
Revenue Maximization for Cloud Computing Services

Cinar Kilcioglu, Costis Maglaras
Graduate School of Business, Columbia University, New York, NY 10027

ckilcioglu16@gsb.columbia.edu, c.maglaras@gsb.columbia.edu

We study a stylized revenue maximization problem for a provider of cloud computing services, where the

service provider (SP) operates an infinite capacity system in a market with heterogeneous customers with

respect to their valuation and congestion sensitivity. The SP offers two service options: one with guaranteed

service availability, and one where users bid for resource availability and only the “winning” bids at any

point in time get access to the service. We show that even though capacity is unlimited, in several settings,

depending on the relation between valuation and congestion sensitivity, the revenue maximizing service

provider will choose to make the spot service option stochastically unavailable. This form of intentional

service degradation is optimal in settings where user valuation per unit time increases sub-linearly with

respect to their congestion sensitivity (i.e., their disutility per unit time when the service is unavailable) –

this is a form of “damaged goods.” We provide some data evidence based on the analysis of price traces

from the biggest cloud service provider, Amazon Web Services.

Key words : congestion, revenue management, service level, damaged goods

1. Introduction

Data made available in social networks, media and entertainment, electronic commerce,

and mobile is exploding. Firms across industries are increasingly focusing on the use of

data analytics to generate insightful and actionable insights to improve their profitability

and growth, improve customer experience, design new and better products and services.

Together these trends have led to a significant increase in IT storage and computing

requirements across industries, and apart from significant infrastructure investments in

computing and data storage clusters, they have led to increased support, management and

maintenance costs. The operating loads of these large corporate storage and computing

clusters exhibit significant intraday and seasonal variability, and additionally firms want

flexibility for rapid growth in resource requirements as their needs evolve and mature. In

this environment, cloud computing –a form of outsourcing of the aforementioned physical

IT infrastructure resources– has become a cost effective alternative for these firms.

In broad terms, cloud computing refers to the provision of computing resources, such as

storage, data management, and processing, over a network of remote servers hosted on a

1

2 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

remote data center location and accessible via the internet, which is broadly available and

at abundant speeds. Currently, Amazon, Google, and Microsoft are the leading providers

of cloud computing services to a variety of customers, ranging from individuals and small

firms, to global media companies and government agencies. These customers differ with

respect to their resource needs, duration, valuation and sensitivity to service level. For

instance, while a researcher who does not have a strict time constraint and has a limited

budget may prefer to procure computing power anytime within a week and pay little. On

the other hand, an online retailer that hosts its web servers in the cloud is very sensitive

to service availability and the quality (speed) of the rendered service. This heterogeneity

with respect to price and congestion sensitivity allows service providers to offer a menu of

product options to segment and better serve this market, essentially offering hosted com-

puting resources at different price levels depending on their anticipated service availability

(e.g., as measured by the % of time that the resource will be available).

This paper studies a problem of market segmentation for a revenue maximizing (monop-

olist) service provider (SP) of cloud computing resources that offers two classes of service:

guaranteed (on-demand instances) and best effort (spot instances). The latter is procured

via a second price auction. This problem is motivated by the service menu offered by Ama-

zon Web Services (AWS), the largest SP in the market currently. Insights extracted from

asymptotic analysis of large scale multi-server systems suggest that the observed variation

in spot prices is not consistent with the natural stochastic fluctuations between a two-class

priority service system. Moreover, it is typically believed that these SP’s are not capacity

constrained in this stage, but rather experiencing a rapid phase of infrastructure invest-

ment aiming to capture market share. Motivated by these observations, we study a SP

that operates a system with infinite capacity, and note that under that assumption there

is no competition for scarce resources between the two service classes or amongst the users

bidding for spot service; specifically all users bidding higher than the SP’s reserve price get

access to uninterrupted service. The quality of a product is defined as the fraction of time

the product is available to customers. While guaranteed service offers 100% availability

with a fixed price, the quality level and the payment depend on customers’ bids in best

effort service. Each customer gains some positive utility from the service proportional to

the time that the service is received and suffers a negative utility proportional to the length

of time that the service is unavailable. The market is heterogeneous, and, specifically, users

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 3

differ with respect to two parameters: valuation per hour of service and disutility per hour

of service disruption (sensitivity to congestion). The former is how much customers are

willing to pay for one hour service, and the latter is how much disutility one hour of service

interruption creates. For example, for an online retailer hosting its web servers, valuation

is the customer’s willingness to pay to have the web server running for one hour, and

sensitivity to congestion is the cost of not having the server running, which may include

the lost revenue or profit margin as well as lost goodwill from affected customers. Both

valuation and sensitivity to congestion are private information and thus unknown to the

SP. All users are assumed to have infinite duration service requirements.

We formulate and solve the deterministic SP’s revenue maximization problem. We treat

two cases separately. First, we study the case where valuation per unit time grows sub-

linearly as a function of the disutility per unit time of service disruption, i.e., where

(valuation/time)/(cong. sens./time) ↓ as (cong. sens./time) ↑. In other words, for

users that are congestion sensitive, disutility due to service disruption grows faster than the

user’s valuation. We assume that the user’s valuation per unit time of service is an affine,

increasing, function of her congestion cost per unit time of service disruption. In this case

user types are one-dimensional, and we assume that user congestion costs per unit time

are independent identically distributed (i.i.d.) draws from a continuous distribution, with

a strictly positive density function and bounded support. We model the prevailing spot

price as a discrete process (e.g., in $.01 increments per hour) and focus on the associated

steady state distribution. We assume that the SP can select the steady state distribution,

i.e., the long run average fraction of time for which the spot price spends at each price level;

if the SP’s reserve price is constant through time, then the steady state distribution will

reduce to a point mass at that respective level. Users (have infinite service time require-

ments) observe the steady state distribution of the spot price path, and choose between

guaranteed and spot, and, if they select the spot service option, they also determine how

much to bid. We prove that i) the SP should set the price levels of the spot service option

such that the lowest spot price level will be below the lowest valuation across all users

in the market (that is, nobody is priced out); ii) it is optimal to use two distinct price

levels in spot service for positive fractions of time, respectively, and offering more than two

price levels does not generate more revenue for the SP; and iii) the fraction of time that

the spot service price is “high” depends on the coefficients of the affine relation between

4 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

congestion cost rate and valuation rate, but not the distribution of types itself. Finally,

if the valuation rate grows sub-linearly with respect to the congestion cost rate but the

respective relation is general (not affine), then we show that it may be optimal for the SP

to offer multiple (> 2) price levels for the spot service option.

The second case we study is one where the valuation rate increases faster than the

user’s congestion cost rate, in this case we prove that it is never optimal to offer spot

service. Intuitively, in this setting congestion sensitive users are willing to pay increasingly

high amounts, and the SP is not willing to sacrifice any revenue from these high types

by offering an incentive compatible lower priced spot price option. Therefore, if more

congestion sensitive customers have comparatively higher valuations, then it is optimal to

serve only the high-valuation market segment by offering the high quality service.

Lastly, we analyze the price traces of over 1,000 products that the dominant provider

in the market offers for a six-month period, and present descriptive statistics that sheds

light on the dynamics of the spot price. Calibrating our model on the observed data, we

offer some insight on the dynamics of spot price valuations, and characterize the relative

magnitude of valuation rate to the congestion rate; the latter may be as much as 10 times

larger than the former.

The remainder of this paper is structured as follows. This section concludes with a brief

literature survey. Section 2 offers a short introduction to the services and pricing that

we encounter in today’s cloud computing SPs. Section 3 describes our model, which we

analyze in Sections 4 and 5 that are organized with respect to the relation of user valuation

and user congestion sensitivity per unit time. Finally, Section 6 offers a more detailed look

into the pricing data from the currently largest provider of cloud computing, Amazon Web

Services, and briefly discuss some of its implications.

Our work is related to the literature on “economics of queues,” which goes back to

the work of Naor (1969) that introduced the study of strategic customer behavior in a

queueing setting. Mendelson (1985) and Mendelson and Whang (1990) studied (primar-

ily) social welfare optimization in an M/M/1 system serving a market of heterogeneous,

utility maximizing customers. Afèche (2013) studied the revenue maximization problem

for a SP operating in a market with two segments that differ with respect to their delay

sensitivity, and importantly showed that the SP may use the notion of “strategic delay”

to optimally segment the market and optimize the system’s revenue rate. Strategic delay

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 5

amounts to (artificially) increasing the realized waiting time of some customers beyond

the waiting time that they would experience due to the system’s congestion effects. This

is akin to the idea of “damaged goods” introduced earlier on in economics and marketing,

e.g., Deneckere and McAfee (1996) and McAfee (2007) that showed that profit maximizing

firms may intentionally “crimp” their products to price discriminate, and Pareto improve

performance; these papers provide striking examples from high-tech industry; see also,

Anderson and Dana (2009).

Our model does not involve any congestion phenomena that arise due to the dynamics

of a finite capacity physical system, and as such resembles in its nature the marketing and

economics references on damaged goods. In terms of model formulation and motivation,

however, it is closer to several papers from the economics of queues literature that we

highlight below. Afèche and Pavlin (2015) studied a model with one-dimensional types,

where the valuation is a linear function of the delay cost parameter. For this model they

characterized for a SP that operates an M/M/1 system. We will consider the same model

in §4.1 and study the SP’s revenue maximizing solution in that case. Our model differs

from the one above in its utility function: specifically, users extract value from the service

and pay only when service is available, and incur disutility but stop paying when service

is interrupted. Our result that shows that the use of “damaged goods” may be optimal is

similar to theirs. The affine model is an example of a model where valuation grows sub-

linearly as a function of the congestion sensitivity. §4.2 shows that when the monotonicity

result holds but the relation between the two parameters is general, then the optimal

solution may involve again the use of damaged goods but the structure of the optimal

policy is more complex. §5 looks at the case where the valuation rate grows super-linearly

as a function of the congestion cost parameter, which is akin to the model studied in

Katta and Sethuraman (2005). Our utility function is again different and the details of the

analysis are not the same, but one of the key findings that the use of damaged goods is

not needed is consistent with their results (considered when capacity grows large and the

system becomes uncongested). Nazerzadeh and Randhawa (2015) look at a similar model

as the one studied in Katta and Sethuraman (2005) and among other things show that

in the unconstrained capacity setting, offering one service level performs “well,” which is

consistent with our findings.

