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Abstract. Problem definition: Motivated by ride-hailing platforms such as Uber, Lyft and 
Didi, we study the problem of matching riders with self-interested drivers over a spatial 
network. We focus on the performance impact of two operational platform controls— 
demand-side admission control and supply-side repositioning control—considering the 
interplay with two practically important challenges: (i) spatial demand imbalances prevail 
for extended periods of time; and (ii) self-interested drivers strategically decide whether to 
join the network, and, if so, whether to reposition when not serving riders. Methodology/ 
results: We develop and analyze the steady-state behavior of a novel game-theoretic fluid 
model of a two-location, four-route loss network. First, we fully characterize and compare 
the steady-state system equilibria under three control regimes, from minimal control to 
centralized control. Second, we provide insights on how and why platform control impacts 
equilibrium performance, notably with new findings on the role of admission control: the 
platform may find it optimal to strategically reject demand at the low-demand location 
even if drivers are in excess supply, to induce repositioning to the high-demand location. 
We provide necessary and sufficient conditions for this policy. Third, we derive upper 
bounds on the platform’s and drivers’ benefits caused by increased platform control; these 
are more significant under moderate capacity and significant cross-location demand imbal
ance. Managerial implications: Our results contribute important guidelines on the optimal 
operations of ride-hailing networks. Our model can also inform the design of driver com
pensation structures that support more centralized network control.

Supplemental Material: The e-companion and Supplemental Material are available at https://doi.org/10. 
1287/msom.2023.1221. 
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1. Introduction
We are motivated by the emergence of ride-hailing plat
forms such as Uber, Lyft, Didi, and Via that face the 
problem of matching supply (drivers) with demand 
(riders) over a spatial network. We study the perfor
mance impact of operational platform controls, focusing 
on the interplay with two practically important chal
lenges: (i) Significant demand imbalances prevail across 
network locations for extended periods of time (see 
Figure 1), so that the natural supply of drivers at a loca
tion either falls short of or exceeds the demand for rides 
originating at this location. These mismatches hurt per
formance, as they lead to lost demand, drivers idling, 
and/or drivers repositioning (without serving a rider) 
from a low- to a high-demand location. (ii) Drivers are 
self-interested and decide strategically whether to join 
the network, and, if so, when and where to reposition, 
trading off the related travel time and cost against their 

matching (queueing) delay at their current location. These 
decentralized supply decisions may not be optimal for the 
overall network.

Flow Imbalances: Example Manhattan. We illustrate 
the magnitude and duration of the demand imbalances 
noted above with publicly available data for taxi rides in 
Manhattan.1 (We do not have public data for ride-hailing 
platforms, but they likely experience similar imbalances.) 
Though the data report censored demand (realized 
trips), we believe the (uncensored) demand imbalances 
are likely of the same or even higher order of magnitude 
as the (censored) flow imbalances.

Figure 1 illustrates the route-level realized flow imbal
ances for two origin-destination pairs in Manhattan, 
New York City, over all weekdays for one month. We 
observe a pronounced imbalance of almost one order of 
magnitude (about 10×) in the morning rush hour and 
about half an order of magnitude (about 3×) in the 

1 

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT 
Articles in Advance, pp. 1–19 

ISSN 1523-4614 (print), ISSN 1526-5498 (online) https://pubsonline.informs.org/journal/msom 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
01

:4
b0

0:
b9

02
:1

e0
0:

c5
cf

:2
c5

7:
8f

6a
:8

df
a]

 o
n 

17
 J

ul
y 

20
23

, a
t 0

1:
37

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:afeche@rotman.utoronto.ca
https://orcid.org/0000-0002-2010-6983
mailto:zhe.liu@imperial.ac.uk
https://orcid.org/0000-0001-7335-3024
mailto:c.maglaras@gsb.columbia.edu
https://doi.org/10.1287/msom.2023.1221
https://doi.org/10.1287/msom.2023.1221


evening rush hour in the reverse direction. Our analysis 
(not shown here) confirms that (i) these route-level flow 
imbalances persist after aggregation to the location level, 
and (ii) these substantial route- and location-level imbal
ances are also statistically significant. Furthermore, it is 
important to note that imbalance periods typically persist 
for a couple of hours, in contrast to the typical 10–15- 
minute trip times between these locations. This suggests 
that network transients may settle down quickly relative 
to the imbalance duration, which, in part, motivates our 
focus on the steady-state fluid model as opposed to the 
transient process itself.

Operational Controls to Manage Demand Imbal
ances. Motivated by these observations, we study the 
value of two operational platform controls to manage 
these demand imbalances: demand-side admission control 
and supply-side capacity repositioning. Though financial 
incentives (prices and wages) and spatial information 
(on demand and price surges) clearly also play an impor
tant role in practice, we hold these levers constant to iso
late the effects of operational controls.

Admission control allows the platform to accept or 
reject requests based on origin and destination; in prac
tice, platforms do so both directly and indirectly, through 
ETA quotation. This nonprice control complements pric
ing, allowing platforms to regulate demand with less 
drastic price fluctuations. Admission control also affects 
the car distribution in the network, both directly and indi
rectly, via drivers’ idling delays at lower-demand loca
tions that, in turn, shape their repositioning incentives.

Repositioning control allows the platform, rather than 
drivers, to decide when and whether they relocate from 
lower- to higher-demand locations. In practice, such cen
tralized repositioning control is characteristic when dri
vers operate like employees (e.g., when driving for Via 
in “Blue Mode” for hourly pay) and will also gain in rel
evance with the proliferation of autonomous vehicles.

To evaluate these controls, we study the steady-state 
behavior of a deterministic fluid model of a ride-hailing 
network in a game-theoretic framework with riders, dri
vers, and the platform. We provide analytical results 
for two-location networks (Figure 2) and show through 

Figure 1. (Color online) Route-Level Flow Imbalances in Manhattan 

(a) (b)

Notes. (a) Upper West Side–Midtown West, May 2016. (b) Upper East Side–Midtown East, May 2016.

Figure 2. (Color online) Model Primitives 
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numerical results for three-location ring and four-location 
star networks that our main findings generalize to mul
tilocation networks. Riders generate demand for each 
route (with a fixed travel time). Prices are fixed; we 
assume for simplicity that the price per unit travel time 
is route-independent, though this is not necessary for 
our analysis. Drivers decide, based on their (heteroge
neous) opportunity cost and their equilibrium expected 
profit rate from participation, whether to join the net
work, and, if so, whether to wait for a rider at their loca
tion or to reposition to the other location. Drivers have 
homogeneous transportation costs and behave symmet
rically if they join the network. The platform receives a 
fixed commission of the fare paid by riders and seeks to 
maximize its revenue.

We consider three control regimes: (i) Centralized Con
trol of both admission and repositioning; (ii) Minimal 
Control, that is, no admission control and decentralized 
repositioning control; and (iii) Optimal Admission Control 
with centralized admission control and decentralized 
repositioning control.

Main Results and Contributions. First, we propose a 
novel game-theoretic model that accounts for key fea
tures of ride-hailing platforms: the network structure 
and demand imbalances, the driver incentives, and the 
interplay of queueing, transportation times, and driver 
decisions.

Second, we fully characterize the steady-state system 
equilibria for the three control regimes outlined above, 
relying on the analysis of equivalent capacity allocation 
problems.

Third, we provide insights on how and why platform 
control impacts equilibrium performance. (i) Decentra
lized repositioning leads to inefficient capacity allocation 
as a result of excessive driver idling at low-demand loca
tions. (ii) Admission control can significantly reduce 
these inefficiencies. (iii) Most notably, we identify a novel 
role for admission control: as a tool to influence drivers’ 
repositioning decisions. Specifically, the platform may 
find it optimal to strategically reject demand at the low- 
demand location, though there is an excess driver sup
ply, to induce repositioning to the high-demand location. 
We provide intuitive necessary and sufficient optimal 
conditions for this policy. This finding highlights that 
operational levers, and not only pricing, can shape repo
sitioning. Whereas here admission control influences the 
relocation of idle strategic capacity, the standard roles of 
admission control in the queueing literature are (1) to 
balance myopic rewards with opportunity costs, and (2) 
to control the relocation of utilized resources.

Fourth, we derive upper bounds on the platform’s and 
the drivers’ benefits caused by increased platform control 
capabilities. These bounds show that, at practically rele
vant levels of cross-location demand imbalances, the ben
efits can be very significant for the platform, of the order 
of 50%, 100%, or even larger improvements, especially 

when the network operates with moderate capacity. 
These bounds also point to tension between platform and 
driver gains, for example, large platform gains require an 
increase in driver participation, which limits gains in per- 
driver profits.

Related Literature. This paper is related to the grow
ing literature on ride-hailing platforms. We first survey 
theoretical studies and then turn to empirical studies. 
We group the models considered in theoretical studies 
into three streams: (i) single-location models with strate
gic driver supply, (ii) multilocation models with central
ized supply control, and (iii) multilocation models with 
strategic driver supply. Most papers belong to (i) and (ii), 
whereas this paper belongs to (iii).

Single-Location Models with Strategic Driver Supply. This 
stream either ignores the spatial dimension or captures it 
in reduced form. Most studies focus on controlling rider 
prices and driver wages to match demand with supply; 
some of these papers largely ignore queueing considera
tions (e.g., Gurvich et al. 2013, Cachon et al. 2017, and 
Hu et al. 2022), others consider delay-sensitive customers 
using queueing models (e.g., Banerjee et al. 2015, Taylor 
2018, Bai et al. 2019 and Benjaafar et al. 2021b). Castillo 
et al. (2016) use a stylized model that captures space in 
reduced form (pickup times decrease in the number of 
idle cars) to show that surge pricing can help avoid an inef
ficient “wild goose chase,” whereby long pickup times 
reduce driver earnings. Garg and Nazerzadeh (2021) 
study driver surge pricing mechanisms under nonstation
ary demand. Castro et al. (2021) study priority policies to 
match drivers with trips that differ in their value.

Multilocation Models with Centralized Supply Control. This 
stream assumes that platforms fully control the vehicle 
supply and operation. Most papers model the system 
as a closed queueing-loss network: nodes correspond 
to locations, a fixed set of cars circulate among nodes 
where they queue while waiting for trip matches, and 
trip requests are lost if not matched upon arrival.

