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We consider a model of a service system that delivers two nonsubstitutable services to a market of heterogenous users. The
first service is delivered subject to a “guaranteed” (G) processing rate, and the second is a “best-effort” (BE) type service
in which residual capacity not allocated to the guaranteed class is shared among BE users. Users, in turn, are sensitive to
both price and congestion-related effects. The service provider’s objective is to optimally design the system so as to extract
maximum revenues. The design variables in this problem consist of a pair of static prices for the two services, a policy that
controls admission of G users into the system, and the mechanism by which users are informed of the state of congestion
in the system. Because these objectives are difficult to address using exact analysis, we pursue approximations that are
tractable and lead to structural insights. Specifically, we first solve a deterministic relaxation of the original objective to
obtain a “fluid-optimal” solution that is subsequently evaluated and refined to account for stochastic fluctuations. Using
diffusion limits, we derive approximations that yield the following structural results: (1) pricing rules derived from the
deterministic analysis are “almost” optimal, (2) the optimal operational regime for the system is close to heavy traffic, and
(3) real-time congestion notification results in increased revenues. Numerical results illustrate the accuracy of the proposed
approximations and validate the aforementioned structural insights.
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1. Introduction
Recent years have witnessed an explosive growth in ser-
vices offered over the Internet via the World Wide Web.
These web-based services include e-commerce, Internet
telephony, streaming audio and video, e-mail, and informa-
tion retrieval, to name but a few examples. In an effort to
address the processing requirements of these diverse appli-
cations and better segment the market of potential users,
service providers are attempting to offer multiple grades of
service so that users are differentiated according to their
quality-of-service (QoS) requirements and willingness to
pay. Inspired by these recent developments, in particular,
the emergence of information services, this paper intro-
duces a simple stylized model of differentiated services and
addresses questions of optimal system design.
The goal of our model is to capture some of the styl-

ized features that characterize information services. The
first feature is that congestion in such services typically
manifests itself as a degradation of the processing rate,
which in turn leads to delays. This should be contrasted
with more traditional service operations in which delays are
driven by queueing effects. The second is the QoS levels
that are common in the delivery of these types of services.
In particular, in many instances a service provider may
offer “real-time” applications that necessitate a guaranteed
performance (e.g., software on demand) and “low QoS”

applications that may be delivered subject to rate degrada-
tions (e.g., online help desk or database searches).
Motivated by such QoS provisioning, this paper consid-

ers a system that delivers two nonsubstitutable services or
application classes. The first service is delivered subject to a
“guaranteed” (G) processing rate, and the second is a “best-
effort” (BE) type service in which residual capacity not allo-
cated to the G class is shared among BE users. An important
feature of this model is that both services are delivered using
common processing resources, i.e., capacity is not split in
such a way that a fraction is dedicated to each service class.
Demand for service in each application class is determined
by the total cost faced by its users, this comprising a class-
specific usage fee and a congestion-related cost.
In terms of probabilistic primitives, we assume that nom-

inal connection requests arrive according to independent
Poisson processes, and the processing requirements of the
two services are exponentially distributed with potentially
different rates. With these assumptions in place, the system
dynamics are Markovian. We note that our formulation and
analysis focuses on the overall demand induced by a given
price and congestion level. That is, we do not attempt to
model the flow or packet-level dynamics that characterize
the means of delivering information services.
The service provider’s objective is to extract maximum

revenues by (1) optimally pricing the two service classes,
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(2) choosing an admission control policy for guaranteed-
rate requests, and (3) selecting the mechanism by which
users “learn” about the state of congestion in the system.
In achieving these goals, the service provider is assumed
to possess full information on the customer types. Note
that the congestion notification mechanism alluded to above
introduces feedback: Delay-averse users may be more
reluctant to connect to the system when congestion is high,
and this in turn reduces congestion thus inducing more
users to connect. This process then continues until an equi-
librium is reached, a notion that is central to our analysis.
In addition to the design objectives stated above, our anal-
ysis strives to illuminate various other aspects that char-
acterize the performance of the system, e.g., magnitude of
congestion-related effects, the nominal operating point for
the system, and other equilibrium properties.
The objectives mentioned above are difficult to address

directly, even under simplifying Markovian assumptions.
In particular, the stochastic modulation of capacity avail-
able to BE users and the feedback mechanism that is intro-
duced by congestion notification, render the above design
problems intractable as far as exact analysis is concerned.
Instead, we propose an approximate analysis that gives rise
to important structural insights and supports simple com-
putations. In hindsight, this approach is seen to be quite
accurate in large capacity systems. The first step of this
hierarchical analysis consists of formulating a deterministic
relaxation of the original optimization problem. The solu-
tion to this problem yields “fluid-optimal” per-access prices
for the two services, and suggests an admission policy for
G users. The latter amounts to giving “high priority” to the
service class that generates more revenue per unit of capac-
ity per unit time. Because it is natural to think of this value
being higher for services that require strict performance
guarantees, we hereafter assume that indeed the guaran-
teed service is given “high priority” in the sense that its
users are always admitted when capacity is available. (As
will be argued in what follows, the main structural insights
that arise in this setting are essentially preserved when this
priority is switched to the BE class.) The second step
of this analysis examines the performance of the system
under the “fluid-optimal” solution, assessing the effects of
stochastic fluctuations. Subsequently, in the final step, the
fluid-optimal solution is refined to account for stochastic
fluctuations so as to further optimize system performance
and extract additional revenues. In terms of methodol-
ogy, the approximate analysis described above hinges to a
large extent on diffusion limits. This machinery enables us
to pursue several objectives that would otherwise not be
tractable via exact analysis.
The main contributions of this paper are the following.
(1) Pricing and admission rules derived via determin-

istic analysis. The fluid-optimal prices and the associated
admission control policy for G users turn out to be “almost
optimal.” Namely, the revenues extracted by these choices
when implemented in the stochastic system are very close
to those generated by the optimal rule. (See Theorem 2.)

(2) System operational regime and structural insights.
Under nominal assumptions on the revenue functions (es-
sentially, concave increasing), fluid-optimal prices derived
via the deterministic analysis (see Proposition 1) induce an
equilibrium operating point where utilization is high, con-
gestion effects are “small,” and stochastic fluctuations are
of order square root of the system “size.” (See (i)–(iv) in
Theorem 1.) When the mean service requirement is iden-
tical in the two classes, the system equilibrium can be
approximated with high accuracy via a solution to a simple
fixed-point equation. (See (10) in Theorem 1.)
(3) Performance analysis when classes are differentiated

with respect to their service requirements. A simple approx-
imation that relies on underlying diffusion limits is pro-
posed, so as to derive closed-form approximations as in
Theorem 1. (See §6.)
(4) Second-order price correction. The structural in-

sights that follow from the equilibrium analysis give rise to
a simple second-order price correction that refines the fluid-
optimal price so as to extract higher revenues. (See §7.)
(5) The value of real-time congestion notification. A sys-

tem that informs users of real-time congestion generates
more revenue than one that provides static congestion infor-
mation; the magnitude of this contribution is seen to be
second-order. (See Theorem 3.) These results are estab-
lished with the aid of diffusion limits. (See Proposition 4.)
Numerical results validate the structural insights and

illustrate the accuracy of the approximations discussed
above.
The remainder of this paper is structured as follows. This

section concludes with a review of the literature, while §2
describes the system model and design objectives. Section 3
pursues a deterministic analysis, and §4 derives the sys-
tem behavior under the deterministic solution. Section 5
discusses some of the qualitative insights extracted from
the analysis in §§3 and 4. Sections 6 through 8 focus on
extensions and refinements of the previous analysis focus-
ing on nonidentical service rates, second-order optimiza-
tion, and the economic value of real-time congestion
notification, respectively. Finally, there are two appendixes:
Appendix A contains background material on diffusion lim-
its and Appendix B contains the proofs.

Literature Review

The stylized model that we formulate is similar to the one
first introduced by Das and Srikant (2000) to model best-
effort BE type traffic in the data network context. They
derived diffusion approximations for this single-class sys-
tem in the so-called Halfin-Whitt heavy-traffic regime. In
a previous paper, Maglaras and Zeevi (2003a) studied a
variant of the Das-Srikant model pursuing problems of
economic optimization and optimal system design for a
single-class system serving only BE users. The work in
Maglaras and Zeevi (2003a) covered both profit maximiza-
tion and social welfare objectives, adopting an equilibrium
formulation that is driven by the treatment in Mendelson
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and Whang (1990) (see also Basar and Srikant 2002 for a
related study of different flavor). Here, we seek to extend
this analysis by considering a canonical two-class system
model and in addition consider further design issues, such as
admission control and congestion notification mechanisms,
and their economic value. In contrast to the single-class case
discussed in Maglaras and Zeevi (2003a), the analysis of
the two-class system covered in the current paper hinges
on diffusion approximations of the type derived recently in
Maglaras and Zeevi (2004). The main result from Maglaras
and Zeevi (2004) serves as an auxiliary result in several
proofs in the current paper and is cited in Appendix A for
completeness.
The primary motivation to focus on G and BE service

classes is driven by the communication and information
services area (see, e.g., Altman et al. 2000, Altman and
Kushner 1999, Carpenter and Nichols 2002, Gibbens and
Kelly 1999, and the references therein). The prism through
which we view the system and its performance focuses on
the users level or overall demand level rather than data
flows or packets (similar to the study of Paschalidis and
Tsitsiklis 2000). The notion of service differentiation is, of
course, ubiquitous in operations management and service
operations. Two specific application areas that are akin to
the one studied here include call centers that process “VIP”
and “regular” customers (see, e.g., the recent survey by
Gans et al. 2003) and rental systems that serve customers
with reservations as well as “walk-ins” (see, e.g., Savin
et al. 2002). In the former, users experience congestion by
waiting in a queue until agents become available; while in
the latter, congestion appears in the form of blocking when
there is no remaining capacity. For a recent discussion of
service grades, customer types, and scheduling rules in a
production system modelled as a multiclass single-server
queue, see Van Mieghem (2000).
Our view of the service provider as having complete

knowledge of the user (or demand function) characteristics
is dubbed “full information” in Van Mieghem (2000). In
this setting, as argued in Van Mieghem, the assumption that
services are nonsubstitutable is essentially not restrictive,
because the system manager can always select not to serve
customers that select the “wrong” class. A similar model
to the one we pursue in the current paper, dealing with
“incomplete information,” substitutable services, and users
who have a choice of service level is discussed in Maglaras
and Zeevi (2003b). Finally, McGill and van Ryzin (1999)
provide a recent overview of revenue management that is
tangentially related to our work.
A stream of recent research has emphasized the pivotal

role played by diffusion limits as a means to analyze large-
scale service systems. In this context, a particularly useful
framework is the many-server heavy-traffic limits pioneered
by Halfin and Whitt (1981). The interest in the Halfin-Whitt
regime stems largely from its ability to succinctly sum-
marize and elucidate natural statistical economies of scale
that are present in many large-capacity service systems.

In particular, Whitt (1992) and Garnett et al. (2002) argue
that this regime is a desirable operating point for cer-
tain large-scale service operations. In Maglaras and Zeevi
(2003a), the Halfin-Whitt regime is optimal from an eco-
nomic optimization standpoint in a system that only offers
BE type service. In the current paper, the Halfin-Whitt
heavy-traffic regime is also seen to be the outcome of eco-
nomic optimization, viz., fluid-optimal prices induce this
type of behavior. For some recent applications and exten-
sions of the Halfin-Whitt results, see Whitt (1992), Fleming
et al. (1994), Das and Srikant (2000), Garnett et al. (2002),
and Puhalskii and Reiman (2000). In the context of call
centers, Armony and Maglaras (2004a) and Whitt (2004)
study the equilibrium behavior of large-capacity systems
based on the Halfin-Whitt asymptotics, while Whitt (1999)
and Armony and Maglaras (2004b) study the effect of real-
time congestion notification; the latter uses Halfin-Whitt
type diffusion limits. Motivated by the skills-based rout-
ing problem in call centers, both Atar et al. (2002) and
Harrison and Zeevi (2004) study dynamic scheduling prob-
lems in multiclass many-server systems. (For recent surveys
of these and other issues related to call-center design, see
Gans et al. 2003 and Whitt 2002.)

