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We study the product design problem of a revenue-maximizing firm that serves a market

where customers are heterogeneous with respect to their valuations and desire for a quality

attribute, and are characterized by a perhaps novel model of customer choice behavior. Specifi-

cally, instead of optimizing the net utility that results from an appropriate combination of prices

and quality levels, customers are “satisficers” in that they seek to buy the cheapest product with

quality above a certain customer-specific threshold. This model dates back to Simon’s work in

the 1950’s and can be thought of as a model of bounded rationality for customer choice. We

characterize the structural properties of the optimal product menu for this model, and explore

several examples where such preferences may arise.

1 Introduction

How do consumers tradeoff price to quality of service in choosing a product among various

substitutable alternatives offered by the same or by competing firms? As a concrete example,

how do users tradeoff speed of an internet service connection with the price they have to pay?

How should a firm design its product menu to optimize its profitability taking into account

the strategic consumer choice behavior? The answers to these questions depend crucially on

our understanding of how consumers perceive delay (or, more generally, product quality), their

degree of heterogeneity in terms of delay sensitivity and value for the offered product, and

on how delay costs and the prices of the various product options are combined and used in

making a product choice decision. This paper addresses the above questions under a novel

model of choice behavior, where consumers rather than being utility maximizers of some sort,

are “satisficers” in that they seek to buy the cheapest product with quality above a certain

consumer-specific threshold. This model dates back to Simon’s work in the 1950’s ([27, 28]).

As a running example we will consider a Service Provider (SP) offering a product, such as an
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Figure 1: The linear, quadratic, piecewise-linear, and proposed cost functions vs. delay.

ISP connection or software-on-demand that is susceptible to congestion effects and, therefore,

delays; we use the terms consumer, customer, and, at times, user, interchangeably. Potential

customers are heterogeneous in their valuations and delay sensitivities. Expected delay here

captures the notion of quality, with lower delay implying higher quality. The SP’s problem is to

select a menu of product variants that are defined through their price and associated delay that

maximizes its expected profits. A classical model of customer choice behavior for this problem

is due to Mendelson and Whang [18] that postulates that a customer with valuation v for the

offered service enjoys a net utility of ui = v − (pi + c(di)) from the ith variant that is priced

at pi and has an associated delay of di time units, and where c(·) is a customer-specific delay

cost function expressed in $ per unit of delay. [18] used a linear delay cost function of the form

c(di) = c · di, Dewan and Mendelson [6] use a delay cost of the form c(d) = c · (d − θ)+, van

Mieghem [30] allowed for general, convex increasing delay functions, while Ata and Olsen [2]

introduced delay functions that are convex increasing and then become concave increasing

after a point. Figure 1 shows the linear, quadratic, piecewise-linear (convex increasing), and

the proposed cost function vs. delay. Given a set of product variants characterized by (pi, di)

a customer will select product

i∗ = argmax
i

{v − (pi + c(di)) : v ≥ pi + c(di)}. (1)

Another alternative model that is close to the vertical differentiation literature could postulate

that the net utility associated with product variant i is ui = (v − pi)g(di), where g(·) is a

multiplicative factor whose magnitude depends on the quality of the offered product. Again,

each customer would choose the product variant i that would maximize the resulting net utility.

Most of the above papers have focused on social welfare optimization as opposed to revenue

maximization that is of interest in this paper; in the cases where the revenue maximization

objective has been considered, the emphasis has been on markets with two types of customers
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and product menus with two variants; Afeche [1] and Maglaras and Zeevi [17]. The multi-type

problem is hard, even in a deterministic setting, and, perhaps more importantly, assumes that

the utility maximizing customers are solving an intricate problem in order to make their choice

decision that in turn affects crucially the seller’s product design decision.

In some practical settings it might be more realistic to assume that customers only care

whether or not the product quality lies above a customer specific threshold, and not by how

much; e.g., video conferencing is associated with a bandwidth requirement, but additional

bandwidth above that level is not necessary beneficial. In those settings it might be appealing

to assume that customer preferences with respect to the quality attribute are “dichotomous”

such that all products with quality at least as good as a customer-specific quality threshold are

acceptable to the customer, while all products with quality below the customer specific threshold

are unacceptable. From then on, among the acceptable products, if any, the customer buys the

cheapest one provided that the price of this product does not exceed customer valuation.

An alternative motivation could be that the dichotomous decision rule is a simplification of

the fully rational decision described earlier that is based on net utility calculations, and serves

as a “bounded rationality” surrogate for the potentially complex decision rule embodied in (1)

or similar variants to it.

The baseline model that we will consider herein is that of a firm sells a good or service in a

market of heterogeneous customers. The good or service is characterized by a one-dimensional

quality attribute, such as delay, and to maximize revenues, the firm seeks to discriminate

customers by creating multiple qualities and offering them at different prices. We assume that

differentiation does not entail any cost. The firm offers M products, with pj and qj denoting

respectively, the price and quality of product j, j = 1, ...,M . The capacity available to the firm

is denoted by C. We assume that there are N customer types that are segmented according to

their quality preferences. Each type i customer has a valuation vi for the product, which is an

independent draw from a general distribution F (·) with support [0, vi], and a strictly positive

density fi(·) on [0, vi]; and, a quality threshold θi, such that he or she is only willing to purchase

product variants j whose quality qj is at least as large as θi, i.e., qj ≥ θi. The quality threshold is

common across all type i customers. The size of the the type i market segment is denoted by Λi.

We assume that types are labeled in such a way that ∞ > θ > θ1 > θ2 > ... > θN > θ > 0, with

a higher value implying the desire for a better quality, and that ∞ ≥ v1 ≥ v2 ≥ ... ≥ vN > 0,

i.e., customers having higher quality thresholds have a maximum valuation at least as high as

the maximum valuation of customers having lower quality thresholds. Let F̄i(·) = 1 − F (·) be

the complementary cumulative distribution function for type i valuations. We will assume that

limp→∞ pFi(p) = 0, i = 1, ..., N , i.e., the revenue from any customer type goes to 0 as the price

goes to infinity (this holds trivially for class i if vi < ∞).
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Customers are satisficers in that they strictly prefer the cheapest product whose quality

exceeds their respective quality threshold, and purchase that product if their valuation exceeds

its price. In more detail all type i customers prefer product χi(p, q) given by

χi(p, q) =





argmin pj, ∃ qj ≥ θi,

0, otherwise,
(2)

where pj and qj denote respectively the price and the quality of the jth product offered. If

χi(p, q) = l, l ≥ 1, the demand from type i customers for this product is given by ΛiF i(pl),

and the revenue by plΛiF i(pl). If χi(p, q) = 0, then type i customers do not find any product

from the firm to be acceptable in terms of their quality.

The firm’s revenue maximization problem is to choose the number of product variants to

offer, M , as well as the corresponding prices and quality levels pj, qj for j = 1, . . . ,M to solve

the following problem:

max
p,q,M

M∑

j=1

pj

[
N∑

i=1

Λi F i (pj) 1{χi(p,q)=j}

]
(3)

s.t.

