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New Tools, New Rules: A Practical Guide to Effective and Responsible GenAI Use for 
Surveys and Experiments Research 

 

Generative Artificial Intelligence (GenAI) tools based on Large Language Models (LLMs) are 

quickly reshaping how researchers conduct surveys and experiments. From reviewing the 

literature and designing instruments, to administering studies, coding data, and interpreting 

results, these tools offer substantial opportunities to improve research productivity and advance 

methodology. Yet with this potential comes a critical challenge: researchers often use these 

systems without fully understanding how they work. This article aims to provide a practical 

guide for effective and responsible GenAI use in primary research. We begin by explaining how 

GenAI systems operate, highlighting the gap between their intuitive interfaces and the 

underlying model architectures. We then examine different use cases throughout the research 

process, both the opportunities and associated risks at each stage. Throughout our review, we 

provide flexible tips for best practice and rules for effective and responsible GenAI use, 

particularly in areas pertaining to ensuring the validity of GenAI coded responses. In doing so, 

we hope to help researchers integrate GenAI into their workflows in a transparent, rigorous, and 

ethically sound manner. Our accompanying website (questionableresearch.ai) provides 

supporting materials, including reproducible coding templates in R and SPSS and sample pre-

registrations. 
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1. Introduction 

Generative Artificial Intelligence (GenAI) systems based on Large Language Models 

(LLMs) are rapidly emerging as some of the most transformative technologies of our time. 

Trained on massive datasets and powered by advanced neural network architectures, these 

models generate coherent, contextually relevant responses in real-time, enabling applications 

ranging from sophisticated writing and analysis to complex coding and content creation. Their 

remarkable capabilities have driven widespread adoption across industries and academic 

disciplines (e.g., Arora, Chakravorty, and Nishimura, 2024; Rathje et al. 2024).  

The appeal of these systems is clear: they provide powerful tools for text generation, data 

analysis, and research support, offering the potential to enhance the research process. However, 

their growing adoption presents a challenge: those who use GenAI the most frequently often 

understand it the least (Tully, Longoni, and Appel, 2025). This gap in understanding is especially 

important because GenAI’s performance depends heavily on how it is used (see Blyte et al. 

2025; Tomaino, Cooke, and Hoover 2025). Choosing the right model, crafting effective prompts, 

and rigorously validating outputs can substantially improve the quality and reliability of its 

results. As these technologies continue to improve, and as researchers become more skilled in 

working with them, they will learn to better harness their potential and more carefully anticipate 

and mitigate their shortcomings. In other words, both uncritical enthusiasm and premature 

dismissal may miss the point: the utility of GenAI in research depends not only on what the 

system can do, but also on how well researchers understand and deploy it. 

The path toward effective and responsible use of GenAI in research, therefore, begins with a 

deeper understanding of how these systems operate. Behind the intuitive interfaces of tools like 

ChatGPT, Claude, and Gemini lie sophisticated architectures that incorporate retrieval 
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mechanisms, computational tools, and multimodal processors. Having a basic understanding of 

how these components interact is crucial, not necessarily for the sake of technical proficiency, 

but to harness GenAI’s full potential while mitigating its risks. 

This article provides a guide for researchers seeking to integrate GenAI into their 

experimental and survey research processes. Section 2 provides an overview of how GenAI 

models function, starting with LLMs as the foundation and expanding into the system-level 

enhancements that improve their capabilities. Section 3 builds on these principles to explore their 

implications for research. Focusing on primary data collection, we review how researchers can 

utilize GenAI at different stages of the research process, from reviewing literature and designing 

studies to administering surveys and analyzing data with an eye on validation. Section 4 provides 

generalized principles for the appropriate use of GenAI systems as the technology evolves. 

Finally, to support the responsible and effective adoption of GenAI in marketing 

research, we provide a range of resources on our companion website, 

www.questionableresearch.ai. These materials include downloadable codes for coding, pre-

registering and validating the coding procedures of GPT-coded responses using SPSS and R. By 

doing so, we aim to help researchers apply the principles with transparency and confidence.  

2. An Overview of LLMs and GenAI Systems 

Effectively harnessing any research tool requires a deep understanding of its underlying 

mechanisms. Just as a researcher must grasp the principles of statistical analysis before 

interpreting results generated by statistical software, understanding the core technology behind 

GenAI is essential for its responsible and effective use. 

Widely used GenAI systems like ChatGPT, Claude and Gemini consist of multiple 

interconnected components, yet at their core lies an LLM. These advanced neural networks 

http://www.questionableresearch.ai/
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power the system’s ability to generate text, retrieve information, and support computational 

analysis. Because LLMs serve as the foundation of these systems, this section begins by 

examining how LLMs function. Section 2.1 explores their training processes, neural 

architectures, and the mechanisms that enable them to generate contextually relevant text. 

Understanding how LLMs are developed also highlights their inherent constraints and 

limitations. Section 2.2 discusses these constraints, which not only shape the behavior of LLMs 

but also influence the broader GenAI systems in which they are embedded. With this LLM 

foundation in place, the discussion then broadens to consider the full GenAI ecosystem. Section 

2.3 examines how modern systems integrate additional components, such as input processing 

mechanisms, retrieval systems for real-time information access, and external tools for code 

execution and data analysis, to extend LLM functionality. This section provides a structured 

understanding of how the components of GenAI systems interact to support research. 

2.1. The Foundational Model: The LLM 

2.1.1 Data Gathering and Preparation. LLMs are built from large diverse datasets. While 

general-purpose LLMs like ChatGPT are trained on a corpus of diverse web and print texts, 

others have more specific training data (used in fields like law, medicine, or marketing). Once 

the corpus is assembled, it must be cleaned and organized so that the model can learn its patterns.  

The first key step in this process is tokenization, where text is broken down into smaller 

components known as tokens. These tokens can represent entire words, subwords, or characters, 

depending on the tokenization strategy. For example, the phrase “Limited-time offer on 

unbelievably good deals!” is tokenized by GPT-4 into the following sequence: 

[75577, 7394, 3085, 389, 40037, 89234, 1695, 12789, 0] 

which corresponds to the subword tokens: 

𝑡! = 𝐿𝑖𝑚𝑖𝑡𝑒𝑑, 𝑡" = −𝑡𝑖𝑚𝑒, 𝑡# = 𝑜𝑓𝑓𝑒𝑟, 𝑡$ = 𝑜𝑛, 𝑡% = 𝑢𝑛𝑏𝑒𝑙𝑖𝑒, 𝑡&	 = 𝑣𝑎𝑏𝑙𝑦, 𝑡(	 = 𝑔𝑜𝑜𝑑, 𝑡) = 𝑑𝑒𝑎𝑙𝑠, 𝑡* = !] 
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Common words like “Limited” and “time” appear as single tokens, while less frequent words or 

morphologically complex words such as “unbelievably” are split into subword tokens like 

“unbelie”, ”vably”. This subword tokenization helps the model handle rare words while still 

leveraging patterns learned from more frequent components.  

Once tokenized, each word or subword is represented by a numerical token ID drawn 

from the model’s vocabulary. To make these tokens usable for learning, the model maps each 

token ID to a high-dimensional embedding vector through a learned embedding matrix. This 

matrix can be thought of as a giant lookup table, where each row corresponds to a token ID and 

contains a vector that represents that token’s learned properties. When the model encounters 

token 75577 (“Limited”), it retrieves the corresponding vector 𝑥1	 = 𝐸[75557], where E is the 

embedding matrix. If the embedding size is 4,096, this means that the word “Limited” is now 

represented by a 4,096-dimensional vector containing real-valued numbers. Importantly, all 

tokens are embedded in the same continuous vector space, meaning each token is represented 

using the same dimensions, which is what will allow the model to compare, combine, and 

contextualize them. This embedding space is also dramatically smaller than the token ID space: 

for a vocabulary of over 100,000 tokens, the model compresses these sparse, discrete identifiers 

into dense vectors with thousands (not hundreds of thousands) of dimensions. 

Yet, at this stage, these vectors are simply arrays of real numbers. They are not 

interpretable or semantically meaningful. In fact, the embedding matrix is randomly initialized at 

the start of training, and each token’s vector (e.g., [0.014, -0.732, 0.085, ...]) reflects no 

knowledge about language or meaning. It is only through exposure to massive amounts of text, 

and the iterative refinement of the model’s parameters through training, which comes next, that 

these vectors come to encode useful linguistic patterns.  
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2.1.2 Model Training.  

The core objective during model training is for the LLM to learn how to use context to 

predict the next token. Context is essential to language understanding. For example, when 

encountering the word “model” in this article, most readers infer that it refers to a computational 

system (not a fashion figure) because of the surrounding words (and possibly familiarity with the 

authors). LLMs must learn to make such inferences automatically, without external knowledge 

or explicit definitions. Although each token is eventually represented by a high-dimensional 

embedding vector, as just discussed, these vectors begin as random numbers with no built-in 

structure. Through training, the model needs to learn to refine embeddings so that tokens with 

similar contextual patterns develop similar internal representations. 

The learning process unfolds through iterative steps of prediction and feedback. Once 

inputs have been converted to embedding vectors, the model passes them through a series of 

layers that help learn how the embeddings relate to one another in context. At the heart of this 

architecture is a mechanism called self-attention, which enables the model to assign dynamic 

weights to each token embedding based on its relevance to other token in the sequence. In 

essence, the model learns to decide which parts of a sentence should inform its interpretation.  

For example, in the phrase “Limited-time offer on unbelievably good deals!”, the model 

learns (through exposure to many similar examples), that “unbelievably” should strongly 

influence the interpretation of “good deals,” and amplify its intensity. Likewise, it learns that 

“Limited-time” contributes important contextual meaning to “offer,” by signaling urgency. These 

relationships are not provided in the training data; they are inferred through prediction error.  

As input data passes through these layers, the model generates contextualized hidden 

states: refined representations of each token that incorporate its meaning and function relative to 
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the surrounding text. Using these final hidden states of the last token in a sequence, the model 

produces a probability distribution over all possible next tokens. For example, given “Limited-

time offer on”, the model might assign high probabilities to plausible continuations: 

𝑃(𝑢𝑛𝑏𝑒𝑙𝑖𝑒𝑣𝑎𝑏𝑙𝑦) = 0.65, 𝑃(𝑎𝑚𝑎𝑧𝑖𝑛𝑔) = 0.20, 𝑃(𝑜𝑢𝑟) = 0.1, 𝑃(𝑔𝑜𝑜𝑑) = 0.05 

In this case, “unbelievably” receives the highest probability because it often appears in 

promotional language following phrases like “Limited-time offer.” If the model instead predicted 

a less likely word, such as “good”, it would compare its prediction to the actual next token in the 

training data and compute a prediction error.  

This error is then used to update all relevant parameters, including not only the layers of 

the deep neural architecture but also the embeddings themselves, through a process that is known 

as backpropagation. For example, if the model predicted “amazing” instead of “unbelievably,” it 

might slightly alter the embedding for unbelievably to make it more distinct in similar contexts, 

while also refining how the model interprets related modifiers like “amazing.” Crucially, this 

learning process does not occur in isolation. The model undergoes this cycle of prediction and 

correction across billions of training examples, drawn from a wide range of sources including 

books, websites, news articles, and more. Text is processed in mini-batches, and the model 

incrementally updates its parameters after each batch. Over time, these iterative updates allow 

the model to internalize complex aspects of language (e.g., syntax, associations, and nuances).  