Some papers focus on demand-side controls. Waserhole 
and Jost (2016) and Banerjee et al. (2016) consider static 
pricing. Balseiro et al. (2021) and Chen et al. (2020) study 
state-dependent pricing under stationary and nonstation
ary demand, respectively. Kanoria and Qian (2019) study 
the joint problem of state-dependent pricing (or admis
sion control) and matching in the absence of prior 
knowledge of the demand arrival rates. Assuming fixed 
pricing, Wang et al. (2019) study admission control based 
on a pickup-time threshold in a two-sided model with 
open rider-side queue and a closed driver-side queue 
that captures space in reduced form (similar to Castillo 
et al. 2016).

In these studies of demand-side control, cars are only 
matched with local requests, and so only relocate when 
utilized. In contrast, studies of supply-side controls focus 
on operational levers to control the flow of empty cars 
through proactive repositioning and reactive matching.
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Papers that focus on repositioning include those by Igle
sias et al. (2016) and Braverman et al. (2019), who study 
static policieş and by Benjaafar et al. (2021) and Hosseini 
et al. (2021), who consider dynamic policies. Most rele
vant to our paper is that of Braverman et al. (2019). They 
prove an asymptotic limit theorem that justifies the use 
of a stationary deterministic fluid network model (such 
as the one in this paper) and then characterize the fluid- 
based optimal empty-car routing policy that maximizes 
some function of throughput. In contrast to our paper, 
they fix the capacity, restrict attention to centralized 
repositioning (as in our regime C in Section 3), and do 
not consider admission control.

Papers that focus on matching include Banerjee et al. 
(2018), Feng et al. (2020), Özkan and Ward (2020), and 
Hu and Zhou (2022). Feng et al. (2020) compare the per
formance of two matching systems, on-demand versus 
street hailing, for a closed circular queueing network. 
Banerjee et al. (2018) consider state-dependent control in 
a closed queueing network; Özkan and Ward (2020) con
sider state-independent control for an open one-sided 
queueing model (vehicles exit upon matching); Hu and 
Zhou (2022) consider dynamic control for a discrete- 
time, two-sided queueing model (supply and demand 
units queue before abandoning) and match-dependent 
rewards reflect spatial distance.

Some papers jointly consider repositioning and match
ing. An early study by Meyer and Wolfe (1961) compares 
the performance of various policies for special networks 
(two nodes, or a continuum of locations with uniformly 
distributed demand). Ata et al. (2020a) propose and 
demonstrate the effectiveness of a dynamic policy that 
hinges on the approximate analysis in the heavy traffic 
regime.

Some papers study higher-level strategic issues such as 
capacity sizing (Benjaafar et al. 2021, Besbes et al. 2022) 
and service region design (e.g., He et al. 2017).

Multilocation Models with Strategic Driver Supply. This 
stream focuses on pricing policies that account for spatial 
considerations and strategic drivers’ joining and/or loca
tion decisions.

Ma et al. (2018) propose an incentive-aligned spatio
temporal pricing mechanism for welfare maximization. 
Studies of static price and wage policies for revenue 
maximization include Bimpikis et al. (2019) and Besbes 
et al. (2021). Bimpikis et al. (2019) consider a discrete- 
time stationary network. They ignore driver queueing 
effects and assume that ample driver supply is available 
at a fixed cost, and one-period travel times. They show 
that platform profits and consumer surplus increase 
when demands are more balanced across the network, 
which is consistent with our results that demand imbal
ances magnify the value of operational controls. Besbes 
et al. (2021) study short-term location-dependent pricing 
for a linear city where rational, myopic drivers with 
exogenous initial locations make one-shot (re)location 

decisions. Studies of dynamic surge pricing and wage 
policies under nonstationary demand include Guda and 
Subramanian (2019) and Afèche et al. (2021).

Unlike these pricing studies, we focus on operational 
controls. Benjaafar et al. (2021a) adopt our model and 
extend it by introducing autonomous vehicles (AVs), 
related operational decisions, and driver wage decisions. 
They show that if AVs are sufficiently affordable, then 
the platform would deploy them so as to substantially 
reduce the need for repositioning by human (strategic) 
drivers.

Empirical Studies. Some papers study ride-hailing data, 
others taxi data. Using Uber data, Chen and Sheldon 
(2016) show that surge pricing induces drivers to work 
longer and hence increases efficiency; Hall et al. (2017) 
find that the driver supply is highly elastic to wage and 
underlying fare changes, so the per-trip earnings boost of 
a fare hike is negated by higher driver competition (con
sistent with our results, as noted above). Yan et al. (2020) 
review operational matching and dynamic pricing techni
ques and discuss a dynamic waiting mechanism inspired 
by Uber.

Using NYC taxi data, Buchholz (2022) and Ata et al. 
(2023) analyze the dynamic spatial equilibrium with stra
tegic taxi drivers, and study how matching and spatial 
pricing affect performance. Buchholz (2022) shows that 
matching technology can improve performance signifi
cantly even under optimized pricing, which supports the 
value of studying the impact of operational controls.

Plan for the Paper. In Section 2, we present the model 
and problem formulations. In Section 3, we study cen
tralized control, and, in Section 4, the regimes with 
decentralized repositioning. In Section 5, we present the
oretical upper bounds on the performance gains of plat
form control. In Section 6, we generalize our results to 
multilocation networks. In Section 7, we offer concluding 
remarks. (The main proofs are in the e-companion; addi
tional technical details are in the Supplemental Material.)

2. Model and Problem Formulations
We consider a deterministic fluid model of a ride-hailing 
network in steady state. Braverman et al. (2019) rigor
ously justify such a fluid model for a stochastic closed 
queueing network with centralized car control in a 
“large market regime”; that is, the number of cars N and 
the potential demand rates grow linearly with N, holding 
constant travel times. They prove the process-level and 
steady-state convergence of the scaled queue length pro
cess to a fluid limit as N→∞. Their arguments could be 
adapted to our setting; we focus directly on a set of 
(motivated) steady-state flow equations.

2.1. Model Primitives
Figure 2 shows the network schematic and the model 
primitives that we describe in this section.
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Network. The network has two locations (nodes), 
indexed by l� 1, 2, and four routes (arcs), indexed by lk 
for l, k ∈ {1, 2}. We denote by tlk the travel time on route lk 
and by t the travel time vector. We impose no restrictions 
on travel times; specifically, we allow t12 ≠ t21, to reflect, 
for example, different uptown/downtown routes. The 
travel times are constant and, in particular, independent 
of the number of drivers that serve demand for the plat
form. This assumes that the number of drivers has no sig
nificant effect on road congestion and transportation 
delays.

Riders. Riders generate demand for trips. The plat
form charges a fixed price of p per unit of travel time 
for all routes. The potential demand rate for route-lk 
trips is Λlk, and Λ denotes the potential demand rate 
vector. The platform keeps a portion γ ∈ (0, 1) of the 
total fee as commission, and drivers collect the remain
der. Rider requests are lost if not matched instantly 
with an available car. We assume imbalanced cross- 
location demands, Λ12 ≠Λ21, and the following, with
out loss of generality.

Assumption 1 (Demand Imbalance). 0 <Λ12 < Λ21:

Drivers. Drivers supply capacity to the network. Let N 
be the pool of (potential) drivers, each equipped with one 
car (unit of capacity). Drivers are self-interested and seek 
to maximize their profit rate per unit time. They decide 
whether to join the network, and, if so, decide or are 
directed by the platform whether to reposition (i.e., travel 
without a rider) from one location to the other.

Participating drivers incur a common driving cost rate 
of c independent of the car occupancy. While serving 
riders, drivers earn revenue at rate γp, where γ � 1� γ, 
and hence profit rate γp� c. We assume that γp� c > 0. 
Drivers’ actual profit rate is lower while they wait for 
riders (zero profit when idling) and/or reposition from 
one location to the other (incurring the driving cost rate 
c). The following assumption ensures that drivers can 
earn a positive profit by repositioning.

Assumption 2 (Positive Profit from Repositioning). ct12 
< t21(γp� c) and ct21 < t12(γp� c):

Each (potential) driver has an idiosyncratic opportu
nity cost rate, denoted by co, that is assumed to be an 
independent draw from a common continuous distribu
tion F.

Assumption 3 (Opportunity Cost Distribution). The cum
ulative distribution function F strictly increases on [0, co], 
where co ≥ p� c, and satisfies F(0) � 0 and F(co) � 1.

Drivers join the network if and only if their expected 
profit rate, denoted by π, equals or exceeds their oppor
tunity cost rate. Assumption 3 implies that, given π ∈ [0, 
γp� c], the number of participating drivers n �NF(π)
∈ [0, N). In turn, the per-driver profit rate π emerges in 
equilibrium and depends on n, the platform’s controls, 

and the drivers’ decisions, as specified in Sections 3
and 4.

Platform. The platform is operated by a monopolist 
firm that matches drivers with riders with the objec
tive of maximizing its revenue rate. The platform may 
have two controls: (a) demand-side admission control, 
and (b) supply-side capacity repositioning, as detailed 
in Section 2.3.

Information. Riders and drivers rely on the platform for 
matching; that is, potential riders cannot see the available 
driver capacity, and drivers cannot see the arrivals of 
rider requests.

The platform knows the model primitives, including 
the potential demand rates Λ, the destination of each trip 
request, the travel times t, the driving cost c, and the 
opportunity cost rate distribution F. The driver opportu
nity cost rates are private information, not known by the 
platform. Therefore, participating drivers are homoge
neous to the platform. The platform knows the state of 
the system, namely, each driver’s location, travel direc
tion, and status at each point in time.

Drivers do not observe the system state, but they have 
(or can infer) the information required to compute their 
expected profit rates—namely, the travel times t; the 
steady-state delays until they get matched at each loca
tion; the destination (routing) probabilities for matches at 
each location; and the probabilities that they choose or 
are instructed to reposition from one location to the 
other. These delays and the routing and repositioning 
probabilities are endogenous, as detailed below.

2.2. Matching Supply with Demand
Admission Control. Let λlk ≤Λlk denote the effective route- 
lk demand rate, that is, the rate of served trip requests, 
and λ the corresponding vector. A trip request is lost if 
there is no available driver capacity at the time and 
location of the request, or if the platform exercises 
admission control to reject the request (e.g., based on 
the requested destination), even though driver capacity 
is available.

