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Abstract. Saliency algorithms are applied to correlate with the overt
attentional shifts, corresponding to eye movements, made by observers
viewing an image. In this study, we investigated if saliency maps could
be used to predict which image observers were viewing given only scan-
path data. The results were strong: in an experiment with 441 trials,
each consisting of 2 images with scanpath data - pooled over 9 subjects -
belonging to one unknown image in the set, in 304 trials (69%) the cor-
rect image was selected, a fraction significantly above chance, but much
lower than the correctness rate achieved using scanpaths from individual
subjects, which was 82.4%. This leads us to propose a new metric for
quantifying the importance of saliency map features, based on discrim-
inability between images, as well as a new method for comparing present
saliency map efficacy metrics. This has potential application for other
kinds of predictions, e.g., categories of image content, or even subject
class.

1 Introduction

In electrophysiological studies, the ultimate validation of the relationship be-
tween physiology and behavior is the decoding of behavior from physiological
data alone [1–7]. If one can determine which image an observer has seen using
only the firing rate of a single neuron, one can conclude that that neuron’s output
is highly informative about the image set. In psychophysical studies it is com-
mon to show an observer (animal or human) a sequence of images or video while
recording their eye movements using an eye-tracker. Often, such studies aim to
predict subjects’ scanpaths using saliency maps [8–11], or other techniques [12,
13]. The predictive power of a saliency model is typically judged by computing
some similarity metric between scanpaths and the saliency map generated by the
model [8, 14]. Several similarity metrics have become de facto standards, includ-
ing NSS [15] and ROC [16]. A principled way to assess the goodness of such a
metric is to compare its value for scanpath-saliency map pairs which correspond
to the same image and different images. If this difference is systematic, one can
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apply the metric to several candidate saliency maps per image, and asses which
saliency map yields the highest decodability.

This decodability represents a new measure of saliency map efficacy. It is
complementary to the current approaches: rather than predicting fixations from
image statistics, it predicts image content from fixation statistics. The funda-
mental advantage of rating saliency maps in this way is that the score reflects not
only how similar the scanpath is to the map, but also how dissimilar it is from
the maps of other images. Without that comparison, it is possible to artificially
inflate similarity metrics using saliency heuristics which increase the correlation
with all scanpaths, rather than only those recorded on the corresponding image.
Thus, we propose this as an alternative to the present measures of saliency maps’
predictive power, and test this on established eye-tracking datasets.

The contributions of this study are:

1. A novel method for quantifying the goodness of an attention prediction
model based on the stimuli presented and the behavior.

2. Quantitative results using this method that rank the importance of feature
maps based on their contribution to the prediction.

2 Methods

2.1 Experimental setup

In order to test if scanpaths could be used to predict which image from a set was
being observed at the time it was recorded, we collected a large dataset of images
and scanpaths from various earlier experiments (from the database of [17]). In
all of these previous experiments, images were presented to subjects for 2 s, after
which they were instructed to answer “How interesting was the image?” on a
scale of 1-9 (9 being the most interesting). Subjects were not instructed to look
at anything in particular; their only task was to rate the entire image. Subjects
were always näıve to the purpose of the experiments. The subset of images was
presented for each subject in random order.

Scenes were indoors and outdoors still images (see examples in Fig. 1), con-
taining faces and objects. Faces were in various skin colors and age groups, and
exhibiting neutral expressions. The images were specifically composed so that
the faces and objects appeared in a variety of locations but never in the center of
the image, as this was the location of the starting fixation on each image. Faces
and objects vary in size. The average size was 5% ± 1% (mean ± s.d.) of the
entire image - between 1◦ to 5◦ of the visual field. 441 images (1024×768 pixels)
were used in these experiments altogether. Of these, 291 images were unique.
The remaining 150 stimuli consisted of 50 different images that were repeated
twice, but treated uniquely as they were recorded under different experimental
conditions. Of the unique images, some were very similar to each other, as only
foreground objects but not the background was changed. Since we only counted
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finding the exact same instance (i.e. 1 out of 441) as correct prediction, in at
least 150

441×
2

440 = 0.15% of cases a nearly correct prediction (same or very similar
image) would be counted as incorrect. Hence, our datasets are challenging and
the estimates of correct prediction conservative.

The number of faces in the images was varied between 1-6, with a mean of
1.1±0.48 (s.d.). Eye-position data were acquired at 1000 Hz using an Eyelink1000
(SR Research, Osgoode, Canada) eye-tracking device. The images were presented
on a CRT2 screen (120 Hz), using MATLAB’s Psychophysics and eyelink toolbox
extensions. Stimulus luminance was linear in pixel values. The distance between
the screen and the subject was 80 cm, giving a total visual angle for each image
of 28◦×21◦. Subjects used a chin-rest to stabilize their head. Data were acquired
from the right eye alone. Data from a total of nine subjects, each with normal
or corrected-to-normal vision, were used. We discard the first fixation from each
scanpath to avoid adding trivial information from the initial center fixation.
Thus, we worked with 441× 9 = 3969 total scanpaths.