M∑

j=1

N∑

i=1

Λi F i (pj) 1{χi(p,q)=j} ≤ C, (4)

0 ≤ p < ∞, 0 ≤ q < ∞, (5)

1 ≤ M < ∞, M integer. (6)

The objective in (3) is the sum of revenues across the M products, where revenue for product

j equals the price of the product multiplied by the number of customers that buy it. Equation

(4) restricts the volume sold across customer types to be less than or equal to the available

capacity C. For convenience, we have assumed that there exists a product 0 (corresponding

to the case that customers do not find any product from the firm to be acceptable), and set

p0 = 0, and q0 = 0.

This paper will list several possible applications of this choice behavior for problems of

practical interest, study the above mathematical problem, and sketch out several extensions.

Our treatment is not exhaustive, but rather tries to highlight some structural result that hinge

on this novel choice model, and hopefully motivate further work.

Satisficing is well-known in the marketing and psychology literature, see, e.g., Iyengar [9],

Schwartz [23], but seems to be novel in the context of the revenue management and operations

management literatures. First, satisficing choice behavior can be the result of utility maximiz-

ing behavior in settings where the offered service and its anticipated usage are such that the

disutility due to quality degradation is essentially flat until a certain threshold is reached, and
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Figure 2: This figure shows how threshold preferences arise as the limiting case of S-shaped
utility functions discussed in prospect theory.

grows at a very rapid (“infinite”) rate above that threshold. Perhaps more importantly, this

threshold model of customer choice behavior can be motivated as an example of the “simple

pay-off” function as discussed in Simon [27]. Alternatively, this functional form can be moti-

vated as the limiting case of the S-shaped utility functions, discussed for example in Kahneman

and Tversky [10] and Maggi [15]. For example, a utility function that would approximate w(q)

is the exponential S-shaped utility function

w̃(q) =





1
β

+ β−1
β

(1 − e−α(q−q)), if q ≥ q,

1
β
e−α(q−q), if q < q,

(7)

where α > 0, β ≥ 1, with the approximation becoming exact when β = 1, and α = ∞. This is

illustrated in Figure 2.

The satisficing model can be viewed as a limiting case of the vertical and horizontal differen-

tiation models. In the context of vertical differentiation, satisficing choice behavior correspond

to using the function g(qi; θ) = 1 if qi ≥ θ, and g(qi) = 0, otherwise; our model would require

that the g(·) function to be type dependent, which is itself a slight extension of the vertical

differentiation literature. In the context of horizontal differentiation, suppose customers differ

in their preferences over a single-dimensional quality attribute θ in [θ, θ]. Under the traditional

model of horizontal differentiation [8], the quality cost c(q) associated with a product of quality

q to a customer with preference θ is c(q) = t1(θ − q) if q < θ, and c(q) = t2(q − θ), otherwise,

where the transportation costs t1 and t2 are typically assumed to be the same. Customers again

find products that result in a non-negative utility acceptable, and maximize their utility over

acceptable products. In the limiting, asymmetric case where t1 = ∞ and t2 = 0, the horizontal

model of customer choice behavior reduces to the threshold model of customer preferences.
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The remainder of the paper is organized as follows: this section concludes with a brief

literature review. Section 2 presents several examples where modeling customer behavior via

threshold preferences is appealing. Section 3 characterizes the structure of the optimal solution

to the product design problem. Section 4 discusses three extensions to the original model and

Section 5 offers some concluding remarks.

Literature Survey Our work builds upon several different areas of revenue management.

The primary motivation for our work stems from the interface between marketing, psychology

and prospect theory focusing on customer behavior models. In his classic papers [27, 28], Simon

questioned the pervasive assumption of agent rationality made in economic models. Citing

constraints on information availability and computational capacities of individuals, in [27] Simon

proposed “simple payoff functions” such as the one considered in this paper as an approximation

to model complex agent utility. In [28], Simon introduced the idea of “satisficing” to model the

behavior of an organism facing multiple goals. In more recent research in psychology, researchers

distinguish between “maximizers” and “satisficers”, as discussed in Iyengar [9] and Schwartz et.

al [23]. Wieczorkowska and Burnstein [32] refer to individuals exhibiting satisficing behavior

as adopting an “interval” strategy as opposed to a “point” strategy (maximizing). Schwartz

et. al [23] mentions that indeed individuals might not be maximizers or satisficers along all

dimensions. In our case, customers satisfice with respect to quality while they maximize with

respect to price.

In their famous paper [10], Kahneman and Tversky propose that individual utility is concave

for gains, while being convex for losses. Such utility functions are discussed in Maggi [15]. As

discussed earlier, our utility function for quality attribute can be thought of as the limiting

case for the S-shaped exponential utility function discussed here. The deadline delay cost

structure discussed in Dewan and Mendelson [6] prescribes zero cost for delay below a certain

delay threshold and linear delay costs thereafter. Our delay cost function, like Dewan and

Mendelson [6], posits a zero cost for delay below a customer delay threshold and infinite (or

large enough to deter customer from buying this product) costs thereafter.

The second stream of literature that is related to our work studies the second-degree price

discrimination problem by a monopolist facing customers that differ in their preference for a

quality attribute. Two classic papers are due to Mussa [21] and Moorthy [19]. In Mussa [21],

customer utility is linear in quality, and quality is continuous. In Moorthy [19], customer utility

is allowed to be non-linear, but quality is discrete. In both cases, customers are maximizers.

Both [19, 21] discuss strategic degradation of quality by the monopolist to maximize revenues.

This idea of intentionally degrading product quality when offering a product to less quality sen-

sitive customers so as to achieve differentiation is well-known and also discussed in Afeche [1]

and Varian [25] among other places. In addition to the above papers that discuss the product
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design problem under vertical differentiation, the product design problem has also been dis-

cussed under horizontal differentiation, e.g., Hotelling [8] and Salop [22]. Duopoly models of

product differentiation are considered in Moorthy [20], Shaked and Sutton [24], Wauthy [31]

etc. We also study the product design problem under threshold preferences to simultaneous

and sequential duopoly models of market entry.

Each of the various applications areas that we briefly touch upon later on has a potentially

extensive literature that we will not review in this paper in much detail, but rather simply

offer a few passing references. In the area of revenue maximization for queues, in addition

to the above-mentioned papers, we also highlight Katta and Sethuraman [11]. There is a

fast growing literature in revenue management that considers the strategic consumer choice

behavior, e.g., in deciding when to purchase a product in anticipation of the dynamic price

path and associated rationing risk adopted by the seller. In this area we refer the reader to the

review article by Shen and Su [26], Liu and van Ryzin [14], Su [29], Cachon and Swinney [5],

and Bansal and Maglaras [3]. All of these assume a fully rational model of customer behavior.

The current paper proposes a satisficing model of consumer choice behavior for this problem.

Versioning of information goods has been studied in Bhargava and Chaudhary [4] and Ghose and

Sundararajan [7], while Varian [25] presents several examples of versioning of information goods.

Several researchers have addressed the problem of identifying the optimal inventory policy in

the presence of multiple demand streams that differ in their tolerance for the minimum fill-rate

or the maximum leadtime they are willing to accept. Such a specification of acceptable quality

levels closely mirrors our model of threshold based preferences, and is considered, for example,

in Klejin and Dekker [13]. Finally, Kim and Chajjed [12] study the product design problem of

a monopolist firm offering a product with multiple quality attributes to a market of customers

under the classic model of customer choice. The market consists of two customer segments, so

at most two products need to be offered. We briefly discuss the extension of our model to the

case of multiple quality attributes under some lexicographic ordering.

