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Our 73,000 team members are the heart and soul of our company, and our “not-so-secret” sauce.  

—Whole Foods Market, 2012 letter to stakeholders  

Your employees are your best asset. Happy employees make for happy customers.  

—Richard Branson, founder and chairman of Virgin Group  

I. INTRODUCTION 

Classical economics (e.g., Smith, 1776) emphasizes the division of labor and task 

specialization as significant contributors to national economic growth, which is borne out in 

empirical tests using cross-cultural data (e.g., Basu, Kirk, and Waymire 2009). Modern 

production processes often involve collaboration between specialized employees with diverse 

skill sets. Firms encourage collaboration to develop internal human capital, thereby creating a 

competitive advantage and enhancing firm performance. Given the increasing complexity of 

production processes, collaboration has likely gained importance for firm performance. 

However, large-sample research investigating the within-firm interactions among team members 

and their skills is scarce, likely because of limited data, and thus, we do not know whether and 

how well classical economic theories explain firm performance. 

We empirically examine how much teamwork matters for firm performance and when it 

matters more. Teamwork, as we conceptualize it, is the cooperation of specialized employees and 

encompasses both labor-division-induced employee skill specialization and team-member-

collaboration-induced employee skill complementarities. We postulate that teamwork has 

important economic implications for firm performance. Moreover, we argue that its importance 

depends on the complexity of the firm’s production requirements and the effectiveness of 

employee communication and coordination. Complex job tasks raise employees’ costs to master 

broad expertise and proficiency and make team-based workflows that encourage employee 



 

2 

specialization and collaboration more valuable. And teamwork can only generate value when 

employees actively communicate and collectively integrate their expertise. Our findings have 

implications for managers’ decisions regarding human capital investment, including whom to 

hire and how to organize the teams (Brickley, Smith, and Zimmerman 2016). 

Despite the significance of human capital, U.S. financial statements contain little relevant 

data beyond the number of employees and the ratio of CEO-to-typical-worker compensation. We 

propose a new approach that leverages job requirements posted by firms on online platforms to 

investigate the importance of teamwork in predicting firm performance.  

Our study proceeds in three main steps. In step one, we collect comprehensive data from 

job postings and construct a teamwork measure that captures firm-level human capital profiles. 

Using all job postings issued by the focal firm in a year, we construct a skill vector that contains 

the frequency of each unique skill sought by the firm that year. Crucially, we also assess the 

frequency of unique two-skill pairs to capture intra-employee and inter-employee skill 

complementarities in local functional teams and across teams. Assuming that all job postings are 

filled, this teamwork measure provides detailed insights into firms’ human capital on an annual 

basis, including both the additive sum of employees’ specialized knowledge and the 

multiplicative sum of the firm-level human capital generated through employee interactions. 

In step two, we address “how much” teamwork matters by examining how well the 

teamwork measure predicts future firm performance out of sample. This analysis involves a large 

set of variables (over 1,400) with potentially complex interactions and possibly nonlinear effects 

on firm performance. To handle this complexity, we choose a machine learning model instead of 

specifying a complex OLS regression model. We stress that our analysis does not explore causal 

relationships between human capital resources and firm performance. Rather, we focus on the 
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out-of-sample prediction power of our teamwork measure on one-year ahead operating 

performance. Specifically, we employ extreme gradient boosting (XGBoost) models and use 

cross-validation in the training/validation data to optimize model parameters. To assess the 

prediction performance of the teamwork models, we compare them with benchmark models that 

use other variables related to human capital, such as employee count and turnover. We find that 

the out-of-sample R2 values of teamwork models range from 8.65% to 22.88%, depending on the 

test years. Moreover, teamwork outperforms benchmark models built with human-capital-related 

variables such as employee count and turnover in the out-of-sample prediction analysis. We also 

observe substantial improvements in the prediction performance of the benchmark models when 

teamwork is included.  