2. Model Formulation and Design
Objectives

Our stylized system model attempts to capture four impor-
tant features of the physical system: common and finite pro-
cessing capacity, lack of resource pooling when the system
is under-utilized, differentiated services, and the capability
to share processing resources in the BE class.

The System Model

The service system is endowed with a finite processing
capacity C used to support two nonsubstitutable services,
which will also be referred to as classes: guaranteed-rate
(G) service will be denoted as class 1, and a best-effort
(BE) type service will be denoted as class 2. Hereafter,
various quantities will be tagged with subscripts 1 and 2
to denote the two classes. Users requesting class i service
arrive to the system according to a Poisson process with
rate �i and have independent identically distributed (i.i.d.)
service requirements that are exponentially distributed with
rate �i. Note that the two services are linked through
the common capacity constraint. The precise details and
dynamics of the two service classes are as follows.
Guaranteed-rate (G) service. Let Q1�t� denote the num-

ber of G users in the system at time t and assume, for
simplicity, that C is integer valued. Users of this service
that are admitted into the system always receive one unit of
processing capacity. Because the system has finite capac-
ity, it will not always be possible to deliver this guarantee,
and thus the service provider will need to exercise some
form of admission control. This will be denoted by the non-
decreasing process U = �U�t�
 t � 0�, where U�t� counts
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the cumulative number of such connection requests that
have been blocked (i.e., rejected) up to time t > 0, with
U�0�= 0. We will assume that the admission control U is
Markovian, that is, the decision on whether to admit a G
user arriving at time t depends only on the number of users
of each type currently connected to the system. Note that
the guaranteed rate of service offered to these users implies
that Q1�t��C for all times t.

Best-effort (BE) service. BE users are always admitted
into the system, and the service provider does not exercise
any form of admission control in this service class. When
there is sufficient capacity in the system, BE users receive
a nominal allocation of one unit of processing capacity,
and otherwise they share available capacity in an egalitar-
ian manner resulting in a degraded processing rate. Specif-
ically, the rate allocated to BE users at time t is

BE service rate =



1� Q1�t�+Q2�t��C�

C −Q1�t�

Q2�t�
� Q1�t�+Q2�t� > C�

where Q2�t� denotes the number of BE users in the system
at time t. When Q1�t� = C, BE users temporarily do not
receive service but remain connected to the system.
Despite the processor sharing characteristic, it can be

verified that the dynamics of the process �Q2�t�
 t � 0�
are identical to that of an M/M/C�t�/� system, where
the capacity C�t�= C −Q1�t�� 0 is a stochastic process
modulated by the number of G users in the system. The
dynamics of �Q1�t�
 t � 0� depend on the admission con-
trol U that is yet to be specified.

Economic Structure and Demand Model

We assume that the service provider charges a fixed connec-
tion fee pi > 0 for each class i user accessing the system.
The BE users perceive the disutility associated with rate
degradation through the excess delay it induces relative to
the nominal sojourn time based on a unit rate allocation.1

A proxy for this excess delay is inversely proportional to
the rate degradation, i.e.,

D�t�=
(

Q2�t�

C −Q1�t�
− 1

)+
= �Q1�t�+Q2�t�−C�+

C −Q1�t�
� (1)

We note that in large-capacity systems D�t�/�2 is an
asymptotically accurate estimate of the actual excess delay
due to a pathwise version of Little’s law. To facilitate
mathematical analysis, we will take the excess delay to be
D�t� 
= ��Q1�t�+Q2�t�−C�+�/��C −Q1�t��∨ 1�, where
x ∨ y 
= max�x� y�. This ensures that the excess delay is
finite almost surely. (As will be evident in what follows,
this assumption does not restrict the generality of the anal-
ysis in any meaningful manner.)
We assume an additive linear delay cost for BE users,

which is q > 0 per unit of time of excess delay; the sub-
script 2 is dropped from D and q because these quantities

are relevant only for the BE service class. Thus, the cost
of joining the system for G users is given by the price, p1,
while for BE users this cost is given by p2 + �q/�2�ƐD,
where ƐD is the expected steady-state delay (the precise
notion of this steady state is explained below). As a matter
of convention, we will denote steady-state quantities with
either an � as their time argument or simply by omitting
the time argument altogether when no confusion arises,
e.g., D 
=D���. The arrival rate in each class is then
�1�p1� for G users and

�2�p2+�q/�2�ƐD� for BE users�
where �i�·� are the respective demand functions for each
class of service. Note that the rate of G user connection
requests, �1�p1�, does not depend on the admission con-
trol U but that a fraction of �1�p1� will be denied admission
in accordance to the control U�t�. Note that a fraction of
the G user connection request rate, �1�p1�, will be denied
admission in accordance to the control U�t�, but that �i�p1�
itself does not depend on U . The long-run blocking proba-
bility for such users is

b�U� 
= ��blocking�= lim
t→�

U�t�

�1�p1�t
�

which is for now assumed to exist (this is later proved to
be the case under a specific admission policy). The demand
functions are assumed to be convex, decreasing, continu-
ously differentiable, and such that �i�x�→ 0 as x → �
for i = 1�2. The inverse demand function will be denoted
by pi���; i.e., pi�·�= �−1

i �·�. With slight abuse of notation,
we will denote the vector of realized arrival rates using the
same notation as the demand functions only omitting the
argument, i.e., �= ��1��2�. Finally, put �i 
=maxx �i�x�,
the maximum demand or market potential for each type of
service, respectively, which is assumed to be finite. This
allows us to normalize the demand functions, writing, for
example, the arrival rate into each class as

�i�·� 
=�i�̃i�·��
where �̃i�·� is the normalized demand function taking val-
ues in the unit interval.

Equilibrium Formulation

As hinted above, we will focus our attention on the equilib-
rium steady-state behavior of the system. To be precise, we
say that for some price vector p= �p1� p2� and control U ,
the system admits a unique equilibrium if there exists a
unique steady-state probability distribution for the process
��Q1�t��Q2�t��
 t � 0�, such that the expected delay in
class 2 when taken with respect to (w.r.t.) to this distri-
bution, ƐD, induces a time homogenous vector of external
arrival rates

�1�p1�=�1�̃1�p1� and

�2�p2�=�2�̃2

(
p2+

q

�2
ƐD

)
� (2)
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and these arrival rates together with the steady-state block-
ing probability defined above are, in turn, consistent with
the aforementioned steady-state distribution. For now we
will assume that an equilibrium exists and proceed to pose
an optimization problem in terms of the pricing and admis-
sion control decisions. We will return to this issue in §§3
and 4, where we propose a specific admission control pol-
icy for which we show that there exists a unique equilib-
rium. Section 8 will contrast this model with one where
state-dependent information is announced to the users.

Design Objectives

The economic optimization problem faced by the service
provider is to maximize the equilibrium revenue rate gen-
erated by the system. This optimum is given by

R∗ 
= sup
p1� p2�0�U

{
p1�1�p1��1− b�U��

+p2�2

(
p2+

q

�2
ƐD

)}
� (3)

where the optimization is carried out under the equilib-
rium distribution. Implicit in this expression is the depen-
dence of the congestion effects for G and BE users, namely
b�U� and ƐD, on the admission control U . This formula-
tion assumes that the service provider has full information
on the user characteristics and induced demand func-
tions summarized in the five-tuple (q��1��2��1��2) and
the two normalized demand functions �̃i�·�� i = 1�2. The
design variables in the above optimization problem are the
prices levied on each provisioned service and the admission
control policy U . Subsequently, in §8 we consider the addi-
tional decision of selecting the mechanism by which con-
gestion is “fed back” to the users (i.e., static versus dynamic
information). In what follows, it is useful to consider a ver-
sion of the maximization problem stated above where the
revenue rates are considered as functions of � rather than
price p. In particular, put

ri��i� 
= �ipi���� i= 1�2� (4)

where these functions are assumed to be continuously dif-
ferentiable, strictly concave, and increasing in the �is. This
formulation, as well as the assumptions accompanying it,
are standard in the revenue management literature; see, e.g.,
Gallego and van Ryzin (1994).

Discussion of the Modeling Assumptions

The model we propose assumes that when the system is
under-utilized, spare capacity cannot be redistributed to the
users currently in the system; i.e., there is no resource
pooling. The reason for this assumption is that most ser-
vice systems are limited by a maximum processing rate.
In the context of communication and information services
this is typically due to restricted uploaded and downloaded
rates and limited efficiency in executing tasks in parallel.

In terms of probabilistic primitives, the assumption regard-
ing the Poisson arrival streams is not restrictive; however,
the exponential distribution of the service times is required
for tractability. Note that the expression in (2) implicitly
assumes that demand for BE type service is affected by
users assessing their congestion cost based on their average
service time, as opposed to the use of their actual (random)
service requirement. This follows the modeling framework
introduced by Mendelson and Whang (1990) and is reason-
able in applications where the user does not know a priori
the precise amount of service that he/she will request. In
terms of congestion cost, we note that the hierarchical solu-
tion approach we propose applies also in the case in which
delay costs are convex increasing, as in Van Mieghem
(2000). Finally, our system model assumes that the two
service classes are nonsubstitutable and users cannot select
between them upon accessing the system. As pointed out
in Van Mieghem (2000), when the service provider has full
information on the user characteristics (demand functions)
one could allow users a choice of QoS level, then simply
penalize users who select the “incorrect” class.

3. Deterministic Analysis
The first step in our analysis is to formulate and solve a
deterministic relaxation of the design problem given in (3).
To this end, we introduce two new design variables, b and d;
the former plays the role of the blocking probability for G
users, and the latter plays the role of the steady-state excess
delay suffered by the BE users. This informal description is
meant to indicate the logic behind the deterministic relax-
ation and how it is derived from the original optimization
problem (3). This deterministic problem is given by

max p1�1�p1��1− b�+p2�2�p2+ �q/�2�d�

s.t.
�1�p1��1− b�

�1
+ �2�p2+ �q/�2�d�

�2
�C�

p1� p2�d� 0� b ∈ �0�1��

(5)

Note that the objective function is the “same” as the one
in (3), and the constraint linking the variables p1� p2� b�d
is the stability condition that was implicitly satisfied in the
stochastic system of the previous section due to the block-
ing of G users and the regulation of the BE demand via
the equilibrium congestion term ƐD. Treating b�d as opti-
mization variables is, of course, a relaxation of the original
problem, and therefore the value of the optimization prob-
lem (5) provides an upper bound on the optimal revenue
rate for the stochastic system R∗.
The first observation about the solution to this optimiza-

tion problem is that in terms of revenue rate maximization
it is optimal to never block G users and never delay BE
users, i.e., b̄ = 0 and d̄ = 0, where the overbar notation
denotes the solution of the deterministic planning problem.
This is proved by contradiction. Suppose that �p1� p2� b�d�
is optimal with b > 0. It is easy to see that the service
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provider can raise p1 to p
′
1 such that �1�p

′
1�= �1�p1��1−b�

and extract higher revenues while consuming the same
capacity per unit time, which contradicts the optimality of
�p1� p2� b�d�. Similarly, one can show that it is never opti-
mal to have BE users suffer a positive excess delay.
To characterize the optimal prices and associated demand

rates for (5), we will assume that the system capacity is
scarce in the following sense. Let p∗

i = argmaxp�0 p�i�p�
denote the unconstrained revenue maximizing price for ser-
vice class i. We will require that

�1�p
∗
1�

�1
+ �2�p

∗
2�

�2
�C� (6)

i.e., the unconstrained revenue maximizing demand rates
consume at least as much capacity as C. This can be
motivated by considering a higher-level profit maximiza-
tion problem that incorporates a convex increasing cost of
capacity per unit time, denoted by H�C�, in which case it
is easy to show that the maximum profit rate p1�1�p1�+
p2�2�p2�−H�C� over

�1�p1�

�1
+ �2�p2�

�2
�C�

occurs when the capacity constraint is binding.
Given the discussion above, we can now focus our

attention on (5), with b = d = 0. Under the assumptions
imposed on the primitives, it is readily seen that the result-
ing two variable optimization problem involves maximizing
a (strictly) concave function over a convex set. We also
assume that the solution of this deterministic problem is
such that it is profitable to offer both service classes so
that the problem does not degenerate to one involving only
a single class. Analysis of the Lagrangean associated with
(5), with b�d set to zero, leads to a precise condition that
ensures that the optimum in (5) is achieved at an interior
point of the set of feasible rates. This is summarized in the
following proposition.