2 Applications and variations to basic model

This section presents a non-exhaustive list of instances of product design problems where the

study of customer satisficing behavior may be natural from a practical viewpoint.

2.1 Delay differentiation

In the introduction we briefly reviewed an application of the proposed approach towards the

problem of revenue maximization for a service that is susceptible to congestion effects and delay.
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Our model in this setting is based on a deterministic relaxation that disregards the equations

that govern the steady state behavior of the queueing facility that is offering that service; this

relaxation can be justified in an asymptotic setting where the market size of processing capacity

of the system grow large along the lines of Maglaras and Zeevi [17].

Delay sensitivity can also arise in other contexts, such as in retailing for fashion goods,

where customers may be sensitive as to the time until which they wish to purchase the product;

e.g., upon its introduction, in the middle of the regular selling season, after the season has

ended. The resulting formulation is identical to the one discussed in the introduction.

2.2 Capacity differentiation

There are several applications where the quality attribute corresponds to the capacity allocated

to a customer, such as for example in the case of an Internet Service Provider (ISP) that

offers bandwidth to domestic and business “end-users.” Customers are heterogeneous in their

valuations and have threshold preferences with respect to capacity, i.e., the minimum bandwidth

they require. There are N customer classes, with class i customer valuations distributed as Fi(·),

and class i having a capacity threshold θi, the minimum capacity that they desire. We assume

that θ1 > θ2 > ... > θN . Then, denoting as cj the capacity associated with product j offered

by the firm, class i customers seek to buy the cheapest product j such that cj ≥ θi. The firm’s

optimization problem can be stated as follows.

max
p,c,M

ΣN
i=1 ΣM

l=1 pi Λi F i (pi) 1{χi(p,c)=l} (8)

s.t. ΣN
i=1 ΣM

l=1 Λi F i (pi) ci 1{χi(p,c)=l} ≤ C, (9)

0 ≤ p < ∞, 0 ≤ c < ∞, (10)

1 ≤ M < ∞, M integer. (11)

Equations (8), (10)-(11) are analogous to (3), (5)-(6) in the general problem, where ci now

denotes the quality of product i. Note that the capacity allocations ci enter the seller’s capacity

constraint (9) in a way that is different than in the problem formulated in the introduction, and

potentially problematic due to the product terms F i(pi) ci; we show later on that due to the

structure of the above problem, the capacity constraint simplifies and retains its tractability.

2.3 Rationing risk differentiation

Consider a monopolist firm that seeks to sell a homogeneous product to a market of heteroge-

neous, strategic customers that vary in their valuations and degree of risk-aversion, and where

the firm seeks to discriminate its customers by creating rationing risk over time, i.e., by offering
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the product at different prices and fill-rates at different times over the selling horizon; see, e.g.,

Liu and van Ryzin [14] for the case where risk preferences are homogenous, and Bansal and

Maglaras [3] for a model where risk preferences may vary across customer types; both of these

papers considered utility maximizing choice behavior. With satisficing behavior, customers

will a threshold that corresponds to the minimum acceptable fill-rate that they are willing to

accept. Customers are strategic, observe (or know) the entire pricing and rationing risk trajec-

tories used by the seller, and accordingly make the optimal timing decision to enter the market

and purchase the product. The firm’s product design problem is to identify the optimal the

number of products to offer to this market, along with their prices and fill-rates. Fill-rates r

satisfy 0 ≤ r ≤ 1, and a fill-rate of r implies that only a proportion r of customer requests are

fulfilled by the firm. Fill-rates here correspond to our notion of quality, with a higher fill-rate

implying a better quality. There are N types and type i customers have a fill-rate threshold θi,

implying that type i customers prefer the cheapest product j with fill-rate rj > θi (notice we

assume that the inequality is strict). We assume 1 > θ1 > θ2 > ... > θN > 0.

One possible way to motivate such choice behavior is by assuming that customers have a

limit on the relative payoff variability they are willing to tolerate. The expected payoff to a

customer with valuation v upon deciding to purchase a product with price p and fill-rate r, is

given by (v− p)r, and the variance of this payoff is given by (v − p)2r(1− r). Let A denote the

customer threshold for the variability the customer is willing to tolerate. Hence this customer

would seek to purchase the cheapest product such that

stdev

mean
=

√
(v − p)2r(1 − r)

(v − p)r
≤ A, (12)

where A is a fixed fraction. This reduces to r ≥ 1
1+A2 , implying that customer has threshold

preferences with respect to the rationing risk where the rationing threshold is given by 1
1+A2 .

Also, a low desire for variability leads to a higher rationing threshold, which is intuitive.

The optimization problem that the firm faces can be expressed as follows:

max
p,r,M

ΣN
i=1 ΣM

l=1 pi Λi F i (pi) ri 1{χi(p,r)=l} (13)

s.t. ΣN
i=1 ΣM

l=1 Λi F i (pi) ri 1{χi(p,r)=l} ≤ C, (14)

0 ≤ p < ∞, 0 ≤ r ≤ 1, (15)

1 ≤ M < ∞, M integer. (16)

The objective (13) is the sum of revenue over the N classes, where class i revenue is the product

of price pi, the number of class i customers that are willing to buy at this price, ΛiF i (pi), and

the fill-rate associated with this product, ri. Equation (14) enforces the constraint that available

capacity does not exceed sales, where the volume sold to class i customers is the product of
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class i demand and the fill-rate corresponding to the product they purchase. The presence of

the quality attribute r in the objective (13) and the capacity constraint (14) distinguishes this

problem from the general problem (3)-(6).

2.4 No capacity constraint: versioning of information goods

Consider a monopolistic software firm that serves a market of heterogeneous customers. To

differentiate customers, the firm creates several versions of the software, and sells better versions

at higher prices. Higher priced versions may have more features, a better user interface, and

faster speed. Customers do not necessarily desire the fastest version, or the version with the

most features, rather they seek to buy the cheapest product that satisfies their product and

computational requirements. In such a setting it might be realistic to model customer choice

behavior using threshold preferences. We will assume that the software product being sold

by the firm is characterized by a one-dimensional quality attribute. The resulting revenue

maximization problem is (3), (5)-(6).