Moving to the third step, we address the question of “when” teamwork matters more by 

analyzing the prediction performance of the teamwork measure in subsamples where teamwork 

is expected to have a greater impact on firm performance. Specifically, we investigate whether 

the predictive power of teamwork measure varies with task complexity and employee 

communication. Our results show that teamwork exhibits higher prediction performance for 

firms with lower routine task indexes, higher Tobin’s Q ratios, and those operating in high-tech 

industries. Additionally, teamwork performs better for firms characterized by a more intensive 

teamwork culture, a higher requirement for teamwork skills in job postings, and a smaller 

number of business segments and geographical locations. Collectively, these findings indicate 

that our teamwork measure possesses stronger predictive power for future firm performance 

when firms face more complex tasks and exhibit more efficient employee communication, 

consistent with the notion that teamwork is particularly valuable under these circumstances. 
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We contribute to the economic and management literatures on specialization and 

complementarity by documenting the value of employee specialization and complementarity in 

forecasting future firm operating performance, especially when firms face more complex tasks 

and exhibit enhanced communication practices. By underscoring the pivotal role of effective 

communication, we also shed light on how organizations can design and implement a 

management control system that can significantly shape the nature of teamwork within an 

organization. We extend the human capital literature by leveraging skill requirements in firms’ 

job postings and creating a new measure that comprehensively and granularly describes firms’ 

human capital profiles. Moreover, we contribute to the broad application of machine learning in 

accounting research by combining a state-of-the-art machine learning model with firms’ job 

posting data to document the predictive power of teamwork on firm operating performance. 

II. THEORETICAL DEVELOPMENT 

Firm-level human capital  

Corporate executives frequently exclaim that employees are their firms’ most crucial assets 

(Fulmer and Ployhart 2014). Individual employees possess specialized knowledge and skills for 

various job tasks, establish their expertise in specific domains, and help achieve their firms’ 

business objectives. 

However, a firm’s human capital resides not only within its individual employees but also 

extends to the collective capabilities and synergies created at the team or firm level. Due to the 

division of labor, employees collectively contribute to the overall firm objective by performing 

different roles that are interconnected through interdependency (Raveendran, Silvestri, and 

Gulati 2020). Therefore, firm-level human capital is not merely the additive sum of individuals’ 

human capital, but a function of both individual employees and their synergy (Thompson 1967). 
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Complementarity is deeply embedded in the theory of why firms exist and how they 

operate (e.g., Milgrom and Roberts 1995). Classical economic theory on the complementarity 

between capital and labor posits that when the amount of physical capital increases, it enhances 

the productivity of labor, particularly skilled labor.1 Such complementarity between different 

factors of production is arguably more critical for human capital (Neffke 2019). Consequently, 

managing human capital in firms entails coordinating specialized employees to maximize 

complementarity and efficiently produce goods and services (Becker and Murphy 1992; 

Garicano 2000). 

Firm as a team of teams 

When coordinating a group of complementary specialized employees, firms must consider 

the tradeoff between coordination costs and team size (Becker and Murphy 1992). As the 

number of specialists increases, the costs of coordinating the team grow, evidenced by principal-

agent conflicts, free riding, and communication difficulties (Cohen and Levinthal 1990; Becker 

and Murphy 1992; Adams, Akyol, and Verwijmeren 2018). Consequently, firms often divide 

their workforce into small groups and adopt a multi-level structure, particularly in today's 

complex and fast-paced economy (Mintzberg 1978). Increasing global competition and advances 

in modern technology push the emergence of teams as the core building blocks of organizations 

(e.g., Wuchty, Jones, and Uzzi 2007; Kozlowski and Bell 2013). 

During the 19th and early 20th centuries, firms generally organized people by functional 

department (i.e., U-form) to gain operational efficiencies (Porter 1985).2 By grouping similar 

 
1 Complementarity within firms goes beyond capital and labor. For example, firms’ investment opportunity sets 
guide the choice of payout policy, capital structure, pay structure and accounting procedure choice (e.g., Myers 
1977; Smith and Watts 1992; Skinner 1993; Basu, Ma, and Briscoe-Tran 2022). Interdependence among firm 
policies creates complementarities that leads to performance gains (e.g., Ichniowski, Shaw, and Prennushi 1997). 
2 At the same time, firms used the scientific management approach to standardize best practices for repetitive tasks in 
order to smooth the coordination within and between teams (Taylor 1911). The typical issue is that the within-firm 
communication can then become rigid due to the high degree of standardization and formalization (Madsen 2011).  
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roles together, firms can achieve economies of scale, facilitate within-function communication, 

and simplify management control over employees (Chandler 1962). This specialization-based 

approach clarifies employees’ roles and responsibilities, enables them to work within their own 

realm of expertise, and provides more opportunities for skill development and expertise honing 

(Daft 1978). Finally, the departments complement each other: the expertise in each function, 

when combined, results in enhanced business performance (Teece 1986).   