As models scale, so too does their context window (i.e., the number of tokens they can 

process at once to infer any specific token). Earlier models like GPT-2 supported up to 1,024 

tokens per input sequence. GPT-3.5 increased this to 4,096, and GPT-4o now handles up to 

128,000 tokens. These larger context windows enhance the model’s ability to maintain coherence 

across paragraphs, understand long documents, and engage in more context-aware conversation. 
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2.1.3 Content Generation.  

Once an LLM is trained, it can generate new text in response to a prompt: a process 

known as inference. During inference, the model’s parameters remain fixed: there is no learning, 

no updates, and no feedback loop. The model draws entirely on what it learned during training to 

predict and generate one token at a time, sampling from a probability distribution over its 

vocabulary. A common misconception is that prompting changes the model. It does not. Prompts 

influence which knowledge the model draws on, but they do not alter how the model works. The 

model’s internal weights remain unchanged regardless of what the input might be. This fixed 

nature is what allows the same model to be deployed consistently across users and use cases. 

Consider the prompt: 

“Help me think of a good call-to-action statement for my marketing promotion: ‘Limited-
time offer on our new product’.” 

After tokenization, the input is converted into a sequence of tokens such as: 

[𝑡" = "ℎ𝑒𝑙𝑝", 𝑡# = "𝑚𝑒", 𝑡$ = "𝑡ℎ𝑖𝑛𝑘", 𝑡% = "𝑜𝑓", … , 𝑡"& = "𝑝𝑟𝑜𝑑𝑢𝑐𝑡"] 

Each token is embedded and passed through the model’s layers to generate a final hidden state. 

Using this internal representation, the model produces a probability distribution over all possible 

next tokens. For example, it might assign:  

𝑃(“𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟”) = 	0.40, 𝑃("𝑇𝑟𝑦”) 	= 	0.20, 𝑃(“𝑈𝑠𝑒”) 	= 	0.15,	𝑃(“𝐴𝑐𝑡”) = 	0.10, 𝑃("𝐽𝑢𝑚𝑝”) 	=

	0.08, 𝑃(“𝐸𝑥𝑝𝑙𝑜𝑟𝑒”) 	= 	0.07 

This output is not a single prediction, but a distribution. To generate text, the model must apply a 

choice function that converts this distribution into a specific token. At the most extreme the 

model may simply select the token with the highest probability (“Consider”). A more common 

approach used by LLMs is to sample from the full or a subset of the probability distribution. 
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 There are several ways to adjust how sampling works, depending on the desired output. 

The temperature setting controls how focused or varied the model’s responses are: lower values 

(e.g., 0.2) make the model more predictable by emphasizing high-probability tokens, while 

higher values (e.g., 1.0+) make responses more diverse by giving lower-probability tokens a 

better chance. Additionally, one can limit the set of tokens the model samples from using top-k 

sampling (restricting choices to the top k most likely tokens) or top-p (nucleus) sampling, which 

selects from the smallest set of tokens whose combined probability exceeds a threshold p (e.g., 

80%). These settings are often adjustable via chat interfaces or API calls. 

 Once the next token has been selected the updated sequence is then reprocessed, 

generating a new hidden state, and the model predicts the next token in the same way. This 

continues iteratively (predict distribution, select token, append to input sequence) until the model 

produces a special stopping token or hits a predefined token limit. The final output might unfold: 

[𝑡{()"} 	= 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟, 𝑡()# 	= 𝑢𝑠𝑖𝑛𝑔, 𝑡()# ∶, 𝑡()$	𝐿𝑖𝑚𝑖𝑡𝑒𝑑,… , 𝑡()+ 	20!] 

Which is rendered to the user as: “Consider using: ‘Limited-time offer on our new product: Buy 

now and save 20%!’” At each step, the model generates the next token based on the prompt and 

all previously generated tokens, ensuring local coherence and contextual relevance. However, it 

does not retain memory of previous prompts or outputs beyond the current session. Each 

generation session is stateless: the model starts fresh unless content is provided in the prompt. 

2.2 Capability Constraints of LLMs 

Despite their impressive capabilities, LLMs possess several inherent limitations that 

shape their performance, stemming directly from how they are built and trained. These 

constraints are summarized in Table 1. First, LLMs’ knowledge is static, drawn from 

predetermined training datasets that may be outdated or incomplete; this is a consequence of 
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being trained on specific datasets at a particular point in time (Section 2.1.1) and their core 

parameters remaining fixed after this training period (Section 2.1.3). Importantly, LLMs do not 

retrieve data in the traditional sense like a database. Instead, they reconstruct information by 

synthesizing complex patterns and statistical relationships, a core aspect of their training process 

where they learn to predict subsequent text based on context (Section 2.1.2). Because LLMs 

generate outputs based on this pattern-based reconstruction, they prioritize linguistic plausibility 

rather than guaranteed factual accuracy, and can produce convincing but incorrect statements. 

This fundamental characteristic, combined with their reliance on a finite context window to 

process information (Section 2.1.2), means they cannot directly recall or perfectly retrieve past 

inputs beyond the current context window. This limits their usefulness for summarizing lengthy 

materials or conducting iterative tasks like multi-session interviews. Their responses may also 

vary with identical prompts due to the probabilistic nature of their text generation process, where 

they select from a distribution of possible next tokens (Section 2.1.3), posing challenges for 

reproducibility. Finally, given that they are centered on understanding and generating language, 

they inherently lack the ability to run code or perform computations independently.  

2.3 Accessing and Expanding the Capabilities of LLMs in GenAI Systems 

Researchers typically interact with LLMs through broader GenAI systems, which 

integrate additional components such as user interfaces, tools for data input (e.g., document 

uploads) or code execution environments with a core LLM “engine.” Researchers can access 

isolated LLMs or broader GenAI systems in multiple ways, each with different trade-offs in 

terms of computational requirements, flexibility, and reproducibility. Researchers must consider 

both the access method and the system’s additional capabilities when selecting what GenAI to 

use. We provide a summary of the core considerations for researchers in Table 2. 
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Table 1 – Researcher-relevant Implications of How LLMs Work 
 

LLM 
Constraint 

Definition Example of Impact on Researchers 

Predetermined 
Corpora 

LLMs are trained on a fixed dataset; 
they cannot update their knowledge 
after training. 

A researcher may miss relevant information not 
present in the training corpora because the model 
does not contain all the relevant information. 

No Retrieval 
Capability 

LLMs do not store training data but 
instead high-dimensional vector 
representations. 

When summarizing a study, the model may omit or 
misrepresent findings and have an inability to 
retrieve the original text. 

Text-Only 
Inputs and 
Outputs 

LLMs process and generate text 
exclusively, without native support for 
multimodal inputs or outputs. 

A researcher analyzing survey responses with visual 
stimuli cannot directly process images or tables 
without additional tools. 

Limited Input 
and Output Size 

LLMs have a fixed token limit for 
processing inputs, and thus sometimes 
truncate text. 

When analyzing long research papers, key sections 
may be omitted from analyses without warning or 
explanation. 

Lack of 
Persistent 
Memory 

LLMs process prompts in each session 
independently without retaining 
memory beyond the current context. 

A researcher conducting an iterative interview may 
find that the model forgets prior responses unless 
they are re-included in the prompt. 

Optimized for 
Plausibility 

LLMs prioritize generating fluent, 
coherent text rather. 

A literature summary may contain fabricated 
citations or misinterpreted conclusions. 

Probabilistic 
Output 

LLMs generate text by sampling from 
probability distributions, leading to 
variations across repeated prompts. 

When using LLMs to code or label textual 
information a researcher may receive different 
classifications each time they run the model 

Inability to Run 
Code 

LLMs can generate code but generally 
cannot execute or verify it.  

A researcher asking the model for statistical analysis 
may receive a plausible-looking but incorrect result. 

 
Table 2: Comparison of GenAI Access Methods 

Access 
Method 

Best For Available 
Capabilities 

Limitations Data Privacy 
Considerations 

Web-Based 
Chat 
Interfaces  
 

Literature review, 
document analysis, 
summarization, 
exploratory research, 
Writing assistance 

Document uploads, 
web search, image 
/audio inputs, and 
real-time code 
execution  

Less reproducible and 
scalable than API-based 
access, limited integration 
with statistical package 

Inputs may be 
stored by 
providers unless 
using enterprise 
accounts.  

API-Based 
Access  
 

Repeated tasks for many 
text units such as labeling 
tasks of open text 
responses,  
Reproducible workbooks  

Allows large-scale 
text processing, 
integration into 
research codes, and 
fine-tuning. 

No web search, limited 
input types, interactive 
chat UI, or external 
outputs. Requires (some) 
programming knowledge. 

Researchers must 
verify provider 
policies; some API 
calls can be used 
for model training.  

Local Model 
Software  
 

Security-sensitive 
research, qualitative 
coding of sensitive 
human subject data 
adapting the model. 

Full control over 
data, ability to fine-
tune, does not send 
data to external 
servers 

Requires computational 
resources, lacks built-in 
web search, uploads, or 
multimodality 

Full data privacy. 
Best option for 
confidential or 
proprietary 
research data 

2.3.1 Accessing LLM-powered GenAI systems via Web-based Chat Interfaces 

Arguably the most common way researchers interact with LLMs is through web-based 

chat interfaces, such as ChatGPT (OpenAI), Claude (Anthropic), Gemini (Google), and 
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DeepSeek Chat. These platforms allow users to engage with GenAI in a conversational format, 

making them particularly appealing for tasks that require iterative refinement, brainstorming, 

document analysis, or exploratory research. Chat interfaces often incorporate external services 

such as retrieval, document processing, code environments, and multimodal capabilities for 

inputting and generating images, audio, or video. Figure 1 illustrates these components. 

Figure 1 – A Sample (Simplified) GenAI System’s Architecture 

  

One of the major enhancements in a GenAI system versus a core LLM is input 

processing, which allows users to provide more complex inputs beyond simple text prompts. 

This is particularly useful in research applications, where users may need to upload documents, 

datasets, or prior study results. Since LLMs process only linear sequences of text, they cannot 

natively interpret structured files such as PDFs, or spreadsheets. To enable document 

understanding, GenAI systems often include a Document Processor, which extracts, segments, 

and embeds uploaded content into a format the LLM can understand. This process is necessary 
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because when a user uploads a document, the system doesn’t retrain the model on its contents. 

Instead, the document is parsed and relevant parts are added to the user’s query as additional 

context for the model to consider. However, since LLMs can only process a limited amount of 

information at once, the system must selectively extract and prioritize the most relevant sections 

of the document to include in the prompt and ensure it fits within the model’s maximum input 

size. Moreover, many GenAI systems can incorporate Multimodal Inputs and Outputs. While an 

LLM alone cannot interpret non-text data, a multimodal system converts images into 

embeddings, allowing the AI to describe, categorize, or create non-text elements.  