6 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Our work is also related to the stream of work that studies economic optimization

problems in a queue in the context of large scale systems. Maglaras and Zeevi (2003) showed

that in a single type market where demand is elastic, the revenue maximizing operating

regime in an M/M/C system where the system size C and the market potential grow

large is the so-called heavy-traffic regime. Maglaras et al. (2015) extended this analysis to

multiple types of customers, establishing again, under some conditions, the phenomenon

of strategic delay mentioned above. Finally, our model operates as a two class priority

system. The asymptotic behavior of such a system in a multi-server setting was studied in

Maglaras and Zeevi (2005).

Abhishek et al. (2012) ask a question similar to ours and analyze the problem of the SP

using tools from mechanism design to show that offering only high a quality (guaranteed

service) product with a fixed price generates more revenue than offering both high and low

quality products at the same time. This result is in contrast to our findings in §4, as well

as those in Afèche and Pavlin (2015). In our model of §4.2, users with valuation vi have

congestion cost parameter κi (deterministic), whereas in Abhishek et al. (2012) such users

may have a random congestion cost parameter with distribution Fi. If we approximate

our model in their setting by letting the capacity grow large, and, more importantly,

restrict the support of their congestion rate parameter to a narrow support (centered

around κi), then one of the key conditions needed for their main finding no longer holds,

therefore removing the apparent inconsistency. Afèche and Mendelson (2004) studied the

revenue maximization problem in a queue with priority auctions and generalized delay cost

structure. They show that in some cases, revenue maximizing uniform pricing provides

no or only little surplus loss. Moreover, using priority auctions instead of uniform pricing

yields lower prices and higher utilization in the system.

In a recent study, Mitra and Wang (2015) consider a monopoly broadband access internet

service provider that offers a guaranteed service with a usage fee, and a best effort service

free of charge. In profit maximization setting, they show why best effort service “harvests”

possibly new guaranteed service clients; at its core lies a stylized model for the dynamics

of adoption of new users (applications) that start as best effort users (subsidized) and

then some of these transition to successful applications that switch to guaranteed service

quality.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 7

Armbrust et al. (2010) provide an overview of cloud computing from different perspec-

tives including cloud computing economics. Xu and Li (2013) show that throttling the

resource generates more revenue than uniform usage pricing and performance guarantees

can be provided with an extra fee. In their model customers differ only with respect to

their valuation per unit time and each customer is allowed to choose different number of

resources. Borgs et al. (2014) study a multiperiod pricing problem where the SP offers a

service with varying capacity in a market that customers are strategic and heterogeneous

in their valuations, arrival and departure periods. They used the cloud computing market

as an example of such a setting, and provided an efficient algorithm to find a dynamic

pricing mechanism that satisfies service guarantees. Savin et al. (2005) look at the problem

of capacity allocation of rental equipment used by two customer types, with stochastic

rental period requirements. They formulate the problem as a queueing control problem and

provide a heuristic control based on a fluid model approximation. Baron (2003) considers

a system (similar to cloud computing) that the SP shares her computing resources. He

presents token-bucket admission control and pricing schemes. In this work customers com-

pete for the shared resource. Our paper provides descriptive statistics and some analysis

on a rich data set from a leading SP. Similar datasets have been analyzed in different works

to find possible explanations for the observed price fluctuations. Agmon Ben-Yehuda et al.

(2011) draw the conclusion that the SP varies her reserve price over time. They empirically

show that the spot prices seem to follow trends that show significant regularity when views

under an appropriate prism, and could be the result of the SP’s control of the reserve price.

2. Glimpse of Cloud Computing Market and Pricing Mechanisms

The two key participants in the market for cloud computing are users and providers. The

users can be individuals or companies requiring temporary (short-term) or permanent

(long-term) computing resources that can be reached over the internet. The providers are

the operators of the cloud computing services. Currently there are many small and large

SPs in the market, with Amazon, Google, and Microsoft being the leading providers. There

are three main services that cloud providers offer: software-as-a-service (SaaS), platform-

as-a-service (PaaS), and infrastructure-as-a-service (IaaS). In this paper we are focusing

on IaaS service, where the product is defined as the bundle of a machine type, an operating

system, and a location.

8 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Each provider offers its products under one or multiple price models. The dominant

provider in the market is Amazon and it offers the richest pricing options. Currently,

Amazon rents out its computing resources under three different pricing models: pay-as-you-

go (on-demand instances), pay-as-you go under contract (reserved instances), and second

price auction (spot instances). On-demand and reserved instances offer guaranteed service

and in the sequel, we will focus on a model with only 2 service options: guaranteed and

best effort, which we refer to “on-demand” and “spot.”

We are focusing on two pricing models: on-demand and spot. Each product has a fixed

hourly price in the on-demand market and users continue paying this fixed rate as long as

they use the service. Amazon has no control of ending a running service, while customers

can end their service at any point in time with no penalty. The spot market has a more

complicated pricing structure. For each product, Amazon sets a reserve price, possibly time-

varying, and customers bid their maximum willingness-to-pay per hour for that product.

The spot price at any time point is defined as the minimum bid accepted at that time,

which in some cases may be the reserve. The spot price fluctuates over time in response to

variations to the available capacity not utilized by the “guaranteed” instances rented by

Amazon, and to the number of active spot customers and their corresponding bids. If the

bid of a particular customer falls below the spot price, this customer is temporarily out of

access to the cloud (priced out) until the spot price falls again at or below her bid.

The data on hand shows the the spot price exhibits significant fluctuations over time.

They may be around one tenth of the corresponding on-demand prices; and, can and do

fluctuate to up to five or ten times of the corresponding on-demand prices; interrupting

service for many spot instance customers, resulting in some form of disutility. If customers

in the spot market bid sufficiently high and continuously pay the prevailing spot price (even

when it is above the price of on-demand), in the long run they will receive uninterrupted

service. The corresponding time-average spot price is cheaper than the corresponding on-

demand price for some of the products, but certainly not all. We present further descriptive

statistics in Section 6.

Another choice customers make is whether to use cloud or in-house resources for their

computing needs. Table 1 shows the configuration and prices for a product family (m4

machine types) with Linux operating system residing in us-west-2 (Oregon) region. Among

these products, we analyze m4.xlarge machine more closely. Hourly on-demand price for

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 9

this product is $0.254/hr, while it can go up to $0.374 in other regions. This product was

available both in spot and on-demand markets approximately in the last 80 days of our

time window. Usage in this period cost $486 in on-demand market, while it was between

$113 to $207 (depending on the subregion selected) in spot market. One year of continuous

usage of this product costs $2,208 in on-demand market. As a comparison, a similar in-

house server (HP ProLiant DL380 Gen9 - Xeon E5-2620V3 2.4 GHz - 16 GB, which has

6 cores) costs around the same to purchase without any peripheral costs for mounting,

networking, etc.. However, if one wants to rent a product for long-term continuous usage,

reserved instances offers much cheaper options. For instance, the same product can be

rented by paying $1,271 upfront for one year of usage (see Armbrust et al. (2010) for a

more detailed cost analysis).

Table 1 Prices in on-demand and reserved markets for a group of products and their configurations

Machine name # cores # RAM price/hr on-demand price/year reserved price/year

m4.large 2 8 $0.126 $1,103.76 $635

m4.xlarge 4 16 $0.252 $2,207.52 $1,271

m4.2xlarge 8 32 $0.504 $4,415.04 $2,541

m4.4xlarge 16 64 $1.008 $8,830.08 $5,082

m4.10xlarge 40 160 $2.52 $22,075.2 $12,706

3. Model Formulation
3.1. Detour: Asymptotic Behavior of Large Scale Multi-Server Systems

We briefly discuss a system where the SP has a finite processing capacity C and offers two

nonsubstitutable service classes: guaranteed-rate (G) service and best-effort (BE) service.

In the former, customers receive a constant service rate as long as there is capacity and

are blocked otherwise; in the latter, service rate is dependent on the number of customers

in the whole system. G service has priority over BE. BE users get one unit of capacity,

if this is available, or share the available capacity (not used by G users) equally if there

are more BE users connected than the available number of servers, thus experiencing

congestion. Customers arrive to the system according to independent Poisson processes

and the service requirements are exponentially distributed. Maglaras and Zeevi (2005)

studied this system and showed that when the system size grows large, the G class occupies

10 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

αC +B(t)
√
C servers, where 0 < α < 1 and B(t) is standard Brownian motion, and the

remaining capacity, (1−α)C−B(t)
√
C, is available to BE service. A similar analysis could

be carried through under the auction model for BE service. The important observation

is that the variation in the available capacity for BE users will be second order, and this

would result in fluctuations of the prevailing spot price that would also be second order

(i.e., small). This prediction does not agree with what we observe in the data. This suggests

that perhaps a different mechanism gives rise to the fluctuations to the spot price that

may be exogenous to the capacity dynamics of the BE class, as defined crudely by their

supply-demand imbalance.

The above discussion has three important caveats that are worth noting. First, the model

assumes the same (or reasonably similar) service durations for both services. Second, the

model assumes each customer has unit demand. If users may demand a random number

of servers and this follows a heavy-tailed distribution, it may be possible to observe big

price spikes. The observed frequency and duration of price spikes would require frequent,

random arrival of users with unusually large capacity needs that are short-lived (which

may be implausible). Last, the model assumes that in equilibrium, the fraction of the

overall system capacity consumed by each of the two service classes are comparable (and

first order). If BE service used a very small fraction of the total capacity and the overall

system was heavily utilized, then significant spot price fluctuations could emerge; e.g., the

BE usage is of order
√
C, which is the same as the order of magnitude of the G service

class, thus resulting in fluctuations of BE available capacity that are of the same order

as the overall capacity used by BE. Nevertheless, in this case the revenue generated from

BE service would be insignificant, rendering the parameter regime less interesting. It also

seems unlikely that the data centers of large-scale cloud computing SPs are operating at

full utilization at this point in time of rapid expansion and effort to capture market share.

3.2. The Infinite Capacity Model

Motivated from the above we will model the market as follows. The SP has infinite capacity

and operates multiple resources and offers a service (or a product) from two distinct chan-

nels: guaranteed (G, on-demand instances) and best effort (BE, spot instances). Customers

differ with respect to their willingness-to-pay for a unit-time service, v, and their conges-

tion sensitivity parameter, κ. We assume that each customer has unit demand and infinite

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 11

service time. Customers are individual utility maximizers and they make two decisions: i)

which service to choose, and ii) if BE is chosen, how much to bid.