As 20th century firms grew larger and became more diversified, they often introduced an 

additional level in the organizational structure and divided the firm into semi-autonomous 

divisions or segments (i.e., M-form) (Chandler 1977). Each division, typically consisting of 

multiple functional departments, is responsible for a distinct business or geographic area.3 By the 

early 1990s, nearly all large firms in the United States had adopted some variation of the multi-

divisional structure due to its associated performance gains (Palmer, Jennings, and Zhou 1993). 

The M-form structure allows firms to decentralize decision-making and maintain flexibility in 

day-to-day operations. While central management provides overall strategic direction for the 

firm, each division operates semi-independently, tailoring its strategy to the specific market 

needs, tracking its own performance, and staying productive even if other divisions fail 

(Williamson 1975). In this sense, a firm can be viewed as a team of teams, with employees 

collaborating within their respective departments, divisions, and the overall organization. 

 
3  Different divisions may experience different profitability, risks, and growth opportunities, so disaggregated 
information about major divisions can help investors better understand a firm’s performance and make more informed 
judgments. ASC 280 (Segment Reporting) require firms to disclose disaggregated information about their operating 
segments in annual reports. Under ASC 280, one major criterion of identifying an operating segment is the availability 
of discrete financial information. In 2022, FASB further issued a proposed Accounting Standards Update that plans 
to improve and enrich the segment disclosures (retrieved from https://fasb.org/Page/ProjectPage?metadata=fasb-
SegmentReporting-022820221200).  

https://fasb.org/Page/ProjectPage?metadata=fasb-SegmentReporting-022820221200
https://fasb.org/Page/ProjectPage?metadata=fasb-SegmentReporting-022820221200
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Teamwork and firm performance 

We study teamwork, which is firm-level human capital in specialized employee 

collaboration.4 We argue that productive within-firm teamwork encompasses two components: 

employee specialization and coordination at all levels (Becker and Murphy 1992). Moreover, to 

conceptualize and operationalize teamwork, we delve deeper into the origins of employees’ 

human capital. The economics and management literatures view an individual’s human capital as 

her stock of knowledge and skills that can help achieve economic outcomes (Becker 1964; Beck, 

Francis, and Gunn 2018). Therefore, firm-level human capital is measured as the collective skills 

of employees and other contracted individuals who work for a specific firm, with their stand-

alone skills as the micro-foundations (Coff and Kryscynski 2011; Foss 2011; Ployhart, Nyberg, 

Reilly, and Maltarich 2014).5 

Importantly, the combination of individual skills within a firm is not a simple linear 

function. As a result of teamwork, individual skills constitute firm-level human capital in two 

ways: additively and interactively (Ployhart and Moliterno 2011; Ployhart et al. 2014). First, 

individual workers can increase output additively as the sum of their skills and efforts.6 Second, 

individual skills can be combined interactively through cooperation, resulting in new and 

collective firm-level human capital. Coordination across individuals, across departments, and 

 
4 Following Becker and Murphy (1992), we define a “team” broadly as a group of workers who collaborate to 
produce goods or services by performing different tasks and functions. “Team” does not imply that team members 
have identical goals.  
5 Workers, not the firm, own their individual human capital. Firms rent human capital from individuals inside and 
outside the firm, whether working full-time or part-time (Basu and Waymire 2008), so these individual skills cannot 
be recognized as firm assets on balance sheets today. Before the Civil War, U.S. firms reported slaves as assets on 
balance sheets (e.g., Flesher and Flesher 1980; Barney and Flesher 1994), but slavery is now illegal. Firms can 
increase workers’ productivity by teaming them with other skilled workers and firm-controlled physical and 
intellectual capital, and these synergies are part of (unrecognized) accounting goodwill. 
6 Firms can optimize production efficiency by coordinating employee specialization and assigning job roles to 
employees with comparative advantage (Smith 1776; Rivkin and Siggelkow 2003). For simplicity, this paper takes 
firms’ matching between job roles and employee skills as given.  
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across divisions can transform individual skills into synergy so that the whole is greater than the 

sum of its parts (Ployhart and Moliterno 2011; Ethiraj and Garg 2012).7 Team players with 

diverse skill sets complement one another and contribute more to team performance (Fang and 