Matching at Each Location. At each location, drivers that 
become available (i.e., do not reposition upon arrival) join 
a single queue, to be matched with accepted ride requests 
that originate at this location. The platform matches dri
vers according to a uniform policy, such as first-in-first- 
out (FIFO) or random order. Therefore, in steady state, 
drivers queueing at location l have the same waiting time, 
denoted by wl, and the same matching probability for 
a route-lk request, λlk

λl1+λl2
. Let ql denote the steady-state 

queue length at location l. Little’s Law implies that 
ql � wl(λl1 +λl2). Let w and q denote, respectively, the 
vector of steady-state waiting times and queue lengths.

Repositioning of Capacity Between Locations. Let ν12 and 
ν21 be the aggregate flow rates of drivers repositioning 
from location 1 and 2, respectively, and let ν � (ν12,ν21). 
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Up to three flows emanate from location l: drivers that 
are matched with riders leave at rates λl1 and λl2, and 
drivers that reposition to location k ≠ l leave at rate νlk 
(without queueing at location l). Therefore, letting η(λ,ν)
denote the corresponding vector of steady-state reposi
tioning fractions, we have

η1(λ,ν) � ν12

λ11 +λ12 + ν12
and

η2(λ,ν) � ν21

λ21 +λ22 + ν21
: (1) 

Repositioning decisions are either centralized or decen
tralized. Under centralized repositioning, the platform 
controls the repositioning rates ν (e.g., drivers are em
ployees or autonomous vehicles) and the fractions η 
emerge in response through (1). Under decentralized 
repositioning, each participating driver chooses his or 
her repositioning strategy to maximize his or her steady- 
state profit rate. A driver’s repositioning strategy is a vec
tor of probabilities, denoted by η̃, that specify for each 
location the fraction of times that the driver will, upon 
arrival, directly reposition to the other location. The 
steady-state profit rate of an individual driver, denoted 
by π̃(η̃;λ, w) and derived explicitly in Section 4.1, is a 
function of his or her repositioning fractions, η̃, the rout
ing probabilities implied by λ, and the delays in the 
matching queues, w. (The rates λ and delays w, in turn, 
emerge as equilibrium quantities, as discussed below.) 
Since participating drivers are homogeneous, we focus 
on symmetric strategies where drivers choose the same 
fractions η̃ to maximize π̃(η̃;λ, w). The flow rates (λ,ν)
and delays w admit a symmetric driver repositioning equilib
rium if, and only if, the resulting unique repositioning 
fractions η(λ,ν) that satisfy (1) agree with every driver’s 
best response to (λ, w):

η(λ,ν) ∈ argmax
η̃

π̃(η̃;λ, w): (2) 

Steady-State System Flow Constraints. The effective de
mand rates λ, repositioning flow rates ν, waiting times w, 
and participating driver capacity n must satisfy: (i) the 
flow balance constraint λ12 + ν12 � λ21 + ν21; (ii) the capac
ity constraint 

P
l, k�1, 2λlktlk + (ν12t12 + ν21t21) +

P
l�1, 2wl 

(λl1 +λl2) � n, where the left-hand side sums the average 
number of drivers serving riders (

P
l, k�1, 2 λlktlk), reposi

tioning (ν12t12 + ν21t21) and queueing in each location 
(
P

l�1, 2wl(λl1 +λl2)).

2.3. Three Control Regimes: Problem 
Formulations

We study three regimes, Centralized Control, Minimal Con
trol, and Admission Control, that differ in whether (i) repo
sitioning decisions are centralized or decentralized, and 
(ii) the platform exercises admission control or not. The 

problems for all regimes have in common the platform’s 
objective function and drivers’ participation decisions 
that we formalize in this section, as well as the system 
flow constraints described in Section 2.2. We formulate 
these problems in terms of the tuple (λ,ν, w, n).

Platform Revenue. Let Π(λ) :� γpλ · t denote the plat
form’s steady-state revenue rate, where γp is its commis
sion rate per busy driver and λ · t is the number of busy 
drivers (and riders in service). Hence the realized demand 
(rider welfare) is proportional to the platform revenue.

Drivers’ Participation Constraint. Each driver decides 
whether to participate by comparing his or her opportu
nity cost to his or her profit rate from joining the system. 
We compute the per-driver profit rate in two ways: (i) as 
the profit rate of an individual driver circulating in the 
network, π̃(η̃;λ, w), as outlined in Section 2.2 and for
malized in Section 4.1 (Lemma 2), and (ii) as the average 
of total driver profits:

π(λ,ν, n) :�
(γp� c)

P
l, k�1, 2λlktlk� c(ν12t12 + ν21t21)

n :

As explained in Section 2.2, in each regime, all participat
ing drivers have symmetric repositioning fractions η(λ,ν)
and hence achieve the same profit rate. The approaches 
(i) and (ii) therefore yield the same profit rate; that is, 
π̃(η(λ,ν);λ, w) � π(λ,ν, n) for all (λ,ν, w, n) that satisfy 
the system flow constraints described in Section 2.2. A par
ticipation equilibrium therefore requires n �NF(π(λ,ν, n)).

Centralized Control (C). In this benchmark the platform 
has “maximum” control and solves the following:

(Problem C)

max
λ, ν, w, n

Π(λ)
(3a) 

s:t λ12 + ν12 � λ21 + ν21, (3b) 
X

l, k�1, 2
λlktlk + ν12t12 + ν21t21

+
X

l�1, 2
wl(λl1 + λl2) � n, (3c) 

0 ≤ λ ≤ Λ, ν ≥ 0, w ≥ 0, (3d) 
π(λ, ν, n)

�
(γp� c)

P
l, k�1, 2λlktlk � c(ν12t12 + ν21t21)

n
,

(3e) 
n � NF(π(λ, ν, n)), (3f) 

where (3b)–(3c) are the system flow constraints and 
(3e)–(3f) enforce the participation equilibrium.

Minimal Control (M). In this regime, drivers control re
positioning and the platform does not exercise demand 
admission control. Problem M augments Problem C with 
the driver repositioning equilibrium constraints (1)–(2), 
and the following constraints that capture the absence 
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of admission control. First, the platform matches trip 
requests to drivers in a pro rata (or FIFO) manner. That is, 
requests originating at the same location have equal, 
destination-independent, service probabilities:

λl1
Λl1
�
λl2
Λl2

, l � 1, 2: (4) 

Second, the platform never turns away requests when 
there are drivers available to serve them. That is, drivers 
cannot reposition out of a location that has unmet demand, 
namely,
(Λl1 +Λl2 � λl1 � λl2)νlk � 0, l � 1, 2, k ≠ l, (5) 

and demand requests can only be lost at a location where 
no drivers are waiting, namely,

(Λl1 +Λl2 � λl1 � λl2)wl � 0, l � 1, 2: (6) 

In the Minimal Control regime, the platform therefore 
solves the following:

(Problem M)
max
λ, ν, w, n

{Π(λ) : (1)–(2), (3b)–(3f), (4)–(6)}: (7) 

Admission Control (A). This regime differs from the 
centralized benchmark only in that repositioning is de
centralized, that is, subject to the driver repositioning 
equilibrium constraints (1)–(2):

(Problem A) max
λ, ν, w, n

{Π(λ) : (1)–(2), (3b)–(3f)}:

(8) 

2.4. Reformulation to Capacity 
Allocation Problems

It is intuitive and analytically convenient to reformulate 
the above problems in terms of the driver capacities allo
cated to serving riders, repositioning (without riders), and 
queueing for riders.

Let Slk be the offered load, let slk be the service capacity 
on route lk, let S and s be the respective vectors, let S �
P

lkSlk be the total load, and let s �
P

lkslk be the total ser
vice capacity. By Little’s Law,

Slk � Λlktlk and slk :� λlktlk, l, k ∈ {1, 2}: (9) 

Let rlk be the capacity repositioning from location l to k, 
r � (r12, r21), and r � r12 + r21, where

rlk � νlktlk, l ≠ k, (10) 

and let ql be the capacity queueing at location l. Let q �
(q1, q2) and q � q1 + q2, where

ql � (λl1 +λl2)wl, l � 1, 2: (11) 

Using (9)–(11), we transform the problems in (λ,ν, w, n)
presented in Section 2.3 into equivalent problems in 
(s, r, q, n). With some abuse of notation, we write the 

platform revenue function as Π(s) � γps instead of 
Π(λ), the per-driver profit functions as π̃(η̃; s, q) in
stead of π̃(η̃;λ, w) and π(s, r, n) instead of π(λ,ν, n), 
and the repositioning fractions in (1) as η(s, r) instead 
of η(λ,ν).

Using (9)–(11) and the definitions of s and r, the con
straints (3b)–(3f) are equivalent to the following:

s12 + r12

t12
�

s21 + r21

t21
, (12a) 

s + r + q � n, (12b) 

0 ≤ s ≤ S, r ≥ 0, q ≥ 0, (12c) 

π(s, r, n) � (γp� c)s � cr
n

, (12d) 

n �NF(π(s, r, n)): (12e) 

2.5. Two-Step Solution Approach
For regime X ∈ {C, M, A} and capacity n, let CX(n) denote 
the set of capacity allocations (s, r, q) that satisfy all the 
constraints, except the driver participation constraints 
(12d)–(12e). That is, CC(n) �{(s, r, q) : (12a)–(12c)},CM(n)
� {(s, r, q) : (1)–(2), (4)–(6), (9)–(11), (12a)–(12c)}, and CA 
(n) � {(s, r, q) : (1)–(2), (9)–(11), (12a)–(12c)}. Therefore, 
in regime X, the platform’s optimization problem and 
the optimal revenue rate, denoted by Π∗X, are given by

Π∗X :� max
s, r,q,n

{Π(s) : (s, r, q) ∈ CX(n), (12d)–(12e)},

X ∈ {C, M, A}: (13) 

We solve the platform’s capacity allocation problems 
(13) in two steps as follows. 

Step 1: Solve for the platform-optimal allocation (s, 
r, q) of a fixed driver capacity, n:
ΠX(n) :� max

s, r, q
{Π(s) : (s, r, q) ∈ CX(n)}, for n ∈ [0, N]:

(14) 

Let C∗X(n) :� argmaxs, r, q{Π(s) : (s, r, q) ∈ CX(n)}. Let 
(sX(n), rX(n), qX(n)) ∈ C∗X(n) be a solution of (14) that 
maximizes the per-driver profit function in (12d), 
that is π(sX(n), rX(n), n) �max(s, r, q)∈C∗X(n)π(s, r, n). Let 
πX(n) :� π(sX(n), rX(n), n) be the resulting per-driver 
profit as a function of n.