Let i denote the service class such that i= 1 for G service and i= 2 for BE service. G

service is offered with a fixed price pG per unit time and each customer paying this price gets

a dedicated resource. The price for BE service, pBE(t), is a RCLL (right-continuous with left

limits) discrete-level stochastic process in the interval [p, p] with N price levels (p= pN ≤
pN−1 ≤ . . .≤ p1 = p). We will not characterize the dynamics at this stage, but assume that

users with infinite service level requirements decide based on the steady state probability

mass function associated with {pBE(t), t≥ 0} which is denoted by π= (π1, π2, . . . , πN), and

assumed to exist, has support P = [p, p] ∈ (0,∞). In this option, customers place their

bids and the SP offers service to each BE user whose bid is larger than or equal to the

prevailing spot price pBE(t), and interrupts service to all bidders below pBE(t). That is,

a BE user that bids b is active ∀t s.t. pBE(t) ≤ b and interrupted ∀t s.t. pBE(t) > b. We

assume interruptions have no cost to the SP and an interrupted job resumes without any

additional setup cost (if service disruptions are infrequent and service times are long—

infinite in our model—this modeling idealization may be reasonable). It is worth noting

that in our infinite capacity model the price dynamics are controlled by the SP as opposed

to stochastic supply-demand imbalance effects.

Users are heterogeneous and characterized by their idiosyncratic (monetary) valuation

per unit time of receiving service v and disutility (congestion sensitivity) parameter κ,

which measures the monetary loss per unit of time where the service is unavailable. Con-

sider a user with valuation v and congestion sensitivity parameter κ and bid $b for BE

service. For a user that selects BE service and bids $b, we will define α(b) to be the fraction

of time her service is active, and p(b) to be the payment per unit time:

α(b) =
∑
i:pi≤b

πi and p(b) =
∑
i:pi≤b

πipi.

The net utilities for the two service options are:

U1(v,κ) = v− pG and U2(v,κ, b) = α(b)v−κ(1−α(b))− p(b).

That is, customers extract the per unit value $v when their service is active; when their

service is interrupted they forgo this value and incur a cost of $κ per unit time. They only

pay while their service is active, captured by pG and p(b) for each option, respectively.

12 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

The optimal BE bid for a user with parameters v and κ is

b(v,κ) = arg max
p≤b≤p

U2(v,κ, b).

Lemma 1. Without loss of generality, b(v,κ)∈ {p1, p2, . . . , pN}.

Moreover, if there are multiple bids that achieve the maximum, we assume that the lowest

maximizing bid is selected. We let U2(v,κ) := U2(v,κ, b(v,κ)). A user with parameters v

and κ chooses service-i∗(v,κ), where

i∗(v,κ) = arg max
i=1,2

{Ui(v,κ) :Ui(v,κ)≥ 0} and set i∗(v,κ) = 0 if Ui(v,κ)< 0 for i= 1,2,

where i= 0 represents the no-buy option.

As mentioned in the introduction the monotonicity of v/κ as κ grows plays a crucial

role. In the following two sections, we will study this infinite capacity stylized model, and,

specifically consider the SP’s revenue maximization problem, and we will consider two

settings: first sub-linear then super-linear increase in valuation with congestion sensitivity.

We will consider two models of customer heterogeneity (v,κ). In Section 4.1.1–4.1.2, we

will consider that types are continuous; in Sections 4.2 and 5, we will consider a discrete

model.

4. Sub-Linear Increase in Valuation with Congestion Sensitivity

We study a market where the valuation rate v grows more slowly than her corresponding

congestion sensitivity parameter κ; i.e., users with increasing congestion sensitivity may

indeed value the service more, but their valuation does not grow as fast as the corresponding

disutility from service interruption.

4.1. Linear Dependence between valuation and congestion rate (v,κ)

We consider a continuum of user types indexed by η. A type η user has a positive

willingness-to-pay v :=A+ η per unit time of service and a positive congestion sensitivity

parameter κ :=Bη, where A,B are positive constants common across all consumers. User

types are assumed to be independent and identically distributed (i.i.d.) draws from a con-

tinuous distribution F with density f , which is assumed strictly positive and continuously

differentiable on the interval N = [η, η]⊆ [0,∞). Let F̄ = 1−F . Hence, v and κ are linearly

dependent and user heterogeneity is one dimensional. Note that in this setting, both the

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 13

valuation rate (v=A+ η) and the congestion rate (κ=Bη) are increasing function of the

user type η, and that relative rate of growth of v/κ= A+η
Bη

is decreasing in their type. We

summarize this model for ease of reference below:

Model 1: v=A+ η, κ=Bη, A,B > 0, η∼ F. (1)

4.1.1. BE randomizes between 2 price levels (high/low). The SP will offer the BE

service at two price levels $pH , $pL with pH ≥ pL, and choose π, the fraction of time the

BE service is priced at $pL. A customer that bids $pL for BE will enjoy the service for π

fraction of time, and if she bids $pH , she enjoys the service without interruption, and pays

πpL + (1− π)pH . From Lemma 1, customers do not bid any other amount. Guaranteed

service is priced at $pG. Without loss of generality we will assume that πpL+(1−π)pH > pG,

that is, if a user wants guaranteed service, then she will choose the G service option at

$pG. We will add this as a constraint to our downstream revenue optimization formulation.

The utilities for two services can be written as a function of η as

U1(η) = (A+ η)− pG and U2(η) = π(A+ η)−Bη(1−π)−πpL = π(A+ η− pL)−Bη(1−π).

Ui(η) takes the form of Ui(v,κ) in this model with one dimensional user types.

We will first assume that the utility gained from the BE service is non-decreasing in η

for any η, i.e.,

U ′2(η)≥ 0 ⇐⇒ π−B+Bπ≥ 0 ⇐⇒ π≥ B

1 +B
, (2)

which implies a constraint on the choice of π to the SP.

Later on we will formulate and solve the problem for the case π < B
1+B

and show that

the respective solution is sub-optimal. Let

SG = {η|U1(η)≥U2(η), and U1(η)≥ 0} and SBE = {η|U2(η)>U1(η), and U2(η)≥ 0},

denote the sets of customer types that choose G and BE service, respectively. From (2)

and the fact that U ′1(η)≥U ′2(η) for any B > 0 and 0≤ π≤ 1, we get that

SG = {η|η≥ ηH and η≥ pG−A} and SBE = {η|η < ηH and η≥ ηL},

where ηH and ηL satisfy

(1 +B)(1−π)ηH = pG−πpL− (1−π)A and (π−B(1−π))ηL = π(pL−A). (3)

14 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

That is, customer type η chooses G if η≥ ηH and η≥ pG−A, chooses BE if ηL ≤ η < ηH ,

and does not join the system if η < ηL. The marginal types ηL, ηH are controlled by the SP

through pG, pL, pH , and π. Here we are restricting our analysis to the case that ηH ≥ ηL. If

ηL > ηH , then the BE service becomes unattractive, and the SP is offering only G service

(this is also the case when ηL = ηH); Based on this observation, we can disregard from

consideration the case where ηL > ηH .

We will first assume that ηH ≥ pG−A and formulate and solve SP’s revenue maximization

problem. Then we will show that any solution with ηH < pG−A is sub-optimal and verify

the assumption is satisfied under the optimal solution.

Assuming ηH ≥ pG−A, the revenue function of the SP is

R1 = pGF̄ (ηH) +πpL(F (ηH)−F (ηL))

= (pG−πpL)F̄ (ηH) +πpLF̄ (ηL)

= [ηH(1 +B)(1−π) + (1−π)A] F̄ (ηH) + [π(A+ ηL)−BηL(1−π)] F̄ (ηL) :=R(ηH , ηL, π).

The SP’s revenue maximization problem is:

maximize
ηH ,ηL,π

R(ηH , ηL, π) (4)

subject to ηL ≤ ηH , π≥
B

1 +B
, π≤ 1. (5)

In contrast, if ηH < pG−A, the revenue function reduces to

R2 = pGF̄ (pG−A) +πpL(F (ηH)−F (ηL))≤ pGF̄ (ηH) +πpL(F (ηH)−F (ηL)) =R1,

and the corresponding constraint set is smaller than in (5). It follows that any solution

with ηH < pG−A is sub-optimal.

Next we solve (4)–(5) in terms of ηH , ηL, and π. These three parameters uniquely deter-

mine pG and pL from (3), and we show that the optimal solution satisfies pG ≥ pL.

Proposition 1. Consider the model specified by (1) and let (η∗H , η
∗
L, π

∗) be an optimal

solution to (4)–(5), and p∗G and p∗L be the optimal prices corresponding to the solution

triple. Then,

1. π∗ =
B

1 +B
,

2. η∗L = η with p∗L =A,

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 15

3. η∗H = p∗G−A.

(All proofs are given in the Appendix.) We can simplify the revenue maximization prob-

lem to

maximize
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

B

1 +B
A. (6)

Proposition 2. Under the model specified by (1), it is optimal to offer G and BE

services if and only if

f(η)<

(
η+

A

1 +B

)−1
. (7)

Once η∗H and π∗ are identified, the optimal price pair (p∗G, p∗L) can be chosen so as to

satisfy Proposition 1. We mentioned earlier that without loss of generality we will restrict

attention to prices such that

(1−π∗)p∗H +π∗p∗L > p
∗
G, (8)

i.e., it is sub-optimal for users that want uninterrupted service to choose BE but submit a

high bid ($pH). Any choice of pH that satisfies (8) will suffice.

To establish that Proposition 1 indeed characterizes the globally optimal solution, we

need to rule out any solution where π <
B

1 +B
and, as a consequence, U2(η) is decreasing

in η. If U2(η)≤ 0, there is no BE service, i.e., reducing to a one-service solution. Assuming

U2(η)> 0, SG and SBE can be written as

SG = {η|η≥ ηH and η≥ pG−A} and SBE = {η|η < ηH and η≤ ηL},

where ηH and ηL satisfy (3). Then the SP’s revenue maximization problem is:

maximize
ηH ,ηL,pG,π

pG ·
∫
η∈SG

f(η)dη+πpL ·
∫

η∈SBE

f(η)dη subject to 0≤ π < B

1 +B
. (9)

Proposition 3. Consider the model specified by (1). The optimized revenue rate for (9)

is bounded above by the optimized objective in (6). Therefore, π <
B

1 +B
is sub-optimal.