Proposition 1. Assume that (6) holds, and let p̄1� p̄2� b̄� d̄
denote the maximizer of the deterministic optimization
problem (5). Then, b̄ = 0 and d̄ = 0, and p̄1� p̄2 lead to
full resource utilization, i.e., ��p̄1�/�1 + �2�p̄2�/�2 = C.
If, in addition, there exist �1��2 � 0 such that �1/�1 +
�2/�2 � C and r ′1��1��1 = r ′2��2��2, then it is optimal to
offer both services, i.e., ��p̄1���2�p̄2� > 0.

The fluid-optimal demand rates associated with the solu-
tion of (5) are computed through the demand functions,
�̄i = �i�p̄i�.

Proposed Policy

The next step is to articulate a pricing and admission con-
trol policy for the original system based on the solution of
the deterministic relaxation given above. The pricing policy
will be to set the per-access fees for service classes 1 and 2

equal to p̄1 and p̄2, respectively. In terms of admission
control decisions, the solution to (5) is not very helpful
because it prescribes no blocking and no delay for G and
BE users, respectively. Under the pricing structure proposed
above, however, it is natural to consider an admission pol-
icy that gives “priority” to G users provided that �1p̄1 �
�2p̄2, and to BE users otherwise. That is, the system gives
priority to the class that generates higher revenue per unit
of capacity per unit time. Direct analysis of the first-order
optimality conditions of (5) yield that �1p̄1 � �2p̄2 is
equivalent to

�̄1�1
�p1���

��

∣∣∣∣
�̄1

� �̄2�2
�p2���

��

∣∣∣∣
�̄2

�

where pi�·� = �−1
i �·�. In general, this provides only an

implicit condition on the underlying primitives that gives
rise to a more “expensive” G class. This can be further
simplified if one assumes a particular form for the demand
functions. For example, in the context of linear demand
models, where for any price p the demand �i�p� = �i −
 ip, this reduces to the condition �1�1/ 1 ��2�2/ 2.
In the remainder of the paper we will assume that �1p̄1 �

�2p̄2, and thus that G users receive higher priority. Denot-
ing this policy by �U , we have that �U�t� increases only (and
a G user is denied admission) at times where upon arrival
of a G user request Q1�t� = C, i.e., the entire capacity
is already utilized by high-priority users. Note that in this
case �Q1�t�� t � 0� has the same dynamics as the number-
in-system process in an M/M/C/C system.
For future purposes, it will be convenient to denote the

fluid-optimal revenues, i.e., the value of the deterministic
optimization problem (5), as a function of the fluid-optimal
prices,

�R�p̄1� p̄2�= p1�1�p̄1�+p2�2�p̄2�� (7)

and note that by construction this serves as an upper bound
for the revenue rate in the underlying stochastic system, i.e.,
R∗ � �R�p̄1� p̄2�. Finally, the relative workload contributions
of each service class are defined by

!i =
�̄i/�i

�̄1/�1+ �̄2/�2
= �̄i
C�i

(8)

and !1+!2 = 1. Thus, the !s represent the fluid-scale frac-
tions of load that emanate from each service class.

4. System Behavior Under the
Deterministic Solution

We now study the performance of the system under the pol-
icy extracted from the fluid relaxation, taking into account
the effect of stochastic variability and congestion.
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4.1. Equilibrium Analysis Under the Proposed
Policy

The first step is to establish that under the policy proposed
above there exists a unique equilibrium operating regime.
This is addressed in the next two propositions. First, con-
sider a system where the BE user class is not sensitive to
delay, i.e., q = 0. (Alternatively, this is a system with no
feedback signal.) The next proposition characterizes the sta-
bility region for this system, i.e., the set of input rates �=
��1��2� such that the system admits a unique steady state.

Proposition 2. For each capacity C > 0, and arrival vec-
tor �> 0 such that

�1��Q1 <C�

�1
+ �2
�2

<C�

the continuous-time Markov chain �Q1�t��Q2�t�
 t � 0� ad-
mits a unique stationary (steady-state) distribution. Here,
��Q1 =C�= 1−��Q1 <C� is the steady-state probability
of blocking in an M/M/C/C queue with arrival rate �1
and service rate �1.

Note that �Q1�t�
 t � 0� admits a unique stationary dis-
tribution for any arrival rate �1 because the number in sys-
tem is bounded by C. If we assume that under the unique
steady-state distribution, the expected delay, ƐD, is contin-
uous in the BE class arrival rate, �2, then, for the system
with feedback (q > 0), we have the following result.

Proposition 3. For each capacity C > 0 and price vector
p� 0, there exists a unique steady-state equilibrium.

The nature of the two-class system and the associated
equilibrium formulation make it difficult to pursue a direct
analysis of the Markov chain describing the system dynam-
ics. This difficulty is exacerbated when the service rates for
the two classes differ, i.e., when �1 �= �2. (This problem
has been pointed out in many other studies; see, e.g, Davis
1966 and Williams 1980.) With this in mind, we will first
derive approximations to the system equilibrium behavior in
the simpler case, where the service rates are identical. This
provides a clean illustration of the main structural insights
and key results. Subsequently, §6 will illustrate how these
results extend to the case of nonidentical service rates.

4.2. Preliminaries for Asymptotic Analysis

Our approach will rely on approximations that are accurate
in large-scale operations, i.e., when the market potential
and the system capacity are both large. To derive these
approximations, we will let the “scale” of the system grow
as follows: For n= 1�2� � � � and i= 1�2, we set
Cn 
= n (capacity grows large),

�n
i 
= n��i (capacity grows proportionally to the

market potential),

�ni �·� 
=�n
i �̃i�·� (structure of the demand curve

is preserved).

(9)

The second and third assumptions imply that the structure
of the demand curve is preserved, while its magnitude is
scaled up linearly. The proportionality factor, ��= � ��1� ��2�,
are derived from the original system parameters by setting
��i 
= �i/C, where �i is the potential demand for the ith
service class, and the system capacity is C. Note that in
the case of linear costs of capacity, h�C�= h ·C for some
h > 0, the assumption that capacity and market potentials
grow proportionally would be a consequence of the profit-
maximization objective that incorporates capacity costs; for
an illustration of this argument in the single-class context,
see Maglaras and Zeevi (2003a). Finally, we note that under
the scalings given in (9) the fluid-optimal prices p̄i and the
workload contributions !i defined in the previous section are
independent of n, while the fluid-optimal demand rates �̄ni
grow proportionally to n. We use the superscript n to denote
quantities that depend on the (growing) system capacity,
e.g., %n denotes the system utilization, and the absence of
such a superscript will indicate quantities that are indepen-
dent of n. For two real-valued sequences an� bn, we write
an = o�bn� if an/bn → 0 as n→�. Finally, for any differ-
entiable function f 
 �→�, f ′ will denote its derivative.

4.3. Main Results

System Equilibrium Characterization. Our first
result characterizes the system equilibrium. In particu-
lar, it asserts that the fluid-optimal prices induce “high”
resource utilization (heavy traffic) and yet the service qual-
ity achieved is high.

Theorem 1 (Equilibrium Characterization). Suppose
that �1 = �2 = �, the conditions of Proposition 1 hold, and
assume that demand (�n) and capacity (Cn) grow large as
in (9) as n→�. Consider the sequence of steady-state uti-
lizations %n, delays Dn, and queue lengths Qn

1�Q
n
2 obtained

in equilibrium for each n. Then,
(i) System utilization:

%n = 1− )√
n
+ o�1/

√
n��

(ii) BE class delay:

Ɛ�Dn�= d�)�√
n

+ o�1/
√
n��

(iii) G class blocking:

��Qn
1 = n�= o�e−cn� for some c > 0�

(iv) System congestion:

��Qn
1 +Qn

2 � n�= ,�)�+ o�1��

as n→�. Furthermore, the parameter ) that character-
izes the asymptotic approximations in (i) to (iv) above can
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be explicitly computed as the unique solution of the follow-
ing equation:

) =−!2
q

�

�̃′
2�p̄2�

�̃2�p̄2�
d�)�� (10)

where d�)� is given by

d�)�= -�)�

!2)�).�)�+-�)��
� (11)

Here, !2 is the workload contribution associated with the
BE users for the fluid-price vector p̄, ,�)� 
= !2)d�)�,
and .�·��-�·� denote the standard normal cumulative dis-
tribution function and its density, respectively.

Intuition and “Proof Sketch.” The essence of the
equilibrium analysis hinges on the delay process D. To
this end, the delay experienced by the BE class (see (1))
satisfies

Dn�t�≈ �Qn
1�t�+Qn

2�t�− n�+

n−Qn
1�t�

�

where ≈ is used to denote equality up to lower-order terms
in n. Now, when the mean service requirements are iden-
tical in the two classes and neglecting the blocking of G
users, the number-in-system process, Qn

1�t� + Qn
2�t�, has

identical dynamics to the number-in-system process in an
M/M/n queue. In particular, �Qn

1�t�+Qn
2�t�−n�+ is then

simply the queue length at time t � 0, and the steady-state
mean is

Ɛ�Qn
1 +Qn

2 − n�+ = %n��Qn
1 +Qn

2 � n�

�1−%n�
�

where Qn
i 
=Qn

i ���. When %n = 1−)/
√
n for some ) > 0,

we have that

Ɛ�Qn
1 +Qn

2 − n�+ ≈√
n��Qn

1 +Qn
2 � n�/)

and limn→� ��Qn
1 + Qn

2 � n� = ,�)� = -�)�/�).�)� +
-�)�� (see, e.g., Halfin and Whitt 1981, Proposition 1).
On the other hand, the process Qn

1 is simply the number in
system in an M/M/n/n queue with �n1 = !1n�, which fol-
lows from (8). (Recall that !1� !2 are the relative workload
contributions from each class of service.) Consequently,
ƐQn

1 ≈ !1n and n − Qn
1 ≈ !2n. Combining these obser-

vations, we conclude that ƐDn ≈ d�)�/
√
n. Because the

blocking probability for the G class is small, it follows that
the utilization is essentially dictated by the above conges-
tion term, in particular, %≈ 1−)/

√
n. Finally, by taking a

Taylor expansion of the demand function for the BE class,
�̃2�·�, one obtains the equilibrium Equation (10). While
this sketch captures some of the intuition that underlies the
actual proof, it is also somewhat misleading. In particular,
due to blocking effects a rigorous analysis of the two-class
system hinges on diffusion limits.

Implications: Performance of the Fluid-Optimal
Prices. Theorem 1 suggests that the revenues generated
under the fluid-optimal prices ought to be “close” to opti-
mal, due to the “small” degradation attributed to stochastic
fluctuations. To turn this into a rigorous statement, let us
first introduce the following notation. Let

Rn�p1� p2�U � 
= p1�
n
1�p1��1− b�U��

+p2�
n
2�p2+ �q/�2�ƐD

n�

denote the revenue rate achieved under any feasible price
pair �p1� p2� and admission control U in equilibrium, which
is assumed to exist, and let

Rn∗ 
= sup�Rn�p1� p2�U�
 p1� p2 � 0�U�
denote the optimal revenue for a system with capacity
Cn = n. Under this notation, Rn�p̄1� p̄2� �U� denotes the
equilibrium revenue rate under the policy extracted through
the fluid relaxation of §3. Also, recall that �R�p̄1� p̄2� is the
value of the deterministic optimization problem, i.e., the
fluid-revenue rate generated by the fluid-optimal prices
p̄1� p̄2, and let �Rn = n �R�p̄1� p̄2� denote the optimal revenue
extracted in (5) when �i�·� is replaced by �ni �·� and Cn = n.