Step 2: Solve for the corresponding unique equilib
rium participating driver capacity, nX:

Show that the per-driver profit πX(n) is nonincre
asing, with limn↓0πX(n) � γp� c. This, together with 
Assumptions 2 and 3, ensures that the platform-optimal 
solution from Step 1 yields a unique equilibrium partici
pating capacity, nX ∈ (0, N), as the unique solution of 
(12e). The per-driver profit πX(n) is continuous in regimes 
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C and M but may be discontinuous in regime A, so that

nX �NF(πX(nX)) for X ∈ {C, M}
and NF(πA(n+A)) ≤ nA ≤NF(πA(nA)):

(15) 

Lemma 1 shows that the two-step solution is optimal if 
the platform and driver incentives are aligned.

Lemma 1 (Sufficient Condition for Optimality of Two- 
Step Solution). For regime X, the two-step solution 
(14)–(15) identifies the optimal solution of (13); that is, 
n∗X � nX and Π∗X �ΠX(nX), if the platform-optimal solu
tion from Step 1 is also driver-optimal at every n; that is, 
the per-driver profit
πX(n) � max

(s, r,q) ∈CX(n)
π(s, r, n), for n ∈ [0, N]: (16) 

Condition (16) holds in regimes C (Corollary 1) and M 
(Corollary 2), but may not hold in regime A, where we 
extend the two-step approach by also considering the 
driver-optimal allocation (Lemma 3).

Remark 1. This two-step approach yields key struc
tural results: (1) Step 1 yields clear results on how the 
platform-optimal capacity allocation and the resulting 
per-driver profit depend on the capacity, independent 
of the opportunity cost distribution F. (2) Lemma 1
links the optimality of the two-step solution to the 
alignment of platform- and driver-optimality, which 
also suggests how to extend the approach by balancing 
these two criteria if they are misaligned. (3) Comparing 
these results across regimes identifies differences in their 
capacity allocations, efficiency gains caused by centralized 
repositioning and admission control, and upper bounds 
on the gains from these controls.

3. Centralized Control (C)
Problem C, given in (3a)–(3f), is equivalent to the capac
ity allocation problem (13) for regime X�C. We solve 
(13) in the two steps specified in Section 2.5. Step 1: For 
fixed capacity, Proposition 1 characterizes the platform- 
optimal allocation that solves (14). Step 2: Corollary 1
characterizes the resulting unique equilibrium capacity 
(15) and establishes that it is optimal by Lemma 1.

Proposition 1 (Regime C: Optimal Allocation of Fixed 
Driver Capacity). Define the constants

nC
1 :� S � (Λ21 �Λ12)t21 and

nC
2 :� S + (Λ21 �Λ12)t12: (17) 

In regime C, problem (14) yields the following optimal allo
cation (s, r, q) of the driver capacity n: 

(1) Scarce capacity (n ≤ nC
1 ). All drivers serve riders: 

s � n; r � 0; q � 0.
(2) Moderate capacity (nC

1 < n ≤ nC
2 ). Drivers serve riders 

or reposition from the low- to the high-demand location: 

s + r12 � n, where r12 � t12=(t12 + t21)(n� nC
1 ), r21 � 0;

q � 0.
(3) Ample capacity (n > nC

2 ). Drivers serve all riders, 
reposition from the low- to the high-demand location, or wait 
in queue: s � S; r12 � nC

2 � S, r21 � 0; q � n� nC
2 .

Remark 2. The equilibrium participating capacity in
creases in the driver pool size N. The intervals in n of 
Proposition 1 hence map to intervals in N with respec
tive capacity allocations in equilibrium.

Figure 3(a) in Section 4.4 illustrates Proposition 1. 
Importantly, centralized control makes efficient use of 
capacity: drivers idle in queue only if capacity is ample 
to serve all demand, that is, n > nC

2 .
The threshold nC

1 is the maximum offered load that 
can be served without repositioning, that is, all local 
demand and the balanced cross-location demand; 
destination-based admission control at the high-demand 
location allows the platform to serve all local requests 
while rejecting excess demand to the low-demand loca
tion. The threshold nC

2 is the minimum capacity needed to 
serve the total offered load S, including the excess cross- 
location demand that requires empty-car repositioning.

Substituting s and r from Proposition 1 into (12d) 
yields the following per-driver profit function:

πC(n) �
(γp� c)s� cr

n

�

γp� c, zone 1 (n ≤ nC
1 ),

1
n
γp nC

1 + (n� nC
1 )

t21

t12 + t21

� �

� c, zone 2 (nC
1 < n ≤ nC

2 ),

1
n
(γpS � cnC

2 ), zone 3 (n > nC
2 ):

8
>>>>><

>>>>>:

(18) 

This profit rate reflects the drivers’ utilization profile: 
in zone 1, they serve riders all the time; in zone 2, they 
drive all the time, but serve riders only a fraction of 
the time; in zone 3, they also queue.

Corollary 1 (Regime C: Driver Participation Equilibrium 
and Optimal Solution). Under the platform-optimal capac
ity allocation of Proposition 1, the per-driver profit πC(n)
is as follows: (i) continuous and decreasing, so yields a 
unique driver participation equilibrium, nC �NF(πC(nC)); 
(ii) driver-optimal, that is, satisfies (16) in Lemma 1, so the 
two-step solution is optimal: n∗C � nC and Π∗C �ΠC(nC).

4. Regimes with Decentralized 
Repositioning

We characterize the properties of a driver reposition
ing equilibrium in Section 4.1, and then the equilibria 
for two regimes, Minimal Control (M) in Section 4.2; 
and Admission Control in Section 4.3. We summarize 
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the key differences between the equilibria of regimes 
C, M, and A in Section 4.4.

4.1. Driver Repositioning Equilibrium
Under decentralized repositioning, the flow rates (λ,ν)
and delays w admit a symmetric driver repositioning equi
librium if, and only if, the corresponding unique reposi
tioning fractions η(λ,ν), in (1), are every driver’s best 
response to (λ, w), that is, η(λ,ν) ∈ argmaxη̃ π̃(η̃;λ, w)
(see (2)).

Using (9)–(10) to map (λ,ν) to (s, r), we henceforth 
express the functions η(λ,ν) as η(s, r).

Remark 3. Under Assumption 1, it is not optimal to 
reposition from the high-demand location (2) to the 
low-demand location (1). We therefore focus on driver 
repositioning equilibria with ν21 � r21 � 0, so that 
η2(s, r) � η̃2 � 0. Using (9) and (11) to map (λ, w) to (s, 
q), we henceforth express the profit-rate π̃(η̃;λ, w) for 
simplicity as the univariate function π̃(η̃1; s, q).

Remark 4. Without loss of optimality, we restrict 
attention to cases with nonzero served cross-traffic 
demand; in such cases, λ21 > 0 in light of Remark 3
and flow balance, so that s21 > 0.

Lemma 2 (Per-Driver Profit Rate). Consider a driver who 
circulates with repositioning fractions η̃1 ∈ [0, 1] and η̃2 �

0 through a network with offered loads s and queue lengths 
q. If s1 :� s11 + s12 � 0 and η̃1 < 1, then the driver’s ex
pected steady-state profit rate π̃(η̃1; s, q) � 0. Otherwise,

π̃(η̃1; s, q) �
(γp� c)Ts(η̃1; s)� cTr(η̃1)

Ts(η̃1; s) +Tr(η̃1) +Tq(η̃1; s, q)
, (19) 

where Ts(η̃1; s), Tr(η̃1), and Tq(η̃1; s, q) are explicit functions 
(given in the proof) that denote the expected times that the 
driver spends in steady state serving riders, repositioning, and 
queueing, respectively, during a cycle between consecutive arri
vals to the same location.

The equilibrium definition (1)–(2) is equivalent to the 
following definition in terms of (s, r, q).

Definition 1 (Repositioning Equilibrium). A capacity allo
cation (s, r, q) admits a symmetric driver repositioning 
equilibrium with η2(s, r) � 0 if and only if r21 � 0 and 
η(s, r) is a driver’s best response:

η1(s, r) � r12

s11
t12
t11
+ s12 + r12

and

η2(s, r) � r21

s21 + s22
t21
t22
+ r21

� 0, (20) 

η1(s, r) ∈ argmax
η̃1

π̃(η̃1; s, q): (21) 

Proposition 2 establishes that condition (21) in Defini
tion 1 implies a mapping from service and repositioning 

capacities to an explicitly defined set of driver-incentive 
compatible queue lengths.

Proposition 2 (Driver-Incentive Compatible Queue 
Lengths). A service and repositioning capacity allocation (s, r) 
admits a symmetric driver repositioning equilibrium with 
η2(s, r) � 0, if and only if r12(s) � s21t12

t21
� s12, r21 � 0 and the 

queue lengths q are driver-incentive compatible, that is,

q ∈D(s) :�

{q : q1 ≤ q∗1(s) + k(s)q2}

� {q : π̃(0; s, q) ≥ π̃(1; s, q)},

if s1 > 0 � r12(s), so η1(s, r) � 0;

{q : q1 � q∗1(s) + k(s)q2}

� {q : π̃(0; s, q) � π̃(1; s, q)},

if s1, r12(s) > 0, so η1(s, r) ∈ (0, 1);

{q : q1 � 0}, and π̃(0; s, q) � 0 < π̃(1; s, q),

if s1 � 0 < r12(s), so η1(s, r) � 1,

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

(22) 

where q∗1(s) > 0 and k(s)>0 are explicit functions that are spe
cified in (A.6).

The corresponding repositioning fraction η1(s, r) is deter
mined by (20).

Inducing drivers not to reposition from location 1, the 
first case in (22), requires a sufficiently short location-1 
queue, such that the pure strategy of never repositioning 
weakly dominates that of always repositioning (π̃(0;

s, q) ≥ π̃(1; s, q)). Inducing drivers to reposition from loca
tion 1 requires one of two conditions: If any location-1 
demand is served (s1 > 0, the second case in (22)), then 
drivers reposition a fraction of the time (identified by 
(20)) if the queues in the two locations make them indif
ferent between queueing at and repositioning from loca
tion 1. If no location-1 demand is served (s1 � 0, the third 
case in (22)), then drivers prefer to reposition from loca
tion 1, so q1 � 0. Proposition 2 foreshadows the key role 
of admission control in shaping repositioning incentives, 
discussed in Section 4.3.2.