Once the input is processed, the LLM generates responses based on the information 

provided. However, unlike standalone LLMs, a GenAI system can enhance this step by 

incorporating external knowledge sources through retrieval mechanisms. Retrieval-Augmented 

Generation (RAG), for instance, allows the system to fetch real-time information from 

proprietary research databases, academic articles, or external web sources. In doing so, a GenAI 

system reduces, but does not eliminate, the risk of outdated or incorrect responses. Importantly, 

this is not training the LLM, which remains static, but instead expands the current context 

window to temporarily include additional information. In addition to retrieval, modern GenAI 

systems improve LLMs’ analytical capabilities by integrating external tools. For example, a 

Code Environment can enable the LLM to generate Python syntax, submit it to the code 

environment, wait for the code environment to return the results, and add the outputs of the code 

environment back to the context to generate a user response. By doing so, the GenAI runs codes.  

A key challenge when using web-based chat interfaces is that it is not always obvious 

which LLM powers the system, nor what that means for research applications. Unlike API-based 

or local installations, where researchers explicitly choose a model, chat-based interfaces often 
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obscure the underlying model, its update frequency, and its full range of capabilities. This can 

make it difficult for researchers to determine which GenAI system best fits their research needs, 

especially as the choice of model and access method directly influences supported context 

window size, multimodal processing, customization, and data security (see Table 1).  

2.3.2 Accessing LLMs via API.   

While web-based chat interfaces offer an intuitive and readily accessible entry point for 

interacting with GenAI systems, researchers with more technical needs or requirements for 

integration into larger workflows may benefit from the structured capabilities of API-based 

access. With API-based access, users send queries directly to externally hosted models using 

custom code, enabling the incorporation of LLM functionalities into applications. This akin to 

the difference between batch versus real-time processing in code execution. Major LLM 

providers such as OpenAI, or Anthropic offer API-based access, charge based on token usage. 

 To illustrate how a researcher can access an LLM via the API, consider the sample R 

code provided in Table 3 to submit our sample prompt from Section 2.1.3 to OpenAI’s GPT-4o 

via API. After loading two libraries, the researcher sets an API key (i.e., a unique identifier that 

allows OpenAI to know who to charge) and specifies the API endpoint (i.e., where the researcher 

needs to send their request to have a prompt response). After setting a few key parameters (i.e., 

the model to use, the prompt, the maximum length of content to generate, and the model’s 

temperature), the code sends the request to the API and collects the response.  

API-based access is particularly valuable for automating large-scale text processing, 

integrating AI into research practices, and ensuring replicable workflows. For example, using 

APIs in programming environments like Python or R allows users to design custom scripts to 
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extract, code, or summarize textual data. This makes APIs a powerful tool for automated content 

analysis, coding large datasets, and generating structured outputs.  

Table 3 – Simple R Code to Send a Request to the OpenAI API  
library(httr) # necessary libraries 
library(jsonlite) # necessary libraries 
 
# 1. Set an API key to identify yourself with OpenAI 
api_key <- "YOUR_API_KEY_HERE" 
# 2. Set the API endpoint – where we reach the OpenAI’s API 
url <- "https://api.openai.com/v1/chat/completions" 
# 3. Prepare our identification to OpenAI 
headers <- add_headers("Content-Type" = "application/json", "Authorization" = paste("Bearer", api_key)) 
# 4. Define the request for the LLM 
data <- list(model = "gpt-4o", messages = list(list(role = "user", content = "Help me think of a good call-to-action 
statement for my marketing promotion: ‘Limited-time offer on our new product")), max_tokens = 1000, 
temperature = 0.7) 
# 5. Send the request to the LLM and collect its response 
response <- POST(url, headers, body = toJSON(data, auto_unbox = TRUE)) 

One important aspect is that API requests are stateless: each prompt is processed 

independently without retaining memory of past interactions. As a result, for iterative tasks, 

researchers need to explicitly include all necessary context in each request. In other cases, this 

feature may be beneficial like when analyzing open-text responses from a survey where one 

wishes to treat each response independently. Moreover, LLM API calls generally do not support 

features like document uploads, web search, or real-time code execution. That means that 

researchers need to ensure that the submitted prompts do not send too much information in a 

single prompt (i.e., exceed the context window limits). Finally, the information sent by API calls 

may be logged by the service provider, so it is important to review data retention policies 

carefully, especially when handling confidential or proprietary data. 

2.3.3 Local Model Installation: Running LLMs Privately.  

For researchers who need maximum control and privacy, local model installations offer an 

effective solution despite their higher technical demands. A local LLM is created by 

downloading the model and its associated weights, similar to how you might download a 
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statistical software to your local machine. While managing these downloads and configurations 

can be complex for the average researcher, software like Ollama simplifies the process by 

providing an interface to select, download, and run models locally. 

Local models offer significant advantages for researchers, particularly regarding security, 

customization, and offline functionality. Since all computations occur on a researcher’s own 

machine or an institutional server, data remains private. This makes local models ideal for 

handling sensitive datasets such as proprietary industry data, confidential human-subject 

responses, or unpublished research findings. Additionally, locally installed models can be fine-

tuned on domain-specific data, enhancing performance on specialized research tasks. Offline 

functionality is another key benefit, as it allows consistent access without concerns about internet 

connectivity, server downtime, or data transmission risks. 

However, running local models also comes with notable limitations. One major drawback 

is the computational cost; high-performance language models require significant GPU resources, 

which can be challenging for individual researchers or small teams. While smaller versions of 

models, such as LLaMA 3 and Mistral 7B, can operate on personal computers, larger models 

often demand cloud-based infrastructure with high-performance hardware. Additionally, local 

models typically lack built-in document processing and web search capabilities, meaning 

researchers must manually integrate additional tools to extend the model’s functionality. Despite 

these challenges, local models remain a strong choice for those who prioritize privacy, fine-

tuning capabilities, and complete control over their AI systems. 

3. Potential Uses of GenAI Systems Throughout the Primary Data Research Process 

GenAI systems have the potential to significantly enhance the research process. Their 

inherent versatility allows them to summarize vast bodies of literature, generate survey measures, 
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refine experimental manipulations, conduct interviews, and assist with data analysis. However, 

alongside these benefits, these systems also introduce significant risks. Without a clear 

understanding of how they function, researchers may inadvertently rely on them in ways that 

compromise scientific rigor, introduce biases, or distort findings. Fortunately, a deeper 

understanding of how these models work (how they are trained, their constraints, and the broader 

system-level enhancements) can help researchers use GenAI more effectively and responsibly. 

Building on the foundation laid out in Section 2, this section examines the implications of GenAI 

technologies across different stages of the research process, from literature review and study 

design to data collection, analysis, and interpretation. Rather than offering an exhaustive list of 

possible applications, our goal is to provide a roadmap for critically assessing the risks and 

benefits of using GenAI at each stage of research. 

To illustrate these points, we refer throughout to a single running example based on 

Grewal et al. (2019), which examined how consumers devalue unattractive but edible produce 

due to the negative self-perceptions associated with its consumption. 

3.1 Stage 1: Interacting with the Literature 

A comprehensive literature review is a crucial part of any research paper, enabling 

scholars to learn from and integrate relevant existing knowledge. GenAI systems, leveraging 

LLMs, can help summarize information, highlight connections, and navigate extensive bodies of 

academic work. By drawing on their training data and any integrated retrieval mechanisms such 

as retrieval-augmented generation (RAG) or document upload support, these systems can surface 

articles, themes, and patterns that might not be immediately evident through traditional searches.  

However, these strengths come with a critical limitation: GenAI systems are not 

optimized for factual precision. Because LLMs generate responses based on patterns learned 
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from training data rather than direct retrieval of verified information, they can produce 

summaries that are fluent but factually inaccurate or even fabricate citations altogether. This 

accuracy gap is further compounded by the fact that LLMs do not have real-time access to 

academic databases or proprietary sources unless explicitly integrated. As a result, while GenAI 

can accelerate early-stage exploration and thematic synthesis, its outputs in this domain require 

especially careful verification and methodological safeguards. 

3.1.1 Exploring the Literature 

There are numerous ways researchers can use GenAI to explore literature, from 

conducting broad literature syntheses to extracting key themes and summarizing findings 

relevant to a given research question. A researcher studying the impact of food product 

attractiveness on consumer preferences, for example, might start by asking a GenAI chatbot to 

“identify relevant academic literature about consumers’ perceptions of unattractive food 

products.” Through iterative interactions, the researcher can request a summary of key findings, 

filter articles by discipline, or ask for an extraction of recurring theoretical frameworks.  

However, as highlighted in Section 2.2, LLMs have inherent constraints which can 

impact the accuracy and completeness of their output. To illustrate, we used OpenAI’s chatbot 

without access to web search (i.e., o1). Specifically, we asked: “Identify relevant academic 

literature about consumers’ perceptions of unattractive food products.” Among the papers 

identified, one was listed as: 

de Hooge, I. E., van Dulm, E., & van Trijp, H. C. M. (2018). “Cosmetic Specifications in 
the Food Waste Issue: Supply Chain Considerations and Consumer Preferences.” Food 
Quality and Preference, 56, 126-139. 

While the research exists, the model provided the wrong journal. The article was 

published in Journal of Cleaner Production (Volume 193, issue 10, pages 698-709). This 

hallucination is entirely consistent with the model’s property of generating probable responses, 
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even if at times incorrect. The authors and topic are associated with academic research in food 

waste and consumer preferences and the Food Quality and Preference is a well-known journal in 

this field. However, the chatbot lacked access to a database or validation mechanism to confirm 

the exact journal, volume, and issue of the reference, and ultimately generated the most probable 

(though incorrect) combination of these elements.  

These risks can be mitigated, by using GenAI systems with retrieval-augmented 

generation (RAG) which integrate external search. For example, when we repeated the same 

query with web search enabled (this time with GPT4o), we retrieved the correct citation for the 

de Hooge et al. article after ChatGPT searched the web. Unfortunately, though RAG reduces the 

likelihood of purely probabilistic hallucinations, it does not fully eliminate accuracy issues. In 

this case, when asked for a summary of the article, the system provided two links, neither of 

which led to the correct publication in the Journal of Cleaner Production. Instead, one linked to 

a similar de Hooge et al. (2017) paper in Food Quality and Preference, while the other directed 

to a Vogue Business summary of that article. Though RAG does not guarantee accuracy, it can 

help researchers to trace the origins of information, helping to catch and correct some errors. 

3.1.2 Analyzing a Single Article 

One of the strengths of LLMs is their ability to contextualize any given text. As such, it is 

sensible that many researchers would use LLMs to interact with a specific research article, such 

as summarizing the main contributions of an article, extracting measurement scales, outlining 

experimental designs, or distilling findings into structured formats like tables for easier 

comparison across studies. These capabilities could save considerable time and effort. However, 

relying on LLMs alone for these tasks comes with limitations. Because LLMs are trained on 

predetermined corpora, they may not have encountered the specific article in question during 
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training. And even if they have, the conversion of tokens to embedding space during model 

training means the system cannot retrieve the article verbatim or with guaranteed fidelity. As a 

result, attempts to summarize or extract details from a particular article using only the LLM may 

yield incomplete or inaccurate outputs. GenAI systems that support RAG, however, can address 

this issue by enabling document uploads. By complementing and incorporating the full text of a 

specific article into the model’s active context window, these systems allow researchers to 

ground the LLM’s output in the content of the article and can reduce hallucinations. 

