exercise in the bottom panel considers the equilibrium
under different values of σ l, which relates to the curvature of the
utility function with respect to leisure. We find that for all values
of σ l below 2, the optimal debt maturity under lack of commit-
ment is essentially flat. The effect of higher value of σ l is dual.
On one hand, higher values of σ l imply that it is socially costly
to have volatility in labor supply, and consequently, oscillations
in consumption play a greater role in absorbing public spending
shocks. This force increases the volatility in the marginal utility
of consumption and implies that smaller debt positions are re-
quired to generate hedging. On the other hand, higher values of
σ l also imply that it is more beneficial to engage in hedging as
a way of smoothing out labor market distortions. This force im-
plies larger debt positions since the value of hedging increases.
In the case of full commitment, we find that, quantitatively, the
first force dominates since debt positions become less tilted as σ l
increases. In the case of lack of commitment, we find that the sec-
ond force dominates since the consol position become larger as σ l
increases, which facilitates hedging. It continues to be the case
throughout, however, that the debt maturity is nearly flat under
lack of commitment.

IV.C. Implications for Fiscal Policy and Debt Management

As in the work of Barro (1979), Aiyagari et al. (2002), and
Bhandari et al. (2015), our analysis finds that optimal taxes are
volatile and respond persistently to economic shocks. In contrast
to this related work, this feature of optimal policy in our model
is due to the lack of commitment by the government as opposed
to the incompleteness of financial markets resulting from lim-
ited debt instruments. Moreover, this feature of optimal fiscal
policy—which does not hold under commitment and sufficiently
rich bond instruments as in Angeletos (2002) and Buera and Nicol-
ini (2004)—is consistent with the dynamics of U.S. tax rates, as
discussed in Barro (1979).

While the purpose of our analysis is normative, a natural
question concerns the degree to which government debt maturity
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in practice is consistent with the optimal government debt matu-
rity in theory. In this regard, we can also show that government
debt maturity in practice is much closer to the optimal govern-
ment debt maturity under lack of commitment versus under full
commitment.

To make this comparison, we can extend our framework as
well as that of Angeletos (2002) and Buera and Nicolini (2004) to
allow for a constant growth rate in labor productivity, a constant
inflation rate, and nominal—as opposed to real—government
bonds. Such an extension incorporates important features of the
U.S. economy and it implies that nominal GDP grows at a con-
stant long-run rate. The extension does not change the substance
of our results or those of Angeletos (2002) and Buera and Nicolini
(2004), and it facilitates a comparison to U.S. government debt
maturity.

Under this extension, the government under full commitment
holds a negative short-term nominal debt position and a positive
long-term nominal debt position. Both positions are large relative
to GDP, and both positions grow deterministically (in opposite di-
rections) at the long-run rate of nominal GDP, without responding
to shocks. In contrast, the government under lack of commitment
actively manages a positive nominal consol position in response to
shocks, and future consol payments are structured to grow at the
long-run rate of nominal GDP. This characterization is the analog
of a flat debt position in our theoretical framework once long-run
nominal GDP growth is taken into account.26

Figure VII displays the maturity structure of marketable U.S.
federal nominal treasury bonds in 2007.27 We display the sum of
all nominal payments—coupons and principal—due at various
horizons from the perspective of 2007 (i.e., “1” represents pay-
ments due in 2008, “2” represents payments due in 2009, etc.).28

With some abuse of notation, we can refer to the sum of all of
these nominal payments at horizon k as Bt+k

t . In a given year t
in which we observe the government’s bond portfolio, we can con-
struct a measure of the growth of these payments by calculating

26. For this extension, we let preferences satisfy equation (28), we set σ c = σ l
= σ g = 1, which is consistent with a balanced growth path.

27. A similar pattern emerges in more recent years. We chose 2007 for our
display since it predates the maturity management performed by the Federal
Reserve during periods of quantitative easing.

28. We exclude TIPS since we focus on nominal payments. We obtain similar
patterns if we include TIPS and adjust for expected inflation.
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FIGURE VII

Maturity Structure of U.S. Government Liabilities in 2007

The figure displays the maturity structure of U.S. federal marketable debt (prin-
cipal and coupons payments), excluding TIPS, calculated using CRSP data.

the average difference between log Bt+k+1
t and log Bt+k

t across all
k > 1. This statistic relates to the decay rate in our analysis of
the perpetuity in our simulations. In 2007, this average difference
implies that payments decline at an average rate of 11% a year.

Clearly, the U.S. debt maturity is very different from the opti-
mal maturity structure under full commitment, since in the data
all debt positions are positive, and they are all quantitatively
small relative to GDP.

Figure VIII displays the difference between log Bt+k
t and

log Bt+k−1
t−1 across different horizons k for t spanning 1985 to 2013.