2.5 Costly quality differentiation

So far quality differentiation has been costless, but this need not be the case. One popular

example is in the sale of mp3 music players, such as the iPods. In particular, customers may have

threshold preferences with respect to the mp3 player’s storage capacity, and seek to purchase

the cheapest mp3 player with capacity above their specific threshold. The storage capacity of

a mp3 player is a measure of the number of songs it can store, and customers that desire to

carry along a larger number of songs have higher thresholds. The seller seeks to differentiate

customers by selling mp3 players with different storage capacities at different prices, but in

this case note that the higher quality products are more costly to produce. We will denote the

marginal cost of a product with quality qj as s(qj), where s(·) is a strictly increasing function

of its argument. Then, the seller’s product design problem can be formulated as follows:

max
p,q,M

ΣM
j=1 ΣN

i=1 (pj − s(qj)) Λi F i (pj) 1{χi(p,q)=j} (17)

s.t. ΣM
j=1 ΣN

i=1 Λi F i (pj) 1{χi(p,q)=j} ≤ C, (18)

0 ≤ p < ∞, 0 ≤ q < ∞, (19)

1 ≤ M < ∞, M integer. (20)

Formulation (17)-(20) is the same as (3)-(6), except for the objective, which is modified to

reflect that the profit upon selling a unit of product j changes from pj to pj − s(qj).
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3 Analysis of general model

3.1 Model assumptions

Assumption A: 1. The hazard rates of the valuation distributions, hi(v) := fi(v)

F i(v)
, are

decreasing in desired quality levels, i.e hi(v) < hi+1(v), ∀v ∈ [0, vi+1], 1 ≤ i < N . 2.

ri(λ) = λF̄−1
i

(
λ
Λi

)
is strictly concave in λ for i = 1, ..., N .

Assumption B: hi(v) are decreasing and bounded below for i = 1, . . . , N .

Discussion of modeling assumptions: To facilitate exposition and analysis we have assumed

that the set of threshold quality levels is discrete, and as such that there are a finite and

discrete set of customer types; this can be viewed as a discretization of a potentially continuous

distribution of quality threshold preferences. Assumption A (1) on the hazard rates is equivalent

to assuming that ηi(v) < ηi+1(v),∀v ∈ [0, vi+1], 1 ≤ i < N , where ηi = vfi(v)

Fi(v)
is the demand

elasticity of customer class i. That is, customers that desire higher quality levels are more

inelastic than those desiring lower quality levels, and, therefore are less likely to walk away

as the price is increased. The assumptions that hazard rates are monotonic and that the per

class type in terms of arrival rates is concave are not restrictive. For example, the uniform,

exponential, pareto, half-logistic and rayleigh distributions satisfy these assumptions. Finally

Assumption B can be replaced with either a) hi(v) are non-decreasing for i = 1, . . . , N , or b)

hi(v) are decreasing and ∂(1/hi(v))/∂v < 1 for i = 1, . . . , N .

3.2 Structural results

First, we show that without loss of generality, the firm only needs to offer products with quality

levels in the set {θ1, θ2, ..., θN}, and, second, that products with distinct prices must have

distinct quality levels that are increasing in the prices, and vice versa.

Lemma 1 The following hold:

a) It suffices to offer quality levels that lie in the set {θ1, θ2, ..., θN}.

b) For any two distinct products (pi, qi) and (pj , qj), qi > qj ⇔ pi > pj.

Lemma 1 leads to the following corollary.

Corollary 1 Suppose the firm offers 1 ≤ k ≤ N distinct products at qualities θi1, ..., θik , 1 ≤

i1 < i2 < ... < ik ≤ N , at prices pi1 , pi2 , ..., pik , respectively. Then pi1 > pi2 > ... > pik and a)

pi1 < vi1 , and b) pik > 0.

Lemma 2 Any k ≤ N products partition the N customer classes into contiguous sets, i.e., if

class i − 1 and i + 1 customers buy product j, then so do class i customers.
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Our next result shows that it is always optimal to offer the highest quality product.

Lemma 3 The highest quality θ1 is always offered.

Lemma 3 leads to the following corollaries about the firm’s one product solution, and the

optimal product menu when the maximum valuations of all customer classes are the same.

Corollary 2 The firm’s one-product problem can be formulated as follows:

max
p1

{ΣN
i=1 p1 Λi F i(p1) : ΣN

i=1 Λi F i(p1) ≤ C}. (21)

Corollary 3 If vi = v, i = 1, ..., N, then all classes buy a product from the firm.

Lemmas 1-3 lead to the following formulation of the firm’s revenue maximization problem.

Proposition 1 The firm’s problem (3)-(6) can be formulated as follows.

max
p

ΣN
i=1 pi Λi F i (pi) (22)

s.t. ΣN
i=1 Λi F i (pi) ≤ C, (23)

pN ≤ pN−1 ≤ ... ≤ p1, i = 1, 2, ..., N, (24)

pi ≤ vi i = 1, 2, ..., N. (25)

where pi denotes the price of the product being offered at quality θi.

Proposition 1 simplifies considerably the firm’s product design problem. The firm no longer

needs to optimize over M and q, the number of qualities to offer and the vector of qualities

respectively, making the formulation (22)-(24) more amenable to direct analysis.

Lemma 4 Suppose qualities θm and θn are offered in the optimal solution, with m + 1 < n.

Then qualities θl, m + 1 ≤ l ≤ n − 1 are also offered.

For homogeneous valuations, lemma 4 leads to the following corollary.

Corollary 4 If v1 = v2 = ... = vN , then it is optimal to offer exactly N products.

3.3 Computation

The optimal solution to the revenue maximization problem can be easily computed. Under our

assumption that Fi(.) is continuous, this problem involves maximizing a continuous function

over a compact set, and hence by Weierstrass theorem, an optimal solution exists.

Instead of proceeding with a direct analysis of (22)-(24), we will first restate the problem

in terms of the demand rate vector as the optimization variable; this is typical in the revenue
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management literature. Specifically, for each class i, define λi = ΛiF i(pi), so that pi = F
−1
i ( λi

Λi
).

We will also drop the monotonicity constraint (24), but later on verify that is automatically

satisfied by the optimal solution. The product design problem (22)-(25) reduces to

max
λ

ΣN
i=1λi F

−1
i

(
λi

Λi

)
(26)

s.t. ΣN
i=1 λi ≤ C, (27)

0 ≤ λi ≤ Λi, i = 1, ..., N, (28)

which is a concave maximization problem over a polyhedron and the same problem that arises

in the context of multi-product pricing problem studied in Maglaras and Meissner [16]. The

first-order conditions are both necessary and sufficient to characterize the optimal solution.

Proposition 2 The optimal solution to the product design problem (22)-(25) is given by

pi =
F i(pi)

fi(pi)
+ µ −

ηi

fi(pi)
, (29)

µ
(
C − ΣN

i=1 Λi F i(pi)
)

= 0, (30)

µ ≥ 0, C − ΣN
i=1 Λi F i(pi) ≥ 0, (31)

ηi (vi − pi) = 0, ηi ≥ 0, vi − pi ≥ 0. (32)

Here µ is the Lagrange multiplier associated with the capacity constraint (23), and ηi is the

Lagrange multiplier associated with the constraint pi ≤ vi. Following the assumptions made

earlier in this section, the optimal prices satisfy the monotonicity constraint (24).

It is worth noting that the product design problem with fully rational customers making

decisions according to a decision rule of the form of (1) is intractable with more than two

customer types (N > 2). This arises for two reasons. First, the product design problem cannot

be reformulated as a function of the demand rates λi, and as a result the objective need not be

concave in prices. Second, the quality decisions complicate the seller’s problem substantially.

One popular approach is to formulate the problem as a direct mechanism that captures the

behavior embodied in (1) through the incorporation of appropriate incentive compatibility and

individual rationality constraints, but these may not be convex in general; when N = 2 the

problem simplifies using algebraic manipulations that cannot be exploited when N > 2.