Theorem 2 (Asymptotic Optimality of the Determin-
istic Solution). Under the assumptions of Theorem 1,
p̄1� p̄2� �U are asymptotically optimal in the sense that

Rn�p̄1� p̄2� �U�
Rn∗

� 1−  √
n
+ o�1/

√
n� (12)

as n→�, where  > 0 is a function of p̄1� p̄2. Moreover,
Rn�p̄1� p̄2� �U�/ �Rn → 1 as n→�.

The above result is reminiscent of the one derived by
Gallego and van Ryzin (1994), who established “near opti-
mality” of static, fluid-based pricing rules. A similar result
was also derived by Paschalidis and Tsitsiklis (2000) for
a multiclass loss model. While the problem formulation,
setup, and analysis are different, these results are driven by
aggregation effects that lead to reduced variability, namely,
as the problem scales up, variability scales only as a square
root of the size of the problem. The asymptotic optimality
property described above is in the “first-order” sense (or
fluid-scale sense) insofar as it does not yield the best pos-
sible constant  . To that end, the effects of the admission
control policy are seen to be second-order, i.e., are captured
in the magnitude of  . In §7, we will describe a refinement
to the fluid-optimal prices that optimizes second-order per-
formance given the admission policy derived from the fluid
relaxations.

The Case Where BE Service Gets Priority. As men-
tioned earlier, one could also consider the situation where
the BE class generates higher revenues per unit of capacity
per unit time and thus receives higher priority from the ser-
vice provider. In this case, G users are blocked whenever
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BE users suffer rate degradation, and the brunt of conges-
tion is borne by the G users. The main results we obtained
in this section could be derived in this setting as well,
and the main structural conclusions should continue to hold
(essentially interchanging the two service classes)—that is,
having the high priority BE class suffering exponentially
small congestion, the G class being blocked with probabil-
ity proportional to )/

√
n, and the overall system utilization

being again %n ≈ 1− )/
√
n. We will not attempt to rigor-

ously justify these statements because this would necessi-
tate going far beyond the space limitations of the current
paper.

5. Qualitative Insights and Accuracy of
the Approximations

The Heavy-Traffic Regime

The operational regime where capacity (C) is large and
“matches” demand in a manner that the system probability
of congestion is moderate, was first investigated by Halfin
and Whitt (1981) in their seminal paper on many-server
heavy-traffic limits in the context of the M/M/n queue.
As observed in the sequel study by Whitt (1992), large-
capacity systems that operate in high utilization exhibit
statistical economies of scale, manifested as stochastic fluc-
tuations that are of order square root the “size” of the sys-
tem. These economies of scale are the primary reason for
the high quality of service that prevails in spite of high uti-
lization. Theorem 1 establishes that the fluid-optimal prices,
derived on the basis of a deterministic analysis, lead the
system to operate in the so-called Halfin-Whitt regime.

Using Theorem 1 to Approximate the Performance
of a Given System. The asymptotic result in Theorem 1
suggests how one can approximate the performance of a
system with fixed and finite capacity C. In particular, one
first uses the problem primitives (namely, parameters of the
demand curve �̃�·� and the market potential �) to solve the
deterministic problem in §3, arriving at the fluid-optimal
prices p̄1� p̄2. Then, one proceeds to solve (10), deriving the
equilibrium parameter ) and computing d�)� given by (11)
in Theorem 1. These limiting parameters are then used to
approximate key performance measures that are affected by
stochastic fluctuations: (i) the utilization is %≈ 1−)/

√
C,

and (ii) the BE delay is ƐD≈ d�)�/
√
C. Moreover, block-

ing effects in the high-priority (G) class are indeed negli-
gible relative to congestion-related effects in the BE class.
The numerical example that follows provides a concrete
illustration of the use of Theorem 1 in approximating the
behavior of a given system.

Accuracy of the Deterministic Analysis. The equi-
librium operating point characterized in Theorem 1 veri-
fies, in hindsight, the accuracy of the deterministic analysis.
In particular, the latter assumes zero delays and blocking
effects, deducing that the system operates in 100% utiliza-
tion, while the former asserts that stochastic effects perturb

the fluid operating point by order 1/
√
C, as spelled out in

statements (i) and (ii) in the previous paragraph. Moreover,
Theorem 2 establishes that the revenues generated by the
fluid-optimal prices are near optimal, when capacity (C)
and market potential (�) are both large.

A Numerical Illustration. Throughout the paper we
use the following sample problem as a running example,
with the goal of illustrating numerically how the analytical
results describe the structural behavior of the system. We
assume a linear demand relationship for both services, of
the form

�i�p�=�i − ip�

for appropriate parameters �i� i for i= 1�2. The  i’s are
the price sensitivity parameters of the two demand models.
Let �̄i denote the nominal demand rates for each service
class computed through the deterministic revenue maxi-
mization problem (5), let p̄i be the corresponding prices,
and let !i be the associated relative workload contribu-
tions. Pursuing further the analysis presented in §3, the
first-order optimality conditions for (5) are ��i − 2�̄i�/ i =
,/�i, where , is the Lagrange multiplier associated with
the capacity constraint, which leads to the solution

�̄i =
1
2

(
�i − ,

 i
�i

)
�

where , =
(
�1

2�1
+ �1

2�1
−C

)+(
 1
2�21

+  2
2�22

)−1
�

The fluid prices are then given by p̄i = ��i − �̄i�/ i.
Figure 1 shows the dependence of the equilibrium con-

gestion term ƐDn and the corresponding traffic intensity %n

as we vary the system capacity n. The demand model
parameters are chosen so that for n = 50�100� � � � �450�
�n
1 = 1�5 · n� n1 = n/10��n

2 = 2 · n� n2 = n/5��1 =�2 = 1,
and q = 1. (Under (5), !i = 0�5 and p̄1 = 10 and p̄2 =
7�50, independent of n.) These results highlight the high
accuracy of the proposed asymptotic approximations when
compared to the “exact” results based on exhaustive sim-
ulation. For the latter, we simulate five sample paths of
2,000,000 events each at different values of d= ƐDn, until
the sample estimate Ɛ �Dn is in agreement with the hypothe-
sized parameter d and the system is in equilibrium; hence-
forth, quantities obtained via simulation will be tagged with
a ˆ. Moreover, the structural properties given in Theorem 1
appear to be in force even for systems of moderate capac-
ity. Specifically, the two figures illustrate that the expected
delay suffered by the BE users in equilibrium decays like
d�)�/

√
n, and the equilibrium traffic intensity behaves like

1− )/
√
n, where ) is the unique solution of the equilib-

rium Equation (10). For the parameters of this example,
) = 0�46 and d�)�= 2�33.
The closed-form asymptotic approximations given in

Theorem 1 can be used to study the sensitivity of sys-
tem performance to various model parameters such as
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Figure 1. Equilibrium congestion ƐDn and traffic intensity %n under the fluid prices �p̄1� p̄2� as a function of the system
capacity (n).
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Note. Error bars represent pointwise 95% confidence intervals for quantities estimated via simulation.

(q� 1� 2). Table 1 reports results obtained via both the
asymptotic approximations and exhaustive simulation for
a set of representative examples. The parameters used to
construct this table are n = 100, �1 = �2 = 1, �1 = 150,
and �2 = 200. As expected, an increase in the delay-
sensitivity parameter q results in a decrease in the equi-
librium delay for the BE users and, moreover, the arrival
rate into the BE service class and the overall traffic inten-
sity also decrease. These effects are “second order” because
they depend on the congestion cost, which in turn behaves
like 1/

√
C. Similarly, as the price-sensitivity parameter for

G service increases (this changes the revenue function for
this class), the relative workload contributions extracted
from the deterministic optimization problem (5) change,
and the overall revenue rate decreases; both changes affect
the first-order behavior of the system by changing the !i’s
that define how nominal capacity is split between the two
classes. In all five examples, the revenue rate computed
via simulation was very close to the one predicted via the
asymptotic approximations, which is given by

Rn�p̄1� p̄2�≈ �̄1p̄1+
(
�̄2− 2

q

�2
ƐDn

)
p̄2�

Moreover, both values were close to �R, obtained from the
deterministic optimization problem (5).

Table 1. Sensitivity of the equilibrium behavior (expected delay, system utilization, and revenue rate generated) w.r.t.
�q� 1� 2�, in a system with capacity C = 100 operating under the fluid-optimal prices.

�q� 1� 2� !1 �Ɛ �D� %̂� ƐD (gap) % (gap) �R�p̄1� p̄2� R�p̄1� p̄2� (gap) �R�p̄1� p̄2�
(1,10,20) 0�5 (0.248, 0.950) 0.234 (5.98%) 0.954 (−0.42%) 837.80 840.09 (−0.27%) 875
(2,10,20) 0�5 (0.163, 0.935) 0.149 (9.40%) 0.940 (−0.53%) 826.16 830.23 (−0.49%) 875
(4,10,20) 0�5 (0.102, 0.919) 0.093 (9.68%) 0.926 (−0.76%) 814.00 819.50 (−0.67%) 875
(1,15,20) 0�429 (0.225, 0.955) 0.219 (2.74%) 0.956 (−0.10%) 682.16 682.97 (−0.12%) 714�29
(1,20,20) 0�375 (0.228, 0.954) 0.212 (7.55%) 0.958 (−0.42%) 608.75 611.46 (−0.44%) 640�63

Notes. The expected delay, system utilization, and resulting revenue rate ƐD, �, and R are computed using the asymptotic expressions, while
Ɛ �D� �̂, and �R are simulation-based estimates. �R denotes the upper bound on the optimal revenues derived from the deterministic analysis,
and % relative error are defined as �Ɛ �D− ƐD�/Ɛ �D×100, etc.

6. The Case of Nonidentical Service
Rates

This section describes an approach that allows us to extend
our previous results to the case of nonidentical service rates
(i.e., �1 �=�2). As noted in §4, the key element in charac-
terizing the equilibrium is the delay process, Dn, which in
turn is essentially characterized by the number-in-system
process, Qn

1 + Qn
2 . The “intuition and proof sketch” that

followed Theorem 1 suggests that when the service rates
are identical, the number-in-system process has a simple
Markovian structure for all n, and its steady-state distribu-
tion is simple to characterize. In contrast, when the service
rates are not identical, the number-in-system process is not
Markovian, and it is no longer simple to characterize its
steady-state distribution. While this observation places an
obstacle to analysis, the scaling relations of Theorem 1 can
be expected to hold true on the basis of diffusion approxi-
mations described in Appendix A.
For the purpose of performance analysis, i.e., to approx-

imate the system equilibrium behavior, we exploit the fol-
lowing simple observation: Given a system with different
service rates, we can construct an approximating system
that has the same service rates, adjusting arrival rates to
capture the effect of the difference in the �i’s. Because
this system has equal service rates, it is amenable to the
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analysis of §4. We now provide a skeleton of the approach
culminating in an approximation for ƐDn.
Consider a system with capacity C, service rates �1��2,

and arrival rates �i =C!i�i−)i
√
C�i, for some appropri-

ate parameters )i such that )1+)2 > 0; the latter is equiv-
alent to % < 1. Note that for any arrival rates �1��2 and
given values !1� !2 (extracted from (8)), one can always
rewrite the �i’s in the form given above. For our system

)1 = 0 and )2 =−!2
�̃′
2�p̄2�

�̃2�p̄2�

q

�2
d�)�+ o�1/

√
C�/

the latter follows from the fact that ƐD ≈ d�)�/
√
C. Our

goal is to approximate ƐD, and thus characterize the behav-
ior of the underlying system.