For example, consider a researcher interested in creating a table summarizing studies 

from Grewal et al. (2019). Instead of querying a LLM to summarize that research, we uploaded 

the full article into OpenAI’s ChatGPT (model GPT-4o), and requested GenAI to create a table 

summarizing the studies in the paper: the model extracted manipulations, sample characteristics, 

dependent variables, and moderators/mediators, producing Table 4.1 The model produced a 

useful and well-structured table, which was far more accurate than the table produced without 

directly uploading the full text, and yet the accuracy of the results is still not guaranteed. For 

example, for Study 2, the diagnostic value of choice was listed as both the independent variable 

and the moderator. In reality, the independent variable was produce attractiveness, while the 

diagnostic value of choice was a moderator. Additionally, the model failed to list negative self-

perceptions as a mediator, even though it was measured and assessed in the study. These 

inaccuracies illustrate how, despite improvements through document processing and structured 

chunking, GenAI systems do not always extract with perfect fidelity.2  

 
1 The exact prompt was “I am a researcher interested in understanding this academic article. I would like to create a 
summary table of studies, in which, for each study in the article, you identify: The independent variable (be precise 
as to whether it is measured or manipulated and how), The dependent variable, Any moderator or mediator, The 
sample source and context, The main finding.” 
2 It is important to note that the accuracy of the table is substantially superior to that of relying exclusively on an 
LLM to generate the same table. We provide one, for the sake of illustration, in Web Appendix A.  
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Table 4 – Sample Summary of Studies: Grewal et al. (2019) using GPT4o and RAG 

Study Independent Variable Dependent 
Variable  

Moderator/Me
diator 

Sample Source & 
Context 

Main Finding 

Study 
1 

Produce attractiveness 
(manipulated; 
unattractive vs. 
attractive images) 

Willingness 
to pay 
(WTP) for 
produce 

Mediator: 
Negative self-
perceptions 

MTurk participants (n = 
304) imagining a 
grocery shopping 
scenario 

Participants valued 
unattractive produce less, 
mediated by negative self-
perceptions. 

Study 
2 

Diagnostic value of 
choice (manipulated: 
self-diagnostic vs. non-
self-diagnostic) 

WTP for 
unattractive 
produce 

Moderator: 
Diagnostic value 
of choice 

Undergraduate students 
(n = 301) in a simulated 
shopping task 

When choices were not 
self-diagnostic, the 
devaluation of unattractive 
produce was mitigated. 

Study 
3 

Self-esteem boosting 
task (manipulated; high 
vs. control) 

WTP for 
unattractive 
produce 

Mediator: 
Negative self-
perceptions 

Undergraduate students 
(n = 191) in a lab-based 
task with real monetary 
stakes 

Boosting self-esteem 
eliminated the difference in 
WTP between attractive 
and unattractive produce. 

Study 
4A 

In-store ad messaging 
(manipulated; self-
esteem boosting vs. 
control) 

Real choice 
of 
unattractive 
produce 

Mediator: 
Negative self-
perceptions 

Field study in a 
Swedish grocery store 
(n = 130 shoppers) 

Self-esteem boosting ads 
significantly increased the 
choice of unattractive 
apples. 

Study 
4B 

In-store ad messaging 
(manipulated; self-
esteem boosting vs. 
control) 

Real choice 
of 
unattractive 
produce 

Mediator: 
Negative self-
perceptions 

MTurk participants (n = 
201) in a simulated 
retail choice 

Replicated Study 4A 
findings in a controlled 
environment; negative self-
perceptions mediated the 
effect. 

For tasks involving literature review, whether for a specific paper or an entire literature it 

is recommended to go beyond the use of LLMs and leverage the RAG component of the GenAI 

system, whether through access to the web, databases of academic research or individual paper 

upload to increase accuracy. However, given the factual nature of the task of literature reviews, it 

is still crucial to verify the accuracy of the information retrieved or generated.  

3.1.3 Literature review best practices  

Researchers using GenAI for literature review should tailor their approach to the task at 

hand. When the goal is to educate yourself about a new topic and explore existing knowledge 

(but not necessarily specific papers), interacting with an LLM alone can be a productive way to 

surface patterns, frameworks, and ideas. Because these models are trained on massive text 

corpora and excel at recognizing complex patterns (Section 2.1), they can quickly summarize 
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relevant knowledge and make it more accessible, even across different disciplines. This makes 

them ideal for early-stage ideation and learning. 

However, LLMs are not optimized for precision (Section 2.2). When accuracy is 

important (e.g., citing prior work, identifying whether your research question has already been 

studied, or determining which papers to include in a meta-analysis), responses must be treated 

with caution. Researchers should rely on retrieval-augmented GenAI (RAG) systems that support 

real-time web access and provide sources link, or on document upload workflows that allow 

GenAI systems to summarize and extract information. Uploading relevant papers ground the 

system’s output in the actual content of the article rather than in secondary summaries, abstracts, 

or outdated versions of the research. These features can help minimize–though they cannot 

outright eliminate–the risk of hallucinations. 

Researchers should also be mindful of the limitations of GenAI’s knowledge constraints. 

As discussed in Section 2.2, LLMs have fixed predetermined knowledge cutoffs, which means 

they may not reflect the latest findings in fast-moving domains, and they may be unable to access 

content hidden behind paywalls. While uploading academic papers into GenAI systems can help 

with these knowledge constraints, data handling concerns must be considered. Unless researchers 

are using a GenAI system that guarantees user data will not be used for model training (e.g., 

local LLM or enterprise-level), they should avoid uploading copyrighted texts or proprietary 

content (see section 2.3 and Table 2).  

We also recommend that researchers use iterative refinement practices when conducting 

literature review tasks. For example, when working with long academic articles, the system’s 

ability to accurately extract content may deteriorate over the course of a long session due to 
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context window limitations (see Section 2.2). To mitigate this, it is useful to periodically re-

upload the document or split it into sections to refresh the model’s context.  

3.2 Stage 2: Research Design 

In the research design stages, researchers develop studies, including measurement 

instruments and experimental manipulations, to test their hypotheses. GenAI systems can offer 

valuable assistance in these tasks by recognizing linguistic patterns, adapting existing content, 

and generating new text in a contextually appropriate manner. These capabilities enable 

researchers to identify relevant scales, modify items for new contexts, and generate realistic 

stimuli for experimental conditions. However, as with literature exploration, these capabilities 

come with important limitations. Unlike human researchers, GenAI does not engage in deductive 

reasoning or theoretical interpretation. Instead, it generates content based on statistical 

associations between words in its training data or retrieved sources. This can introduce risks such 

as construct validity issues in measurement and confounding variables in experimental 

manipulations. This section explores how GenAI can assist in study development while 

emphasizing best practices for maintaining rigor in research design. 

3.2.1 Developing measurements 

Operationalizing the measurement of a construct is a critical step in any research study 

involving primary data (Churchill 1979). GenAI systems can provide significant advantages, 

such as helping researchers quickly identify existing measurements by surveying the literature or 

extract scale items from articles or their web appendices. Yet, one of the most promising uses is 

the ability of GenAI to quickly adapt scales to new contexts or to generate new scale items. 

These adaptation tasks align with LLM’s strengths: the models can easily produce variations on a 

given item by substituting words, adjusting tenses, and incorporating new contextual details to 
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transform, for example, from self-focused items to other-focused evaluations, or state-based 

measurements to trait-based ones. As such, it should be effective to generate promising items. 

Consider a study on consumer perceptions of produce attractiveness. A researcher 

seeking to measure the visual attractiveness of produce may not find a validated psychometric 

instrument tailored to this specific construct. In this case, they might use a web-based GenAI 

chat to generate candidate scale items by providing a simple instruction such as: “suggest survey 

items to measure produce visual attractiveness.” The system might generate Likert-scale items 

such as: “This produce looks visually appealing to me,” “The color of this produce is vibrant and 

attractive,” “This produce appears fresh and high-quality,” and “This produce is something I 

would feel proud to display or serve to others.” These items have clear linguistic coherence and 

contextual relevance, showing just how efficient GenAI can be as a tool for generating a large set 

of potential items. However, items produced are not necessarily free of measurement error.  

In the example instruction above, we did not define what constitutes visual attractiveness 

(defined in Grewal et al as the degree of natural aesthetic deviation from a prototypical category 

exemplar, specifically focusing on natural variation in shape or appearance that arises during 

growth, and excluding deviations due to damage or spoilage). Without this context, GenAI relies 

entirely on its attention mechanism to determine relevance (see Section 2.1.2). The model 

prioritizes terms that frequently co-occur with “produce,” “visual,” or “attractiveness.” As such, 

the model might interpret “produce” broadly, encompassing any attributes associated with fruits 

and vegetables, such as freshness, quality, or appeal. Specifically, “attractiveness” may reflect 

general consumer appeal rather than specific aesthetic properties implied in “visual 

attractiveness.” As a result, items like “The produce appears fresh and high-quality” creates a 

departure in measurement from the intended construct.  



 
26 

Even when the generated items seem reasonable, they may introduce systematic errors. 

The initial set of items includes: 1) Presumptive wording (“This produce is vibrant and 

attractive”), which assumes vibrancy is universally perceived as attractive, 2) Double-barreled 

phrasing (“This produce looks fresh and high-quality”), which combines two distinct attributes 

into a single statement, and 3) Overlapping constructs (“This produce is something I would feel 

proud to display or serve to others”), which introduced an element of social desirability. 

One way to mitigate these limitations is to recommend the inclusion of operational 

definitions and context when engaging in item generation, and the use of iterative refinement to 

mitigate such issues when using GenAI for measurement development. For example, the 

researcher could opt to generate items while including, in the prompt, the operational definition 

of visual attractiveness provided in the text of Grewal et al. (2019).3 In doing so, we find that the 

model generated items that better capture visual attractiveness as intended. For example, it 

included items such as: “This produce closely resembles what I expect an ideal [produce type] to 

look like,” “There is little to no natural variation in the appearance of this produce compared to 

what I would consider a standard example,” and “The physical appearance of this produce is 

consistent with my mental image of a perfect [produce type].”  

However, one may note that even including this operational context did not eliminate 

systematic measurement error entirely. For example, double-barreled items were still produced, 

and some recommended semantic differential items with endpoints that were not opposites (e.g., 

 
3 We asked for revision based on: "What if we conceptualize produce attractiveness in terms of the degree of natural 
aesthetic deviation from the prototypical category exemplar of physical appearance. As such, unattractive produce is 
defined as having significant natural variation from prototypicality, whereas attractive produce is defined as having 
limited (if any) variation from prototypicality. Given this conceptualization, we limit our focus to the natural 
variation in physical appearance that arises during a product’s growth (e.g., an apple’s odd shape while growing on a 
tree). This excludes deviations in appearance due to damage, disease, or other sources of external aesthetic 
divergence that may rationally raise safety or health concerns (e.g., due to pests or consumer mishandling)."  
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unbalanced–symmetric, unconventional–prototypical). To improve upon items, iterative 

refinement through asking for revisions based on definitions and examples of potential sources 

of measurement error (e.g., saying that some items are double-barreled) is useful.  