2.2 Decoding metric

For each image, we created six different “feature maps”. Four of the maps were
generated using the Itti and Koch saliency map model [8]: (1) combined color-
intensity-orientation (CIO) map, (2) color alone (C), (3) intensity alone (I), and
(4) orientation alone (O). A “faces” map was generated using the Viola and Jones
face recognition algorithm [18]. The sixth map, which we call “CIO+F” was a
combination of the face map and the CIO map from the Itti and Koch saliency
model, which has been shown to be more predictive of observers fixations than
CIO [17]. Each feature map was represented as a positive valued heat map over
the image plane, and downsampled substantially, in line with [8], in our case to
nine by twelve pixels, each pixel corresponding to roughly 2×2 degrees of visual
angle. Subject fixation data was binned into an array of the same size. The
saliency maps and fixation data were compared using an ROC-based method
[16]. This method compares saliency at fixated and non-fixated locations using
an ROC analysis (see Fig. 2 for an illustration of the method). We assume some
threshold saliency level above which locations on the saliency map are considered
to be predictions of fixation. If there is a fixation at such a location, we consider
it a hit, or true positive. If there is no fixation, it is considered a false positive. We
record the true positive and false positive rates as we vary the threshold level
from the minimum to the maximum value of the saliency map. Plotting false
positive vs. true positive results in a receiver operator characteristics (ROC)
curve. We integrate the area under this ROC curve (“AUC”) to get a scalar
similiarity measure (AUC of 1 indicates all fixations fall on salient locations,
and AUC of 0.5 is chance level). The AUC for the correct scanpath-image pair
was ranked against other scanpath-image pairs (from 1 to 31 decoy images,
chosen randomly from the remaining 440 to 410 images), and the decoding was
considered successful only if the correct image was ranked one. In the largest
image set size we tried, if any of the other 31 AUCs for scanpath/images was
higher than the one of the correct match, we considered the prediction a miss
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Fig. 1. Examples of scanpaths/stimuli used in the experiment. A. Scanpaths of the 9
individual subjects used in the analysis for a given image. The combined fixations of
all subjects was used for further analysis of the agreement across all subjects, and for
analysis of the ideal subjects’ pool size for decoding. The red triangle marks the first
and the red square the last fixation, the yellow line the scanpath, and the red circles the
subsequent fixations. Top: the image viewed by subjects to generate these scanpaths.
The trend of visiting the faces – a highly attractive feature – yields greater decoding
performance. B. Four example images from the dataset (left) and their corresponding
scanpaths for different arbitrary chosen individuals (right). Order is shuffled. See if you
can match (“decode”) the scanpath to its corresponding images. The correct answers
are: a3, b4, c2 and d1.
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(e.g. for one decoding trial the algorithm would be as follows: 1. Randomly
select a scanpath out of the 3969 scanpaths. 2. Consider the image it belongs
to, together with 1 to 31 randomly selected decoys. We will attempt to match
the scanpath to its associated image out of this set of candidates. 3. Compute
a feature map for each image in the candidate set. 4. Compute the AUC of the
scanpath for each of the 2-32 saliency maps. 5. Decoding is considered successful
iff the image on which the scanpath was actually recorded has the highest AUC
score.).
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Fig. 2. Illustration of the AUC calculation. For each scanpath, we choose the corre-
sponding image and 1–31 decoys. For each image we calculate each of the 6 feature
maps (C, I, O, F, CIO, CIO+F). For a given scanpath and a feature map we then
calculate the ROC by varying a threshold over the feature plane and counting how
many fixations fall above/below the threshold. The area under the ROC curve serves
as a measure of agreement between the scanpath and the feature map. We then rank
the images by their AUC scores, and consider the decoding correct if the highest AUC
is that of the correct image.
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3 Results

We calculated the average success rate of prediction trials, each of which con-
sists of (1) fixations pooled over 9 subjects’ scanpaths, and (2) an image set of
particular cardinality, from 2 to 32, ranked according to the ROC-fixation score
on one of three possible feature maps: CIO, CIO+F, or F. We used the face
channel although it carries some false identifications of faces, and some misses,
as it has been shown to have higher predictive power, involving high-level (se-
mantic) saliency content with bottom-up driven features [17]. We reasoned that
using the face channel alone in this discriminability experiment would provide a
novel method of comparing it to saliency maps’ predictive power.