The Perturbation Approximation

Define ��= ��1+�2�/2, and rewrite the service rates as
“small” perturbations around that common value ��, viz.,

�i = ��
(
1− 0i√

C

)
� (13)

setting 0i 
=
√
C�1−�i/���. Next, rewrite the arrival rates

�i =C!i�i −)i
√
C�i in the form

�i =C!i ��−√
C� �)i +!i0i��� (14)

by setting �)i = )i�i/��. Keeping 01� 02� �)1� �)2 fixed, define
a sequence of systems with

Cn = n� �n
i = ��

(
1− 0i√

n

)
� and

�ni = n!i ��−√
n� �)i +!i0i����

(15)

Note that by setting n= C, we recover the parameters of
the original system, �C��1��2��1��2�. That is, we have
embedded the original system in a the sequence of systems
defined through (15), the limit of which is tractable because
both �n

1��
n
2 → �� as n → �, and where the difference

between the original values �1��2 is captured via the �)i’s.
(See Maglaras and Zeevi 2004, Theorem 2 for details.)
Because there is only one value of � appearing asymptoti-
cally, the sum process is now tractable, and its steady-state
behavior is essentially characterized through the total traffic
intensity in the system given by

%n=∑
i

n!i ��−
√
n� �)i+!i0i���

n���1−0i/
√
n�

=1− �)1+ �)2√
n

+o�1/√n��

which can be rewritten in the form %n = 1 − �)/√n +
o�1/

√
n� for

�) = �)1+ �)2 = )1
�1
�� +)2

�2
�� �

In contrast, the original system with service rates �1, �2
and arrival rates �1, �2 had total traffic intensity 1 −
�)1+)2�/

√
C; i.e., the approximating scheme eventually

reduces to scaling the )i’s by �i/��, respectively. Finally,
using the results of §4, we can compute the congestion cost
for the limit system that has same service rates as ƐD =
d� �) �, where d�·� is given in (11). Returning to our original
system with

)1 = 0 and ) =−!2
q

�2

�̃′
2�p̄2�

�̃2�p̄2�
d�)�+ o�1/

√
C��

we get the equilibrium equation

�) =−!2
q

��
�̃′
2�p̄2�

�̃2�p̄2�
d� �) �� (16)

We note that the perturbation approximation pertains to a
system that is announcing the true value of the steady-state
delay and not the value derived through the perturbation
approximation. That is, the users are responding to the
“right” information and not an approximation that is com-
puted through the proposed perturbation approach.
The proposed approximation is accurate, as the follow-

ing numerical study illustrates. Figure 2 shows the equilib-
rium congestion cost suffered by the BE class as we vary
the ratio between �2/�1. In particular, the congestion cost
for the system with �1 �= �2 is computed via simulation
and then contrasted against the perturbation approximation
which uses �� = ��1 + �2�/2. The demand model param-
eters were: n = 100, �n

1 = 150,  n1 = 10, �n
2 = 200 · �2,

 n2 = 20 · �22, �1 = 1, �2 ∈ �1�1�25�2�3�4�6�8�10�, and
q = 1 (under (5), !i = 0�5 for all parameter choices). As
is evident from Figure 2 (as well as in other test cases
studied), the perturbation approximation described above
provides an accurate estimate of the congestion cost, and
this accuracy degrades, as one would expect, when the ratio
�2�1 increases.

Figure 2. Accuracy of the perturbation approximation
in systems with nonidentical service rates.
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7. Optimizing Revenues: A Second-Order
Price Correction

The last three sections have studied the behavior and rev-
enue performance of the fluid prices derived from the solu-
tion of the deterministic revenue maximization problem (5).
A key insight is that under this pricing policy the system
will naturally operate in heavy traffic with a low level of
congestion in the BE service class, and the resulting rev-
enue loss due to congestion will be moderate. The latter
was captured through the second-order term in Theorem 2.
This section will apply the asymptotic results derived thus
far to approximate the performance of a given system with
capacity C that is assumed to be large, and will proceed to
optimize the second-order revenue loss term by appropri-
ately fine tuning the corresponding pricing decisions.
Specifically, for a system with large capacity C, the total

load into the system % is of the form 1− )/
√
C, the BE

congestion ƐD is of order d�)�/
√
C, and in equilibrium

�1�p̄1�= !1C�1 and

�2

(
p̄2+

q

�2
ƐD

)
≈ !2C�2−

√
C12�2

q

�2
d�)��

where 12 = −��̃′
2�p̄2�/�̃2�p̄2��!2, and ) is defined via

the equilibrium equation ) = 12�q/�2�d�)�. This leads to√
C12�2�q/�2�d�)�p̄2 in lost revenues due to congestion

effects, which may be significant.

Refining the Fluid-Optimal Price

Building on the scaling relations given in Theorems 1
and 2, we will consider a pricing rule that incorporates a
second-order price correction term of the form

p∗
i = p̄i +

2i√
C
� 2i ∈�� (17)

Such prices do not affect the first-order behavior of the
system, while introducing a second-order correction that
affects the equilibrium behavior and the lost revenues due
to congestion. Pricing rules of this form have been shown
to be asymptotically optimal in Maglaras and Zeevi (2003a)
for a single-class system offering BE type service (under
the additional assumption that the demand is elastic).
Under the pricing rule (17) and assuming that C is large,

we have that

�1�p
∗
1�≈ !1C�1−

√
C11�121 and

�2

(
p∗
2 +

q

�2
ƐD

)
≈ !2C�2−

√
C12�2

[
21+

q

�2
d�)�

]
�

where 1i = −��̃′
i�p̄i�/�̃i�p̄i��!i, and ) is defined via the

equilibrium equation

) = 1121+12

(
22+

q

�2
d�)�

)
� (18)

It is again easy to show that for any 21�22 ∈�, this expres-
sion has a unique solution ) > 0 that characterizes the
system equilibrium. The system revenues under the pricing
rule (17) are

R�p∗
1�p

∗
2� 
=�1�p∗

1�p
∗
1+�2�p∗

2+q/�2ƐD�p∗
2

≈ !1C�1p̄1+!2C�2p̄2
−√

C

[
11�1p̄121−!1�121

+12�2p̄2
(
22+

q

�2
d�)�

)
−!2�222

]
�

(19)

where the “≈” notation implies equality to within lower-
order terms in C.

Optimizing Revenue Rates

Given (19), we can formulate a second-order optimization
problem that determines the price correction factors 2i as
follows:

min
2i∈�

{
11�1p̄121−!1�121

+12�2p̄2

(
22+

q

�2
d�)�

)
−!2�222

}
� (20)

subject to the equilibrium condition (18). This problem can
be readily solved by searching over the 2i’s and using the
closed-form expression for d�)� given in (11). For each
value of the vector 2, the above calculation requires the
evaluation of the system equilibrium behavior. If the �’s are
the same, this reduces to finding the unique solution of (18).
If the �i’s are different, then the equilibrium equation is
modified according to the perturbation heuristic described
earlier, by setting ��= ��1+�2�/2 and replacing �2 by ��
and 1i by 1̄i = 1i��i/��� in (18).
In the context of this second-order analysis, one can also

consider a system that offers quality-of-service (QoS) guar-
antees of the form ƐD � 3 for some appropriate bound
3> 0. To incorporate these guarantees in an asymptotic
sense, one needs to add the constraint d�)�� 3

√
C to the

optimization problem posed above in terms of the second-
order price correction terms 21�22.

Numerical Results

We conclude this section with a set of numerical results
that illustrate the effect of second-order price corrections
on systemwide revenues. To isolate the effect of the pric-
ing changes, we have kept the service rates ��1��2� equal.
Given (19), it follows that the magnitude of the revenue
improvement due to the second-order price corrections is
second order, i.e., it grows like the square root of capac-
ity. Table 2 focuses on the dependence of these refine-
ments, in terms of their effect on pricing decisions and
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Table 2. Sensitivity w.r.t. model parameters �q� 1� 2�.

�q� 1� 2� p̄ p∗ R�p̄� R�p∗� �R�p̄� R�p∗�−R�p̄�

�R�p̄�−R�p̄�

�1�2�5�20� �33�33�8�33� �34�11�7�93� 2�455 2�460 2�500 9�7%
�1�10�20� �10�00�7�50� �11�00�6�96� 840 841 875 1�8%
�1�10�40� �9�00�4�00� �9�68�3�70� 674 675 700 2�7%
�0�25�10�40� �9�00�4�00� �9�24�3�82� 684 686 700 6�9%
�0�1�10�40� �9�00�4�00� �8�16�4�12� 689 691 700 10�5%
�4�10�40� �9�00�4�00� �9�34�3�82� 661 662 700 2�6%

Notes. The table shows the fluid-optimal price p̄, the second-order corrected price p∗, and the resulting
revenues R�p̄� and R�p∗�. The rightmost column displays the improvement (%) in the suboptimality gap.

equilibrium revenues, on the demand and delay sensitiv-
ity parameters. All reported results were obtained via the
proposed asymptotic approximations because as illustrated
in the previous sections these tend to be quite accurate.
Specifically, R�p̄� 
= R�p̄1� p̄2� and R�p∗� 
= R�p∗

1� p
∗
2�

were computed via (19) for 21 = 22 = 0 in the first case
and the optimal 2i’s obtained from (20) in the second.
�R�p̄� 
= �R�p̄1� p̄2� is the revenue rate obtained from the
deterministic formulation (5). The system parameters were:
C = 100, �1 =�2 = 1, �1 = 150, and �2 = 200.
A quick inspection of these results highlights that the

absolute magnitude of the revenue improvements is mod-
est. This is not surprising in light of the fact that the system
is operating in a regime that is close to heavy traffic and
is extracting almost maximum revenues (upper bounded by
�R�p̄1� p̄2��. However, a more detailed look at the results
illustrates that the (%) improvement in terms of the dis-
tance from the upper bound �R�p̄�—this is computed as the
change in revenues R�p∗� − R�p̄� over the suboptimality
gap under the fluid prices �R�p̄�−R�p̄� and is reported in
the rightmost column of Table 2—can be significant.

8. Effects of Congestion Notification
This section considers a system that announces state-
dependent congestion information for the BE (or low pri-
ority) service class and analyzes the economic implications
of this design decision.

The Model

The system announces the state-dependent congestion
signal

Dd�t�= �Qd
1 �t�+Qd

2 �t�−C�+

C −Qd
1 �t�

�

which is the excess delay defined in (1). Various quan-
tities that are associated with this system will be tagged
with a superscript d, mnemonic for “dynamic,” reflecting
the real-time nature of this congestion information. The
BE users evaluate the disutility associated with BE service
using Dd�t� in place of the steady-state expected conges-
tion cost ƐD. The state-dependent congestion signal results

in a system with state-dependent arrival rate parameters
given by

�d1 =�1�̃1�p1� and �d2 �t�=�2�̃2

(
p2+

q

�2
Dd�t�

)
� (21)

Note that under the standing assumption that users do not
act strategically in response to the firm’s pricing and con-
gestion notification strategy, this model no longer requires
an equilibrium analysis.