3.4 k < N products

For practical purposes the seller may only wish to restrict the number of products offered to

the market. Such a strategy might be attractive when some customer types are similar or when

administrative costs (not considered in our model) are high. It may also be driven by branding
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considerations (e. g., in the rationing example, the firm may not want to offer more than 2

products, so that customers that are rationed out do not discover that the product is available

in a later period). We will assume that the firm seeks to offer k < N products at qualities

θm1
, θm2

, ..., θmk
, with 1 ≤ m1 < m2 < ... < mk ≤ N , mk+1 := N + 1. Then, in a manner

similar to Lemmas 1-3, it can be shown that it is optimal to set m1 = 1, and p1 > p2 > ... > pk.

The firm’s product design problem can be formulated as follows:

max
p

Σk
l=1 pl Σ

ml+1−1
j=ml

Λj F j (pl) (33)

s.t. Σk
l=1 Σ

ml+1−1
j=ml

Λi F i (pl) c ≤ C, (34)

0 ≤ pk ≤ pk−1 ≤ ... ≤ p1, (35)

pj ≤ vmj+1−1, j = 1, ..., k. (36)

In the following, we will assume that h̃l(·) satisfies assumptions A and B, where h̃l(v) =
Σ

ml+1−1

j=ml
fj(v) Λj

Σ
ml+1−1

j=ml
F j(v) Λj

. An example of a distribution that satisfies the above constraints is the expo-

nential distribution with parameters α1 < α2 < ... < αN . Next, formulating the problem in

terms of arrival rates, we obtain a concave maximization problem on a convex set, leading to

the following characterization of optimal prices.

Proposition 3 The optimal prices are characterized by

pl =
Σ

ml+1−1
j=ml

F j(pl) Λj

Σ
ml+1−1
j=ml

fj(pl) Λj

+ µ −
ηl

Σ
ml+1−1
j=ml

fj(pl) Λj

, (37)

µ (C − Σk
l=1 Σ

ml+1−1
j=ml

F j(pl) Λj) = 0, (38)

µ ≥ 0, C − Σk
l=1 Σ

ml+1−1
j=ml

F j(pl) Λj ≥ 0, (39)

ηl (vil−1 − pl) = 0, ηl ≥ 0, vil−1 − pl ≥ 0. (40)

Here µ is the Lagrange multiplier associated with the capacity constraint (34), and ηl is the

Lagrange multiplier associated with the constraint (36). The monotonicity of prices in equa-

tion (35) is ensured by our assumptions on h̃(·).

The pricing problem given a preselected set of quality levels is simple, but the problem of

identifying the optimal set of quality levels is combinatorial in nature. Since m1 = 1 following

Lemma 3, identifying the optimal k product solution requires solving
(
N−1
k−1

)
problems. This can

be computationally expensive for k large, however, solving the k = 2 problem requires solving

N − 1 problems to identify m2, and is hence easily done.
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4 Extensions

We next discuss a few extensions to the model studied in the previous section. First, we look

at the example of capacity differentiation to illustrate how the baseline model can be extended

to address the applications mentioned in §2. Second, we briefly review how one could treat a

model with two or more quality attributes for which customers have dichotomous preferences.

Finally, we offer some results on optimal product menu design in a duopoly setting.

4.1 Capacity differentiation

The extension of the results of the previous section to the case where the quality attribute is

the capacity that is allocated to each type of customer is fairly straightforward. For simplicity,

in addition to the assumptions set forth in the previous section we will also restrict attention

to valuation distributions for each customer type that have infinite support. In this setting, it

is easy to verify that Lemmas 1-2 as well as their associated corollaries continue to hold. For

Lemma 3 and 4, we need to slightly modify the proofs.

Lemma 5 It is always optimal to offer the highest capacity product.

The above result is slightly different from lemma 3. In particular, we can no longer say

that the optimal single product offering involves selling the highest capacity product. However,

adding the highest capacity product to the existing product offering certainly increases revenues.

Hence in the optimal product menu unconstrained by the number of products that are offered,

the highest capacity product will always be offered.

Lemma 6 Suppose the firm offers products at capacities θm and θn, where m + 1 < n. Then

it is optimal for the firm to offer products at capacity θl, m + 1 ≤ l ≤ n.

Together Lemmas 5-6 imply that if θk is the lowest capacity that is offered by the firm, then

it is optimal to offer products with capacities θ1, ..., θk−1. The following corollary shows that

in fact it is optimal to offer all N products at capacities θ1, ..., θN .

Corollary 5 It is optimal to offer N products.

Following corollary 5, the service provider’s revenue maximization problem can be reformu-

lated as follows.

max
p

ΣN
i=1 pi Λi F i (pi) (41)

s.t. ΣN
i=1 Λi F i (pi) θi ≤ C, (42)

0 ≤ pN < pN−1 < ... < p1 < ∞. (43)

15



We can solve the firm’s revenue-maximization problem (41)-(43) by reformulating it in terms

of arrival rates, wherein we obtain a concave maximization problem over a polyhedron. The

first-order conditions lead to the following characterization of the optimal prices.

Lemma 7 The optimal prices are given by pi = F i(pi)
fi(pi)

+ µθi, i = 1, ..., N , where µ is the

Lagrange multiplier associated with the capacity constraint.

The k < N products problem can also be solved in a similar fashion, though solving it now

requires
(
N
k

)
effort.

4.2 Multiple quality attributes

Our results extend naturally to the case where customers have threshold preferences with respect

to more than one quality attribute. For simplicity, we discuss the two attribute case here,

which we will denote by θi and αj , i = 1, 2, ..., N1 , j = 1, 2, ..., N2 . Without loss of generality,

we assume that ∞ > θ1 > θ2 > ... > θN1
> 0, ∞ > α1 > α2 > ... > αN2

> 0, with higher

values again denoting a desire for higher qualities. A type (i, j) customer is associated with the

quality thresholds θi and αj. Suppose the firm offers M products, where product l has price pl,

and quality attributes, q1
l and q2

l . Then, a satisficing type (i, j) customer selects the following

product:

χi,j(p, q1, q2) =





minl pl, q1
l ≥ θi, q2

l ≥ αj ,

0, otherwise.
(44)

Analogous to the assumptions of §3, we assume that the supports of the valuation distribu-

tions satisfy the following ordering conditions v1,j > v2,j > ... > vN,j ,∀j and vi,1 > vi,2 >

... > vi,M ,∀i. Also assume that
fi,1(v)

F i,1(v)
<

fi,2(v)

F i,2(v)
< ... <

fi,M (v)

F i,M (v)
,∀i,

f1,j(v)

F 1,j(v)
<

f2,j(v)

F 2,j(v)
< ... <

fN,j(v)

FN,j(v)
,∀j, hazard rates

fi,j(p)

F i,j(p)
are monotonic, and λi,jF i,j(

λi,j

Λi,j
) is concave. Then, the results

in Lemmas 1-4, Proposition 2 and their associated corollaries can be extended in a straight-

forward manner. As in Proposition 3, the k product problem can also be addressed, though

the problem complexity increases significantly now (there are
(
N1N2

k

)
ways to choose k product

quality combinations).