4.2. Minimal Control (M)
Under minimal control, the platform exercises no admis
sion control and drivers control repositioning. Problem 
M in (7) is equivalent to the capacity allocation problem 
(13) for regime X�M. We solve (13) in the two steps spe
cified in Section 2.5. Step 1: for fixed capacity, Proposi
tion 3 characterizes the platform-optimal allocation that 
solves (14). Step 2: Corollary 2 characterizes the resulting 
unique equilibrium capacity (15) and establishes that it is 
optimal by Lemma 1.

We first simplify the set CM(n) � {(s, r, q) : (1)–(2), 
(4)–(6), (9)–(11), (12a)–(12c)}, defined in Section 2.5. Using 
Proposition 2 to substitute (22) for (1)–(2), and (9)–(11) to 
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translate (4)–(6) into
sl1
Sl1
�

sl2
Sl2

, l � 1, 2, (23) 

(Sl1 + Sl2� sl1� sl2)rlk � 0, l � 1, 2, k ≠ l, (24) 
(Sl1 + Sl2� sl1� sl2)ql � 0, l � 1, 2, (25) 

we have
CM(n) � {(s, r, q) : (12a)–(12c), (22), (23)–(25)}: (26) 

Proposition 3 (Regime M: Unique Feasible Allocation of 
Fixed Driver Capacity). Define

nM
1 :� nC

1 � 1�Λ12

Λ21

� �

S22,

nM
2 :� nM

1 + q∗1(S), and nM
3 :� nC

2 + q∗1(S), (27) 

where nC
1 and nC

2 are defined in (17) and nM
1 < nC

1 < S 
< nC

2 < nM
3 .

In regime M, problem (14) has the following unique fea
sible allocation of the driver capacity, CM(n): 

(1) Scarce capacity (n ≤ nM
1 ). All drivers serve riders: 

s � n; r � 0; q � 0.
(2) Moderate capacity, no repositioning but queueing 

(nM
1 < n ≤ nM

2 ). Drivers serve all riders at the low- and a 
fraction Λ12

Λ21
of riders at the high-demand location, or queue at 

the low-demand location: s � nM
1 , where s1k � S1k, s2k �

S2k
Λ12
Λ21 

for k � 1, 2; r � 0; q1 � n� nM
1 < q∗1(S), q2 � 0.

(3) Moderate capacity, repositioning and queueing 
(nM

2 < n ≤ nM
3 ). Drivers serve all riders at the low- and more 

than a fraction Λ12
Λ21

of riders at the high-demand location, 
reposition from the low- to the high-demand location, or 
queue at the low-demand location: s > nM

1 , where s1k � S1k 
for k � 1, 2; r12 > 0, r21 � 0; q1 � q∗1(S), q2 � 0.

(4) Ample capacity (n > nM
3 ). Drivers serve all riders, 

reposition from the low- to the high-demand location, or 
queue at both locations: s � S; r12 � nC

2 � S, r21 � 0; q > 0 
and q1 � q∗1(S) + k(S)q2.

These capacity zones map to driver pool intervals 
(N) with respective equilibrium capacity allocations (cf. 
Remark 2 for regime C). Figure 3(b) in Section 4.4 illus
trates Proposition 3. Compared with Centralized Con
trol (Proposition 1), Minimal Control reduces the driver 
utilization at moderate capacity (zones 2 and 3); that is, 
both local and cross-location demand is lost at the high- 
demand location while drivers idle in queue at the low- 
demand location: (1) Because the platform cannot use 
admission control to prioritize local rides at the high- 
demand location, the maximum load it can serve with
out repositioning is lower than with admission control 
(regime C), that is, nM

1 < nC
1 . (2) Because repositioning is 

decentralized, drivers reposition from the low-demand 
location only if the queue there is sufficiently long, 
namely, in zone 3, where q∗1 � nM

2 � nM
1 . Hence, nM

3 , the 
minimum capacity required to serve the total offered 

load, exceeds the corresponding capacity under central
ized control, nC

2 , by exactly q∗1.

Corollary 2 (Regime M: Driver Participation Equilibrium 
and Optimal Solution). Under the platform-optimal alloca
tion of Proposition 3, the per-driver profit πM(n) is as fol
lows: (i) continuous and decreasing, so yields a unique 
driver participation equilibrium, nM �NF(πM(nM)); (ii) 
driver-optimal, that is, satisfies (16) in Lemma 1, so the 
two-step solution is optimal: n∗M � nM and Π∗M �ΠM(nM).

4.3. Admission Control (A)
In regime A the platform controls demand admission 
and drivers control repositioning. This regime may yield 
the following optimal feature: strategic demand rejection at 
the low-demand location, to encourage drivers to re
position to the high-demand location. In Section 4.3.1 we 
characterize the equilibrium. In Section 4.3.2 we identify 
conditions for the optimality of strategic demand rejection.

4.3.1. Equilibrium. Problem A in (8) is equivalent to 
(13) for regime X�A. We solve (13) by extending the 
two-step approach specified in Section 2.5 as follows. 
Step 1: For fixed capacity, Proposition 4 characterizes 
the platform-optimal allocation that solves (14), where 
CA(n) � {(s, r, q) : (12a)–(12c), (22)}. If strategic demand 
rejection is optimal at some capacity level, then the 
platform-optimal policy need not be driver-optimal; that 
is, it may violate condition (16) in Lemma 1. Lemma 3
characterizes the unique equilibrium capacity (15) under 
the policy of Proposition 4. Lemma 3.1 specifies condi
tions for this equilibrium capacity to be optimal. Other
wise, Lemma 3.2 specifies how to determine the optimal 
equilibrium by also applying the two steps to the driver- 
optimal capacity allocation.

Proposition 4 (Regime A: Optimal Allocation of Fixed 
Driver Capacity). Define the constants

nA
1 :� nC

1 and nA
3 :� nC

2 + q∗1(S), (28) 

where nC
1 and nC

2 are defined in (17) and nC
1 < S < nC

2 . 
In regime A, problem (14) yields the following optimal capacity 
allocation, where the threshold nA

2 ∈ (nA
1 , nA

3 ) is implicitly 
defined: 

(1) Scarce capacity (n ≤ nA
1 ). All drivers serve riders: 

s � n; r � 0; q � 0.
(2) Moderate capacity, no repositioning but queueing 

(nA
1 < n ≤ nA

2 ). Drivers serve all riders except a fraction 
1� Λ12

Λ21
from the high- to the low-demand location, and queue 

at the low-demand location: s � nA
1 ; r � 0; q1 � n� nA

1 <
q∗1(s), q2 � 0.

(3) Moderate capacity, repositioning, with or without 
queueing (nA

2 < n ≤ nA
3 ). Compared with zone 2, drivers 

serve more riders at the high- but possibly fewer riders at the 
low-demand location, they reposition from the low- to the 
high-demand location, and may queue at the low-demand 
location: s > nA

1 ; r12 > 0, r21 � 0; q1 � q∗1(s) ≥ 0, q2 � 0.
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(4) Ample capacity (n > nA
3 ): Drivers serve all riders, 

reposition from the low- to the high-demand location, or 
queue at both locations: s � S; r12 � nC

2 � S, r21 � 0; q1 �
q∗1(S) + k(S)q2, q2 > 0.

These capacity zones map to driver pool intervals 
(N) with respective equilibrium capacity allocations (cf. 
Remark 2 for regime C). Figure 3(c) in Section 4.4 illus
trates Proposition 4. Compared with Minimal Control 
(Proposition 3), Regime A improves driver utilization at 
moderate capacity (zones 2 and 3) in three ways: (1) 
With admission control, the platform can serve all local 
demand at the high-demand location without reposition
ing, like under Centralized Control, hence nA

1 � nC
1 > nM

1 . 
(2) More local demand admitted at the high-demand 
location makes this location a more profitable destination 
for drivers, in turn, reducing the wasteful queueing at 
the low-demand location. (3) Most importantly, in zone 
3 the platform may reject rider requests at the low-demand 
location even if it has available drivers, in order to make it 
less attractive for drivers to queue there and induce them 
instead to reposition to, and serve more riders at, the 
high-demand location. Under this policy, the demand 
served at the low-demand location decreases in the 
capacity, that is, in zone 3 compared with zone 2. We call 
this policy strategic demand rejection, as it serves to regu
late the incentives of strategic drivers. We elaborate on 
the rationale and optimality conditions in Section 4.3.2.

Whereas strategic demand rejection may benefit the 
platform, it may reduce driver profits, as drivers spend 
less time queueing and more time repositioning, which 
is costly. In this case, the platform faces the following 
trade-off: Increase revenue through strategic demand 
rejection at the expense of lower driver participation 
because of reduced per-driver profits; or increase re
venue with no (or less) strategic demand rejection, to 
boost per-driver profits and driver participation. Given 
this potential trade-off between platform- and driver- 
optimality, Lemma 3 shows how to extend the two-step 
solution approach outlined in Section 2.5 to characterize 
the (optimal) equilibrium capacity n∗A, and provides suf
ficient conditions for optimality of strategic demand 
rejection in equilibrium.

Lemma 3 (Regime A: Driver Participation Equilibrium 
and Optimal Solution). Under the platform-optimal capacity 
allocation of Proposition 4, the per-driver profit πA(n) is 
decreasing and yields a unique equilibrium capacity of partici
pating drivers, nA, which solves
NF(πA(n+A)) ≤ nA ≤NF(πA(nA)), where n+A � lim

ɛ↓0
(nA + ɛ):

(29) 

1. If the per-driver profit πA(nA) is driver-optimal, that is,
πA(nA) �max

s, r,q
{π(s, r, nA) : (s, r, q) ∈ CA(nA)}, (30) 

and equals the marginal opportunity cost, i.e., πA(nA) �

F�1(nA=N), the following holds: 
(i) The optimal equilibrium capacity n∗A � nA, π∗A �
πA(nA), and Π∗A �ΠA(nA).

(ii) Strategic demand rejection is optimal if and 
only if nA ∈ (nA

1 , nA
3 ) and s11<S11 or s12<S12.

2. If (30) fails or πA(nA) < F�1(nA=N), then nA ∈ (nA
1 , 

nA
3 ), and n∗A is determined as follows.
Determine the optimal capacity allocation without strate

gic demand rejection for n ∈ [nA
1 , nA

3 ]:

Π̂A(n) :�max
s, r,q
{Π(s) : (s, r, q) ∈ CA(n), s11 � S11, s12 � S12}:

(31) 

Let π̂A(n) be the resulting per-driver profit and π̂A(n) �
πA(n) for n ∈ [0, nA

1 ) ∪ (nA
3 , N]. 