3.2.2 Developing manipulations 

GenAI offers researchers a powerful tool for developing experimental manipulations, 

allowing for the creation of context-rich stimuli that enhance ecological validity. By leveraging 

LLMs for text-based manipulations and GenAI systems for multimodal AI for visual stimuli, 

researchers can generate immersive scenarios and images that more closely resemble real-world 

experiences. However, using GenAI for experimental manipulations introduces methodological 

challenges. Just as poorly defined measurement items can lead to construct validity issues in 

survey research, inadequately controlled manipulations can create confounds that undermine 

causal inference. Because GenAI models generate texts based on linguistic plausibility, they can 

introduce systematic differences between experimental conditions beyond the intended 

manipulation. To illustrate, we prompted GPT-4o to generate vignettes for a study manipulating 

the visual attractiveness of an apple.4 The model produced the following descriptions: 

Visually Attractive Condition: "Imagine you are shopping for produce at a grocery store. As you walk 
through the vibrant produce section, your eyes are drawn to a bin of apples. Among them, you notice a 
particular apple that catches your attention. This apple has a flawless, shiny red surface that gleams under 
the store lights, as if it has just been polished. It is perfectly round and without any blemishes or bruises. 
The bright color and smooth texture make it look fresh, juicy, and irresistible. You pick it up, feeling its 
firm, cool surface in your hand." 
 
Visually Unattractive Condition: “Imagine you are shopping for produce at a grocery store. As you walk 
through the produce section, you come across a bin of apples. Among them, you notice a particular apple 
that stands out for the wrong reasons. This apple has a dull, uneven surface with patches of discoloration 
and spots of brown. It is misshapen, with a slightly lumpy appearance, and you can see small blemishes and 
bruises scattered across its skin. The rough texture and faded color make it look less appealing and not as 
fresh. You pick it up, feeling its uneven, slightly soft surface in your hand." 
 

 
4 The exact prompt was: “I want to run an experiment where I tell people to imagine shopping for produce at a 
grocery store. I want everyone to imagine finding an apple. Participants in the visually attractive condition should 
imagine a visually attractive apple and participants in the visually unattractive condition should imagine a visually 
unattractive apple. Can you help me create the vignettes for these two conditions?”        
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While these two vignettes are largely parallel, one can notice that the visually attractive 

condition uses “flawless,” “gleams,” and “irresistible,” while the unattractive condition employs 

less vivid and explicitly negative terms such as “blemishes,” “bruises,” and “not as fresh.” This 

effectively conflates visual attractiveness with freshness and perishability.  

One of the most valuable capabilities of modern GenAI systems is their ability to 

integrate LLMs with external multimodal tools, enabling researchers to generate both text-based 

and visual stimuli. However, in the absence of precise definitions, GenAI systems may introduce 

visual confounds, just as they do in text-based manipulations (Sisodia, Burnap, and Kumar 

2024). To illustrate, we used ChatGPT GPT-4o, in which the core LLM can access an external 

DALL-E model to generate images. We prompted the model to generate a visually attractive 

apple and a visually unattractive apple in two separate images. It created the images in the first 

row of Table 5. The issue with this initial attempt was that the LLM associated visual 

unattractiveness with spoilage, damage, and discoloration, rather than shape irregularity alone. 

While adding the context from footnote 3 does improve the results in terms of avoiding showing 

damage (see row 2), it led to an unrealistic unattractive apple.  

To understand why this occurred and improve the results, it is important to note that 

LLMs in chat-based GenAI systems do not generate images. Instead, they generate commands 

for external services, which are rendered in the chat user interface. By requesting the exact 

commands used by the LLM, we were able to manually refine them to remove unwanted 

confounds and focus strictly on shape asymmetry while keeping freshness and realism constant 

for the unattractive apple (see third row in Table 5). Thus, while GenAI can serve as a good 

partner for the researcher in exploring possible manipulation designs, the researcher should be as 

specific as possible in describing the manipulation and then iteratively modify the prompts. 
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Table 5 – Illustration of Confounds in Image Generation via Chat 

Prompt approach Attractive Unattractive 
“Create a visually attractive 
and a visually unattractive 
apple in two separate 
images.” 

  
Adding to row 1 the 
definition and context in 
footnote 3 

  
Asking GenAI to generate 
images, with a more precise 
prompt for the LLM5 

    

3.2.3 Study design best practices. 

GenAI can be a great brainstorming partner in designing a study, particularly in the 

development of measures and experimental manipulations. However, because GenAI systems 

generate content based on probabilistic token generation and do not reflect conceptual 

understanding, we provide steps through which researchers can maintain methodological rigor.  

When the goal is to generate measures or manipulations that map to a predetermined 

theoretical construct, we recommend that researchers begin by clearly defining the focal 

 
5 e.g., unattractive: “A high-resolution, close-up photograph of a single red apple on a plain white background, taken 
at eye level. The apple has a very asymmetrical shape and is atypical. It features a mix of red and orange-yellow 
tones, with one large area near the middle where the red pigmentation fades into strong natural discoloration with 
less polish. Small, scattered discoloration dots are visible across the skin, giving it an organic, naturally imperfect 
look. The surface is smooth with very visible texture variations, but the apple remains fresh and undamaged. The 
lighting is soft and even, emphasizing its natural imperfections without making it appear bruised or spoiled.”  
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construct in their prompt. Simply including the name of a construct (e.g., visual attractiveness) is 

not enough as it does not ensure that the generated content will capture the researcher’s intended 

meaning. Departures from common academic meaning is likely, as GenAI systems rely upon 

vast training corpora that include both academic and non-academic text, and may conflate the 

focal construct with closely related but theoretically distinct concepts (e.g., freshness or 

cleanliness). Fortunately, GenAI’s adaptability means that the researchers can improve the 

potential validity and usefulness by specifying their requirements more precisely. Beyond 

including clear definitions, specifying which constructs should be distinct (e.g., mediators or 

downstream consequences) can help the generation of items that avoid overlap. Nevertheless, 

researchers should not assume that the use of GenAI in item generation or manipulation 

development absolves them of the responsibility to demonstrate validity.  

Researchers can also experiment with different prompting strategies to further improve 

the quality and consistency of generated content. For example, when designing experimental 

manipulations, prompting the model to generate both conditions (e.g., high vs. low empathy; 

attractive vs. unattractive product) in the same prompt can encourage parallel structure and 

reduce the risk of unintended confounds. Alternatively, generating each condition in a separate 

prompt may allow for more tailored elaboration, albeit with greater risk of asymmetry. 

Researchers can also increase control by explicitly stating that the content is for use in an 

experiment, like priming the model to prioritize consistency across conditions and to hold 

constant any information not intended to vary. These types of strategic prompts can help guide 

the model’s output toward greater rigor and better alignment with the intended design. 

While the variability in generation can lead to challenges for scale development and 

creation of manipulations, it is important to highlight that it can be particularly valuable during 
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earlier stages of the research process. One particularly useful ability is to generate dozens of 

variations on how a construct might be operationalized, and thus provide researchers with a rich 

space for theoretical exploration and refinement. This can open the door to more systematic 

forms of stimulus sampling, such as Mix-and-Match (Simonsohn et al., 2025), which aims to 

ensure confound management and design transparency when testing conceptual variables 

through diverse instantiations. Additionally, by experimenting with the prompts and responses 

(e.g., alternative definitions, examples), researchers can use GenAI as a partner in refining their 

construct development. Moreover, it is also possible to bring the model’s attention to scaling 

principles (e.g., avoiding double-barreled questions), or things to hold constant in scenarios.  

3.3 Stage 3: Study Administration 

GenAI is opening up exciting new possibilities for how researchers can administer 

studies, particularly in the way conversations are used to collect data and deliver experimental 

treatments. Traditionally, surveys and experimental manipulations have predominantly been 

administered through static and pre-scripted designs which can either limit adaptability or 

constrain scalability to the sample sizes often required in experimental and survey-based 

research. GenAI can now enable dynamic, responsive interactions that fluidly respond to 

participant input. In other words, GenAI can act as a virtual research assistant, engaging 

participants in naturalistic dialog. However, these capabilities come with caveats. These models’ 

associative, pattern-based understanding means that they can deviate from instructions.   

To illustrate, we conducted a study using Garvey and Blanchard’s (2025) toolkit, which 

embeds a GPT-powered chatbot within Qualtrics.6 Five hundred and three CloudResearch 

 
6 Garvey and Blanchard’s system uses a chat user interface (built with JavaScript and CSS within Qualtrics) and a 
serverless function that communicates securely with the ChatGPT API. After participants input text, the system 
updates the conversation history and forwards it to the LLM, before retrieving responses and displaying them. 
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Connect participants engaged in an AI-facilitated conversation about their fresh produce 

purchasing decisions. After providing informed consent, participants were introduced to a live 

chat embedded within the Qualtrics interface. The AI interviewer initiated the conversation with 

a neutral, open-ended question, prompting participants to describe their approach to selecting 

fresh produce at a grocery store. The interview proceeded dynamically, with real-time follow-up 

questions tailored to participant responses. A sample interview is in Figure 2. 

Figure 2 – Sample Semi-Structured Interview Conducted Using GPT-powered Agent 
assistant: Hello. Nice to meet you and thank you for participating in this interview. To start, can you tell me about 
how you usually approach buying fresh produce at a grocery store? 
user: Hi, I normally go and pick out what I like, making sure it doesn't have defects. 
assistant: That makes sense. When you're selecting produce and checking for defects, what specific things do you 
look for or avoid? 
user: Brown spots, dents, mold, etc 
assistant: Got it. Are there any particular types of produce where you're especially careful about these defects, or is 
it a general practice for all the produce you buy? 
user: I would say a general practice 
assistant: Understood. When deciding which produce to buy, do factors like price or organic labels play a big role 
in your choice, or is the appearance the primary concern? 
user: Mostly appearance, only price if it's too high 
assistant: Thanks for sharing that. How do you feel about purchasing unattractive produce‚ specifically, produce 
that appears irregular or oddly shaped but is edible and safe to eat? 
user: I would likely not purchase it 
assistant: Interesting to hear. Could you explain a bit more about why you might decide not to purchase 
unattractive produce? Is it more about perception, or are there other considerations? 
user: I would feel it isn't safe and would be turned off by it 
assistant: Thanks for explaining. When it comes to ensuring the produce is safe and of good quality, do you rely on 
any particular strategies, like shopping at specific stores or looking for certain quality assurances? 
user: Generally no 
assistant: Alright. Lastly, when you shop for fresh produce, do you plan ahead and have a list, or do you tend to 
make decisions spontaneously once you are in the store? 
user: I normally would have a list but may buy something spontaneously also 
assistant: Thank you for sharing your approach with me. That concludes our interview about your decision-making 
process when purchasing fresh produce at a grocery store. You can now proceed with the study. 

At this point, it is important to note that the system’s behavior was influenced by 

instructions designed to simulate the role of a neutral research interviewer. Because LLMs are 

trained on a large but non-exhaustive corpora, we must direct the model’s attention toward our 

use case: interview about purchasing visually unattractive produce. We do this via a prompt:  

ChatGPT, I am the researcher and you are about to enter into a conversation with a user who is a participant 
in my experiment. The user will just have read ‘Hello. Nice to meet you and thank you for participating in 
this interview. To start, can you tell me about how you usually approach buying fresh produce at a grocery 
store?’ and their first message will likely be related to these instructions. Your goal is to conduct an 
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interview about consumer decision making processes related to purchasing fresh produce at a grocery store. 
You should focus solely on asking questions about the user’s decision making process when purchasing 
produce. Your questions should flow naturally and directly relate to the user’s responses. The session 
should collect exactly 8 inputs from the user before you tell the user that the interview is over and they can 
proceed with the study. Toward the middle of the interview, ask the participant how they feel about 
purchasing visually unattractive produce (explicitly describe this as produce that appears irregular or oddly 
shaped but is edible and safe to eat). Based on the participant’s response to this question, ask follow-up 
questions to probe why the participant does or does not prefer to purchase visually unattractive produce. 