This statistic measures the change in the k-maturity bond is-
suance over time. The figure shows significant comovement across
the maturity spectrum as overall debt rises and falls. This pattern
is in contrast to optimal policy under commitment in which debt
positions grow at a constant rate, with government assets and
government debt becoming larger and offsetting each other.

In sum, Figures VII and VIII show that debt payments are
positive across the maturity spectrum, payments are small rela-
tive to GDP, and importantly, payments change almost proportion-
ately across the maturity spectrum in response to shocks. These
features are all in line with the characterization of optimal debt
management under lack of commitment.

Nonetheless, there are important differences. In particular,
while the theoretically optimal maturity structure under lack of
commitment involves the issuance of perpetuities, the maximum
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Comovements across Maturities (1980–2013)

The figure displays the (log) change in the sum of the liabilities with maturity
between 0 and 10 years (solid line), between 10 and 20 years (line with circles),
and above 20 years (dashed line).

horizon of the U.S. government’s official marketable liabilities is
30 years. Moreover, whereas optimal policy under lack of com-
mitment requires future bond payments to grow at the rate of
nominal GDP—which has averaged around 5% since 1985—debt
payments in practice decline at a rate of 11%. Moreover, this pat-
tern is general: across all years between 1985 and 2013, debt
payments decline in the horizon, and the rate of decline is rel-
atively stable, a pattern consistent with the comovement across
maturities displayed in Figure VIII.29

Do these observations imply that U.S. government policy
could be improved by increasing the maturity of U.S government
debt? Based on our model—which excludes government trans-
fers and in which the government cannot commit to taxes and

29. Payments continue to decline, but the pace of decline is reduced if we
exclude bonds due in one-year—which often serve a liquidity purpose which is un-
modeled in our setting—and if we also exclude bonds held by the Federal Reserve.
Details available on request.
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spending but only to repaying public debt—the answer to this
question is yes.

However, in practice, the U.S. government does partially com-
mit to mandatory government transfer programs such as Social
Security and Medicare.30 While our model is not equipped to ad-
dress the issue of partial commitment, full commitment to such
transfers in our model can be introduced in the form of an exoge-
nous, nontradeable, and potentially stochastic debt portfolio at
date 0 representing this stream of future mandatory obligations.

An implication of such an extension is that if these manda-
tory obligations grow faster than nominal GDP—which has been
the case historically—then the government should choose the op-
timal maturity structure of marketable debt to offset this growth.
Such an offsetting, which frontloads marketable debt payments,
ensures that the path of payments from the government to the
private sector—both marketable debt payments and mandatory
old-age payments—grow at the same rate as nominal GDP. Taken
from this light, optimal marketable debt payments from the gov-
ernment should decline in the horizon, and the answer as to
whether lengthening U.S. government debt maturity would be
an improvement is ambiguous. In sum, given the complexity in
modeling the issue of partial commitment and in modeling the
time path of expected mandatory spending obligations, we leave
a full analysis of this question to future research.31

V. CONCLUSION

The current literature on optimal government debt maturity
concludes that the government should fully insulate itself from
economic shocks. This full insulation is accomplished by choosing
a maturity heavily tilted toward the long end, with a constant
short-term asset position and long-term debt position, both po-
sitions extremely large relative to GDP. In this article, we show

30. In principle, one can also consider other mandatory transfers from the U.S.
government, such as unemployment compensation and child tax credits.

31. In a preliminary analysis of this question, we modeled mandatory old-age
payments as deterministic and analyzed historical Social Security and Medicare
payments as well as projections from the U.S. government. We found that future
nominal marketable debt payments plus mandatory old-age payments from the
perspective of a given year grow at a rate of 3% to 4% with the horizon, which is
not too far from average nominal GDP growth of 5%. These findings suggest that
U.S. government debt maturity is close to optimal. Details available on request.
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that these conclusions strongly rely on the assumption of full com-
mitment by the government. Once lack of commitment is taken
into account, then full insulation from economic shocks becomes
impossible; the government faces a trade-off between the benefit
of hedging and the cost of funding. We show through a series of
exercises that the optimal debt maturity structure under lack of
commitment is nearly flat, with the government actively manag-
ing its debt in response to economic shocks. Thus, optimal policy
can be approximately achieved by confining government debt in-
struments to consols.

Our analysis thus provides an argument for the use of con-
sols in debt management based on the limited commitment of the
government to the future path of fiscal policy. The use of consols
has been pursued historically, most notably by the British govern-
ment in the Industrial Revolution, when consols were the largest
component of the British government’s debt (see Mokyr 2011).
Moreover, the reintroduction of consols has received some support
in the press and in policymaking circles (e.g., Leitner and Shapiro
2013; Yglesias 2013; Cochrane 2015).