(i) Equilibrium capacity without strategic demand 
rejection: The per-driver profit π̂A(n) is continuous, 
decreasing, and yields a unique equilibrium capacity, 
n̂A, that satisfies

n̂A �NF(π̂A(n̂A)) and n̂A > nA: (32) 

(ii) The per-driver profit π̂A(n) is driver-optimal; 
that is, it satisfies (16) in Lemma 1:

π̂A(n) � max
(s, r,q)∈CA(n)

π(s, r, n) for n ∈ [0, N]: (33) 

(iii) The optimal equilibrium participating capacity 
n∗A ∈ [nA, n̂A], the per-driver profit π∗A solves n∗A �
NF(π∗A) with πA(n+A) ≤ π∗A ≤ π̂A(n̂A), and Π∗A ≥max 
{ΠA(nA), Π̂A(n̂A)}.

(iv) To determine the optimal solution n∗A ∈ [nA, 
n̂A], solve (13) for fixed n ∈ [nA, n̂A]:

ΠA(n) :�max
s, r,q
{Π(s) : (s, r, q) ∈ CA(n), (12d)–(12e)} (34) 

Then, n∗A � argmax{ΠA(n) : n ∈ [nA, n̂A]}, π∗A � F�1(n∗A=N)
and Π∗A �ΠA(n∗A).

(v) If ΠA(nA) > Π̂A(n̂A), then strategic demand rejec
tion is optimal, the optimal equilibrium capacity n∗A <
n̂A, and the optimal policy harms drivers: πA(n∗A) <
π̂A(n̂A).

The two-step solution approach yields the unique 
equilibrium capacity, nA, in (29). (When the platform- 
optimal allocation involves strategic demand rejection, 
the per-driver profit function is discontinuous at some 
capacity, hence the inequalities in (29).)

Lemma 3.1 establishes two sufficient conditions for 
the optimality of this equilibrium capacity (n∗A � nA). The 
corresponding per-driver profit must be driver-optimal 
and equal the marginal opportunity cost. In this case, no 
larger capacity can be an equilibrium, so the two-step 
solution is optimal (part 1(i)). Furthermore, by part 1(ii), 
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strategic demand rejection is optimal if and only if the 
equilibrium capacity is moderate (see Proposition 4) and 
there is unserved demand at the low-demand location. 
In this case, strategic demand rejection is optimal without 
reducing driver profits.

Lemma 3.2 extends the two-step solution approach to 
characterize the optimal solution if the sufficient condi
tions of part 1 are not satisfied. (This can only occur in 
the intermediate capacity zone, (nA

1 , nA
3 )). In this case, 

capacity levels larger than nA can be supported in equi
librium, by increasing the per-driver profit. Part 2 charac
terizes in (31) the platform-optimal capacity allocation 
without strategic demand rejection, and shows in part 
2(ii) that the resulting per-driver profit π̂A(n) is driver- 
optimal (see (33)). Part 2(i) characterizes the resulting 
equilibrium capacity n̂A in (32) and establishes that it 
exceeds the equilibrium under the platform-optimal allo
cation (n̂A > nA); this highlights the trade-off between 
driver optimality at larger capacity and platform opti
mality at smaller capacity. Part 2(iii) shows that the opti
mal equilibrium capacity n∗A is “sandwiched” between 
these equilibrium capacities. Part 2(iv) shows in (34) how 
to determine the optimal equilibrium capacity n∗A, as the 
capacity n ∈ [nA, n̂A] that maximizes the platform reve
nue, subject to the driver participation constraints 
(12d)–(12e).

In part 2(v), the sufficient optimality condition for stra
tegic demand rejection, ΠA(nA) > Π̂A(n̂A), states that the 
platform revenue under the smaller platform-optimal 
equilibrium capacity exceeds the platform revenue under 
the larger driver-optimal equilibrium capacity. In this 
case, strategic demand rejection reduces driver participation 
and profits (n∗A < n̂A and πA(n∗A) < π̂A(n̂A)).

4.3.2. Optimal Strategic Demand Rejection to Induce 
Driver Repositioning. Strategic demand rejection under 
moderate capacity (zone 3) means that the platform 
rejects some or all rider requests at the low-demand loca
tion (1), even though there is an excess supply of drivers. 
By sacrificing revenue at the low-demand location, the 
platform incentivizes drivers to reposition to, and gener
ate more revenue at, the high-demand location. Specifi
cally, rejecting rider requests at the low-demand location 
creates an artificial demand shortage that drivers offset 
by choosing to reposition more frequently to the high- 
demand location, rather than joining the queue at the 
low-demand location; the result is a shorter queue there 
(the waiting time may increase or decrease). In terms of 
Proposition 2, rejecting demand at location 1 alters the 
driver-incentive compatible capacity allocation by reduc
ing the queue-length threshold q∗1(s), which frees up 
driver capacity to reposition and serve riders at the high- 
demand location. By controlling congestion, the platform 
uses an operational lever, rather than a financial lever, to 
incentivize drivers to reposition.

Next, we identify optimality conditions for strategic 
demand rejection in two steps, (i) at fixed participating 
capacity, and (ii) at the equilibrium capacity.

Optimality of Strategic Demand Rejection at Fixed 
Capacity Levels. To simplify notation and highlight the 
structural imbalances, define

ρ1 :�
S11

S11 + S12
, ρ2 :�

S22

S21 + S22
, τ :�

t21

t12
, κ :�

c
γp

< 1,

(35) 

where ρ1 and ρ2 are the shares of the local demand 
offered load at location 1 and 2, respectively, τ is the ratio 
between cross-location travel times, and κ is the ratio of 
driving cost to drivers’ service revenue (“relative driving 
cost”). Assumption 2 implies that κ < τ=(1+ τ).

Proposition 5 identifies a necessary and sufficient con
dition for the optimality of strategic demand rejection at 
some fixed capacity levels in the moderate-capacity zone 
(3) that is defined in Proposition 4.

Proposition 5 (Regime A: Optimality of Strategic 
Demand Rejection at Fixed Capacity Level). Under opti
mal admission control and decentralized repositioning, it is 
optimal at moderate capacity, that is, for some n ∈ (nA

2 , nA
3 ], 

to strategically reject rider requests at the low-demand loca
tion so as to induce repositioning to the high-demand loca
tion, if and only if the following condition holds:

Λ12

Λ21

1� ρ1κ

1� ρ1
<
τ� (τ+ 1� ρ2)κ

1� ρ2
κ

1+ τ
τ

τ+ 1� ρ2
ρ2

� τ

� �

:

(36) 

Condition (36) is necessary and sufficient for strategic 
demand rejection to be optimal at some fixed capacity, 
namely, ΠA(n) > Π̂A(n) for some n. However, optimality 
of strategic demand rejection at the equilibrium capacity, 
namely, ΠA(n∗A) > Π̂A(n̂A), requires additional conditions 
that we present in Proposition 6. First, consider the intui
tion for (36) to hold, assuming τ�1 for simplicity: 

The share of the local demand offered load at the high- 
demand location, ρ2, is not too high:2 Under this condi
tion, drivers have a weak incentive to reposition to the 
high-demand location, as they are likely to get matched 
there to a rider going to the low-demand location. 
Therefore, encouraging drivers to reposition requires 
rejecting demand at the low-demand location. Without 
local demand at the high-demand location (ρ2 � 0), 
condition (36) holds regardless of other factors.

The share of the local demand offered load at the low- 
demand location, ρ1, is not too high:3 Under this condition, 
drivers have a strong incentive to queue at the low- 
demand location as they are likely to be assigned a 
rider going to the high-demand location. Therefore, 
encouraging drivers to reposition to the high-demand 
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location requires rejecting demand at the low-demand 
location.

The cross-location demand imbalance, Λ12=Λ21, is suffi
ciently large:4 More cross-location demand at the high- 
demand location increases the value of rejecting demand 
at the low-demand location in order to induce drivers 
to reposition to the high-demand location.

The relative driving cost, κ, is sufficiently large: When 
repositioning is expensive, drivers have no incentive to 
drive empty; therefore, the platform needs to strengthen 
their incentive to reposition to the high-demand location 
over queueing at the low-demand location by rejecting 
demand there.

Optimality of Strategic Demand Rejection at Equi
librium Capacity. For fixed driver capacity, strategic de
mand rejection may reduce driver profits, as they pay 
for repositioning but not for queueing. Therefore, even if 
(36) holds (so strategic demand rejection is optimal at 
some fixed capacity levels), the platform may be able to 
increase revenue without rejecting location-1 demand, 
by increasing driver profits and participation. Proposi
tion 6 identifies intuitive sufficient conditions for strate
gic demand rejection to be optimal in equilibrium, that 
is, for Lemma 3, part 1(ii) or 2(v), to hold.

Proposition 6 (Regime A: Sufficient Optimality Condi
tions for Strategic Demand Rejection). There exists an 
interval (N, N) with 0 <N <N <∞ and a threshold func
tion ρ2(N) : (N, N) → (0,∞) such that strategic demand 
rejection is optimal in equilibrium if the driver pool size 
N ∈ (N, N) and the share of the local demand offered load at 
the high-demand location ρ2 ∈ [0,ρ2(N)).

Figure 4 illustrates Proposition 6 with a numerical 
example. Fixing ρ1 � 0:75,Λ21=Λ12 � 4,τ � 1,κ � 0:3, the 
left panel shows the region in the (N,ρ2)-parameter 
space, that is, the combination of driver pool size and 
local demand offered load share at the high-demand 
location, that yields optimal strategic demand rejection 
in equilibrium. The horizontal line ρ2 � 0:53 indicates 

the maximum value of ρ2 implied by condition (36) in 
Proposition 5 for optimality of strategic demand rejection 
at some capacity level. The right panel presents this opti
mality region and threshold line in a way that highlights 
their connection to the local-demand share at the high- 
demand location, Λ22=(Λ21 +Λ22), assuming that local 
trips originating at the high-demand location last about 
20% of cross-location trips (i.e., t22=t21 � 0:2). This panel 
shows that strategic demand rejection is optimal even 
when the local-demand share at the high-demand loca
tion is relatively high, up to 60% of total demand.