16 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

4.1.2. Can the SP do better by offering BE with N >2 price levels? Consider now the

case where the SP will offer the BE service on an N -price grid given by p1 ≥ p2 . . . ,≥ pN ≥ 0

and let π= (π1, π2, . . . , πN), where πi is the fraction of time the prevailing BE service price

is pi. As in the two-price-level analysis, p1 can be set at a sufficiently high value to ensure

that users that would bid p1 (or higher) to enjoy uninterrupted BE service, would prefer

instead to pay pG and get the guaranteed service option. Using Lemma 1, we only consider

the bids that are on the price grid {p1, p2, . . . , pN}. Define π̄k =
∑N

j=k πj and p̄k =
∑N

j=k πjpj,

and redefine the net utility function for BE as

U2(η, pk) = π̄k(A+ η)−Bη(1− π̄k)− p̄k, k= 2, . . . ,N

for a type η customer bidding pk.

As in the two-price-level case, we assume that the utility gained from the BE service is

non-decreasing in η for any η and π̄i values, i.e.,

U ′2(η, pi)≥ 0, i= 2,3, . . . ,N ⇐⇒ π̄i ≥
B

1 +B
, i= 2,3, . . . ,N

⇐⇒ πN ≥
B

1 +B
.

Let SG denote the interval for customer types that choose G service, and sets S iBE the

interval for customer types that choose BE service and bid pi (i= 2,3, . . . ,N):

SG = {η|U1(η)≥U2(η, pi), i= 2,3, . . . ,N and U1(η)≥ 0} and

S iBE = {η|U2(η, pi)≥U2(η, pk), k 6= i;U2(η, pi)≥U1(η), and U2(η, pi)≥ 0}, i= 2,3, . . . ,N.

Then the SP’s revenue maximization problem is:

maximize
pG,p2,p3,...,pN ,π

pG ·
∫
η∈SG

f(η)dη+
N∑
i=2

p̄i ·
∫

η∈SiBE

f(η)dη (10)

subject to πN ≥
B

1 +B
, 1Tπ= 1, π≥ 0. (11)

Proposition 4. Consider the model specified by (1) and let k∗ be the number of distinct

price levels offered in BE service at the optimal solution of (10)–(11). Then, an optimal

solution is to use k∗ = 2 with the structure specified in Proposition 1.

Once again, for the model in (1) with the affine relation between (v,κ), it is optimal to

offer G service and BE service with two-price-level if and only if (7) is satisfied.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 17

4.2. General Dependence Between Valuation and Congestion Sensitivity

So far we have restricted attention to the affine dependence between (v,κ) that allowed

us to solve the resulting revenue maximization problem in closed form. In this subsection

we briefly consider a market where the (v,κ) dependence is general, yet still v/κ grows

sub-linearly with respect to κ, and primarily show that in such a setting the SP may wish

to offer more than 2 price levels for BE service.

Suppose there are n customer types and N price levels in BE service (N > n). Let

κ1 >κ2 > . . . > κn > 0 with v1 ≥ v2 ≥ . . .≥ vn > 0 such that v1
κ1
< v2

κ2
< . . . < vn

κn
. The fraction

of users that are of type i is λi. Let p1 ≥ p2 ≥ . . . ≥ pN ≥ 0 be the price levels with π =

(π1, π2, . . . , πN) such that πj is the fraction of time the system is in price level pj (1Tπ= 1

and π≥ 0).

Model 2: v1 ≥ v2 ≥ . . .≥ vn > 0, κ1 >κ2 > . . . > κn > 0,
v1
κ1
<
v2
κ2
< . . . <

vn
κn
. (12)

The objective of the SP is to maximize its revenue rate by offering a price vector (pG,p)

and an availability vector π. As previously, one can restrict attention to customer bids in

{p1, p2, . . . , pN}.

Proposition 5. Consider the model specified by (12) and let p∗ be the optimal price

when there is only G service. Then, it is optimal to offer G and BE services together if

and only if p∗ > vn.

Proposition 5 shows that if some customer types choose not to buy under the optimal

single service level (only G) solution, then the SP can extract more revenue by offering

the second service level (BE). We have shown above that when there is linear dependence

between v and κ, it is enough to offer BE service with two price levels. The example given

below shows that when (v,κ) have a general dependence structure and still v grows sub-

linearly with respect to κ, i.e., the model in (12), it may be optimal to use k > 2 price

levels. In particular, the following example shows that the property proven in Proposition

4 no longer holds (the relation between (v,κ) is quadratic):

Example: Three customer types with λ= (1,1,1), v= (4,2,1), κ= (16,4,1). The opti-

mal solution is pG = 4, p= (p1,6,2/3), π= (1/7,3/28,3/4) where p1 > 20.

18 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

5. Super-Linear Increase in Valuation with Congestion Sensitivity

This section uses the discrete type (v,κ) model of Section 4.2 but assumes that v1
κ1
≥ v2

κ2
≥

. . .≥ vn
κn

, i.e., that the valuation rate grows super-linearly with respect to the corresponding

congestion sensitivity rate.

Model 3: v1 ≥ v2 ≥ . . .≥ vn > 0, κ1 >κ2 > . . . > κn > 0,
v1
κ1
≥ v2
κ2
≥ . . .≥ vn

κn
. (13)

The objective of the SP is to maximize its revenue by offering price vector p and avail-

ability vector π. Similar to Lemma 1, in this setting users need only consider bids that are

equal to one of the offered price points. Here we do not introduce a separate G service at

first. User types that bid equal to the highest price level, p1, receive uninterrupted service

(i.e., G service) and pay p1. Hence, we first consider only BE service first, find the opti-

mal pricing mechanism in this case, and then introduce a separate G service with price

p1. The next proposition characterizes the structure of the optimal solution when the SP

maximizes its revenue over the price grid and associated π’s.

Proposition 6. Consider the model specified by (13). Let k∗ be the number of distinct

price levels offered in BE service. Then, k∗ ≤ 2.

Proposition 6 shows that it is optimal to offer BE service with at most two price levels.

Let these price levels be pH and pL with pH ≥ pL, and π is the fraction of time BE service is

priced at pL. If pH = pL, then the solution has only one service level, which is uninterrupted

service. If pH > pL, then customers that bid pH enjoys uninterrupted service by paying

πpL + (1− π)pH . In this case, in addition to BE service we can offer G service with price

pG := πpL + (1−π)pH . Customer types bidding pH previously are now indifferent between

bidding pH for BE service or paying pG for G service. To ensure that these customer types

choose G service over BE service with bid pH , we can increase pH without changing pG.

Now, these customers are no longer indifferent between the two options. Note that this

change would not affect the choice of customer types that choose to bid pL.

Next, we compare the optimal revenue that the SP makes with at most two service levels,

i.e., two price levels, with the optimal revenue under one service level. Proposition 7 shows

that the revenue under the former case is bounded above by the latter, or equivalently,

offering one price level is optimal.

Proposition 7. Consider the model specified by (13). Then, k∗ = 1.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 19

Offering BE service with one price level means that the price is constant over time and

customer types that bid this constant price get uninterrupted service, which is equivalent

to G service, and the rest of the customer types do not get any service. Thus, we conclude

that offering only G service is optimal if (v,κ) follows (13).

The result above is consistent with the policy identified in Katta and Sethuraman (2005),

whereat the authors showed that for the model considered in this section that optimal

policy for a SP operating a system with congestion effects (arising through the operation

of an M/M/1 system) is optimal not to inject any strategic delay. In a large scale system,

the service level that arises due to stochastic congestion effects becomes small, and in an

infinite capacity system altogether disappears.; i.e., if the SP can avoid congestion effects,

she will indeed select to do so. This is what we see in our model as well. (Similarly to what

we mentioned earlier the structure of the user utility function is different in our model, so

a direct application of these earlier findings is not possible.)

6. Data

We first offer a description of price data from AWS (a cloud computing platform offered

by Amazon), and then offer a brief calibration and discussion of our model on AWS data.

6.1. Descriptive Statistics

Amazon is the biggest cloud computing SP. They offer over 1,000 products to the IaaS

market in 9 regions globally. For each product, the price trace of the last 90 days is made

publicly available by Amazon. We have obtained price traces from August 2013 onwards

for the spot instances using an automated script that we programmed, which runs everyday

and downloads and stores the price traces of the last 24 hours, for all products. This script

has enabled us to have a longer time frame for the price history. Amazon does not disclose

any information other than the price traces.

We have analyzed the data traces from March 1, 2015 to August 31, 2015 for 1,122

products. The products are categorized under five different classes by AWS: “compute

optimized,” “general purpose,” “GPU instances,” “memory optimized,” and “storage opti-

mized.” In each of these classes there are multiple machine sizes. Moreover, prices differ

with respect to the location of the product and the operating system the product has. To

facilitate reporting statistics on pools of different products with different on-demand prices,

we normalize the spot and on-demand prices of each product by the respective on-demand

20 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

price. In this manner, a normalized spot price is unit-less and expressed and understood as

a multiple of the underlying on-demand price; all products have a normalized on-demand

price equal to 1. To get a better sense of pricing dynamics, first we look at the descriptive

statistics per product. For each product, we calculate: the average normalized spot price;

the normalized spot price range; the average uptick and downtick inter-arrival times; the

average magnitudes of the corresponding spot price jumps; and, the fraction of time the

spot price is greater than on-demand price. Table 2 shows that the mean of the average

normalized spot prices across products is about half of the on-demand price. More than

92% of the products have a time-average spot price less than 1, which means that for more

than 92% of the products, procuring spot instances, with sufficiently high bids so as never

to be shut off, would cost less than on-demand instances for the whole 6-month period. We

discuss this result more in Section 6.2. Further, summary statistics shows that the range

of spot price fluctuations is wide, more than three times of the corresponding on-demand

price on average. The average inter-arrival time of an uptick (downtick) price change is in

the order of hours, and the average magnitude of an uptick (downtick) is about one third of

the on-demand prices. Lastly, for most products the spot price is below the corresponding

on-demand price for more than 90% of the time. Figure 1 shows the distribution of each

of these categories (with a few outliers discarded in each plot).