4.3 Duopoly

We finally consider some partial analysis of the case of two firms competing in a market with

satisficing customers that satisfy the assumptions in §3. We examine the cases of simultaneous

and sequential entry in order. As in Moorthy [20], Shaked and Sutton [24], and Wauthy [31],

we restrict attention to the case where each firm can offer only a single product, and study a

two-stage non-cooperative game. In the first stage, firms choose the quality level at which they
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seek to offer a product. In the second stage, given their and the competitor’s quality, firms

choose the prices at which to sell their product at. As in the above-mentioned papers, we focus

on perfect Nash equilibria.

We begin by analyzing the second stage of the game, the price equilibrium. The two

firms won’t offer the same quality, else it will lead to a Bertrand game wherein profits would

be zero. Hence we assume that firm 1 offers quality θi and firm 2 offers quality θj, i < j.

Following lemma 1 (which continues to hold), pi > pj for two products to be offered. Then, the

optimization problem for the firm offering quality θi can be written as follows:

max
pi

{pi Σj−1
l=i F l(pi) Λl | Σj−1

l=i F l(pi) Λl ≤ C, pi ≥ 0}. (45)

Define p∗1 to be the optimal price in equation (45). The optimization problem for firm offering

quality θj can be written as follows:

max
pj

{pj ΣN
l=j F l(pj) Λl | ΣN

l=j F l(pj) Λl ≤ C, p∗1 > pj ≥ 0}. (46)

Define p∗2 to be the optimal price in equation (46). The following lemma characterizes the Nash

equilibrium in prices.

Lemma 8 Equations (45)-(46) define a Nash equilibrium in prices (given fixed qualities).

For simultaneous entry case we obtain the following result.

Proposition 4 The unique product equilibrium occurs with firm 1 selecting quality θ1 and firm

2 selecting quality θ2, if the following condition is satisfied:

max
p1

{p1 F 1(p1) Λ1 | F 1(p1) Λ1 ≤ C} ≥

max
p3

{p3 ΣN
l=3 F l(p3) Λl | ΣN

l=3 F l(p3) Λl ≤ C, p∗2 > p3 ≥ 0},
(47)

where p∗2 = arg maxp2
{p2 F 2(p2) Λ2 | F 2(p2) Λ2 ≤ C}.

The analysis of the sequential entry is facilitated through the following notation.

R1(l, p) = {p F l(p) Λl | F l(p) Λl ≤ C}, (48)

R1(l) = max
p

R1(l, p), pl
1 = argmax

p
R1(l, p), (49)

R
1
(l, p) = {ΣN

u=l+1 p F u(p) Λu | ΣN
u=l+1 F u(p) Λu ≤ C, p < pl

1}, (50)

R
1
(l) = max

p<pl
1

R
1
(l, p), pl

1 = argmax
p<pl

1

R
1
(l, p), (51)

R2(l, p) = {ΣN
u=l p F u(p) Λu | ΣN

u=l F u(p) Λu ≤ C, p < pl
2}, (52)

R2(l) = max
p<pl

2

R2(l, p), pl
2 = argmax

p<pl
2

R2(l, p), (53)

R
2
(l, p) = {Σl−1

u=1 p F u(p) Λu | Σl−1
u=1 F u(p) Λu ≤ C}, (54)

17



R
2
(l) = max

p
R

2
(l, p), pl

2 = argmax
p

R
2
(l, p). (55)

R1(l, p) denotes the revenue achieved by firm 1, if it offers quality θl at price p and firm 2

decides to offer quality θl+1. R1(l) is the optimal revenue achieved in this case, and pl
1 denotes

the revenue-maximizing price. R
1
(l, p) denotes the revenue achieved by firm 2, if firm 1 offers

quality θl at price pl
1, and firm 2 offers quality θl+1 at price p. R

1
(l) denotes the optimal

revenue achieved in this case, and pl
1 denotes the corresponding revenue-maximizing price.

R2(l, p) denotes the revenue achieved by firm 1, if it offers quality l at price p < pl
2 and firm

2 decides to offer quality θ1 at price pl
2. R2(l) is the optimal revenue achieved in this case,

and pl
2 denotes the revenue-maximizing price. R

2
(l, p) denotes the revenue achieved by firm

2, if firm 1 offers quality θl, and firm 2 offers quality θ1 at price p. R
2
(l) denotes the optimal

revenue achieved in this case, and pl
2 denotes the corresponding revenue-maximizing price. The

following proposition characterizes the optimal qualities to offer.

Proposition 5 The first entrant chooses to offer quality

i = arg max
l=1,2,...,N

R(l), (56)

R(l) =





R1(l), if R
1
≥ R

2
,

R2(l) otherwise.
(57)

The quality chosen by the second entrant then is θ1 if R
1
i < R

2
i , and θi+1 otherwise.

We note that while in the simultaneous case the two best quality products are offered if an

equilibrium exists, in the sequential entry case, neither of the two best qualities may be offered.

This is in contrast with the optimal two product solution of a monopolist firm, where the first

product is always offered at the best quality, while the quality of the second product depends

upon the problem parameters.

5 Concluding remarks: satisficers vs. utility maximizers

In this paper, we have analyzed the product design problem for a seller facing a market of

satisficing customers. The product design problem is tractable and enjoys several nice structural

properties about the optimal number of products, the quality levels of the offered products, the

structure of the product manu if the seller wants to restrict the number of offered products,

and the structure of the optimal policy in a simplified duopoly setting. We also note that the

ability to solve for the optimal menu in a multi-type market is a significant improvement over

what can be done with classical models of vertical and horizontal product differentiations or

mechanism design approaches for utility maximizing customers.
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Satisficing provides a plausible approach to model bounded rationality in some revenue

management and operations management contexts that that we believe has both analytical

and practical importance. An obvious issue that we have not addressed concerns the empirical

validation of the satisficing customer choice behavior, which is an interesting problem that has

only partially addressed in the marketing and psychology literature.

A Proofs

Proof Lemma 1: Part a). Since any customer class i is indifferent between the quality levels

that lie in the interval (θl−1, θl], l = 1, ..., N , where θ0 := θ, at most one price can be charged

for any quality level in (θl−1, θl], l = 1, ..., N . Hence, offering one quality level in (θl−1, θl],

l = 1, ..., N suffices, which without loss of generality, we can fix to θl. Part b). Following a),

the quality levels qi and qj lie in the set {θ1, θ2, ..., θN}. Suppose qi > qj while pi < pj. Then,

every customer strictly prefers product i over product j. Hence the firm can drop product j

from its product line without affecting its revenues. This would contradict our assumption that

the firm only offers products that generate non-zero demand, and so pi > pj. Suppose now that

pi > pj but qi < qj. In this case, all customers strictly prefer product j to product i, which

therefore generates zero demand. Again, this contradicts our assumption that the firm only

offers products that generate non-zero demand, and hence, qi > qj. �

Proof Corollary 1: The monotonicity of prices, pi1 > pi2 > ... > pik , follows from lemma 1.

Part a). a) If pi1 ≥ vi1 , then F i1(pi1) = 0, implying that nobody this product and it can be

dropped, violating our assumption that only products that offer a non-zero demand are offered.