4.4. Graphical Summary of Capacity Allocation 
Under Regimes C, M, and A

Figure 3 visualizes for the regimes C, M, and A the opti
mal capacity allocations specified in Propositions 1, 3
and 4, respectively. To make these graphs comparable, 
we show these allocations as a function of the same equi
librium capacity (n∗ on the horizontal axes), though we 
note that the equilibrium capacities typically differ across 
regimes (see Proposition 7). (i) For scarce capacity (zone 
1), all drivers are busy serving riders in all regimes. (ii) 
For ample capacity (zones 3or 4), all riders are served, 
and all regimes agree again. But, importantly, (iii) in 
regime C the platform can serve all the demand with 
less capacity and no queueing; regimes M and A require 
the buildup of queues (zone 2) to induce driver reposi
tioning. (iv) Admission control (A) allows the platform 
to increase driver utilization versus M, by prioritizing 
demand at the high-demand location based on destina
tion, and also by rejecting demand at the low-demand 
location to boost repositioning.

For each regime, the model primitives have the follow
ing effects: the equilibrium driver participation increases 
in the driver pool (N), the total offered load (S) (for fixed 
route ratios), and the revenue rate (γp), but decreases 
in the driving cost (c) and the demand imbalance 
(Λ21=Λ12).

Figure 3. (Color online) Optimal Capacity Allocation in the Three Control Regimes 

(a) (b) (c)

Notes. (a) Regime C. (b) Regime M. (c) Regime A.
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5. The Impact of Platform Controls on 
System Performance

In this section, we study how platform controls affect 
equilibrium performance. In Section 5.1, we rank the key 
metrics; in Section 5.2, we provide upper bounds on the 
platform’s and the drivers’ gains from control.

5.1. Ranking of Platform Revenue, Per-Driver 
Profit, and Driver Capacity

Proposition 7 shows that more control always benefits 
the platform but may hurt drivers.

Proposition 7 (Ranking of Equilibrium Profits and 
Capacity). Define the driver pool thresholds

NM
1 :� nM

1 =F(γp� c), NA
1 :� nA

1 =F(γp� c),
N3 :� nA

3 =F(πA(nA
3 )) � nM

3 =F(πM(nM
3 )), 

where nM
1 , nM

3 are defined in (27), nA
1 , nA

3 are defined in (28), 
and NM

1 <NA
1 <N3. 

(1) More platform control increases the equilibrium plat
form revenue: Π∗M ≤Π

∗
A ≤Π

∗
C, where

Π∗M <Π∗A iff N ∈ (NM
1 , N3) and S22 > 0,

Π∗A <Π
∗
C iff N ∈ (NA

1 , N3):

(2) Centralized control maximizes driver participation 
and per-driver profit rate: max{n∗M, n∗A} ≤ n∗C and 
max{π∗M,π∗A} ≤ π∗C, where the inequalities are strict if and 
only if N ∈ (NA

1 , N3).
(3) With decentralized repositioning, admission control 

affects driver capacity and profits as follows: 
(a) No change (n∗A � n∗M, π∗A � π∗M), if the driver 

pool is scarce (N ≤NM
1 ) or ample (N ≥N3).

(b) Increase (n∗A > n∗M, π∗A > π∗M), if the driver 
pool is moderate (N ∈ (NM

1 , N3)) and strategic de
mand rejection is suboptimal.

(c) Decrease (n∗A < n∗M, π∗A < π∗M), if the driver 
pool is moderate (N ∈ (N, N′) ⊂ (NA

1 , N3)), strategic 
demand rejection is optimal, and the share of the local 
demand offered load at the high-demand location is 
below some threshold (ρ2 ∈ [0, ρ̃2(N)), where 0 <
ρ̃2(N) <∞).

Three points emerge from Proposition 7. First, plat
form control improves performance only if the driver 
pool is moderate (N ∈ (NM

1 , N3)). Otherwise, all regimes 
yield full driver utilization if the pool is scarce (N ≤NM

1 ) 
or serve all demand if the pool ample (N ≥N3).

Second, for moderate driver pool, more platform con
trol (M→ A→ C) generally improves the platform reve
nue (part 1) and the driver participation and per-driver 
profit (parts 2 and 3a).

Third, drivers may be hurt under decentralized reposi
tioning, in that admission control reduces their partici
pation and profits (part 3c) when strategic demand 
rejection is optimal and stronger conditions hold than 
those in Proposition 6. Specifically, the conditions on the 
driver pool (N′ <N) and the local demand at the high- 
demand location (ρ̃2(N) < ρ2(N)) imply that both the 
availability and the value of additional capacity are so 
low that the platform prefers to boost revenue through 
strategic demand rejection, even at the expense of 
restricting driver participation.

5.2. Upper Bounds on the Gains in Platform 
Revenue and Per-Driver Profit

Next, we provide upper bounds on the gains from con
trol for the platform and drivers.

Figure 4. (Color online) Proposition 6: Optimal Strategic Demand Rejection in Equilibrium (ρ1 � 0:75,Λ21=Λ12 � 4,τ � 1, 
γ � 0:25,κ � 0:3, F ~ U(0, p� c � 2:55)) 
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Proposition 8 (Upper Bounds on Platform Revenue 
Gains). Fix N ≥ nM

3 � nA
3 . 

(1) Platform revenue gain because of admission control 
(regime A over M): If (36) is not satisfied,

max
F(·)

Π∗A �Π
∗
M

Π∗M
≤

S
nM

1
� 1 � Λ21

Λ12
� 1

� �
1

1 + 1�ρ2
1�ρ1

1
τ

:

(37) 

(2) Platform revenue gain because of centralized reposi
tioning control (regime C over A):

max
F(·)

Π∗C �Π
∗
A

Π∗A
≤

S
nA

1
� 1 � Λ21

Λ12
� 1

� �
1

1 + 1
1�ρ1

1
τ +

ρ2
1�ρ2

Λ21
Λ12

:

(38) 

These bounds can be approached arbitrarily closely for 
specific choices of the opportunity cost distribution F(·)
(see Supplemental Material S3). The condition N ≥ nM

3 �

nA
3 requires a sufficiently large driver pool to serve 

all riders under decentralized repositioning. The upper 
bound on the gain from admission control (the right- 
hand side in (37)) is attained if, under minimal control 
only the demand that does not require repositioning is 
served, and admission control increases driver participa
tion enough to serve all demand. The upper bound for 
repositioning control in (38) has a similar interpretation.

The key insight from (37) and (38) is that the potential 
revenue gains increase in the cross-location demand 
imbalance ratio. Table 1 highlights that these gains are 
very substantial at imbalance ratios such as 2 and 5 
that are practically very common (see, e.g., Figure 1 for 
Manhattan).

Proposition 9 (Upper Bound on Per-Driver Profit Gains). 
Fix N ≥ nM

3 � nA
3 , and assume that (36) is not satisfied. The 

per-driver profit gain from admission control (under regime 
A or C) satisfies the following:

max
F(·)

π∗A�π
∗
M

π∗M
�max

F(·)

π∗C �π
∗
M

π∗M
≤

1� ρ2
τ� (1� ρ2 + τ)κ

: (39) 

Whereas the bounds on the platform gains in Proposi
tion 8 can only be attained when more control yields 
repositioning, attaining the bound on the per-driver 
profit gain in (39) requires the absence of repositioning. 

This contrast points to the following key tension between 
the drivers’ and the platform’s gains from control:5 if a 
small change in the per-driver profit increases the num
ber of participating drivers significantly, then the plat
form may extract significant gains while drivers are only 
marginally better off; conversely, if a large change in the 
per-driver profit only yields a small increase in their 
number, then drivers extract significant gains while the 
platform does not.

6. Robustness of Results for 
Multilocation Networks

In this section, we present numerical results for three- 
location ring and four-location star networks. These sug
gest our analytical results for two-location networks are 
robust and reveal how they generalize to multilocation 
networks. We illustrate the key points with selected 
examples and relegate the mathematical formulations 
and further numerical results to Supplemental Material 
S2.

To make our discussion precise, define the net flow of 
location (node) i as the difference between its total poten
tial demand inflows and outflows; that is, NetFlowi �P

kΛki�Λik. We call location i an inflow node if 
NetFlowi > 0, an outflow node if NetFlowi < 0, or a bal
anced node if NetFlowi�0.

6.1. Three-Location Ring Networks
Figure 5 shows the four possible types of three-location 
ring networks; these types differ in the net flow configu
ration of their nodes. We illustrate the key points with 
representative results6 for network type I. We focus on 
the optimal capacity allocation for fixed capacity n, as the 
equilibrium capacity depends on the driver opportunity 
cost distribution F and pool size N. For network I, the 
offered load 

P
lkSlk � 12. Balanced demand accounts for 

nine units, and total excess demand for three units to 
inflow node 1 (two units from node 2, and one unit from 
node 3). Figure 6 shows the capacity allocation for 
Admission Control (A), the most interesting regime (see 
Supplemental Material S2.4 for Minimal Control), for 
n ≥ 10, that is, driver utilization below 100%. 

1. Compared with Centralized Control, decentralized 
repositioning reduces the capacity utilization at moderate 

Table 1. Upper Bounds in (37) and (38) on Platform Revenue Gain (tlk � 1, ∀lk, Λ12 �Λ22 � 1)

Cross-demand imbalance (Λ21
Λ12

) 1 2 5 10

From admission control (37) 0% 43% 150% 319%
From centralized repositioning (38) 0% 25% 100% 225%
(a) Balanced cross-local demand at low-demand location (ρ1 � 0:5)

Cross-demand imbalance (Λ21
Λ12

) 1 2 5 10

From admission control (37) 0% 53% 189% 407%
From centralized repositioning (38) 0% 30% 120% 270%
(b) Imbalanced cross-local demand at low-demand location (ρ1 � 0:25)
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capacity, as it requires wasteful queueing to motivate dri
vers to reposition; furthermore, optimal admission control 
mitigates these losses versus FIFO admission. Under Cen
tralized Control, the minimum capacity to serve the 
offered load (

P
lkSlk � 12) is nC

2 � 15 (80% service utiliza
tion, 20% for repositioning) but much larger in Regimes A 
and M, specifically, nA

3 � nM
3 � 24 (50% utilization, 12.5% 

for repositioning and 37.5% for queueing). Comparing 
regimes A and M, a capacity of n�12 serves nine demand 
units in regime A (Figure 6) but fewer than seven units in 
regime M (Table 1 in Supplemental Material S2.4), cor
responding to service utilizations of 75% versus 56%, 
respectively.