Our analysis leaves several interesting avenues for future re-
search. First, our framework follows Angeletos (2002) and Buera
and Nicolini (2004) and therefore ignores nominal bonds and the
risk of surprise inflation. Taking this issue into account is impor-
tant since it incorporates a monetary authority’s ability to change
the value of outstanding debt in response to shocks, and it also
brings forward the issues of dual commitment to monetary and
fiscal policy. We believe that our work is a first step in studying
this more complicated problem. Second, our framework does not
incorporate investment and financing frictions, which can be af-
fected by the supply of public debt. It has been suggested that
short-term government debt is useful in alleviating financial fric-
tions (see, e.g., Greenwood, Hanson, and Stein 2015), and an open
question regards how important this friction is quantitatively rel-
ative to the lack of commitment. Finally, our analysis ignores
heterogeneity and the redistributive motive for fiscal policy (see,
e.g., Werning 2007; Bhandari et al. 2013). An interesting question
for future research involves how incentives for redistribution can
affect the maturity structure of public debt.
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APPENDIX: EQUILIBRIUM DEFINITION AND RECURSIVE

REPRESENTATION

Definition of MPCE. Let Bt ≡ {Bt+k
t }∞k=1 and qt ≡ {q t+k

t }∞k=1.
In every period t, the government enters the period and chooses
a policy {τt, gt, Bt} given {st, Bt−1}. Households then choose an
allocation {ct, nt, {bt+k

t }∞k=1}. An MPCE consists of a government
strategy ρ(st, Bt−1) which is a function of (st, Bt−1); a house-
hold allocation strategy ω((st, Bt−1), ρt, qt) which is a function of
(st, Bt−1), the government policy ρt = ρ(st, Bt−1), and bond prices
qt; and a set of bond pricing functions {ϕk(st, Bt−1, ρt)}∞k=1 with
q t+k

t = ϕk(st, Bt−1, ρt) ∀k � 1 which depend on (st, Bt−1) and the gov-
ernment policy ρt = ρ(st, Bt−1). In an MPCE, these objects must
satisfy the following conditions ∀t:

i. The government strategy ρ(·) maximizes equation (2)
given ω(·), ϕk(·) ∀k � 1, and the government budget con-
straint (4),

ii. The household allocation strategy ω(·) maximizes equa-
tion (2) given ρ(·), ϕk(·) ∀k � 1, and the household budget
constraint (3), and

iii. The set of bond pricing functions ϕk(·) ∀k � 1 satisfy equa-
tion (5) given ρ(·) and ω(·).

Recursive Representation of MPCE. We can use the primal
approach to represent an MPCE recursively. Recall that ρ(st, Bt−1)
is a policy that depends on (st, Bt−1), and that ω((st, Bt−1), ρt, qt) is
a household allocation strategy which depends on (st, Bt−1), gov-
ernment policy ρt = ρ(st, Bt−1), and bond prices qt, where these
bond prices depend on (st, Bt−1) and government policy. As such,
an MPCE in equilibrium is characterized by a stochastic sequence
in equation (7) and a debt sequence {{{Bt+k

t (st)}∞k=1}st∈St}∞t=0, where
each element depends only on st through (st, Bt−1), the payoff-
relevant variables. Given this observation, in an MPCE, one can
define a function hk(·)

(31) hk (st, Bt) = βk
E

[
uc,t+k|st, Bt

]
for k � 1, which equals the discounted expected marginal utility of
consumption at t + k given (st, Bt) at t. This function is useful since,
in choosing Bt at date t, the government must take into account
how it affects future expectations of policy which in turn affect
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current bond prices through expected future marginal utility of
consumption.

Note furthermore that choosing {τt, gt, Bt} at date t is equiva-
lent to choosing {ct, nt, gt, Bt} from the perspective of the govern-
ment, and this follows from the primal approach delineated in
Section II.C. Thus, we can write the government’s problem recur-
sively as

V (st, Bt−1) = max
ct,nt,gt,Bt

u (ct, nt) + θt (st) v (gt)

+β
∑

st+1∈S

π (st+1|st) V (st+1, Bt)(32)

s.t. ct + gt = nt,(33)

uc,t
(
ct − Bt

t−1

) + un,tnt +
∞∑

k=1

hk (st, Bt)
(
Bt+k

t − Bt+k
t−1

) = 0,(34)

where equation (34) is a recursive representation of equation (10).
Let f (st, Bt−1) correspond to the solution to equations (32)−(34)
given V(·) and hk(·). It therefore follows that the function f(·) nec-
essarily implies a function hk(·) which satisfies equation (31). An
MPCE is therefore composed of functions V(·), f(·), and hk(·) which
are consistent with one another and satisfy equations (31)–(34).
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