Hope 2021). Synergies between teams arise when complementary skills are used to successfully 

implement and complete a project. For example, management research argues that the successful 

commercialization of an innovation requires complementary assets such as manufacturing, 

marketing, and after-sales service (Teece 1986). Intrafirm knowledge sharing across semi-

autonomous divisions also contributes to firm performance (Seavey, Imhof, and Westfall 2018).8  

When teamwork adds more value 

The impact of teamwork on productivity varies across different contexts. In sports like 

baseball, team production primarily relies on the simple aggregation of individual efforts. 

However, basketball requires more coordinated actions, strategic positioning, and effective 

communication among teammates to create opportunities and maximize team performance 

(Wolfe et al. 2005). We could observe similar variations in business settings, where customer 

service call centers predominantly represent a simple aggregation of individual efforts while sell-

side analyst teams do not (Fang and Hope 2021). For firms, the value of teamwork is greatly 

influenced by two factors: task complexity and ease of communication among employees (e.g., 

Ployhart and Moliterno 2011). 

 
7 The whole can also be less than the sum of the parts. As mentioned, the coordination costs increases with the team 
size. High levels of specialization in teams may impede the development of a common language (Cohen and 
Levinthal 1990; Becker and Murphy 1992; Adams, Akyol, and Verwijmeren 2018). Team work can also create 
moral hazard problems when it is difficult to discern an individual’s contribution to team output a.k.a. the free rider 
problem (Holmstrom 1982). To reduce such shirking, team members can appoint an external monitor (Alchian and 
Demsetz 1972) or employ peer-to-peer sanctions (Ostrom, Walker, and Gardner 1992; Fehr and Gächter 2000).  
8 Since each division operates independently in a M-form firm, cross-division complementarity can be limited. In 
today’s volatile, uncertain, complex, and ambiguous (VUCA) world, firms are encouraged to build a well-connected 
team of teams that shares the same understanding of the mission, builds trust within and between teams, and works 
well together (McChrystal, Collins, Silverman, and Fussell 2015).   
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As job tasks increase in complexity, the costs associated with acquiring relevant skills and 

knowledge also rise. Consequently, complex tasks can make it difficult for an individual to 

possess broad expertise and proficiency, increasing the returns to specialization (Einstein 1934; 

Jones 2009; Jones 2021).  Heightened specialization naturally fosters a higher degree of 

interdependence and coordination among employees that eases the aggregation of specialized 

knowledge (Jones 2009). Therefore, complex tasks engender intensive workflows and necessitate 

close temporal synchronization (Thompson 1967; Ployhart and Moliterno 2011). Employees are 

required to adapt their behaviors and coordinate their actions with fellow team members.  

The ease of employee communication is also crucial because teamwork can only generate 

value when employees work interdependently, communicate effectively, trust one another, share 

knowledge, and collectively integrate their expertise (Mesmer-Magnus and DeChurch 2009). A 

firm’s organizational structure that facilitates employee interactions can act as a cohesive force, 

amplifying employee complementarity (Ployhart and Moliterno 2011). Appropriate management 

control systems can lower communication costs and shape the value of teamwork by providing 

more communication channels (Arnold, Hannan, and Tafkov 2018; Arnold, Hannan, and Tafkov 

2020), fostering a culture that emphasizes teamwork, trust, and open communication (Guiso, 

Sapienza, and Zingales 2015; Li, Mai, Shen, and Yan 2021), and prioritizing team building and 

collaboration tools in the employee training and development (Adhvaryu, Kala, and Nyshadham 

2023).9 Adhvaryu et al. (2023) suggest that providing on-the-job soft skill training to Indian 

garment workers can boost productivity by 13.5%. A significant part of this increase is due to the 

emphasis on teamwork and collaboration skills in the training. 