2. Under decentralized repositioning, drivers only 
reposition from inflow nodes (here, node 1) to outflow 
nodes (here, nodes 2 and 3), and the buildup of driver 
queues obeys the following pattern. As the capacity n 
increases, driver queues appear at nodes in decreasing 
order of their net flows: 

(i) Queues first form at inflow nodes to induce 
repositioning to outflow nodes: for n ∈ [10, 20], a 

queue forms only at the inflow node 1, where for 
n>15 it is long enough to induce repositioning.

(ii) Queues then form at lower-imbalance outflow 
nodes, to incentivize further repositioning to out
flow nodes with higher imbalance: For n ∈ [21, 24], 
the queue (q3 > 0) at the low-imbalance outflow 
node 3 reduces this node’s attractiveness as a repo
sitioning destination, so drivers at the inflow node 
1 are encouraged to reposition to the other (high- 
imbalance) outflow node 2.

(iii) Queues finally also form at the higher-imbal
ance outflow node (2) at ample capacity (n> 24).

3. Strategic demand rejection may be optimal at 
inflow nodes: For n ∈ [18, 19], some demand is rejected 
at inflow node 1 to boost repositioning to outflow 
nodes; this shrinks the node-1 queue.

6.2. Star Networks
These observations also generalize to star networks 
where the hub is the only inflow node. Figure 7 shows 
an example: the hub node (1) has a net inflow of 6 and 

Figure 5. (Color online) Four Types of Three-Location Ring Networks 

Note. The numbers indicate the potential demand rates of arcs and the net flows of nodes.

Figure 6. (Color online) Network I: Optimal Capacity Allocation Under Admission Control (A) Regime 

Note. Total demand rate � 12, unit travel times, rider price p � 4, commission rate γ � 25%, driving cost c � 1.
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the spoke nodes (2, 3 and 4) have net outflows of 1, 2 
and 3, respectively. As the capacity n increases, we 
observe similar patterns as in ring network I: queues 
appear at nodes in decreasing order of their net flow 
(1→ 2→ 3→ 4), and repositioning between the inflow 
hub node and the outflow spoke nodes helps serve all 
demand in the end. We also find strategic demand rejec
tion at the inflow hub node under some intermediate 
values of n (s11<S11, as colored red in the table).

7. Discussion and Concluding Remarks
We study the performance impact of operational platform 
controls for ride-hailing networks with strategic drivers 
under significant demand imbalances. Our equilibrium 
analyis of a stationary fluid model yields the following key 
results: (i) Decentralized repositioning leads to inefficient 
capacity allocation as a result of excessive driver idling at 
low-demand locations. (ii) Admission control significantly 
reduces these inefficiencies. (iii) Most notably, we identify 
a novel role for admission control: as a tool to influence 
strategic drivers’ repositioning decisions via demand rejec
tion at low-demand locations. The practical implication is 
that admission control must also consider this effect on the 
distribution of empty cars, not only its immediate effect on 
busy cars. (iv) We provide upper bounds on the platform’s 
and drivers’ benefits caused by increased control. These 
bounds show that these benefits can be very significant 
and point to tension between platform and driver gains.

An important direction of future research is to study 
the interplay of financial and operational controls. The 
following questions regarding variability and informa
tion are also important.

7.1. Steady-State Fluid Model
Ride-hailing services face two types of demand variabil
ity: (i) nonstationary average demand rates (e.g., per 
hour) that reflect significant time-of-day patterns, and (ii) 
stochastic fluctuations around these time-varying rates. 

Our model simplifies this setting in two ways, (i) by 
focusing on a “stationary time slice” during which the 
demand rates are (approximately) constant, and (ii) by 
ignoring the stochastic fluctuations. Though we make 
these simplifications for the sake of analytical tractability, 
we think the resulting steady-state fluid model provides 
a reasonable approximation, given the following two 
key features of demand in operational ride-hailing net
works. First, the demand (and supply) rates are large, 
certainly in major metropolitan areas during rush hour, 
relative to the effects of stochastic fluctuations; for exam
ple, the New York City taxi data shows trip rates on the 
order of hundreds of trips per hour (equivalently, dozens 
of trips per 10-minute interval; see Figure 1). This pro
vides informal support for approximating the stochastic 
discrete model by a deterministic fluid model. Second, 
though intraday variation in demand rates can be signifi
cant, the duration of intraday demand regimes is long 
(e.g., a couple of hours), compared with typical transpor
tation times (e.g., 10–15 minutes). This suggests that each 
demand regime (e.g., morning rush vs midday vs. eve
ning rush) is long enough for transients to settle down 
and the system to reach steady state, or at least that the 
steady state may be a reasonable approximation.

Though our steady-state fluid model ignores demand 
variability, it is useful, because it provides a reasonable 
approximation and yields an analytically tractable for
mulation that generates important and robust structural 
results. Specifically, our model allows us to characterize 
key aspects of strategic drivers’ equilibrium behavior 
and the equilibrium capacity allocation. Whereas this 
behavior would be intractable under time-varying and 
stochastic demand, we think in such settings our key 
insights would continue to hold, notably, (i) decentra
lized repositioning leads to inefficient capacity allocation 
caused by excessive driver idling, (ii) admission control 
can significantly mitigate these inefficiencies, and (iii) 
how and why admission control may involve strategic 

Figure 7. (Color online) A Star Network and Its Optimal Capacity Allocation Under Admission Control (A) 
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demand rejection. Specifically, the key driver of these 
results is the prevalence of substantial demand imbal
ances, and empirical data show that such demand imbal
ances are prevalent in urban traffic. Therefore, we think 
our key insights would be sufficiently robust under 
time-varying and/or stochastic demand.

7.2. Variability and Information Design
In our stationary fluid model, the equilibrium system state 
is constant over time. Therefore, information is irrelevant 
as a control lever: drivers must simply be informed about 
(or correctly anticipate) the constant equilibrium values of 
the key variables that affect their profits, namely, the 
queueing delays and the demand mix at each location.

An interesting direction for future research is to study 
the role and value of information design when the equi
librium system state fluctuates because of stochastic 
and/or time-varying demand.

Under stochastic stationary demand, the platform’s in
formation design problem is to decide which queue- 
length information (if any) to share with drivers. The 
design where drivers do not observe the idle-car queues 
is close to our model; namely, in equilibrium, drivers 
make their repositioning decisions upon arrival to each 
location, these decisions depend on the steady-state aver
age queue lengths at both locations, and repositioning in 
equilibrium typically involves mixed strategies and the 
queue lengths equal some indifference thresholds. The 
case where drivers observe the real-time queue lengths 
at both locations gives rise to a dynamic network game 
with competing long-lived and forward-looking strategic 
agents. The analysis of this game is challenging for 
several reasons: (i) drivers can make state-dependent 
decisions; (ii) the relevant system state depends on all 
drivers’ strategies and is multidimensional (queue 
lengths at each location, plus number of cars traveling 
on each route and/or vector of their arrival times at des
tination); (iii) forecasting their expected queue position 
upon their next trip completion is difficult for drivers 
(because it depends on the multidimensional state, and 
its evolution is subject to demand uncertainty); and (iv) 
fully forward-looking drivers need to optimize beyond 
their next trip completion. In sum, it seems imperative 
to simplify this problem, for example, by restricting dri
vers’ strategy space and/or simplifying their informa
tion processing so that they act somewhat myopically, 
for example, by maximizing their payoff until the next 
trip completion. Under nonstationary demand, the prob
lem is even more intricate. For example, in addition to 
the aforementioned challenges, drivers now also need to 
forecast the effects of changing demand rates on the 
queue length they can expect at the other location.
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Endnotes
1 New York City TLC Trip Record Data. See https://www1.nyc. 
gov/site/tlc/about/tlc-trip-record-data.page.
2 For τ� 1 and κ > 0, the right-hand side of (36) decreases in ρ2 from 
+∞ for ρ2 � 0 to �∞ as ρ2→ 1.
3 The left-hand side of (36) increases in ρ1 from Λ12=Λ21 for ρ1 � 0 to 
∞ as ρ1→ 1, so that condition (36) holds if both local-demand 
shares, ρ1 and ρ2, are below some threshold.
4 The left-hand side of (36) is positive and decreases to zero as Λ21 
increases from Λ12 to ∞ (Λ12=Λ21 < 1 by Assumption 1). Therefore, 
(36) holds for sufficiently large Λ21, provided the right-hand side is 
positive, that is, ρ2 is below some threshold.
5 Supplemental Material S3 illustrates this tension and how it 
depends on the opportunity cost distribution F(·).
6 Types II and III yield similar results; see Supplemental Material 
S2. We omit type IV, as it is balanced.
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Afèche, Liu, and Maglaras: Ride-Hailing Networks with Strategic Drivers 
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–19, © 2023 INFORMS 19 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

2a
01

:4
b0

0:
b9

02
:1

e0
0:

c5
cf

:2
c5

7:
8f

6a
:8

df
a]

 o
n 

17
 J

ul
y 

20
23

, a
t 0

1:
37

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://dx.doi.org/10.2139/ssrn.2890666
https://doi.org/10.48550/arXiv.2111.10706
https://doi.org/10.48550/arXiv.2111.10706
https://doi.org/10.1145/2940716.2940798
https://doi.org/10.1145/2940716.2940798
https://dx.doi.org/10.2139/ssrn.3610517
https://dx.doi.org/10.2139/ssrn.3610517
https://dx.doi.org/10.2139/ssrn.2336514
http://john-joseph-horton.com/papers/uber_price.pdf
http://john-joseph-horton.com/papers/uber_price.pdf
https://dx.doi.org/10.2139/ssrn.3774324
https://dx.doi.org/10.2139/ssrn.3774324
https://doi.org/10.48550/arXiv.1607.04357
https://doi.org/10.48550/arXiv.1607.04357
https://doi.org/10.48550/arXiv.1903.02764
https://doi.org/10.48550/arXiv.1801.04015
https://doi.org/10.48550/arXiv.1801.04015
https://dx.doi.org/10.2139/ssrn.3414716

	Ride-Hailing Networks with Strategic Drivers: The Impact of Platform Control Capabilities on Performance
	Introduction
	Model and Problem Formulations
	Centralized Control (C)
	Regimes with Decentralized Repositioning
	The Impact of Platform Controls on System Performance
	Robustness of Results for Multilocation Networks
	Discussion and Concluding Remarks