Hence, pi1 < vi1 . Part b). Suppose pik = 0. Consider setting pik to 0.5min{pik−1
, vik} > 0

wherein the aggregate demand decreases while revenues increase. Note that pik−1
> 0, since

products k and k − 1 are distinct. Hence pik > 0 in the optimal solution. �

Proof Lemma 2: Since type i − 1 buys product j, qj ≥ θi−1 > θi, i.e., the quality of

product j is higher than the quality threshold for type i. Since type i + 1 buys product j,

pj = minql≥θi+1
pl ≤ minql≥θi

pl, i.e., product j is the cheapest product offered by the firm with

quality greater than or equal to θi. Hence it is optimal for type i to buy product j. �

Proof Lemma 3: Let θk, k > 1, be the highest quality offered at price p to the market in the

optimal solution. Also suppose that customers from classes l, k ≤ l ≤ i are currently buying

this product. Consider increasing the quality of the offered highest quality product from θk to

θ1 and increasing its price from p to p + ǫ, ǫ > 0 such that Σi
l=1F l(p + ǫ)Λl = Σi

l=kF l(p)Λl.

The left hand side is continuous and decreasing in ǫ, exceeds the right hand side for ǫ = 0 and

is less than the right hand side for ǫ = ∞. Hence, such an ǫ > 0 exists. Since the demand

19



does not change while revenues increase (we increased the price), the original solution cannot

be optimal and we have a contradiction. �

Proof Corollary 2: Following lemma 3, if a single product is offered by the firm, then it is

offered at the highest quality θ1. The one-product problem formulation then follows. �

Proof Corollary 3: Since at least one product is offered, following Lemma 3, the highest

quality product is offered. Let p1 denote its price. Then p1 < v, else this product will generate

zero demand. Since any other products would be offered at a lower quality level, and hence

price (following Lemma 1), at least some customers from each class would buy from the firm.

�

Proof Proposition 1: Following lemma 3, quality θ1 is always offered. Hence, all customer

classes 1, ..., N would buy a product from the firm, subject to their valuations exceeding the

price p1. If k < N products are offered in the optimal solution at qualities θm1
, θm2

, ..., θmk
,

with m1 < m2 < ... < mk ≤ N , m1 = 1,mk+1 := N +1, and prices pm1
> pm2

> ... > pmk
, then

setting prices to be pj = pmi
,mi ≤ j < mi+1, i = 1, ..., k, in the above formulation would lead

to the same solution. Finally, any solution of equations (22)-(24) is consistent with customer

behavior in that type i customers would buy the product priced at pi. Hence the formulation

is correct. �

Proof Lemma 4: Suppose it is optimal for the firm to offer k < N products (lemma holds

trivially if k = N). Then there exist indices 1 ≤ i1 < i2 < ... < ik ≤ N such that product l,

1 ≤ l ≤ k, is being offered at quality θil . Following lemma 3, i1 = 1. Suppose there exist indices

m,n such that m+1 < n, il = m, il+1 = n for some 1 ≤ l ≤ k−1. These correspond to products

with qualities θm and θn respectively. In case such indices do not exist (since k < N and i1 = 1,

this case occurs only when the k products are offered at qualities θ1, ...θk), the lemma holds.

Even then for the first case of the following two, we set m = k, n = N + 1, pN+1 = 0, θN+1 = 0.

For the second case, we consider only the possibility where such indices do exist. Let us denote

the prices of these two products by pm and pn respectively, with pm > pn (since θm > θn and

following lemma 1). There are two cases to consider.

Case a: pm < vm+1: Consider adding a product at quality level θm+1 and price pm −

δ, δ > 0 such that pm − δ > pn, and increasing the price of the product being offered

at quality θm from pm to pm + ǫ, ǫ > 0 such that pm + ǫ < vm and pm + ǫ < pil−1
,

where pil−1
is the price of the θl−1 best quality product offered by the firm, if any, and

∞ otherwise. The change in demand, ∆D = ΛmFm(pm + ǫ) + Σn−1
u=m+1ΛuF u(pm − δ) −

ΛmFm(pm) − Σn−1
u=m+1ΛuF u(pm). Using the first order Taylor expansion, we can write ∆D =

−ǫΛmfm(pm) + δΣn−1
u=m+1Λufu(pm) + o(ǫ) + o(δ). Similarly, the change in revenue, ∆R =
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Λm(pm+ǫ)Fm(pm +ǫ)+(pm−δ)Σn−1
u=m+1ΛuF u(pm−δ)−ΛmpmFm(pm)−pmΣn−1

u=m+1ΛuF u(pm).

Again, ∆R = ǫΛm(Fm(pm) − pmfm(pm)) + δΣn−1
u=m+1Λu(pmfu(pm) − F u(pm)) + o(ǫ) + o(δ).

We want to show that there exist δ, ǫ, small such that ∆D < 0, ∆R > 0. To this end,

choose δ such that δΣn−1
u=m+1Λufu(pm) = γǫΛmfm(pm), where 0 < γ < 1. This implies that

∆D = −ǫΛmfm(pm)(1 − γ) + o(ǫ) = −δ 1−γ
γ

Σn−1
u=m+1Λufu(pm) + o(δ), which is < 0 when ǫ (or

equivalently δ) is small enough. Substituting this value of δ and simplifying, we get

∆R =
ǫΛmfm(pm)pm

Σn−1
u=m+1Λufu(pm)

[Σn−1
u=m+1Λufu(pm)(

1

ηm(pm)
− 1 + γ −

γ

ηu(pm)
)] + o(ǫ).

Now ηm(pm) < ηm+1(pm) ≤ ηu(pm) ⇔ 1
ηm(pm) > 1

ηm+1(pm) ≥ 1
ηu(pm) . Hence, for ǫ sufficiently

small, it suffices to show that 1
ηm(pm) − 1 > γ( 1

ηm+1(pm) − 1), which holds from above and the

fact that we can choose any γ that satisfies 0 < γ < 1.

Case b: pm > vm+1: In this case, classes m + 1 ≤ u < n do not buy any product.

Consider adding a product at quality level θm+1 and price vm+1 − ǫ, ǫ > 0, and increasing

the price of the product offered at θn from pn to pn + δ, δ > 0 such that pn + δ < vn and

vm+1 − ǫ > pn + δ. Let θr be the next best quality after θn that is offered by the firm (set

it to r = N + 1, θN+1 = 0, pN+1 = 0, as mentioned earlier, if there’s none). The change

in demand ∆D = Σn−1
u=m+1F u(vm+1 − ǫ)Λu + Σr−1

u=nF u(pn + δ)Λutj − Σr−1
u=nF u(pn)Λu. Using

the first order Taylor expansion, ∆D = ǫΣn−1
u=m+1fu(vm+1)Λu − δΣr−1

u=nfu(pn)Λu + o(ǫ) + o(δ).

Similarly, the change in revenue, ∆R = Σn−1
u=m+1F u(vm+1 − ǫ)Λu(vm+1 − ǫ) + Σr−1

u=nF u(pn +

δ)Λu(pn + δ) − Σr−1
u=nF u(pn)Λupn, which can be written as ∆R = vm+1ǫΣ

n−1
u=m+1fu(vm+1)Λu −

δΣr−1
u=nΛu(pnfu(pn) − F u(pn)) + o(ǫ) + o(δ). Choose ǫΣn−1

u=m+1fu(vm+1)Λu = γδΣr−1
u=nfu(pn)Λu,

with 0 < γ < 1, so that

∆R = δΣr−1
u=nfu(pn)Λupn

(
vm+1γ

pn
− 1 +

F u(pn)

pnfu(pn)

)
+ o(δ).