Table 2 Summary of descriptive statistics per product

Min 1st Qu. Median Mean 3rd Qu. Max

Average normalized spot price 0.037 0.213 0.366 0.515 0.780 3.756

Normalized spot price range 0.000 0.829 1.511 3.216 4.772 39.050

Avg. uptick inter-arrival time (hrs) 0.000 3.071 7.115 35.200 27.930 1428.000

Avg. downtick inter-arrival time (hrs) 0.000 3.088 6.924 33.950 27.200 1111.000

Average uptick magnitude 0.000 0.144 0.284 0.449 0.537 9.740

Average downtick magnitude 0.000 0.143 0.290 0.459 0.537 12.150

Fraction of time spot>on-demand 0.000 0.000 0.008 0.072 0.066 1.000

Next, we assume that a user selects spot service and bids sufficiently high so that she

is never outbid and would enjoy uninterrupted service. For each different possible time of

arrival, we record the average price she would pay per hour if she stayed in the system for

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 21

average normalized price

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
12

0 Mean
Median

normalized price range

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

Mean
Median

average uptick inter−arrival time (in hrs)

F
re

qu
en

cy

0 20 40 60 80 100

0
50

10
0

15
0

Mean
Median

average downtick inter−arrival time (in hrs)

F
re

qu
en

cy
0 20 40 60 80 100

0
50

10
0

15
0

Mean
Median

average uptick magnitude

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
12

0

Mean
Median

average downtick magnitude

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
12

0 Mean
Median

fraction of time spot price > on−demand price

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

0
30

0
50

0

Mean
Median

Figure 1 Histogram of descriptive statistics per product

1 hour, 1 day, 1 week, or 1 month. For each of the 4 usage durations, we average across

time of arrival. The results are reported in Figure 2. These plots show that most Windows

products have higher spot prices compared to Linux/UNIX products, i.e., the potential

gain from the spot market is less for Windows products. The four panels in Figure 2 are

22 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

similar, suggesting that the usage duration does not play an important role on the selection

between spot (at maximum bid) versus on-demand.

Compute Optimized General Purpose GPU Instances Memory Optimized Storage Optimized

0

1

2

3

4

c
3

.2
x
la

rg
e

c
3

.4
x
la

rg
e

c
3

.8
x
la

rg
e

c
3

.l
a

rg
e

c
3

.x
la

rg
e

c
4

.2
x
la

rg
e

c
4

.4
x
la

rg
e

c
4

.8
x
la

rg
e

c
4

.l
a

rg
e

c
4

.x
la

rg
e

m
3

.2
x
la

rg
e

m
3

.l
a

rg
e

m
3

.m
e

d
iu

m

m
3

.x
la

rg
e

m
4

.1
0

x
la

rg
e

m
4

.2
x
la

rg
e

m
4

.4
x
la

rg
e

m
4

.l
a

rg
e

m
4

.x
la

rg
e

g
2

.2
x
la

rg
e

r3
.2

x
la

rg
e

r3
.4

x
la

rg
e

r3
.8

x
la

rg
e

r3
.l
a

rg
e

r3
.x

la
rg

e

d
2

.2
x
la

rg
e

d
2

.4
x
la

rg
e

d
2

.8
x
la

rg
e

d
2

.x
la

rg
e

Instances

A
v
e

ra
g

e
 H

o
u

rl
y
 S

p
o

t
p

ri
c
e

OS

Linux/UNIX

Windows

Average Hourly Spot Price per Instance Type
Compute Optimized General Purpose GPU Instances Memory Optimized Storage Optimized

0

1

2

3

4

c
3

.2
x
la

rg
e

c
3

.4
x
la

rg
e

c
3

.8
x
la

rg
e

c
3

.l
a

rg
e

c
3

.x
la

rg
e

c
4

.2
x
la

rg
e

c
4

.4
x
la

rg
e

c
4

.8
x
la

rg
e

c
4

.l
a

rg
e

c
4

.x
la

rg
e

m
3

.2
x
la

rg
e

m
3

.l
a

rg
e

m
3

.m
e

d
iu

m

m
3

.x
la

rg
e

m
4

.1
0

x
la

rg
e

m
4

.2
x
la

rg
e

m
4

.4
x
la

rg
e

m
4

.l
a

rg
e

m
4

.x
la

rg
e

g
2

.2
x
la

rg
e

r3
.2

x
la

rg
e

r3
.4

x
la

rg
e

r3
.8

x
la

rg
e

r3
.l
a

rg
e

r3
.x

la
rg

e

d
2

.2
x
la

rg
e

d
2

.4
x
la

rg
e

d
2

.8
x
la

rg
e

d
2

.x
la

rg
e

Instances

A
v
e

ra
g

e
 D

a
ily

 S
p

o
t

p
ri
c
e

OS

Linux/UNIX

Windows

Average Daily Spot Price per Instance Type

Compute Optimized General Purpose GPU Instances Memory Optimized Storage Optimized

0

1

2

3

4

c
3

.2
x
la

rg
e

c
3

.4
x
la

rg
e

c
3

.8
x
la

rg
e

c
3

.l
a

rg
e

c
3

.x
la

rg
e

c
4

.2
x
la

rg
e

c
4

.4
x
la

rg
e

c
4

.8
x
la

rg
e

c
4

.l
a

rg
e

c
4

.x
la

rg
e

m
3

.2
x
la

rg
e

m
3

.l
a

rg
e

m
3

.m
e

d
iu

m

m
3

.x
la

rg
e

m
4

.1
0

x
la

rg
e

m
4

.2
x
la

rg
e

m
4

.4
x
la

rg
e

m
4

.l
a

rg
e

m
4

.x
la

rg
e

g
2

.2
x
la

rg
e

r3
.2

x
la

rg
e

r3
.4

x
la

rg
e

r3
.8

x
la

rg
e

r3
.l
a

rg
e

r3
.x

la
rg

e

d
2

.2
x
la

rg
e

d
2

.4
x
la

rg
e

d
2

.8
x
la

rg
e

d
2

.x
la

rg
e

Instances

A
v
e

ra
g

e
 W

e
e

k
ly

 S
p

o
t

p
ri
c
e

OS

Linux/UNIX

Windows

Average Weekly Spot Price per Instance Type
Compute Optimized General Purpose GPU Instances Memory Optimized Storage Optimized

0

1

2

3

4

c
3

.2
x
la

rg
e

c
3

.4
x
la

rg
e

c
3

.8
x
la

rg
e

c
3

.l
a

rg
e

c
3

.x
la

rg
e

c
4

.2
x
la

rg
e

c
4

.4
x
la

rg
e

c
4

.8
x
la

rg
e

c
4

.l
a

rg
e

c
4

.x
la

rg
e

m
3

.2
x
la

rg
e

m
3

.l
a

rg
e

m
3

.m
e

d
iu

m

m
3

.x
la

rg
e

m
4

.1
0

x
la

rg
e

m
4

.2
x
la

rg
e

m
4

.4
x
la

rg
e

m
4

.l
a

rg
e

m
4

.x
la

rg
e

g
2

.2
x
la

rg
e

r3
.2

x
la

rg
e

r3
.4

x
la

rg
e

r3
.8

x
la

rg
e

r3
.l
a

rg
e

r3
.x

la
rg

e

d
2

.2
x
la

rg
e

d
2

.4
x
la

rg
e

d
2

.8
x
la

rg
e

d
2

.x
la

rg
e

Instances

A
v
e

ra
g

e
 M

o
n

th
ly

 S
p

o
t

p
ri
c
e

OS

Linux/UNIX

Windows

Average Monthly Spot Price per Instance Type

Figure 2 Average prices for different duration of usage

To illustrate the fluctuations in the prevailing spot prices over time, we focused on the

running averages of the prevailing spot prices for daily, weekly, and monthly usage updated

daily for every class of product. Figure 3 summarizes how the average spot price fluctuates

over time under daily, weekly, and monthly usage of “GPU Instances” for Linux/UNIX

and Windows machines; there are 18 such products for each operating system in total.

While the solid line represents the average price of all products in this class, the blue

(shaded) area denotes ± one standard deviation band from the average price (computed

across the respective 18 data points in each time point). For this product class, prices for

both operating systems follow similar patterns whereat the spot market is cheaper than the

on-demand market until the beginning of August. The standard deviation also increased

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 23

during that period, implying also increased variation across different “GPU Instances”

products during this peak period. We observe different patterns in other product classes.

0

2

4

Mar Apr May Jun Jul Aug Sep
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Linux/UNIX − Daily Usage

−1

0

1

2

3

4

5

Mar Apr May Jun Jul Aug
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Linux/UNIX − Weekly Usage

0

1

2

3

Mar Apr May Jun Jul Aug
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Linux/UNIX − Monthly Usage

0

2

4

Mar Apr May Jun Jul Aug Sep
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Windows − Daily Usage

0

2

4

Mar Apr May Jun Jul Aug
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Windows − Weekly Usage

−1

0

1

2

3

Mar Apr May Jun Jul Aug
Timestamp

S
po

t P
ric

e

Spot Price Evolution for GPU Instances Windows − Monthly Usage

Figure 3 Average price change over time with different usage times

24 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

6.2. Data Evidence

We can use the AWS data to calibrate our model primitives. To repeat, the model of Section

4.1 assumes a linear dependence between valuation and congestion rates, which implies

that valuation grows sub-linearly relative to the congestion rate. The results of Section

4.1 suggest that it suffices for the SP to offer the spot price service with just two price

levels (high/low). We proceed as follows. We assume the model specified in Section 4.1 is

in force and that the SP follows the optimal policy derived in Section 4.1. We compute the

empirical spot price occupancy distribution, and approximate it with a two-level (pH , pL, π)

distribution. We then derive the implied user valuation and congestion model parameters.

We will approximate the empirical distribution by the triple (pH , pL, π) that is closest in

the sense of the Kantorovich metric, where pH is the high price, pL is the low price, and

π is the fraction of time the price is equal to pL. (The Kantorovich metric between two

random variables X and Y in R is defined as K(X,Y) =
∫
R |FX(x)−FY (x)|dx, where FX

and FY are the cumulative distribution function of X and Y , respectively.)

Assuming that user types are distributed uniformly on (0, ηmax), the parameters

A,B,ηmax can be calculated using the results from Section 4.1. Specifically, for given

(pH , pL, π),

B =
π

1−π
, A= pL, ηmax = 2(pG−A) +

A

1 +B

where pG = 1 since the price path is normalized based on the G service price. Using these

parameters we can get the implied valuation and congestion sensitivity parameter for each

user type η: her valuation rate is equal to A+ η and her congestion sensitivity parameter

is equal to Bη. Lastly, we analyze if the implied parameters satisfy the conditions on pH

and pL, i.e. whether pG < (1− π)pH + πpL, pH > 1, pL < 1 hold. Our analysis containing

the data for the period Mar. 1, 2015 – Aug. 31, 2015 has shown that out of 1,122 products,

only 63 of them satisfy all these conditions. The summary statistics of the normalized price

path of these 63 products is given in Table 3. Calibrating our model on the observed data

we get the parameters shown in Table 4.

The normalized estimated parameters suggest the following:

• Valuation per unit time: (A+ η)∼U(0.6,1.5).