For one decoy per image set (image set size = two), we find that the face
feature map (F) was used to correctly predict the image seen by the subjects
in 69% of the trials (p < 10−15, sign test3), while the CIO+F feature map was
correct in 68% (p < 10−14), and CIO in 66% (p < 10−12) of trials. This F >
CIO + F > CIO trend persists through all image set sizes. Pooling prediction
trials over all image set sizes (6 sizes × 441 trials per size = 2646 trials), we find
that using the F map yields a prediction that is at least as accurate as the CIO
map in 89.9% of trials, with significance p < 10−8 using the sign-test. Similarly,
F is at least as predictive as CIO+F in 90.3% of trials (p < 10−15), and CIO+F
is at least as predictive as CIO in 97.8% of trials (p < 10−21). All data points
in Fig. 3 are significantly above their corresponding chance levels, with the least
significant point corresponding to predictions using CIO with image set size 4:
this results in correct decoding in 33.6% of trials, compared to 25% for chance,
with null hypothesis that predictions are 25% correct being rejected at p < 10−4.

We also tested the prediction rates when fixations were pooled over pro-
gressively fewer subjects, instead of only nine as above. For this, we used only
the CIO+F map (although the face channel shows the highest decoding per-
formance we wanted to use a feature map that combines bottom-up features
to match common attention prediction methods), and binary image trials (one
decoy). One might imagine that pooling over fixation recordings from different
subjects would increase the signal to noise ratio, but in fact we find that predic-
tion performance only decreases (Fig. 4) with more subjects. There are several
possible explanations for this decrease. First, in computing the AUC, we record
a correct detection (“hit”) whenever a superthreshold saliency map cell over-
laps with at least one fixation, but discard information about multiple fixations
at that location (i.e., a cell is either occupied by a fixation or not). Thus, the
accuracy of the ROC AUC agreement between a saliency map and the fixa-
tions of multiple observers degrades with overlapping fixations. As the number
of overlapping fixations increases with observers, the reliability of our decoding

3 The sign-test tests against the null hypothesis that the distribution of correct decod-
ings is drawn from a binary distribution (50% for the choice of 1 of 2 images, 33%
in the case of 1 of 3 images, and so forth up to 3% in the case of 1 out of 32 images).
This is the most conservative estimate; additional assumptions on the distribution
would yield lower p-values.
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Fig. 3. Decoding performance with respect to image pool size. Decoding with scanpaths
pooled over 9 subjects, we varied the number of decoy images used between 1 and 31.
The larger the image set size, the more difficult the decoding. For each image set
size and scanpath we calculated the ROC over 3 feature maps: a face-channel which
is the output of the Viola and Jones face-detection algorithm with the given image
(F), a saliency map based on the color, orientation and intensity maps (CIO), and
a saliency map combining the face-channel and the color, orientation and intensity
maps (CIO+F). While all feature maps yielded a similar decoding performance for
the smaller pool size, the performance was least degraded for the F map. The face
feature map is higher than the CIO+F map and the two are higher than the CIO map.
All maps predict above chance level – shown in the bottom line as the multiplicative
inverse of the image set size.
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measure decreases. Indeed, other measures taking into account this phenomenon
then can outperform the present metric. Second, if different observers exhibit
distinct feature preferences (say, some prefer “color”, some prefer “orientation”,
etc.), the variability in the locations of such features across an image set would
contribute to the prediction in this set. It is possible that an image set is more
varied along the preferences of any one observer on average than along the pooled
preferences of multiple observers. This would make it more difficult to decode
from aggregate fixation sets.

The mean percentage of correct decoding for a single subject was 79% (chance
is 50%), (p < 10−288, sign test). For all combinations of 1 to 9 subjects used,
the prediction was above chance (with p values below p < 10−10). The lowest
prediction performance results from pooling over all nine subjects, with 66% hit
rate (still significantly above chance at 50%). Figure 4 shows the prediction for
each of the 9 subjects with the CIO+F feature map.