System Behavior Under the Deterministic
Solution

Following the scaling assumption given in (9), consider
a system with capacity Cn = n and potential demand
�n
i = n��i. As a starting point, we will optimistically as-

sume that the congestion suffered by the BE class satis-
fies the scaling relations derived for the system with static
information and scales as

Dn�d�t�= Dd�t�√
n

+ op�1/
√
n� for all t � 0 (22)

for some appropriate limit process Dd�·� to be identified
later. Here, an = op�bn� if an/bn ⇒ 0 as n → �. The
immediate consequence of this assumption is that under
the fluid prices p̄1� p̄2, the arrival rates into the two service
classes are of the form

�n�d1 = !1n�1 and

�n�d2 �t�= !2n�2−
√
n�212

q

�2
Dd�t�+ op�

√
n�

for all t � 0� (23)

where 12 =−!2��̃′
2�p̄2�/�̃�p̄2��. Note that �

n�d
2 �t� is now

a stochastic process. The overall traffic intensity is

%n�t�= 1−12
q

�2

Dd�t�√
n

+ op�1/
√
n� for all t � 0�

In the spirit of the results reported in the previous sec-
tions, it is natural to posit that Qn�d

i �t� can be expressed
as

Qn�d
i �t�= !in+

√
nXn�d

i �t�� (24)
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where the !i’s were defined in (8), and the process
�Xn�d

1 �t��Xn�d
2 �t�
 t � 0� is defined by

Xn�d
i �t� 
= Qn�d

i �t�−!in√
n

for i= 1�2� (25)

Using the expression in (24), the congestion term can be
approximated as follows:

Dn�d�t�= �Qn�d
1 �t�+Qn�d

2 �t�− n�+

n−Qn�d
1 �t�

=
√
n�Xn�d

1 �t�+Xn�d
2 �t��+

!2n−
√
nXn�d

1 �t�

= 1

!2
√
n
�Xn�d

1 �t�+Xn�d
2 �t��+ + op�1/

√
n��

which is consistent with (22). To justify the heuristic
approach taken above, we need to establish that (24) is
indeed correct by identifying a well-behaved limit for
the process �Xn�d

1 �t��Xn�d
2 �t�
 t � 0�. To this end, let

�Xn�t�
 t � 0� and �X�t�
 t � 0� be �m-valued continuous
time stochastic processes with sample paths in the space
of functions having right-continuous paths with left limits.
Then, Xn�·�⇒X�·� denotes weak convergence in this func-
tional space with respect to the Skorohod topology; see,
e.g., Billingsley (1968, §3). (Because all limit processes
in this paper have continuous sample paths, it suffices to
consider the above convergence w.r.t. the uniform metric
on compact sets �0� T �, with T <�.) The next proposition
justifies the heuristic described above.

Proposition 4. Assume that demand (�n) and capacity
(Cn) grow large as in (9) as n → �. If Xn�d�0� ⇒ 7
for some 7 ∈ �2, then, under the pricing rule �p̄1� p̄2�,
Xn�d�·�⇒Xd�·� as n→�, where Xd is the unique strong
solution of the stochastic differential equation

dXd�t�= bd�Xd�t��dt+8dW�t�� Xd�0�= 7� (26)

where W = �W�t�
 t � 0� is standard Brownian motion
in �2. The infinitesimal drift is given by

bd1 �x1� x2�=−�1x1�

bd2 �x1� x2�=



−�2x2� x1+ x2 � 0�

−�212
q

�2

x1+ x2
!2

+�2x1� x1+ x2 > 0�

(27)

where 12 = −!2��̃′
2�p̄2�/�̃2�p̄2�� and 8 
= diag�:1�:2�,

with :2i = 2�i!i. Finally,

√
nDn�d�·�⇒Dd�·� 
= �Xd

1 �·�+Xd
2 �·��+

!2
� (28)

That is, Xn�d has a well-defined limit, and the approxi-
mation of the congestion signal Dn�d�t� asserted in (22) is
rigorously justified on the basis of (28). The process Xd

1 �·�
that approximates the fluctuations of the G users evolves
as an Ornstein-Uhlenbeck (O-U) process that is indepen-
dent of the congestion information, whereas the drift of the
Xd
2 �·� process is modulated by the value of the Xd

1 �·� pro-
cess. The congestion suffered by BE users, the demand for
BE service, and the associated revenue rate are all functions
of the “sum” process Zd�·� 
=Xd

1 �·�+Xd
2 �·�. For the case

in which �1 = �2 = �, Zd is a tractable one-dimensional
diffusion that solves the stochastic differential equation2

dZd�t�= bdz �Z
d�t��dt+: dW�t��

where W = �W�t�
 t � 0� is standard Brownian motion
in �, the infinitesimal drift is

bdz �z�=
{−�z� z < 0�

−� z� z� 0�
(29)

where  
= 12q/�!2��, and the infinitesimal variance is
:2�z� = 2�. Note that (29) is simply obtained by adding
the two drift components in (27).
The above diffusion is composed of two O-U processes

that are “pasted together”; one describes the dynamics
when the system has spare capacity, z < 0 in diffusion
scale, and the other gives the behavior when the system
is in the congested state, z > 0 in diffusion scale. Using
results from Browne and Whitt (1995): (i) when Zd < 0,
Zd ∼N�0�1�, where Zd 
=Zd���; (ii) when Zd � 0, Zd ∼
N�0�1/ �. Putting the two together we get that

P�Zd
� 0�= -�0�

-�0�+√
 -�0�

= 1

1+√
 
�

��Zd � z �Zd � 0�= 2.�z�� z� 0� and

��Zd > z �Zd > 0�= 2.�−z√ �� z > 0�

(30)

Given that Dd�t�= �Zd�t��+/!2, a straightforward calcula-
tion leads to

ƐDd =
√
2
2

1

�
√
 + �!2

� (31)

The Value of Real-Time Congestion Notification

First, note that the revenue rate extracted at time t depends
on the state of the system at that time through the conges-
tion signal Dn�d�t�. For simplicity, the remainder of this
section will restrict attention to the case of identical service
rates and prices fixed at p̄ = �p̄1� p̄2�, i.e., 21 = 22 = 0,
and refer the reader to §§6 and 7 for guidelines on pos-
sible extension to the general case. With a slight abuse
of notation, we will denote the revenue rate at time t by
R�p̄�Dn�d�t��. Then, using the fact that

Dn�d�t�= 1√
n
Dd�t�+ op�1/

√
n��
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Figure 3. The effect of real-time congestion notification.
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Note. The left figure shows gains in expected revenues ?�ƐRn� as a function of the system capacity (n), and the right figure shows the behavior of expected
delay as a function of the system capacity. Error bars represent pointwise 95% confidence intervals for quantities estimated via simulation.

we get that

R�p̄�Dn�d�t�� 
= �n�d1 �t�p̄1+�n�d2 �t�p̄2

= �!1n�p̄1�+ �!2n�p̄2−
√
n12p̄2qD

d�t��

+ op�
√
n�� (32)

Finally, using the expected steady-state value ƐDd given in
(31), one can approximate the expected revenue rate for that
system via a nonrigorous interchange of limits as follows:

ƐR�p̄�Dn�d�≈ �!1n�p̄1�

+ �!2n�p̄2−
√
n12p̄2qƐD

d�� (33)

Recall that the revenue rate for the system with static infor-
mation can be approximated by

R�p̄�ƐDn�≈ �!1n�p̄1�+ �!2n�p̄2−
√
n12p̄2qƐD�� (34)

Thus,

?�ƐRn� 
= ƐR�p̄�Dn�d�−R�p̄�ƐDn�

≈ √
n12p̄2q�ƐD− ƐDd�� (35)

The next theorem establishes that the above difference is
strictly positive as n grows large.

Theorem 3. Suppose that �1 =�2 =�, and let the condi-
tions of Proposition 1 hold. Then, ƐDd < ƐD.

That is, BE users experience better quality-of-service
when real-time congestion information is provided to them.
This, in turn, implies that the mean arrival rate into
class 2 is larger when real-time congestion information is
announced, which leads to the increase in revenues. Using
the result of the theorem, we infer that real-time conges-
tion notification results in a gain of order

√
n in terms of

generated revenues.

Numerical Results

Figure 3 depicts the increase in revenues and decrease in
expected congestion cost that occur in a system with real-
time congestion notification. (Note that the simulation of
the system with real-time congestion information involves
a Markov chain with state-dependent parameters but does
not require a calculation of an equilibrium operating point.)
The model parameters were n= �50�100� � � � �450�, �n

1 =
1�5 · n,  n1 = n/10, �n

2 = 2 · n,  n2 = n/5, �1 = �2 = 1,
and q = 1 (under (5), !i = 0�5 and p̄1 = 10 and p̄2 = 7�50,
independent of n). We make three observations about these
plots. First, as shown in Theorem 3, real-time congestion
information leads to an increase in expected revenues that
is proportional to the square root of the capacity, which
seems to agree with the results displayed in the figure. Sec-
ond, the expected delay suffered by BE users in the sys-
tem with real-time information is indeed smaller. Finally,
the variability in the simulation estimates for the change in
expected revenues is higher in comparison to other results
because here we need to simulate two independent systems.

Appendix A. Diffusion Limits:
Background and Auxiliary Results
The following theorem, whose proof can be found in
Maglaras and Zeevi (2004, Theorem 1 and Corollary 1),
characterizes the limiting dynamics in a system with no con-
gestion feedback signal and assumes that the arrival rates
into each class are of the form �ni = !i�in − )i�i

√
n +

o�
√
n� for i = 1�2, n = 1�2� � � �, with )i such that )1 +

)2 > 0. The structural implications of this result underlie the
proof of Theorem 1, because in that theorem it is shown that
equilibrium arrival rates are exactly of the form assumed
in the result below. As in the main text, let Xn

i �·� 
=
n−1/2�Qn

i �·� − !in� and X
n�·� = �Xn

1 �·��Xn
2 �·��, and “⇒”

denotes weak convergence in the space of functions that



Maglaras and Zeevi: Pricing and Design of Differentiated Services: Approximate Analysis and Structural Insights
Operations Research 53(2), pp. 242–262, © 2005 INFORMS 257

are right continuous with left limits, with respect to the
Skorohod topology; see Billingsley (1968, §3).

Theorem 4 (Maglaras and Zeevi 2004). Assume that
the arrival rates are of the form �ni = !i�in− )i�i

√
n+

o�
√
n� for i = 1�2, n = 1�2� � � �, with )i such that )1 +

)2 > 0. Suppose that Xn�0�⇒ 7 for some 7 ∈ �2. Then,
Xn�·�⇒ X�·� as n→�, where X is a diffusion process.
Specifically, X is the unique strong solution of the following
stochastic differential equation:

dX�t�= b�X�t��dt+8dW�t�� X�0�= 7� (36)

where W = �W�t�
 t � 0� is standard Brownian motion
in �2, the infinitesimal drift function bi�·� for the ith com-
ponent is

b1�x1� x2�=−�1)1−�1x1�

b2�x1� x2�=
{−�2)2−�2x2� x1+ x2 � 0�

−�2)2+�2x1� x1+ x2 > 0�

(37)

and 8 
= diag�:1�:2�, with :2i = 2�i!i. Moreover, X
admits a unique stationary distribution and X�t�⇒X���
as t→�. Finally,

√
nDn�·�⇒ 1

!2
�X1�·�+X2�·��+�

The infinitesimal drift in (37) has an intuitive interpre-
tation: the limit process for the G users, X1�·�, evolves
freely as an O-U process, while the drift of the limit pro-
cess for the BE users, X2�·�, is modulated by the number of
excess G users present in the system. Based on the results
given in Theorem 4 and assuming that one can justify an
interchange of expectation limits on n and t, we antici-
pate that ƐDn ≈ d/

√
n. It turns out that this is sufficient to

conclude the structural results (i)–(iv) in Theorem 1. (This
interchange argument is rigorously justified for the case of
�1 =�2 in the proof of Theorem 1, and a similar argument
can be employed when the �’s are different.)

Appendix B. Proofs

Proof of Proposition 2. The proof relies on a relatively
straightforward sample path argument imitating the con-
struction in Loynes (1962); details are omitted. �

Proof of Proposition 3. Using a stochastic order-
ing argument one can verify that the expected delay
ƐD��1��2�, considered as an explicit function of the arrival
rates, is monotonically increasing in �2. In what follows,
we let d denote ƐD��1��2�. Note that

��1�p1�

�d
= 0 and

��2�p2+ �q/�2�d�

�d
< 0�

The equilibrium regime can be defined via the solution d∗

of the set of equations

�1=�1�p1�� �2=�2
(
p2+

q

�2
d∗
)
� and d∗=ƐD�d∗��

where ƐD�d∗� denotes the steady-state expected waiting
time for class 2 service when the arrival rates into classes 1
and 2 are �1 and �2�p2 + �q/�2�d

∗�, respectively. Define
the function h�d�= d − ƐD�d�. First, note that h�0� < 0,
h��� > 0, and by assumption h�·� is continuous. More-
over, because ƐD��1��2� is monotonically increasing in �2
and �2 is monotonically decreasing in d, it follows that
ƐD�d� is monotonically decreasing in d. This implies that
h�·� is monotonically increasing in d, and as a result the
equation h�d� = 0 has a unique solution, d∗, that charac-
terizes the equilibrium regime. (The monotonicity of the
functions f �d� = d and g�d� = ƐD�d� guarantee that the
function h�d� switches sign, and the continuity assumption
on ensures the existence of a solution to h�d� = 0; i.e.,
h�d� does not switch sign at a point of discontinuity.) �

Proof of Theorem 1. We first prove statement (iii) and
then statements (i), (ii), and (iv).
Step 1. Proof of (iii). Note that the arrival rate into

class 1, namely the G users, is given by �n1�p̄1� =
�n
1�̃1�p̄1� = n�!1. Because the number of G users in the

system, Qn
1 , follows an M/M/n/n queue, its steady state is

��Qn
1 = k�= akn/k∑n

j=0 a
j
n/j

for k= 0�1� � � � � n� (38)

where an 
= �n1/� = !1n, by definition of !1. Let Z
n be

a r.v. distributed Poisson with mean an. Then, multiplying
the numerator and denominator in (38) by exp�−an�, we
can express the steady state of Qn

1 as

��Qn
1 = k�= ��Zn = k�

��0�Zn � n�
for k= 0�1� � � � � n� (39)

The following auxiliary result gives an upper bound on the
tail of a Poisson r.v.