• Congestion cost per unit of downtime: Bη ∼ U(0,12.5). Specifically, we note that

congestion costs when the system is down, due to lost revenue and possibly lost good-

will/reputation, can be up to 4x-10x of the valuation per unit time.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 25

Table 3 Summary statistics of price paths

Avg. Price Price Range Reserve Price Price>1

1.446 6.438 0.608 29%

Table 4 Estimated parameters on average

A B ηmax ηH pL pH π

0.638 14.992 0.835 0.362 0.638 5.291 0.784

• Fraction of downtime: 1−π= 0.216.

• Congestion cost per unit time (due to service interruption): ∼U(0,2.7).

• Lowest valuation per unit time choosing G: A+ ηH = 1.

These parameter estimates suggest that for high customer types, the disutility from service

disruption in spot service is of the same order of magnitude (or higher) as the valuation

itself, and as a result, only the least congestion-sensitive users will choose that option. In

our data, this seems to be the lower 40% of the distribution that wants G service.

Finally, as noted earlier, for more than 92% of the products, a user would be better off

selecting the spot option and bid sufficiently high so as to receive continuous uninterrupted

service for the whole 6-month period. Based on our model, this would suggest insufficient

degradation of the spot service option by the SP so as to incentivize congestion sensitive

customers to choose the on-demand service option. Assuming the estimated parameters

on Table 4 also hold for all offered products and the demand for each of these products

is the same, our back-of-the-envelope calculation shows that Amazon could almost double

the revenue extracted from these products by further optimizing the pricing of the spot

option. Of course, this calculation disregards other (unmodeled) economical and techno-

logical considerations that may affect such tactical pricing decisions, and for which we lack

transparent data.

Acknowledgments

This research was supported by a grant from the W. Edwards Deming Center at Columbia Business School.

Appendix. Proofs

Proof of Proposition 1 1. Suppose π∗ =
B

1 +B
+ ε, ε > 0 and π̄ =

B

1 +B
, where π̄ is not one of the

optimal values for π. Then,

R(η∗H , η
∗
L, π̄)−R(η∗H , η

∗
L, π

∗) = ε
{

[(1 +B)η∗H +A] F̄ (η∗H)− [(1 +B)η∗L +A] F̄ (η∗L)
}
< 0

26 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

⇐⇒ [(1 +B)η∗H +A] F̄ (η∗H)< [(1 +B)η∗L +A] F̄ (η∗L)

=⇒ η∗H = η∗L + γ (γ > 0)

However, decreasing η∗H by γ increases R. Therefore, (η∗H , η
∗
L, π

∗) is not the optimal solution. Contradiction.

2. If π∗ = B
1+B

, then the willingness to pay for BE service is A B
1+B

, which is independent of the customer

types. Therefore, η∗L is either η or η. If η∗L = η, then η∗H ≥ η since η∗L ≤ η∗H . However, R(η, η, B
1+B

) = 0, and

R(ηH , ηL,
B

1+B
) is nonnegative for all η≤ ηL ≤ ηH ≤ η. Therefore, η∗L = η. Finally, if η∗L = η, then p∗L =A.

3. η∗H = η∗H(1 +B)(1−π∗) = p∗G−A+π∗(A− p∗L) ⇐⇒ η∗H −π∗(A− p∗L) = η∗H = p∗G−A.

Proof of Proposition 2 The first order condition for the objective function is

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η∗

H

= 0

⇒F̄ (η∗H)−
(
η∗H +

A

1 +B

)
f(η∗H) = 0

⇒f(η∗H) =
F̄ (η∗H)

η∗H +
A

1 +B

⇒: If there are two services offered, then ηH > η, which implies

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η

> 0 ⇒ f(η)<
1

η+
A

1 +B

⇐: Suppose (7) holds and the SP offers only G. This implies η∗H = η. However, if (7) holds

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η∗

H

> 0,

which contradicts the optimality condition of ηH .

Proof of Proposition 3 We allow 0≤ π≤ B
1+B

instead of strict inequality and show the proposition holds

for this larger feasible region. We analyze four collectively exhaustive alternatives for the bounds of SG and

SBE below.

• Case 1: ηL ≥ ηH and ηH ≥ pG−A: The revenue function becomes

R̄1 = [ηH(1 +B)(1−π) +πηL−B(1−π)ηL +A] F̄ (ηH) + [πηL−B(1−π)ηL +Aπ]F (ηH)

= [ηH + (ηL− ηH)(π−B(1−π)) +A] F̄ (ηH) + [πηL−B(1−π)ηL +Aπ]F (ηH)

R̄1 is non-decreasing in π. Hence η= B
1+B

is the optimal solution. In the optimal π,

R̄1 = (ηH +A)F̄ (ηH) +
AB

B+ 1
F (ηH)≤

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

B+ 1
.

Hence, the solution is sub-optimal.

• Case 2: ηL ≥ ηH and ηH < pG − A: If ηL ≥ ηH , then U1(ηH) = U2(ηH) ≥ U2(ηL) = 0 since U2(η) is

decreasing in η. Then, U1(ηH)≥U1(pG−A) = 0. Since U1(η) is increasing in η, pG−A≤ ηH . Therefore, this

case is not possible.

• Case 3: ηL ≤ ηH and ηH > pG − A: If ηL ≤ ηH , then U1(ηH) = U2(ηH) ≤ U2(ηL) = 0 since U2(η) is

decreasing in η. Then, U1(pG−A) = 0≥U1(ηH). Since U1(η) is increasing in η, pG−A≥ ηH . Therefore, this

case is not possible.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 27

• Case 4: ηL ≤ ηH and ηH ≤ pG−A: The revenue function for this case is

R̄4 = [ηH + (ηH − ηL)(−π+B−Bπ) +A] F̄ (ηH + (ηH − ηL)(−π+B−Bπ))

+ [πηL−B(1−π)ηL +Aπ]F (ηL).

Let R̄ηL4 be the revenue function for a fixed ηL value and (ηηLH , πηL) be the optimal solution to the problem

maximize
ηH ,π

RηL4 (ηH , π) (14)

subject to ηH ≥ ηL, π≤
B

1 +B
, π≥ 0. (15)

We can easily show that πηL = B
1+B

. Suppose πηL < B
1+B

with ηηLH = ηL. Then, R̄ηL4 (ηL, π
ηL) =

(ηL +A) F̄ (ηL) + [(πηL −B+BπηL)ηL +AπηL]F (ηL). This function is increasing in π. Hence ηL is not the

optimal solution, contradiction. Similarly, suppose πηL < B
1+B

with ηηLH > ηL. However, the solution can be

improved by decreasing ηH and increasing π simultaneously, contradiction. Hence, πηL = B
1+B

. Then

RηL4 =max

{
max
ηH

(ηH +A) F̄ (ηH) +
AB

1 +B
F (ηL) s.t. ηH ≥ ηL,

(
ηL +

A

1 +B

)
F̄ (ηL) +

AB

1 +B

}

≤max
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

1 +B
s.t. ηH ≥ ηL.

The solution of (14)–(15) is bounded above by the problem

maximize
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

1 +B
s.t. ηH ≥ ηL.

i.e., R̄4 =max
ηL

R̄ηL4 is bounded above by R1. Hence the solution under ηL ≤ ηH and ηH ≤ pG−A is sub-optimal.

Therefore, π≤ B

1 +B
is sub-optimal.

Proof of Proposition 4 We start with the following lemma.

Lemma 2. For any given (pG, p2, . . . , pN ,π) that satisfies p2 ≥ p3 ≥ . . . ≥ pN ≥ 0, 1Tπ = 1, πN ≥
B

1 +B
,

and π≥ 0, there exist η1 ≥ η2 ≥ . . .≥ ηN such that

SG = {η|η≥ η1} and SiBE = {η|ηi ≤ η≤ ηi−1}, i= 2,3, . . . ,N,

and similarly, for any given (η1, η2, . . . , ηN ≥ 0,π) that satisfies η1 ≥ η2 ≥ . . . ≥ ηN , 1Tπ = 1, πN ≥
B

1 +B
,

and π≥ 0, there exists a set of price levels pG and p2 ≥ p3 ≥ . . .≥ pN ≥ 0.

Assuming η1 ≥ . . .≥ ηN , the revenue function of the SP is

R= pGF̄ (η1) + p̄2(F (η1)−F (η2)) + . . .+ p̄N(F (ηN−1)−F (ηN))

= (pG− p̄2)F̄ (η1) + (p̄2− p̄3)F̄ (η2) . . .+ (p̄N−1− p̄N)F̄ (ηN−1) + p̄N F̄ (ηN)

=

N−1∑
i=1

[πi(A+ ηi) +Bηiπi] F̄ (ηi) + [πN(A+ ηN)−BηN(1−πN)] F̄ (ηN).

Therefore, the revenue maximization problem becomes

maximize
η,π

N−1∑
i=1

πi [(A+ ηi) +Bηi] F̄ (ηi) + [πN(A+ ηN)−BηN(1−πN)] F̄ (ηN) (16)

subject to η1 ≥ η2 ≥ . . .≥ ηN , πN ≥
B

1 +B
, 1Tπ= 1, π≥ 0. (17)

28 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Lemma 3. There exists an optimal solution to the problem above such that at most one of the optimal

(π1, π2, . . . , πN−1) values is nonnegative.

From Lemma 3, the problem can be simplified to

maximize
ηH ,ηL,π

(1−π) [(A+ ηH) +BηH] F̄ (ηH) + [π(A+ ηL)−BηL(1−π)] F̄ (ηL)

subject to ηH ≥ ηL, π≥
B

1 +B
, π≤ 1.

which is equivalent to the two-price-level problem.

Proof of Proposition 5 ⇒: Assume there are G and BE services in the optimal solution and p∗ ≤ vn. If

p∗ ≤ vn, then p∗ = vn by the optimality of p∗, which implies there is no customer type that chooses no-buy

option. If offering G and BE services together generates more revenue, then there is at least one customer

type that chooses BE over G.

When there is only G service, the optimal revenue is R1 =
∑n

i=1 λivn. When there are two services, the

optimal revenue is R2 =
∑

i∈S1
λipG +

∑
i∈S2

λip̄[i], where S1 is the set of customer types that chooses G and

S2 is the set of customer types that chooses BE (S1 ∩S2 = ∅ and S1 ∪S2 = {1,2, . . . , n}). pG is the optimal

price for G service, which implies pG = vM where M = max{i|i ∈ S1}, and p̄[i] =
∑N

j=[i] πjpj which is the

payment of customer type i with her optimal bid value p[i].