Finally, in order to test the relative contribution of each feature map to
the decoding, we used our new decoding correctness rate to compare feature
map types, from most discriminating to least. This was done by comparing
separately each of the 6 features maps’ average decoding performance for binary
trials with 9 individual subjects’ scanpaths. The results (Fig. 5) show that out
of the 6 feature maps the face channel has the highest performance (decoding
performance of 82%, p = 0) (as shown also in Fig. 3), and the intensity map has
the lowest performance (decoding performance: 65%, p < 10−104, sign test). All
values are significantly above chance (50%).
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Fig. 4. Performance of the 9 individual subjects. Upper panel. For the 441 scan-
paths/images, we computed the decoding performance of each individual subject. Bars
indicate the performance of each subject. Red bar on the right indicates the average
performance of all 9 subjects, with standard error bar. Average subject performance
was 79%, with the lowest decoding performance at 67% (subject 4), and the highest at
86% (subject 8). All values are significantly above chance (50%), with p values (sign
test) below 10−10. Lower panel. Performance of various combinations of the 9 sub-
jects. Scanpaths of 1, 2, . . . 9 subjects used to determine the performance differences by
using average scanpaths of multiple subjects. The performance of individual subjects
shown on the leftmost point is the average of each subjects’ performance as shown in
the upper panel. The rightmost point is the performance of all subjects combined. Each
subject pool was combined from a random choice of subjects out of the 9, reaching the
pool size.
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Fig. 5. Decoding performance based on feature maps used. We show the average de-
coding performance on binary trials using each of the 6 different feature maps, and
in each trial, the scanpath of only one individual subject. Thus, for instance, the per-
formance of the CIO+F map is exactly that shown in the average bar in Fig. 4. The
higher the performance the more useful the feature is in the decoding. The face channel
is the most important one for this dataset.
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4 Discussion

In this study, we investigated if scanpath data could be used to decode which
image an observer was viewing given only the scanpath and saliency maps. The
results were quite strong: in an experiment with 441 trials, each consisting of 32
images with scanpath data belonging to one unknown image in the set, in 73
trials (17%) the correct image was selected, a fraction much higher than chance
( 1
32 = 3%). This leads us to propose a new metric for quantifying the efficacy of

saliency maps based on image discriminability. For decoding we used the stan-
dard area under ROC curve measure with the fixations from 1 to 9 subjects on a
feature map generated by popular models for fixations and attention predictions.

The “decodability” of a dataset is a score given to the combined scan-
path/stimuli data for a given feature and as such can be used in various ways:
we here used the decodability in order to compare ideal combined subjects’ scan-
path pool and feature maps’ predictive power. Furthermore, we can imagine the
same method being used to cluster subjects according to features that pertain
specifically to them for a given dataset (i.e. if a particular set of subjects tends
to look more often on an area in the images than other [19], or tends to fixate on
a certain object/target more [20–22], this would result in a higher decoding per-
formance for that feature map), or as a measure of the relative amount of stimuli
needed to reach a certain level of decoding performance. Our data suggests that
clustering by such features to segregate between autistic and normal subjects
is perhaps possible based on differences in their looking at faces/objects [21].
However, our autism subjects fixations dataset is too small to reach significance.

In line with earlier results, ours show that saliency maps using bottom-up fea-
tures such as color, orientation, and intensity are relatively accurate predictors
of fixation [16, 23–26] with a performance above 70% (Fig. 5, similar to the esti-
mate in [15]). Adding the information from a face detector boosts performance
to over 80%, similar to the estimate in [17]. It is possible that incorporating more
complex, higher-level feature maps [27, 28] could further improve performance.

Some of the images we used were very similar to each other, and so the image
set could be considered challenging. Using this novel decoding metric on larger,
more diverse datasets could yield more striking distinctions between the feature
maps and their relative contributions to attentional allocation.

Notice that in the results, in particular in Fig. 3, we computed average pre-
dictive performance using fixations pooled over all 9 scanpaths recorded per
image. However, as we have shown that individual subjects’ fixations are more
predictive due to variability issues, these results should be even stronger than
those we have included above.

A possibility for subsequent work is the prediction not of particular images
from a set, but of image content. For example, is it possible to predict whether
or not an image contains a face, text, or other specific semantic content based
only on the scanpaths of subjects? The same kinds of stereotypical patterns we
used to predict images would be useful in this kind of experiment.

Finally, one can think of more sophisticated algorithms for predicting scan-
path/image pairs. For instance, one could use information about previously de-
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coded images for future iterations (perhaps by eliminating already decoded im-
ages from the pool, making harder decoding more feasible), or a softer ranking
algorithm (here we considered decoding correct only if the corresponding scan-
path was ranked the highest among 32 images; one could, however, compute
statistics from a soft “confusion matrix” containing all rankings so as to reduce
the noise from spuriously high similarity pairs).

We demonstrated a novel method for estimating the similarity between a
given set of scanpaths and images by measuring how well scanpaths could de-
code the images that corresponded to them. Our decoder ranked images accord-
ing to saliency map/fixation similarity, yielding the most similar image as its
prediction. While our decoder already yields high performance, there are more
sophisticated distance measures that might be more accurate, such as ones used
in electrophysiology [7].

Rating a saliency map relative to a scanpath based on its usability as a
decoder for the input stimulus represents a robust new measure of saliency map
efficacy, as it incorporates information about how dissimilar a map is from those
computed on other images. This novel method can also be used for assessing
images sets, for measuring the performance and attention allocation for a given
set, for comparing existing saliency map performance measures, and as a metric
for the evaluation of eye-tracking data against other psychophysical data.
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