Lemma 1. For any C ∈ �0�1−!1�, we have that

��Zn
� �!1+ C�n�� e−cn for n= 1�2� � � � �

where c= c�C� > 0.

Thus, ��0 � Zn � n�→ 1 as n→ �. To get a bound
on the blocking probability, all we need is to bound the
probability that Zn exceeds n. But Lemma 1 yields exactly
the bound asserted in (iii) in the theorem. Finally, we note
that the above arguments imply that Qn

1/n⇒ !1 as n→�.
To see why this is true, fix C > 0 and note that

��Qn
1 � n�!1− C�� = ���Zn− an�/

√
an �−√

nC!
−1/2
1 �

��0�Zn � n�

→ ��N �0�1� >−��= 1
as n→�, because �Zn− an�/

√
an ⇒N�0�1� by the cen-

tral limit theorem for a Poisson r.v.
Step 2. In the sequel we will make use of a fictitious

system to upper bound various system processes. This is
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a system without blocking, where a G user arriving when
Qn
1�t� = n is allowed to join a queue and wait until the

first serviced G user in the system departs to be served by
the first available idle server. We will denote the associ-
ated processes by �Qn

i �·� and note that �Qn
i �·� � Qn

i �·�, and
that the dynamics of �Qn

1�·�+ �Qn
2�·� are that of an M/M/n

queue. For this system, if %n < 1, then

Ɛ� �Qn
1 + �Qn

2 − n�+ = %n�� �Qn
1 + �Qn

2 � n�

�1−%n�
� (40)

This follows from standard formulas for the steady-state
distribution of an M/M/N queue, see, e.g., Halfin and
Whitt (1981). Moreover, observe that �Qn

1�·� + �Qn
2�·� �

Qn
1�·�+Qn

2�·� and n−Qn
1�·�� n− �Qn

1�·�; i.e., this fictitious
system provides a pointwise upper (lower) bound for the
dynamics of the number in system (available capacity for
BE users) in the original system.
Step 3. We now turn our attention to the proof of (i), (ii),

and (iv). The BE users’ delay is

dn 
= ƐDn = Ɛ

[
�Qn

1 +Qn
2 − n�+

�n−Qn
1�∨ 1

]
�

Suppose that lim infn→� dn > 0. If dn does not con-
verge, take a subsequence such that dnj → c as j → �,
where c > 0, and for simplicity, let this subsequence also
be indexed by n. Then, �n2 = �n

2�̃�p̄2 + �q/��dn� must
be such that limn→� �n2/n < !2�. Thus, limn→� %n < 1,
because �n1/n→ !1�. Using the system defined in Step 2
for %n < 1 and using (40), we get that

ƐDn
� Ɛ� �Qn

1 + �Qn
2 − n�+

= %n�� �Qn
1 + �Qn

2 � n�

�1−%n�

= o�1�

as n → �, where the last step follows from Halfin and
Whitt (1981, Proposition 1) who assert that in an M/M/n
system with

√
n�1 − %n� → �, �� �Qn

1 + �Qn
2 � n� → 0.

Hence, we have a contradiction and it must be that dn → 0
as n→�.
Step 4. To get the convergence rate of dn, note that using

a Taylor expansion for �2�·� we have
�n2 = n!2�+�n�̃′�p̄2��q/��d

n+ o�ndn��

and because �n = n��, we have that %n = 1− cdn + o�dn�
for some c > 0 as n → �. Suppose that √ndn → d ∈
�0���, or equivalently, that %n = 1 − )/

√
n. The next

lemma studies the behavior of a system without feedback
in this regime. (Its proof is relegated to the end of this
appendix.)

Lemma 2. Consider the two-class system that operates
without feedback and with arrival rates set to be �n1 = !1�n
and �n2 = !2�n−�)

√
n. Then,

√
nƐDn → d�)� and ��Qn

1 +Qn
2 � n�→ ,�)�� (41)

where d�)� was given in (11) and ,�)� 
= !2)d�)�.

That is, for a system where
√
n�1− %n�→ ) ∈ �0���,√

ndn → d�)� ∈ �0���. To establish the equilibrium rela-
tion, (10), that holds for a system with feedback operat-
ing in the Halfin-Whitt regime, it suffices to consider the
second-order expansion for �n, the total arrival rate into the
system given by

�n = n�+√
n�!2

�̃′
2�p̄2�

�̃2�p̄2�
�q/��d�)�+ o�

√
n��

Dividing through by n� and equating second-order terms,
we obtain the equilibrium condition

) =−!2
q

�

�̃′
2�p̄2�

�̃2�p̄2�
d�)��

which establishes (10). From Maglaras and Zeevi (2003a,
Proposition 2), we have that this equation has a unique
solution, ) > 0. (The proof of that statement considers the
function

h�)�= )+!2
q

�

�̃′
2�p̄2�

�̃2�p̄2�
d�)��

and shows that h is continuous and increasing in �0���,
lim)→0 h�)� < 0, and lim)→� h�)� > 0. Hence, h�)� =
must have a unique solution.)
To complete the proof, it remains to rule out the cases√
ndn → 0 and

√
ndn → �. To this end, suppose that√

ndn → 0, in which case
√
n�1−%n�→ 0. Observe from

(41) and (11) that if we let ) ↓ 0, then d�)� ↑ �, which
contradicts the assumption that

√
ndn → 0. Similarly, sup-

pose that
√
ndn → �, in which case √

n�1−%n�→�.
Again from (41) and (11), we get that as ) ↑ �,
then d�)� ↓ 0, which contradicts the assumption that√
ndn →�. Consequently, it must be that √ndn → d�)� ∈

�0��� and √
n�1− %n�→ ) ∈ �0���, and ) is defined as

the unique solution of Equation (10). This establishes asser-
tions (i) and (ii) in the statement of the theorem. Finally,
from Lemma 2,

√
n�1−%n�→ ) implies statement (iv) of

the theorem. This concludes the proof. �

Proof of Theorem 2. First, recall that by construction
of the deterministic relaxation problem in (5), Rn∗ � �Rn
for all n. By Theorem 1 and Lemma 1, ƐDn = d/

√
n +

o�1/
√
n� and ��Qn

1 < n� � C1 exp�−C2n� for sufficiently
large n and constants C1�C2 > 0. Thus, we can take a
Taylor series expansion of the total revenue generated by
the fluid-optimal prices

Rn�p̄1� p̄2� �U�=�n
1�̃1�p̄1���Q

n
1 <n�p̄1

+�n
2�̃2�p̄2+ �q/��ƐDn�p̄2

=�n
1�̃1�p̄1�p̄1+�n

2�̃2�p̄2�p̄2

+ n
�̃′
2�p̄2�

�̃2�p̄2�
��q/��d/

√
n�p̄2+ o�1/

√
n�

= �Rn�1− /
√
n�+ o�1/

√
n�
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as n→�, using results (ii) and (iii) of Theorem 1. Thus,

Rn�p̄1� p̄2� �U�
�Rn = 1−  √

n
+ o�1/

√
n�

as n→� for some  > 0. Because Rn∗ � �Rn for sufficiently
large n, the proof is complete. �

Proof of Proposition 4. We will first express Dn�d�·�
in terms of the Xn�d

i �·�’s, and subsequently obtain the
infinitesimal drift for the Qn�d

i �·� and Xn�d
i �·� processes,

respectively. Then, we will appeal to the proof techniques
that underlie Theorem 4 to establish that Xn�d�·�⇒Xd�·�.
Using (25), we can rewrite Dn�d�t� as

Dn�d�t�= �Xn�d
1 �t�+Xn�d

2 �t��+

!2
√
n−Xn�d

1 �t�/
√
n
�

Suppose that Qn�d�t� = qn for some qn ∈ Sn = ��qn1 � q
n
2 �


qn1 ∈ �0�1� � � � � n�, qn2 ∈ �0�1� � � ���. Also, let xn =
�qn−!n�/

√
n such that from (25), Xn�d�t�= xn. The con-

gestion signal at time t will be

Dn�d�qn�= �qn1 + qn2 − n�+

n− qn1
= 1√

n

�xn1 + xn2�
+

!2− xn1/
√
n
�

The arrival rates into the two service classes are given
below:

�n�d1 �qn�= !1n�1 if qn1 <n and

�n�d1 �qn�= 0 otherwise�

and

�n�d2 �qn�= !2n�2−
√
n12�2

q

�2!2

�xn1 + xn2�
+

1− xn1/!2
√
n
+ o�

√
n��

With some abuse of notation we will also refer to Dn�d�qn�
and �n�di �qn� by Dn�d�xn� and �n�di �xn�, respectively. Under
the Markovian dynamics of our system, we have that for
any initial state qn = �qn1 � q

n
2 � ∈ Sn and 3t > 0, the infinites-

imal drift rates for each class are given by

Ɛ�Qn
1�t+ 3t�−Qn

1�t� �Qn�t�= qn�

= ��n1�q
n�−�1q

n
1 �3t+ o�3t��

Ɛ�Qn
2�t+ 3t�−Qn

2�t� �Qn�t�= qn�

= ��n2�q
n�−�2��n− qn1 �∧ qn2 ��3t+ o�3t� (42)

as 3t ↓ 0. Similarly, the infinitesimal variance for each
class is

Ɛ��Qn
1�t+ 3t�−Qn

1�t��
2�Qn�t�= qn�

= ��n1�q
n�+�1q

n
1 �3t+ o�3t��

Ɛ��Qn
2�t+ 3t�−Qn

1�t��
2�Qn�t�= qn�

= ��n2�q
n�+�2��n− qn1 �∧ qn2 ��3t+ o�3t�� (43)

Finally,

Ɛ��Qn
1�t+ 3t�−Qn

1�t���Q
n
2�t+ 3t�−Qn

2�t��

�Qn�t�= qn�= o�3t� for all n= 1�2� � � � � (44)

Using (42)–(44), we can derive the infinitesimal rates for
the Xn�d process. Specifically,

1
3t

Ɛ�Xn
1 �t+ 3t�−Xn

1 �t��Xn�t�= xn�

=−�1xn1 + o�1/
√
n��

1
3t

Ɛ�Xn
2 �t+ 3t�−Xn

2 �t��Xn�t�= xn�

=−�212
q

�2

xn1 + xn2
!2

−�2x
n
2 +�2�x

n
1 + xn2�

+ + o�1/
√
n�

for small 3t and large n. (Note the similarity between
these expressions and the limiting infinitesimal drift given
in the statement of the proposition.) Similar expressions
can be obtained for the infinitesimal variance. Using stan-
dard weak convergence arguments for Markov processes,
as in Maglaras and Zeevi (2004), we can now establish that
Xn�d�·�⇒Xd�·�. To complete the proof of the proposition,
note that