Each component of the initial prompt serves a critical function in shaping the behavior of 

the GenAI interviewer. The opening sentence (“ChatGPT, I am the researcher and you are about 

to enter into a conversation…”) establishes the experimental context and clarifies the AI’s role, 

ensuring it behaves as a research assistant rather than a general-purpose chatbot. The reference to 

the participant’s first message (“The user will just have read…”) helps orient the AI to the 

conversational timeline and ensures coherent continuity. The explicit instruction (“Your goal is 

to conduct an interview…”) focuses the AI’s attention on a specific objective, constraining its 

otherwise general-purpose capabilities. Directives such as “focus solely on asking questions” and 

“questions should flow naturally…” help maintain a conversational tone while reinforcing 

topical relevance and conversational alignment. The specification (“collect exactly 8 inputs from 

the user…”) is useful for expecting standardization and knowing when to deliver the question 

about visually unattractive produce. Finally, the instruction to introduce and probe the topic 

midway through the interaction provides a consistent manipulation across interviews, while 

allowing a follow-up that maintains the naturalistic dialogue.  

While the prompt provides essential guidance for shaping the model’s behavior, 

researchers should be aware that the model may still deviate from its original instructions . As 

discussed in Section 2, these systems generate responses based on probabilistic associations 

rather than conceptual understanding. Consequently, even well-structured prompts function more 

like strong suggestions than rigid instructions: models may still ignore or drift from the intended 

task, especially during extended interactions. For example, if a participant wants to avoid 
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discussing produce and instead unexpectedly states, “I like to shop for electronics,” the model 

may follow this tangent rather than redirecting to produce-related decision-making. These 

deviations are not failures of logic but reflections of the LLM’s lack of persistent memory.  

Moreover, it’s important to recall that LLMs generate responses probabilistically. This 

means that, as with human interviewers, even when two participants write the same prompt, the 

LLM might generate two different responses, which in turn, might create conversational drift. To 

illustrate, when we generated the same opening text in two surveys (“Hi, I normally go and pick 

out what I like, making sure it doesn’t have defects.”), we obtained two different responses: 

1. “When you’re selecting produce, are there specific qualities or characteristics you look for to 
determine if something is free of defects?” 

2. “Thank you for sharing that! When you say you make sure it doesn’t have defects, what 
specific traits or qualities do you look for in fresh produce?” 

Although both responses align with the study’s purpose, the first emphasizes defects, while the 

second shifts focus to broader freshness cues. Over multiple exchanges, such subtle variations 

may accumulate, leading to divergent experiences across participants.  

3.3.2 Best practices for administering a study using generative AI. 

Like using human or lab assistants to conduct studies, using GenAI requires careful 

design of study protocol, monitoring, and logging. First, research should log complete transcripts 

of all AI-user exchanges. In the training and refining stage, examining conversations can help 

researchers tweak the model instructions and check for edge cases (for example, how does the 

model respond when participants veer off topic, or say something inappropriate). In later stages 

of the research, capturing the full context window becomes crucial for replicability. 

Researchers should also keep a record of all AI-related model specifications. This 

includes the exact model version used (e.g., GPT-4o), system parameters (e.g., temperature, 

seed), prompt texts (initialization and reinforcement), constraints on the number of interaction 
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rounds or time of interaction if applicable, and participant exclusion rules related to AI 

performance (e.g., if the AI fails to respond or breaks character) or technical issues (e.g., failure 

interactions due to network connectivity). We also recommend that researchers include post-

session survey items asking participants to report any technical difficulties, confusion, or 

irregularities experienced during the conversation. These issues may become more pronounced 

during longer exchanges with the model because of its limited persistent memory and context-

window constraints (Section 2.2).  

In other applications of the GenAI’s ability to act in open conversations with participants, 

researchers may want to use it like a confederate, to administer experimental manipulations (such 

as varying tone, empathy, assertiveness, or other psychologically relevant constructs; see Garvey 

and Blanchard 2025). In these instances, researchers must not assume that the intended 

manipulation is always faithfully realized, and should therefore test their prompts in the same 

way that they would for any other manipulation (i.e., pre-testing and manipulation checks).  

Several additional best practices can further enhance the quality and reliability of AI-

mediated study administration. For example, reinforcement prompts (i.e., brief hidden injections 

passed to the LLM during the conversation) can help guide the AI back to its intended role or 

behavior when deviations occur (Garvey and Blanchard 2025). For example, take our prior 

example of a participant that tries to go off-topic by stating, “I like to shop for electronics.” To 

help further mitigate this risk, one can add a reinforcement prompt to sentences submitted by 

participants (e.g., “Keep the interview on the topic of the user’s decision-making process when 

purchasing produce at a grocery store.”) When submitted to the system, the user’s original 

message and the reinforcement prompt are concatenated into a single input such that the model 

receives, along with distinct roles interpretable by the LLM: “[user]I like to shop for electronics. 
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[system]Keep the interview on the topic…” That way, researchers improve the odds of remaining 

focused while the participant is not aware of the intervention. 

Finally, researchers must take active steps to protect participant autonomy and privacy 

when administering studies through GenAI systems. Informed consent should clearly describe 

the nature of the interaction and caution participants against disclosing sensitive or personally 

identifiable information during open-ended responses. Just as importantly, researchers must 

ensure that GenAI services used do not retain the right to use submissions for model training.  

3.4 Stage 4: Data Analysis & Interpretation 

In the final stage of the research process, researchers analyze and interpret data to test 

hypotheses and extract insights. This often involves structuring datasets, coding qualitative 

responses, and conducting statistical analyses, tasks that traditionally require manual effort and 

technical expertise. GenAI systems offer valuable assistance by generating executable code, 

automating portions of data processing, and helping to streamline and interpret complex 

analyses. They can help novice users to close the analytics gap by assisting novice users in 

programming or sophisticated data analysis. This section explores how GenAI can assist in data 

analysis, focusing on statistical computations and qualitative coding. Using data from the 

participants who engaged in the study described in Section 3.3, we illustrate both the benefits 

and limitations, and highlight trade-offs between automation, interpretability, and rigor. 

3.4.1 Interacting and Running Code on Data Files 

One of the most useful applications of GenAI system in the business world is in helping 

programmers to code. As such, these tools could help researchers analyze their data, whether for 

exploratory analysis purposes or for more sophisticated analysis. As discussed in Section 2.2, 

LLMs alone cannot directly handle file uploads or execute computations. While LLMs can 
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process text-based prompts, they do not inherently interact with structured data files such as 

CSV, Excel, or JSON files. To illustrate, we asked OpenAI’s API (which leverages only the 

LLM and not the full GenAI system) to “Conduct a one-sample t-test and report its t-statistic and 

p-value, against a null hypothesis that the mean age is equal to 42. The values are: [all values 

copy-pasted].” The LLM generated-response outlined the steps for conducting a t-test, reported 

the mean (42.70), standard deviation (13.02), number of observations (341), t-statistic (1.12) and 

p-value (0.263). However, these statistics were incorrect because the LLM did not actually 

compute the values: the output merely mimicked the format of a real analysis (the correct values 

were 40.89, 13.90, 503, -1.78, 0.075, respectively).  

While standalone LLMs cannot perform calculations, modern GenAI systems integrate 

computational tools that allow them to process structured data and execute real code. As 

illustrated in Figure 1, these systems include input processors and document handlers that detect 

when a request involves structured data analysis. Instead of attempting to approximate statistical 

results, the LLM generates executable Python code, which is then processed in a dedicated code 

execution environment. For instance, using the same prompt in OpenAI’s chatbot using 

ChatGPT 4o generated this Python script (e.g., this is displayed by clicking the “ in ChatGPT): 

import pandas as pd 
from scipy import stats 
# Load the dataset (handled by the system's document processor) 
df = pd.read_csv("uploaded_file.csv") 
# Extract the age column and drop missing values 
age_data = df['age'].dropna().astype(float) 
# Define the null hypothesis mean 
mu = 42 
# Conduct the one-sample t-test 
t_stat, p_value = stats.ttest_1samp(age_data, mu) 
# Print results 
t_stat, p_value 
 
Once the computation is complete, the results are returned to the researcher. In our 

example, the system correctly calculated all the parameters. This hybrid approach allows 
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researchers to interact naturally with the AI while ensuring that statistical analyses are conducted 

rigorously. It also enables dynamic and flexible analysis, as the LLM can refine, modify, or 

generate additional code based on researcher feedback (e.g., exclude participants who fail an 

attention check). However, researchers must carefully validate the tests performed. For instance, 

the Python function stats.ttest_1samp(age_data, mu) defaults to a two-tailed test, which may not 

align with a study’s specific needs. Additionally, unlike conversations with LLMs, which can be 

saved, data uploads and computations are retained only during the session (often an hour).  

3.4.2 Coding and Labeling Data 

The scalability of GenAI systems to process large amounts of data and do it in a repeated 

manner makes them a valuable tool to code or label both structured and unstructured data. GenAI 

offers multiple ways to code complete such tasks, each with trade-offs in researcher control, 

contextual accuracy, and reproducibility. The most straightforward but least structured approach 

is copy-pasting multiple textual responses to a chat-based GenAI system and requesting coded 

outputs.7 While the ease of this method may be particularly tempting, it is severely limited in its 

ability to provide valid and reliable coding of responses. First, recall that context-size is limited 

such that we could only submit 40 conversations at a time (ChatGPT 4o). Second, as an LLM 

does not distinguish between elements in the context, we have no guarantee that one’s data is 

coded independently of the others. We do not recommend this approach.8  

 
7 For example, “Your task is to act as an independent coder for a study. In that study, participants chatted with an AI 
interviewer about their preferences regarding fresh produce. Please analyze each of the following conversations to 
give me, on a score of 0 to 9, the extent to which the participant (denoted as user) focuses on risk (i.e., references to 
dangers, concerns, things to avoid). For each conversation, return only the response as a string in the format [X] 
(e.g., [2] for 2) without any additional explanation or text.” 
8 Moreover, while one may be tempted to ask the chatbot to code responses one at a time, or to start fresh, recall that 
the information previously submitted to the LLM remains part of the models’ input sequence. A better naïve chat-
based approach would be to copy a single textual input to code, along with coding instructions, each time in a 
completely new conversation with the LLM. However, this approach can be quite taxing.  
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Rather, we recommend that researchers use one of two approaches. The first is a 

sequential API-based approach, in which a computer script sequentially submits each 

participant’s response (along with standardized instructions) to the API and captures the value 

returned. The second is a file-upload approach with code execution, where a structured dataset 

(e.g., CSV with one participant response to code per row) is uploaded to a chat-based GenAI 

system, along with instructions. The GenAI generates coding rules, which can be saved. 

However, the two approaches lead to very different by which the LLM processes the data.  