For δ sufficiently small, a sufficient condition for ∆R > 0 is that vm+1γ
pn

> 1, which is true if we

choose γ > pn

vm+1
. This is possible, since the only restriction on our choice of γ was 0 < γ < 1,

and pn < vn ≤ vm+1.

Hence in both cases, we obtain a contradiction. �

Proof Corollary 4: In the proof of lemma 4, under the assumption that vi = constant for all

i = 1, ..., N , the second case in the proof never arises. The proof of the first part is applicable

for all k, 1 ≤ k < N , irrespective of whether there are holes in the product offering or not.

Hence we know that ∀k < N , offering k + 1 products over k products increases revenues. Also

from lemma 1, we know that it suffices to offer at most N products. Hence, it is optimal to

offer exactly N products. �

Proof Lemma 5: Suppose that the highest quality product is being offered at capacity θk and
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price pk in the optimal solution, where k > 1 (else the lemma holds). Note that pk < ∞. Also

suppose that the next highest quality product was being offered at θm, m > k. (Set m = N +1

if no other product is offered.) Consider introducing an additional product at capacity θ1 and

price p1 = pk + ǫ, ǫ > 0 such that p1 > pk
θ1

θk
. Also, increase the price of product with capacity

θk to pk + δ, δ > 0 such that ∆D = θ1Σ
k−1
l=1 ΛlF l(pk + ǫ) + θkΣ

m−1
l=k Λl[F l(pk + δ) − F l(pk)] = 0.

The first term is positive and decreases as ǫ increases, while the second term is negative, and

decreases as δ increases. Hence, there exist ǫ > 0, δ > 0, such that pk + δ < vk, pk + ǫ < v1

and ∆D = 0. As a result, demand is unchanged, while the cost per unit capacity for products

sold to classes 1 . . . k increases to min(p1

θ1
, pk+δ

θk
) > pk

θk
. Hence the total revenue increases via the

introduction of this product at θ1. �

Proof Lemma 6: As in lemma 4, consider two indices m,n where m + 1 < n, such that

products are offered at θm and θn, but none in between. Following corollary 1, pm < ∞.

Consider adding a product at θm+1 and price pm − δ while increasing the price of the product

with capacity θm to pm + ǫ. Then, ∆D = Σn−1
l=m+1ΛlF l(pm − δ)θm+1 + ΛmF m(pm + ǫ)θm −

Σn−1
l=mΛlF l(pm)θm = −ǫθmΛmfm(pm)+ δθm+1Σ

n−1
l=m+1Λlfl(pm)+(θm+1−θm)Σn−1

l=m+1ΛlF l(pm)+

o(ǫ) + o(δ). Since θm+1 < θm, choose δ sufficiently small so that ∆D < 0. Similarly, ∆R =

Σn−1
l=m+1ΛlF l(pm − δ)(pm − δ) + ΛmFm(pm + ǫ)(pm + ǫ) − Σn−1

l=mΛlF l(pm)pm = ǫΛmFm(pm) −

ǫΛmpmfm(pm)+Σn−1
l=m+1Λlδ[−F l(pm)+pmfl(pm)]+o(ǫ)+o(δ). Hence ∆R > 0 if ǫΛmFm(pm)(1−

ηm(pm)) > δΣn−1
l=m+1ΛlF l(pm)(1 − ηl(pm)).

Define A = ΛmFm(pm)(1 − ηm(pm)), and B = Σn−1
l=m+1ΛlF l(pm)(1 − ηl(pm)). From our

assumption on elasticities ηm < ηl,m ≤ l ≤ n. There are three possibilities,

i) A > 0, B > 0: choose δ sufficiently small (compared to ǫ), =⇒ ∆R > 0.

ii) A > 0, B < 0: =⇒ ∆R > 0.

iii) A < 0, B < 0: choose ǫ sufficiently small (compared to δ), =⇒ ∆R > 0.

Hence introducing a product at θm+1 increases revenues. �

Proof Corollary 5: In the proof of lemma 6, substituting n = N + 1, and introducing a

dummy product with θN+1 = 0, pN+1 = 0 does not affect line of argument. Hence we conclude

that if only first k capacities are being offered, introducing a product at capacity θk+1 also

increases revenues. Applying this argument iteratively and following lemma 1, we conclude

that it is optimal to offer exactly N products. �

Proof Lemma 8: Firm 1 has no incentive to change its price, since given the quality θi of its

product, this is the optimal price for it to charge subject to its capacity. Firm 2 needs to offer

a lower price than firm 1 to be able to generate non-zero revenues, since θi > θj. Hence, given

its quality θj and capacity C, p∗2 is the optimal price for firm 2 to charge. Finally the resulting

customer choice behavior is consistent with the formulation in equations (45) and (46). �
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Proof Proposition 4: Suppose the product equilibrium occurs at 1 < i < j ≤ N . Given

choice of quality θj by firm 2, firm 1 will find it advantageous to offer quality θ1, for it in-

creases revenues when the price equilibrium with product qualities fixed is considered. Hence,

in the Nash equilibrium, i = 1. Next consider the case where j > 1. in this case, given

that firm 1 chooses to offer quality θ1, firm 2 revenue would increase if it offers quality

θ2 instead of θj, given the price equilibrium that would occur with these qualities. Hence

j = 2 in the Nash equilibrium. Next we consider whether i = 1, j = 2 constitutes a Nash

equilibrium. Clearly, firm offering θ2 does not have an incentive to deviate. As for the

firm offering θ1, the best alternative is to offer quality θ3 instead. This happens only if

maxp1
{p1 F 1(p1) Λ1 | F 1(p1) Λ1 ≤ C} < maxp3

{p3 ΣN
l=3 F l(p3) Λl | ΣN

l=3 F l(p3) Λl ≤ C, p∗2 >

p3 ≥ 0}, where p∗2 = arg maxp2
{p2 F 2(p2) Λ2 | F 2(p2) Λ2 ≤ C}. �

Proof Proposition 5: Since firm 1 chooses its quality first, and with the knowledge that firm

2 will subsequently choose the optimal quality to offer following firm 1’s choice, there are two

situations to consider. Given firm 1’s choice of quality θl, firm 2 would either offer a better

quality, in which case it is optimal for firm 2 to offer θ1, or it will offer a worse quality, in

which case it is optimal for firm 2 to offer θl+1. The revenues resulting for firm 2 in these two

situations are denoted by R
1
(l) and R

2
(l) for firm 2, respectively. Firm 2 chooses quality θ1 if

R
1
(l) ≥ R

2
(l), in which case, the revenue achieved by firm 1 is given by R1(l) in equilibrium.

If R
1
(l) < R

2
(l), then firm 2 chooses quality θl+1, and consequently, firm 1 obtains R2(l) in

revenue in equilibrium. This leads to equation (57). Given the optimal revenue achievable by

firm 1 if it offers quality θ1 to the market, firm 1 then optimizes over qualities θl, l = 1, ..., N

to identify the optimal quality to offer, as summarized by equation (56). �
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