Now we will show that p̄[i] < pG = vM ∀i ∈ S2. Suppose p̄[k] ≥ pG = vM , k ∈ S2. Since k ∈ S2, π̄[k]vk − (1−

π̄[k])κk − p̄[k] ≥ vk − vM , where π̄[k] =
∑N

j=[k] πj . If p̄[k] ≥ vM , then π̄[k]vk − (1 − π̄[k])κk ≥ vk, which is not

possible since π̄[k] < 1. Therefore, p̄[i] < pG = vM ∀i∈ S2.

R2 =
∑
i∈S1

λipG +
∑
i∈S2

λip̄[i] <

n∑
i=1

λipG ≤
n∑
i=1

λip
∗,

where the second inequality comes from the optimality of p∗ in one product case. Therefore, offering G and

BE services together does not generate more revenue than offering only G service. Contradiction.

⇐: Let H = arg min
1≤i≤n

{p∗ ≥ vi}. From the optimality of p∗, vH = p∗, and the set of customer types

{1,2, . . . ,H} choose G. If we offer a BE service such that no customer types from the set {1,2, . . . ,H} prefer

BE and at least one customer type from the set {H+1,H+2, . . . , n} chooses BE, then the revenue generated

by G and BE services together becomes higher than that of G service only.

Set π=
κH −κH+1

vH − vH+1 +κH −κH+1

, p2 =
κHvH+1−κH+1vH

κH −κH+1

and p1 =∞. Then,

vi− p∗ ≥ πvi− (1−π)κi−πp2 for i≤H and πvH+1− (1−π)κH+1−πp2 ≥ 0,

which implies all customer types i≤H choose G and customer type H + 1 chooses BE service.

Proof of Proposition 6 Let p[i] be the optimal bid for customer type i. Therefore, customer type i either

makes a bid of p[i] or leaves the system with no purchase. Clearly, customers with high valuations prefer

bidding higher, that is, p[i] is non-increasing in i. Let s ∈ {1,2, . . . , n} be the highest customer index that

makes a bid, which is determined by p and π. Therefore, s is not a decision variable. However, an alternative

way to solve the problem is to find the optimal p and π for any possible s value, and then choose the s that

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 29

generates the maximum revenue. Now we characterize and solve the revenue maximization problem for a

given s value.

For any k ∈ {1,2, . . . , n− [i]}, type i customer prefers bidding p[i] over p[i]+k if

U2(vi, κi, p[i])≥U2(vi, κi, p[i]+k)

π̄[i]vi−κi(1− π̄[i])− p̄[i] ≥ π̄[i]+kvi−κi(1− π̄[i]+k)− p̄[i]+k

(π̄[i]− π̄[i]+k)(vi +κi)≥ p̄[i]− p̄[i]+k, i= 1, . . . , s (18)

and prefers bidding p[i] over p[i]−k if

U2(vi, κi, p[i]−k)≤U2(vi, κi, p[i])

⇔ π̄[i]−kvi−κi(1− π̄[i]−k)− p̄[i]−k ≤ π̄[i]vi−κi(1− π̄[i])− p̄[i]

⇔ (π̄[i]−k− π̄[i])(vi +κi)≤ p̄[i]−k− p̄[i]. i= 1, . . . , s (19)

Lastly, type i customer prefers bidding p[i] over no bidding (i.e., leaving the system with no purchase) if

π̄[i]vi−κi(1− π̄[i])− p̄[i] ≥ 0. i= 1, . . . , s (20)

Lemma 4. π̄[i]vi−κi(1− π̄[i]) is decreasing in i (i≤ s).

Lemma 5. (20) can be simplified to

π̄[s]vs−κs(1− π̄[s])− p̄[s] ≥ 0. (21)

For a given s, the objective function for the SP is

Rs =

s∑
i=1

λip̄[i] =

s−1∑
j=1

j∑
i=1

λi(p̄[j]− p̄[j+1]) +

s∑
i=1

λip̄[s].

Therefore, the revenue maximization problem can be written as

maximize
π,p

Rs =

s−1∑
j=1

j∑
i=1

λi(p̄[j]− p̄[j+1]) +

s∑
i=1

λip̄[s] (22)

subject to (π̄[i]− π̄[i]+k)(vi +κi)≥ p̄[i]− p̄[i]+k i= 1, . . . , s; k= 1,2, . . . ,N − [i] (23)

(π̄[i]−k− π̄[i])(vi +κi)≤ p̄[i]−k− p̄[i] i= 1, . . . , s; k= 1,2, . . . , [i]− 1 (24)

π̄[s]vs−κs(1− π̄[s])− p̄[s] ≥ 0 (25)

p1 ≥ p2 ≥ . . .≥ pN ≥ 0 (26)

1Tπ= 1, π≥ 0. (27)

Lemma 6. Let (π∗,p∗) denote an optimal solution to the problem above. Then,

p∗[1] = p∗[1]+1 = . . .= p∗[2]−1 = v1 +κ1,

p∗[2] = p∗[2]+1 = . . .= p∗[3]−1 = v2 +κ2,

...

p∗[s−1] = p∗[s−1]+1 = . . .= p∗[s]−1 = vs−1 +κs−1,

p∗[s] = p∗[s]+1 = . . .= p∗N = vs +κs−
κs
π̄∗[s]

.

(28)

30 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Lemma 6 simplifies the revenue maximization problem to

maximize
π

Rs =

s−1∑
j=1

j∑
i=1

λi(π̄[j]− π̄[j+1])(vj +κj) +

s∑
i=1

λi
[
π̄[s](vs +κs)−κs

]
subject to π̄[s] ≥

κs
vs +κs

, 1Tπ= 1, π≥ 0.

This problem has N decision variables. It can be simplified further using the following change of variables

α0 = 1− π̄[1]

αi = π̄[i]− π̄[i+1] i= 1,2, . . . , s− 1

αs = π̄[s]

where αi can be interpreted as the time that the price level is equal to vi +κi for i= 1,2, . . . , s−1, α0 as the

time that the price level is above v1 +κ1 and αs as the time that the price level is at its minimum.

Therefore, the problem becomes

maximize
α0,α1,...,αs

Rs =

s∑
j=1

j∑
i=1

λiαj(vj +κj)−
s∑
i=1

λiκs (29)

subject to αs ≥
κs

vs +κs
, α0 +α1 + . . .+αs = 1, α0, α1, . . . , αs ≥ 0. (30)

Lemma 7. Let (α∗0, α
∗
1, . . . , α

∗
s) denote the optimal solution to (29)–(30) and k = argmax

j∈{1,...,s}
{(vj +

κj)
∑j

i=1 λi}. If k = s, α∗0 = α∗1 = . . . = α∗s−1 = 0, α∗s = 1, else α∗0 = . . . = α∗k−1 = α∗k+1 = . . . = α∗s−1 = 0, α∗k =

vs
vs+κs

, α∗s = κs

vs+κs
.

Lemma 7 shows that the SP offers at most two price levels, and there is no price level higher than the bid

of the highest value customer. Since this result holds for any s, it also holds for the optimal s. Therefore,

the optimal solution has at most two price levels.

Proof of Proposition 7 The proposition is equivalent to the following statement.

Let Π2 be optimal revenue that the SP achieves by offering at most two price levels:

Π2 = max
1≤s≤n

Rs,

and Π1 be the optimal revenue by offering only one price level:

Π1 = vk∗
k∗∑
i=1

λi

where k∗ = arg max
j∈{1,2,...,n}

{
vi
∑j

i=1 λi
}

. Then, Π2 = Π1.

If k∗ = n, i.e., all customers are served with the price vn, degrading the service for some customers would

not increase the revenue, therefore, k∗ < n is the first condition to offer two price levels. We need to find

two indexes, k and k, the high-level threshold and low-level threshold, respectively, such that customer types

{1,2, . . . , k} bid high price level, {k+ 1, k+ 2, . . . , k} bid low price level, and {k+ 1, k+ 2, . . . , n} leave the

system (k≤ k≤ n). Thus, the optimal solution for the two-price case can be written as

Π2 = (1−αk)(vk +κk)

k∑
i=1

λi +αk(vk +κk)

k∑
i=1

λi−κk
k∑
i=1

λi,

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 31

Since αk =
κk

vk+κk
from Lemma 7, the optimal revenue for two-price level case becomes

Π2 =
vk

vk +κk
(vk +κk)

k∑
i=1

λi.

Next we need to find k and k such that Π2 > Π1. Note that Π2 is decreasing in k. Therefore, k = k.

However, this means that no customer type bids low price level, which is equivalent to one price level solution.

Therefore, Π2 = Π1.

References

Abhishek, V., I. A. Kash, P. Key. 2012. Fixed and market pricing for cloud services. arXiv preprint

arXiv:1201.5621 .

Afèche, P. 2013. Incentive-compatible revenue management in queueing systems: optimal strategic delay.

Manufacturing & Service Operations Management 15(3) 423–443.

Afèche, P., H. Mendelson. 2004. Pricing and priority auctions in queueing systems with a generalized delay

cost structure. Management Science 50(7) 869–882.

Afèche, P., M. Pavlin. 2015. Optimal price/lead-time menus for queues with customer choice: segmentation,

pooling, strategic delay. Management Science (forthcoming) .

Agmon Ben-Yehuda, O., M. Ben-Yehuda, A. Schuster, D. Tsafrir. 2011. Deconstructing amazon ec2 spot

instance pricing. Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third Interna-

tional Conference on. IEEE, 304–311.

Anderson, E. T., J. D. Dana, Jr. 2009. When is price discrimination profitable? Management Science 55(6)

980–989.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, et al. 2010. A view of cloud computing. Communications of the ACM 53(4) 50–58.

Baron, O. 2003. Pricing and admission control for shared computer services using the token bucket mecha-

nism. Ph.D. thesis, Massachusetts Institute of Technology.

Borgs, C., O. Candogan, J. Chayes, I. Lobel, H. Nazerzadeh. 2014. Optimal multiperiod pricing with service

guarantees. Management Science 60(7) 1792–1811.

Deneckere, R. J., P. R. McAfee. 1996. Damaged goods. Journal of Economics & Management Strategy 5(2)

149–174.

Katta, A., J. Sethuraman. 2005. Pricing strategies and service differentiation in queues – a profit maxi-

mization perspective. Tech. rep., Computational Optimization Research Center, Columbia University.

TR-2005-04.

Maglaras, C., J. Yao, A. Zeevi. 2015. Optimal price and delay differentiation in queueing systems. Manage-

ment Science (forthcoming) .