To illustrate the implications and differences between these approaches, we used the 

conversations from the produce purchase interviews described in Section 3.3.1, and asked the 

model to create a measure of the extent to which participants referenced risk-related concerns 

when purchasing fresh produce. For both GenAI approaches, the standardized instructions were: 

Your task is to act as an independent coder for a study. In that study, participants chatted with an AI 
interviewer about their preferences regarding fresh produce. Please analyze the following conversation to 
give me, on a score of 0 to 9, the extent to which the participant (denoted as user) focuses on risk (i.e., 
references to dangers, concerns, things to avoid). Return only the response as a string in the format [X] 
(e.g., [2] for 2) without any additional explanation or text. Here's the conversation: 

For the API approach, we used one coder to process each conversation with GPT-4o with 

temperature of 0.7. Doing so ensures that each response is processed independently, much like 

assigning responses to separate human coders. Moreover, this fully leverages the LLM’s ability 

to process contextual meaning while controlling independence in the coding of each response. 

When we uploaded a dataset to a GenAI system with an active code execution 

environment, our request triggered the GenAI system to rely on the LLM to create a custom 

Python function for categorizing responses based on a custom dictionary before returning a 

coded dataset. Specifically, the system inspected the responses, created a Python function for a 

custom dictionary using 22 keywords culminating with a scaled response between 0 and 9. We 

could then download the coded dataset, inspect the codes, and save them.     



 
40 

It is important to highlight some key differences between these two approaches and a 

predetermined dictionary such as LIWC. Consider for example, the LIWC-15 dictionary, which 

includes 102 terms (e.g., “abstain”, “bad”, “stops” and “trusts”) and provides a standardized but 

rigid approach to quantifying risk-related language. However, because LIWC relies on a 

predefined lexicon, it could only detect risk when participants use terms explicitly included in its 

word list. If participants described risk concerns in non-traditional ways, such as referring to 

unattractive produce as “weird” or “dirty” rather than “unsafe” or “risky”, LIWC will fail to 

capture these references. Additionally, dictionaries may fail to adapt to domain-specific 

language. While “short” implies risk in a financial context, it does not in a fresh produce context.  

Dictionaries also fail to capture the context and the relationships among words, which is 

one of the benefits at the heart of LLM methods (see Section 2). The API-based approach offers 

a more adaptive interpretation of risk language by processing each response independently while 

leveraging the LLM’s contextual reasoning and training data (Rathje et al. 2024). This can allow 

the coding to capture implicit concerns about food safety, even when participants used indirect 

language to express worry about unattractive produce. However, because LLMs generate 

responses probabilistically, there will be some response-level variability in scoring. A 

participant’s risk score will necessarily fluctuate across API calls, depending on settings such as 

temperature. Moreover, we cannot know why responses are given a score. 

The GenAI chat-based file-upload approach with code execution takes a different 

strategy, as doing so triggers the LLM to generate a custom dictionary of risk-related terms 

before using Python to apply it systematically to the dataset. Examining the Python code 

produced by the LLM revealed that it identified food safety concerns (e.g., “spoiled,” “rotten,” 

“expired,” “mold,” “contaminated”), health-related risks (e.g., “illness,” “food poisoning,” 
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“disease,” “infection,” “toxins”), and general warnings (e.g., “unsafe,” “harm,” “risk,” 

“concern,” “worry,” “avoid,” “pesticides,” “chemicals”). However, because LLMs are 

probabilistic, the generated dictionary differs across sessions. While convenient and transparent, 

this approach, being dictionary-based, does not fully leverage the ability of LLMs. 

3.4.3 Data analysis and coding best practices.  

A GenAI system (particularly one with an integrated code environment and the ability to 

process structured files) can serve as a powerful and accessible tool for exploratory data analysis. 

Beyond the examples discussed earlier, such systems are especially useful for quickly assessing 

data integrity, detecting outliers or anomalies, and identifying trends or summary statistics. 

These are critical steps that are too often overlooked in practice. However, it is important to 

recognize the limitations of these systems. LLMs are inherently probabilistic, which constrains 

their ability to produce accurate, transparent, and reproducible outputs. For this reason, we do not 

recommend conducting confirmatory or inferential analyses directly within GenAI platforms. 

Instead, researchers should extract any generated code (even when executed successfully within 

the platform) and re-run the analyses in a dedicated tool such as R, Python, SPSS, or STATA. 

When using GenAI to code participant responses, several best practices can improve 

output quality. One such strategy is the use of structured prompting techniques. For instance, Li 

et al. (2024) demonstrate that Role-Task-Format (RTF) prompting significantly improves the 

reliability and reduces variability in LLM-generated classifications. Likewise, few-shot 

prompting, which provides the model with labeled human examples before coding new 

responses, can improve alignment between AI and human judgments (Yoo et al. 2025). These 

approaches emphasize the importance of clear, consistent, and well-structured prompt design. 
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Yet, as the popularity of using GenAI for open-ended text coding grows, some 

researchers may assume that a well-written prompt is sufficient to guarantee a valid measure. 

This assumption is risky. Even if a prompt appears face-valid to a human reader, that does not 

ensure that the resulting GPT-generated measure faithfully captures the intended construct. Like 

any other measurement instrument, GenAI-derived measures must be empirically validated—not 

just judged by whether the prompts used seem reasonable. This concern is particularly acute 

because GPT-based coding introduces a wide range of researcher degrees of freedom. The same 

input can yield different outputs depending on how the prompt is phrased, which examples are 

included, what temperature is set, or how the output is post-processed. Worse, because GenAI 

systems can re-code entire datasets in seconds, researchers may be tempted (consciously or not) 

to rerun and tweak until the output aligns with their expectations. This undermines the credibility 

of any observed effects and makes post hoc validation difficult to evaluate. The central 

challenge, then, is not only about what the model is capturing but also about procedure: how we 

ensure that the measure is developed and evaluated without undue degrees of freedom. 

To select an appropriate validation strategy, researchers must first clarify what the 

GenAI-coded measure is intended to reflect. That is, what kind of “ground truth” is the model 

being asked to approximate? This is not a trivial question. Some GPT-coded measures aim to 

capture a participant’s internal state, such as their beliefs, emotions, or stated preferences. Others 

are designed to reflect how an objective, third-party observer might interpret the participant’s 

text, for example, inferring tone, risk aversion, or expressiveness. Still others are constructed to 

predict an objective behavioral outcome that exists independently of either the participant or an 

observer (such as purchase behavior or complaint rates). Next, we outline three validation 

strategies tailored to the type of construct to validate (see Figure 3 for a guide). 
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Figure 3 - Validation Approach for GPT Measurement by Construct Type 

 

When the goal is to approximate the participant’s internal perspective, we recommend a 

two-stage strategy using holdout self-reports. First, researchers collect a training sample in 

which participants provide both the data to use for GenAI-coded measurement (e.g., a 

conversation about purchasing produce) and the relevant self-reports that are meant to be the 

ground truth (e.g., a self-esteem psychometric scale; a stated preference). Using in the training 

sample, the researcher can iteratively develop a coding procedure (i.e., refine prompts, select 

model parameters) and test predictive validity against the self-report. Once the procedure is 

finalized, we recommend pre-registering the following: 1) the completed coding protocol, 2) the 

collection of a second independent sample of participants. This second independent sample is 
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then exclusively for confirmatory validation of the predictive validity. For an example, see 

https://aspredicted.org/yc2y-z27k.pdf 

It is important to explain why we do not recommend validating GenAI-coded measures 

of internal constructs using a strategy in which pre-registration involves a single sample split into 

training and validation. For any pre-registration to support confirmatory inference, it must 

include: (1) a dataset of human responses that has not yet been collected, and (2) a finalized 

analysis procedure. A single-sample design presents a difficult tradeoff: researchers must either 

pre-register a GenAI coding protocol before seeing any data (preventing any opportunity for 

development) or pre-register the process by which they will develop the coding procedure. The 

latter approach, however, opens the door to researcher degrees of freedom, as the protocol is 

shaped in response to data that has already been collected.  

When the GPT-coded measure is intended to reflect how an independent observer would 

interpret the participant’s response (e.g., the tone of their writing; how risk averse they seem), the 

appropriate validation strategy is to gather holdout judge ratings. Here, the GenAI coding 

procedure is first developed using a dataset of participant responses, and then frozen. 

Researchers pre-register both the coded dataset (i.e., with GenAI’s scores added) and the 

protocol for a separate group of human judges to independently evaluate the inputs. The 

comparison between GenAI and human ratings is then conducted exactly as planned, without 

modifying the coding procedure or the dataset maintaining the GenAI-generated coding. This 

strategy mirrors best practices in content validation where the coding protocol is finalized before 

judges’ data are collected. See our example at https://aspredicted.org/3mzv-d452.pdf  

Finally, when the purpose of the GenAI measure is to predict an outcome that already 

exists or will soon be available (e.g., the number of visually unattractive produce purchases from 

https://aspredicted.org/yc2y-z27k.pdf
https://aspredicted.org/3mzv-d452.pdf
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scanner panel data or coded receipts), we recommend a validation strategy based on a holdout 

outcome. Researchers begin by identifying the relevant outcome variable and integrating it into 

the dataset. Specifically, researchers should begin by splitting the sample into training and 

validation subsets before any outcome data is added. Outcome data can then be merged with the 

training subset and used to develop the GenAI coding procedure (e.g., refining prompts or 

selecting model parameters) to improve prediction in the training sample. Once the procedure is 

finalized, it is applied to the validation subset, whose outcome data can now be added and used. 

Predictive performance is then evaluated using only this held-out portion of the data. 

Because the outcome data in this context often already exists (e.g., from scanner panels 

or coded receipts), formal pre-registration as required by platforms like AsPredicted.org, which 

mandate pre-specification before any data collection or analysis, may not be appropriate. 

However, the approach we recommend follows the same spirit: it minimizes researcher degrees 

of freedom by clearly separating model development from evaluation, and by ensuring that 

outcome data for the validation set remains genuinely unseen during development. While it 

cannot qualify as a pre-registration in the strictest sense, this strategy supports more credible, 

transparent, and prospectively meaningful validation when working with secondary data.  

Finally, it is also important to note that while predictive validity can serve as one 

component of a validation strategy for such behavioral measures, just because a GenAI-coded 

measure successfully predicts an outcome does not necessarily mean it is measuring the intended 

construct. As with traditional measurement development, we must go beyond predictive 

performance to assess how well the measure represents the theoretical construct of interest. 

Whichever strategy they use, we recognize that it is not always practical to collect large-

scale participant samples for both the training and validation phases. Similarly, for holdout judge 
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ratings, collecting human judgments at scale can also be resource-intensive, such that it may be 

sufficient to validate the measure against a randomly selected subset of participant responses 

against judges’ ratings. Similarly, when validating against external outcome data, it is not always 

possible to obtain outcome measures for the data to be coded. One of the key benefits of using 

GenAI for measurement is their ability to scale.  

4. Principles for Responsible Use of GenAI in the Primary Data Research Process 

The successful integration of GenAI into research demands more than just understanding how 

these systems work (Section 2) or how well they perform at different research tasks (Sections 

3.1-3.4). Beyond the summary set of guidelines and recommended best practices we outline in 

Table 6, we now turn to key general elements to consider as the technology continues to evolve. 

4.1 Maintain Full Responsibility for Accuracy and Validity in GenAI-Assisted Research 

Scientific integrity depends on two foundational obligations: ensuring the accuracy of 

information presented and the validity of constructs measured or manipulated. Yet, while GenAI 

systems can assist with both tasks, they do not relieve researchers of their responsibilities.  