Dn�d�t�= �Xd
1 �t�+Xd

2 �t��
+

!2
√
n

+ o�1/
√
n��

and apply the continuous-mapping theorem. �

Proof of Theorem 3. The main challenge is to compare
the explicit performance characterization for the system
with real-time information given in (22) with the implicit
equilibrium characterization given for the system with static
information in (10) and (11).
We start by giving a skeleton of the proof. Step 1: We

will study a fictitious system where instead of Dn�d�t�,
the system manager announces the state independent BE
congestion estimate 7/�!2

√
n�. In terms of limiting behav-

ior, this replaces the state-dependent drift term −� z+
that appears in (29), with the constant −�12�q/���7/!2�.
This new system is governed by the behavior given in
§4 with )�7� = 12�q/���7/!2�. Denote by �Z�7� the
steady-state random variable associated with the “sum”
process in this system. Step 2: Set 7 = Ɛ�Zd�+. We
demonstrate that Ɛ� �Z�7��+ > Ɛ�Zd�+, which implies that
Ɛ �D�7� 
= Ɛ� �Z�7��+/!2 > ƐDd. Step 3: Now consider
the function h�7� = 7 − Ɛ� �Z�7��+. It is easy to ver-
ify that h�·� is continuous, increasing, and that h�0� <
0 and h��� > 0. This implies that the equation h�7� =
0 has a unique solution 7∗, which defines the equilib-
rium of the system analyzed in §4; i.e., the equilib-
rium expected congestion cost for BE users is ƐD∗ =
7∗/!2. Given (ii) above, we get that for 7 = Ɛ�Zd�+,
h�Ɛ�Zd�+� < 0, which by the monotonicity property of h�·�
implies that Ɛ�Zd�+ < Ɛ�Z�+, and, in turn, that ƐDd < ƐD.
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Step 1. Consider the fictitious system that announces to
arriving BE users the congestion estimate 7/!2

√
n for the

particular choice 7 = Ɛ�Zd�+. From (31), we get that

7 = Ɛ�Zd�+ =√
2/2

1

 +√
 
�

and note that ƐD= 7/!2. Using the analysis of §4, we have
that the corresponding limit system is one with parameter

)̃ =  7 =√
2/2

 

 +√
 
�

For such a system,

Ɛ� �Z�7��+ = -�)̃�

)̃�)̃.�)̃�+-�)̃��
�

Step 2. The goal is to show that Ɛ� �Z�7��+ < 7, when
7 = Ɛ�Zd�+. For any fixed  > 0, define

g� � 
= Ɛ� �Z�7��+
7

=3�)̃�2
2
�1+√

 �2�

where 7=Ɛ�Zd�+ and 3�)̃�= -�)̃�

)̃.�)̃�+-�)̃� �

We wish to show that for all  > 0, g� � > 1. Note that
g� � is continuous in  for all  > 0. To establish that
g� � > 1, it suffices to show that lim ↓0 g� � > 1 and
that g� � is monotonically increasing in  .
Note that as  → 0, )̃→ 0, 3�)̃�→ 1 and lim →0 g� �

= 2/2 > 1. Also, as  → �, )̃ → √
2/2, 3�)̃� →

3�
√
2/2� ∈ �0�1� and lim →0 g� � = �. To complete the

proof that g� � > 1 for all  > 0, it suffices to show that
g′� �� 0. It will be convenient to express

√
 as a function

of )̃, through
√
 = )̃/

√
2/2 − )̃, and rewrite all expres-

sions in terms of )̃. Specifically, with some abuse of nota-
tion we will analyze the function

g�)̃�= 3�)̃�
2

2
1(√

2/2 − )̃
)2 �

Because �)̃/� > 0, it suffices to show that g�)̃� is increas-
ing in )̃. To that end, we have that

g′�)̃�= 1(√
2/2 − )̃

)2
[
3′�)̃�+ 23�)̃�(√

2/2 − )̃
)
]
�

where 3′�)̃�=−3�)̃�
(
)̃+ .�)̃�

)̃.�)̃�+-�)̃�

)
�

Grouping terms, we get that

g′�)̃�= 3�)̃�(√
2/2−)̃)2

[
2(√

2/2−)̃)−)̃− .�)̃�

)̃.�)̃�+-�)̃�

]
︸ ︷︷ ︸


=f �)̃�

�

To conclude that g′�)̃� � 0, it suffices to show that
f �)̃�� 0 for all )̃ ∈ �0�√2/2�. Note that f �0�= 0 and that
lim)̃→√

2/2 f �)̃� = �. Finally, straightforward calculations
give

f ′�)̃�= 2(√
2/2−)̃)2 −1−3�)̃�+

.2�)̃�

�)̃.�)̃�+-�)̃��2 �0�

This implies that f �)̃� � 0, and thus g′�)̃� � 0 for all
)̃ ∈ �0�√2/2�. It follows that g� � � 2/2 for all  > 0,
which completes the proof of Step 2. �

Proof of Lemma 2. First, note that by Lemma 1 the
arrival rate into the system due to class-1 customers who
are admitted is �n1 = n!1�+ o�

√
n� (because the blocking

effects are lower order than 1/
√
n). Setting �1 = �2 = �,

we have by Theorem 4 that
√
nDn�·�⇒ �X1�·�+X2�·��+,

where X�·� = �X1�·��X2�·�� is the two-dimensional diffu-
sion process identified in Theorem 4. Moreover, �X�t�

t � 0� admits a unique stationary distribution. Let Xn

i 
=
�Qn

i − !1n�/
√
n for i= 1�2, where Xn = �Xn

1 �X
n
2 � has the

stationary distribution in the nth system in the sequence.
(The existence and uniqueness of this distribution is estab-
lished in Proposition 2.) We next establish an “interchange
argument,” which concludes that

√
nDn ⇒ !−12 �X1+X2�

+,
where Dn 
=Dn��� and Xn

i 
=Xn
i ���. We then prove that

�
√
nDn� is uniformly integrable, from which it follows that√
nƐDn → !−1

2 Ɛ�X1 + X2�
+. The latter is then seen to be

equal to d�)�.
Step 1. We first prove that Xn ⇒X, where X is equal in

distribution to X���, the stationary marginal of the limit-
ing diffusion �X�t�
 t � 0�. From the proof of Theorem 1
in Maglaras and Zeevi (2004) and Lemma 11.2.2 in Strook
and Varadhan (1979), we have that the sequence of gen-
erators corresponding to the Markov processes Xn�·� con-
verges uniformly on compact sets to the generator of X�·�.
Thus, appealing to Theorem 4.9.10 in Ethier and Kurtz
(1986), we have that any weak limit of the sequence of sta-
tionary distributions corresponding to �Xn�t�
 t � 0� must
be a stationary distribution of �X�t�
 t � 0�. But because
the limit process has a unique stationary distribution, all
weak limit points must correspond to this distribution.
Thus, all that is left is to establish that �Xn� is tight, and
therefore must have a subsequence that converges weakly
(see, e.g., Billingsley 1968, Chapter 3, §13).
Step 2. The Poisson limit theory that was used in Step 1

of the proof of Theorem 1 establishes that �Xn
1 � is tight.

Now, for �Xn
2 �, observe that X

n
2 = �Xn

1 + Xn
2 �− Xn

1 ; thus,
it suffices to show that �Xn

1 +Xn
2 � is tight. To prove tight-

ness, consider the following two systems. Let �Qn
i �t� denote

the number in system of class i users, in a system that
is identical to the original one, with the exception that G
users wait in queue when there is no capacity available
to serve them. Then, the proof of Theorem 1 establishes
that Qn

i �t� � �Qn
i �t� for i = 1�2, all n � 1, and all t � 0,

almost surely. Let �Qn
i �t� denote the number in system of
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class i users, in a system that is identical to the original
one, except that here BE users are blocked when the total
number in system from both classes exceeds capacity, i.e.,
when �Qn

1+ �Qn
2 � n. For this system, we have �Qn

i �t��Qn
i �t�

for i= 1�2, all n� 1, and all t � 0, almost surely. Conse-
quently, we have that

� �Qn
1 + �Qn

2 − n�√
n

�
�Qn

1 +Qn
2 − n�√
n

�
� �Qn

1 + �Qn
2 − n�√
n

�

Because � �Qn
1�·� + �Qn

2�·�� has the dynamics of the num-
ber in system in an M/M/n queue, it follows from the
results of Halfin and Whitt (1981, Lemma 1) that Ɛ�� �Qn

1 +�Qn
2 − n�/

√
n�4 is bounded uniformly in n when the arrival

rate is such that
√
n�1 − %n� → ) > 0. Thus, the upper

bound is uniformly integrable, and hence tight. Now,
� �Qn

1�·� + �Qn
2�·�� has the dynamics of the number in sys-

tem in an M/M/n/n queue with arrival rate such that√
n�1−%n�→ ) > 0. Then, the same argument used for

Xn
1 applies here as well, and we conclude that �� �Qn

1 + �Qn
2 −

n�/
√
n� is tight. This establishes that �Xn

1 +Xn
2 � is tight, and

thus �Xn� is tight as well. Finally, we conclude that Xn ⇒
X, where X 
=X���, and the specification of �X�t�
 t � 0�
is given in Theorem 4. Thus, by the continuous mapping
theorem, we have that

√
nDn ⇒ !−12 �X1+X2�

+.
Step 3. To prove that �

√
nDn� is uniformly integrable,

it suffices to show that supn Ɛ�
√
nDn�2 <�. To this end,

note that

Ɛ�√nDn�2 = Ɛ

[(
�Qn

1 +Qn
2 − n�+√
n

)2
n2

��Qn
1 − n�∨ 1�2

]

�

(
Ɛ

[
� �Qn

1 + �Qn
2 − n�+√
n

]4)1/4

·
(
Ɛ

[
n4

��Qn
1 − n�∨ 1�4

])1/4
�

which follows from the Cauchy-Schwartz inequality and
the bounding system described in Step 2. As noted above,
Ɛ�� �Qn

1+ �Qn
2−n�/

√
n�4 is bounded uniformly in n when the

arrival rate is such that
√
n�1−%n�→ ) > 0. We now turn

to the second term on the right-hand side. Fix C > 0 such
that !1+ C < 1 (this is feasible because !1 < 1). Then,

Ɛ

[
n4

��Qn
1−n�∨1�4

]
=

n∑
j=0

n4

��j−n�∨1�4��Q
n
1= j�

=
��!1+C�n�∑

j=0

n4

��j−n�∨1�4��Q
n
1= j�

+
n∑

j=��!1+C�n�+1

n4

��j−n�∨1�4��Q
n
1= j�

�C1��Q
n
1���!1+C�n��

+C2n4��Qn
1>�!1+C�n��

where the last step follows from the fact that the terms
�n/�n− j�4� are bounded by a constant in the first summa-
tion on the right-hand side and bounded by n4 in the second
summation on the right-hand side. Now, by Lemma 1 in
the proof of Theorem 1, we have that

��Qn
1 > �!1+ C�n��C1 exp�−C2n��

where the constants depend on C. Thus,

sup
n

�n4��Qn
1 > �!1+ C�n�� <��

Because �
√
nDn� is uniformly integrable, we have that√

nƐDn → !−12 Ɛ�X1 +X2�
+. But when �1 = �2 = �, Z =

X1+X2 has the simple stationary distribution identified in
Theorem 1 of Halfin and Whitt (1981); see also Maglaras
and Zeevi (2004). Specifically,

��Z� z �Z� 0�=.�)+ z�/.�)�� z� 0�

��Z > z �Z > 0�= exp�−z)�� z > 0�

This gives the expression for d�)� given in (11). Finally,
��Qn

1+Qn
2 � n�= ��Xn

1 +Xn
2 > 0� and the latter converges

to ��Z > 0�, which by the above is easily seen to be equal
to !2)d�)�=
 ,�)�. This concludes the proof. �

Endnotes
1. Information/communication service providers often
quote a service rate to users, and this is often accompanied
by a table that translates rates into waiting times for various
job sizes (that the system does not know a priori).
2. One can obtain a similar process for the case �1 �= �2
akin to the results of §6; details are omitted.
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