32 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Maglaras, C., A. Zeevi. 2003. Pricing and capacity sizing for systems with shared resources: Approximate

solutions and scaling relations. Management Science 49(8) 1018–1038.

Maglaras, C., A. Zeevi. 2005. Pricing and design of differentiated services: Approximate analysis and struc-

tural insights. Operations Research 53(2) 242–262.

McAfee, R. P. 2007. Pricing damaged goods. Economics Discussion Paper 2007-2, Kiel Institute for the World

Economy. URL http://www.economics-ejournal.org/economics/discussionpapers/2007-2.

Mendelson, H. 1985. Pricing computer services: queueing effects. Communications of the ACM 28(3) 312–

321.

Mendelson, H., S. Whang. 1990. Optimal incentive-compatible priority pricing for the m/m/1 queue. Oper-

ations Research 38(5) 870–883.

Mitra, D., Q. Wang. 2015. Preservation of best-effort service on the internet in the presence of managed

services and usage-generated applications. Available at SSRN 2587828 .

Naor, P. 1969. The regulation of queue size by levying tolls. Econometrica 37(1) 15–24.

Nazerzadeh, H., R. S. Randhawa. 2015. Near-optimality of coarse service grades for customer differentiation

in queueing systems. Available at SSRN 2438300 .

Savin, S. V., M. A. Cohen, N. Gans, Z. Katalan. 2005. Capacity management in rental businesses with two

customer bases. Operations Research 53(4) 617–631.

Xu, H., B. Li. 2013. A study of pricing for cloud resources. ACM SIGMETRICS Performance Evaluation

Review 40(4) 3–12.

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 33

Appendix. Online Supplement. Additional Proofs

Proof of Lemma 1 Bidding a value between two price levels is the same as bidding the lower price level

amount in terms of availability of the product and payment amount, therefore sub-optimal.

Proof of Lemma 2 SiBE contains all η values that satisfy the following constraints

U2(η, pi)≥U2(η, pi+j), j = 1, . . . ,N − i (31)

U2(η, pi)≥ 0, (32)

U2(η, pi)≥U2(η, pi−j), j = 1, . . . , i− 2 (33)

U2(η, pi)≥U1(η). (34)

There exists an η
i

such that any η ≥ η
i

satisfies (31) and (32). Similarly, there exists an ηi such that any

η ≤ ηi satisfies (33) and (34). Hence, SiBE = {η|η
i
≤ η ≤ ηi}. For the rest of the analysis, we assume η

i
≤ ηi

for i= 2,3, . . . ,N .

Next, we will show that ηi+1 ≤ ηi for i = 2,3, . . . ,N − 1. Suppose there exists an i such that ηi+1 > η
i
.

Then, since π̄i ≥ π̄i+1 ≥ 0, U2(ηi+1, pi) > U2(ηi+1, pi+1). However, from 33, U2(ηi+1, pi+1) ≥ U2(ηi+1, pi).

Contradiction. Therefore, ηi+1 ≤ ηi for i= 2,3, . . . ,N − 1.

Now, we will find conditions for η
i
, ηi for i = 2,3, . . . ,N . First, we show that U2(η

i
, pi) = U2(η

i
, pi+1)

for i = 2,3, . . . ,N − 1. Suppose it is not true, which implies U2(η
i
, pi) = U2(η

i
, pi+k) > U2(η

i
, pi+1) for

some k > 1. Moreover, U2(ηi+1, pi+1) ≥ U2(ηi+1, pi+k). Since η
i
≥ ηi+1 and U ′2(η, pi+1) ≥ U ′2(η, pi+k),

U2(η
i
, pi+1) ≥ U2(η

i
, pi+k). Contradiction. Therefore, U2(η

i
, pi) = U2(η

i
, pi+1). For i = N , U2(η

N
, pN) = 0.

Second we show that U2(ηi, pi) =U2(ηi, pi−1) for i= 3,4, . . . ,N . Suppose not true, which implies U2(ηi, pi) =

U2(ηi, pi−k) > U2(ηi, pi−1) for some k > 1. Moreover, U2(η
i−1
, pi−1) ≥ U2(η

i−1
, pi−k). Since η

i−1
≥ ηi and

U ′2(η, pi−1)≥ U ′2(η, pi−k), U2(ηi, pi−1)≥ U2(ηi, pi−k). Contradiction. Therefore, U2(ηi, pi) = U2(ηi, pi−1). For

i= 2, U2(η2, p2) =U1(η2). From the two conditions on η
i

and ηi, we reach η
i−1

= ηi for i= 3,4, . . . ,N .

Next step is to rename the boundaries. Let ηi = η
i

for i= 2,3, . . . , n and η1 = η2. This concludes the first

part of the proposition.

For any given (η1, η2, . . . , ηN ,π) that satisfies η1 ≥ η2 ≥ . . . ≥ ηN , 1Tπ = 1, πN ≥
B

1 +B
, and π ≥ 0, the

following prices satisfy p2 ≥ p3 ≥ . . .≥ pn ≥ 0 and they are aligned with SG and SiBE, i= 2,3, . . . ,N :

pG =A+ η1,

pi =A+ ηi +Bηi, i= 2,3, . . . ,N − 1,

pN =A+ ηN +BηN −
BηN
πN

.

Proof of Lemma 3 Let (η∗,π∗) be an optimal solution. Assume that there are two π∗i (i= 1,2, . . . ,N −1)

values such that π∗j > 0, π∗k > 0, and all others are equal to 0. Without loss of generality, j < k which implies

η∗j ≥ η∗k. If η∗j = η∗k, then another optimal solution would be π∗j := π∗j + π∗k and π∗k := 0, which has only one

nonnegative πi value for i= 1, . . . ,N − 1. If η∗j > η
∗
k, then there are three possible cases:

Case 1: [(A+ η∗j) +Bη∗j] = [(A+ η∗k) +Bη∗k]: π
∗
j := π∗j + π∗k and π∗k := 0 is another optimal solution where

at most one π value is nonnegative.

34 Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services

Case 2: [(A+η∗j)+Bη∗j]> [(A+η∗k)+Bη∗k]: π
∗
j := π∗j +π∗k and π∗k := 0 give a better solution, contradiction.

Case 3: [(A+η∗j)+Bη∗j]< [(A+η∗k)+Bη∗k]: π
∗
j := 0 and π∗k := π∗j +π∗k give a better solution, contradiction.

Therefore, there cannot be two nonnegative πi values (i = 1,2, . . . ,N − 1). Using the same idea, we can

generalize the result to more than two nonnegative value case.

Proof of Lemma 4 From (20) and prices being nonnegative,

π̄[i] ≥
κi

vi +κi
, i= 1, . . . , s

and since vi
κi

is decreasing in i,

κi+1

vi+1 +κi+1

≥ κi
vi +κi

. i= 1,2, . . . , s− 1.

Using these two inequalities and π̄[i] being decreasing in i, for any i= 1,2, . . . , s− 1,

π̄[i]vi−κi(1− π̄[i]) = π̄[i](vi +κi)−κi

= π̄[i+1](vi +κi) + (π̄[i]− π̄[i+1])(vi +κi)−κi

= π̄[i+1] [vi +κi− (vi+1 +κi+1)] + (π̄[i]− π̄[i+1])(vi +κi)−κi + π̄[i+1](vi+1 +κi+1)

≥ κi+1

vi+1 +κi+1

(vi +κi)−κi+1 + (π̄[i]− π̄[i+1])(vi +κi)−κi + π̄[i+1](vi+1 +κi+1)

≥ κi
vi +κi

(vi +κi)−κi+1 + (π̄[i]− π̄[i+1])(vi +κi)−κi + π̄[i+1](vi+1 +κi+1)

= π̄[i+1](vi+1 +κi+1)−κi+1 + (π̄[i]− π̄[i+1])(vi +κi)

≥ π̄[i+1](vi+1 +κi+1)−κi+1

= π̄[i+1]vi+1−κi+1(1− π̄[i+1])

Proof of Lemma 5 Using Lemma 4, it can easily be shown that

π̄[i+1](vi +κi)−κi ≥ π̄[i+1](vi+1 +κi+1)−κi+1. i= 1,2, . . . , s− 1

Then, using (18), for any i= 1,2, . . . , s− 1,

π̄[i]vi−κi(1− π̄[i])− p̄[i] = π̄[i](vi +κi)−κi− p̄[i+1]− (p̄[i]− p̄[i+1])

≥ π̄[i](vi +κi)−κi− p̄[i+1]− (π̄[i]− π̄[i+1])(vi +κi)

= π̄[i+1](vi +κi)−κi− p̄[i+1]

≥ π̄[i+1](vi+1 +κi+1)−κi+1− p̄[i+1].

Therefore,

π̄[1]v1−κ1(1− π̄[1])− p̄[1] ≥ π̄[2]v2−κ2(1− π̄[2])− p̄[2] ≥ . . .≥ π̄[s]vs−κs(1− π̄[s])− p̄[s] ≥ 0.

Proof of Lemma 6 First, we need to show that (28) is a feasible solution. Since vi + κi is decreasing in

i, and (25) implies π̄∗[s] ≥
κs

vs+κs
> 0, the solution satisfies (26). (27) is trivially satisfied since (28) does not

impose anything on π and uses the optimal π∗, which is also feasible. (25) holds with equality. Trivially (23)

Kilcioglu and Maglaras: Revenue Maximization for Cloud Computing Services 35

and (24) are also satisfied. Therefore, (28) is a feasible solution. Now we need to show that this solution is

optimal. The objective function is equivalent to

Rs =

s∑
i=1

λip̄[i],

where all p̄[i] variables have nonnegative coefficients. Moreover, (28) provides a solution where all p variables

are equal to their upper bounds. Therefore, the solution is an optimal solution.

Proof of Lemma 7 Suppose k= s and α∗s = 1− ε with α∗j = ε (0≤ j < s, ε > 0). Since (vs +κs)
∑s

i=1 λi >

(vj + κj)
∑j

i=1 λi, αs = 1, αj = 0 gives a higher objective function value. Contradiction. Similarly, if k < s,

α∗s has to be equal to its lower bound in the optimal solution. If argmax
j∈{1,...,s}

{(vj + κj)
∑j

i=1 λi} is not unique,

there are alternative optimal solutions which has a solution given above. This proves that the SP offers at

most two price levels. Moreover, since k > 0, α∗s = 0, which means the fraction of time the price level is above

v1 +κ1 is equal to zero. Therefore, the price never goes beyond the bid of the highest value customer, which

is equal to v1 +κ1.