First, researchers are fully accountable for the factual accuracy of any literature reviews, 

summaries, statistical analyses, or descriptive claims generated with GenAI assistance. As 

discussed throughout this paper, LLM-based systems are not fact-checkers. They generate 

responses based on statistical likelihoods, not source validation. As a result, they can fabricate 

citations (Section 3.1.1), misrepresent study findings (Section 3.1.2), or produce incorrect 

statistical outputs that may appear plausible but are fundamentally flawed (Section 3.4.1). 

Researchers must therefore verify all outputs, cross-check references, and test statistical code 

before including any GenAI-assisted content in research reports or publications.  
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Table 6: Best practices & Guidelines  
 

Literature 
Review 
 
 
 

Best Practices 
- Use LLMs for early-stage ideation, exploratory synthesis, and conceptual mapping  
- Verify GenAI-generated summaries and citations against original sources 
- Familiarize yourself with knowledge cutoffs and inability to access paywalled content models you used 
- Periodically re-upload documents and instructions during long sessions to address context window limits 
- Use follow-up prompts to clarify summaries or revise incorrect extractions 
 
Guidelines 
- Do not upload copyrighted text to systems that reserves the right to use data for model training 
- Take responsibility for inaccuracies that arise  

Research 
Design 
 

Best Practices 
- Clearly define focal construct in prompts to reduce the risk of confounding; also specify which constructs 
should remain distinct  
- Use GenAI systems iteratively to refine tone, specificity, and framing across multiple exchanges 
- Add to prompt examples of principles or rules for item or manipulation development (e.g., avoiding 
double-barreled items, holding contextual element constant) 
- Leverage GenAI’s variability in output generation as a path to exploration by asking for diversity 
- Take advantage of GenAI’s multimodal capability to maximize external validity through heightened 
experimental realism 
 
Guidelines 
- Do not assume the use GenAI enables reduce standards for measurement validity and reliability 
- Document the stimuli generation process, including system used, model version, prompt and outputs. 

Study 
Adminis- 
tration 

Best Practices 
- Pre-test GenAI agents extensively; refine prompts and reinforcement strategies to ensure consistent, role-
aligned interactions. 
- Include post-session survey items to ask participants about technical issues or confusion. 
- Avoid collecting sensitive or personally identifiable information. 
- Consider prompt reinforcements to prevent the AI from producing off-topic or inappropriate content. 
 
Guidelines 
- Log complete transcripts, system prompts, model versions, and configuration settings for all sessions. 
- Use only GenAI platforms or deployments that prohibit use of data for model training or improvement 
- Obtain Institutional Review Board (IRB) approval detailing agent behavior and participant protections. 

Data Analysis 
& 
Interpretation 

Best Practices 
- Use GenAI to generate analysis code but run and verify it in a dedicated analytical package (e.g., R, 
Python, SPSS). 
- Match your validation approach to your construct being measurement: use self-reports for introspective 
constructs, judge ratings for interpretive ones, and behavioral data for predictive use cases. 
- Pre-register your coding validation strategy, including the evaluation plan, sampling and scoring protocols. 
 
Guidelines 
- Do not submit participant responses with sensitive or identifiable information to GenAI systems unless 
approved by IRB and the provider does not retain data for model training. 
- Do not code responses by copy-pasting those of multiple participants in a GenAI conversation window.  
- Do not treat GenAI-coded measures as valid without empirical validation: they require the same scrutiny as 
any new measure. 
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Second, researchers are equally responsible for the validity of GenAI-generated 

measures, manipulations, and coding schemes. GenAI systems operate without conceptual 

understanding and thus are prone to subtle construct drift. A manipulation intended to test 

“visual unattractiveness,” for instance, might inadvertently confound this with moral judgments 

or social desirability (Section 3.2.1). A survey item prompted to measure “concern about food 

safety” might instead cue generalized disgust or risk aversion. And coding responses without 

clear guidance or validation risks capturing adjacent constructs (Section 3.4.2). In each of these 

cases, it is the researcher’s responsibility to ensure accuracy. 

4.2 Limit Researcher Flexibility and Prioritize Reproducibility in GenAI-Assisted Research 

One of the central lessons from the broader replicability crisis in science is that researcher 

degrees of freedom (choices about data cleaning, modeling, and interpretation) can inflate false-

positive rates and distort scientific inference (Simmons et al., 2011). The integration of GenAI 

into research workflows introduces new forms of flexibility that must be addressed with care. 

Even small changes in prompt wording, model parameters, or sampling settings can yield 

divergent outputs. The ability to generate or code data rapidly at scale compounds this risk, 

particularly when researchers can choose from multiple iterations or define success post hoc.  

To mitigate these risks, researchers should prioritize transparency and reproducibility in 

all GenAI-assisted workflows. Prompts, full transcripts of interactions, model version numbers, 

configuration settings (e.g., temperature, top-p), and any coding or decision rules should be 

recorded and made available for review–particularly when GenAI is used for study 

administration or open-ended data collection. Researchers should also consider using pre-

registration to reduce researchers’ degrees of freedom that GenAI tools can introduce, 

particularly when these tools are used for data collection or response coding. Chat-based 
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interfaces are not recommended for any task requiring auditability or consistency. These 

environments lack the structure and traceability needed to ensure reproducibility. Researchers 

should instead rely on API-based or structured workflows that preserve version control and allow 

all steps to be documented. To support adoption, we include in our repository not only R scripts 

for submitting and logging GenAI-coded variables via API, but also an add-on for SPSS that 

enables researchers to do the same without any coding.  

4.3 Safeguard Participant Privacy and Respect Intellectual Property in GenAI Workflows 

The use of GenAI in research introduces new ethical responsibilities. Not only in 

safeguarding participant data, but also in how researchers handle proprietary materials and 

publish academic content. On the participant side, even seemingly innocuous inputs, such as 

open-ended responses or chat transcripts, can contain personally identifiable information. 

Uploading such data into commercial or publicly accessible GenAI systems without institutional 

oversight may inadvertently violate data protection policies or IRB protocols, particularly if the 

system retains inputs for model training or logs metadata such as user location or session history. 

Researchers should be proactive in evaluating the platforms they use and prioritize models or 

tools that explicitly protect participant privacy and restrict data retention. 

Researchers must also consider how they handle academic materials. Many GenAI 

systems retain uploaded documents, such that submitting proprietary instruments or scholarly 

articles, especially published ones, can violate publisher agreements or licensing terms. Treating 

such materials as casual inputs to a GenAI system, whether for summarization, item generation, 

or translation, risks not only legal exposure but also the erosion of scholarly norms. As a research 

community, we have a collective obligation to protect the intellectual boundaries of others’ 

works. Not just through citation, but in how we share, and reuse it in the age of GenAI. 
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5. Conclusion: GenAI as a Research Tool, Responsibility as a Researcher Obligation 

Generative AI is rapidly reshaping the landscape of academic research. It accelerates idea 

generation, streamlines study design, facilitates adaptive data collection, and offers new tools for 

analyzing both structured and unstructured data. But these capabilities come with trade-offs: 

between flexibility and control, automation and accountability, innovation and reproducibility. 

As this paper has shown, GenAI systems differ widely in architecture, behavior, and 

underlying assumptions. Whether accessed through APIs, browser interfaces, or local 

installations, each implementation carries distinct implications for participant protection, data 

security, construct validity, and research transparency. Even subtle design choices, such as how a 

prompt is phrased, or how a document is uploaded, can introduce substantial variation. Such 

variations are not minor technical issues; they can create fundamental scientific concerns. The 

probabilistic nature of GenAI means that researchers must take active steps to verify accuracy, 

validate constructs, safeguard participant interactions, and respect intellectual property. That 

responsibility cannot be delegated to the system: it lies with the researchers. 

At the same time, we should not treat GenAI as a threat to rigor but as a prompt for 

renewed methodological reflection. Used responsibly, these systems can support more adaptive, 

inclusive, and scalable forms of inquiry. But doing so requires more than prompt engineering: it 

requires documentation, reflection, and open conversation across disciplines. As GenAI 

capabilities grow, the academic community must evolve alongside them. We must balance 

innovation with ethical responsibility, and productivity with scientific care. Ultimately, the future 

of research with GenAI will be shaped not just by what these tools can do, but by the values and 

vision of the scholars who choose to use them.  
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Web Appendix A – Sample generated summary table from Grewal et al. (2019) without 
document upload and RAG 
 

Study Independent Variable 
(IV) 

Dependent 
Variable (DV) 

Moderator / 
Mediator 

Sample Source & 
Context 

Main Finding 

Study 1 Produce attractiveness 
(manipulated: 'attractive' 
vs. 'unattractive' images) 

Willingness to 
purchase, 
perceived quality 

None explicitly 
tested 

Online panel or 
undergraduate 
sample (lab 
setting) 

Consumers reported 
lower willingness to 
purchase and perceived 
lower quality for 
unattractive produce 

Study 2 Produce attractiveness 
(manipulated); 
measured self-
perception concerns 

Purchase 
intention, quality 
evaluation 

Mediator: self-
perception 
concerns (feeling 
incompetent) 

Online participant 
pool; survey with 
images 

Devaluation of 
unattractive produce is 
driven by self-
perception concerns 
about competence 

Study 3 (1) Produce 
attractiveness 
(manipulated), (2) 
Usage context 
(manipulated: high vs. 
low emphasis on 
presentation) 

Willingness to 
purchase, product 
evaluation 

Moderator: usage 
context 
(impressive dish 
vs. low-visibility 
context) 

Lab experiment; 
participants saw 
varied usage 
contexts (e.g., 
blended soup vs. 
fancy dish) 

The negative effect of 
unattractive produce is 
attenuated when its 
appearance is less 
relevant to the usage 
context 

Study 4 (1) Produce 
attractiveness 
(manipulated), (2) 
Functional advantage of 
'ugly' produce 
(highlighted vs. not) 

Purchase 
intention, quality 
perceptions 

Moderator: 
functional 
advantage 

Online or lab 
sample; scenario-
based experiment 

Emphasizing a 
functional benefit of 
unattractive produce 
mitigates self-
perception threat and 
increases purchase 
likelihood 

Study 5 (1) Produce 
attractiveness 
(manipulated), (2) 
Public vs. private 
consumption scenario 

Purchase or 
choice, attitudes 

Moderator: public 
vs. private 
context 

Online or student 
sample; controlled 
experiment 

When consumption is 
public, self-perception 
threat is heightened, 
reducing purchase of 
unattractive produce 

Study 6 (1) Produce 
attractiveness 
(manipulated), (2) 
Individual differences in 
cooking skill (measured) 

Willingness to 
pay (WTP), 
likelihood of 
choosing 'ugly' 
produce 

Moderator: self-
reported cooking 
skill; Mediator: 
perceived self-
image threat 

Online or lab-
based sample; 
measured cooking 
skill followed by 
choice tasks 

Devaluation is strongest 
among those 
moderately concerned 
about competence and 
weaker among very 
skilled or unconcerned 
consumers 

Study 7 (Field) Naturally occurring 
attractiveness 
(unattractive vs. regular 
produce) in-store, plus 
any in-store signage or 
discount manipulations 

Actual purchase 
behavior (sales 
data, observed 
choice) 

Potential 
moderators (e.g., 
discount, usage 
signage) 

Real-world 
grocery or market 
setting; field 
experiment 

Unattractive produce 
sells less unless a 
functional benefit or 
discount is highlighted 

   