 
9 Management control system can impact teamwork productivity through other interventions such as goal orientation 
(Gong, Kim, Lee, and Zhu 2013), performance measurement (Brüggen, Feichter, and Williamson 2018; Klein and 
Speckbacher 2020), financial incentives (Chen, Williamson, and Zhou 2012; Kachelmeier, Wang, and Williamson 
2019; Glover and Xue 2020), and personnel control (Autrey, Jackson, Klevsky, and Drasgow 2023).   
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Task complexity and ease of communication are not independent of each other. Complex 

tasks demand employee specialization and collaboration. Therefore, firms with complex tasks 

will design their structures, allocate job tasks, and promote collaborative culture in a way that 

effectively leverages employee specialization. Over time, the organizational structure and 

corporate culture will adapt or adjust how the tasks are structured.   

Measuring firm-level human capital and teamwork 

Within U.S. financial reporting, disclosed employee data is largely confined to employee 

counts and the CEO-to-typical-worker pay ratio. This limitation is significant given human 

capital's role in generating economic benefits. The 2020 SEC amendment to Regulation S-K 

(Reg S-K) highlights the importance of human capital disclosure for investors and other 

stakeholders (Arif, Yoon, and Zhang 2022; Bourveau, Chowdhury, Le, and Rouen 2022; 

Demers, Wang, and Wu 2022; Haslag, Sensoy, and White 2022). In line with this, the FASB 

proposed an Accounting Standards Update (ASU) in July 2023 on expense disaggregation 

disclosures (subtopic 220-40), aiming to provide more detailed employee compensation 

information. 

Likely due to such data limitations, early studies on firm-level human capital focus on 

specific contributors of human capital such as the board of directors (Adams, Akyol, and 

Verwijmeren 2018), top executives’ human capital (Chen, Huang, Meyer-Doyle, and Mindruta 

2021), and rank-and-file employees (Dou, Khan, and Zou 2016). Others roughly quantify the 

stock of firm-level human capital using accounting data such as Selling, General, and 

Administrative (SG&A) expense (Eisfeldt and Papanikolaou 2013).  

More recent studies examine the performance implication of human capital investment in 

specific functions. For example, human investment in the tax function contributes to firms’ tax 

https://www.fasb.org/Page/ShowPdf?path=Proposed+ASU%E2%80%94Income+Statement%E2%80%94Reporting+Comprehensive+Income%E2%80%94Expense+Disaggregation+Disclosures+%28Subtopic+220-40%29%E2%80%94Disaggregation+of+Income+Statement+Expenses.pdf&title=Proposed+Accounting+Standards+Update%E2%80%94Income+Statement%E2%80%94Reporting+Comprehensive+Income%E2%80%94Expense+Disaggregation+Disclosures+%28Subtopic+220-40%29%E2%80%94Disaggregation+of+Income+Statement+Expenses&acceptedDisclaimer=true&IsIOS=false&Submit=
https://www.fasb.org/Page/ShowPdf?path=Proposed+ASU%E2%80%94Income+Statement%E2%80%94Reporting+Comprehensive+Income%E2%80%94Expense+Disaggregation+Disclosures+%28Subtopic+220-40%29%E2%80%94Disaggregation+of+Income+Statement+Expenses.pdf&title=Proposed+Accounting+Standards+Update%E2%80%94Income+Statement%E2%80%94Reporting+Comprehensive+Income%E2%80%94Expense+Disaggregation+Disclosures+%28Subtopic+220-40%29%E2%80%94Disaggregation+of+Income+Statement+Expenses&acceptedDisclaimer=true&IsIOS=false&Submit=
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planning activities (Chen, Cheng, Chow, and Liu 2020; Barrios and Gallemore 2022). Tambe 

(2014) documents that firms’ investments in big data lead to faster productivity growth. 

Darendeli et al. (2022) measure firms’ investment in green jobs and link this to firm operating 

performance and green innovations. Lee, Mauer, and Xu (2018) take a more holistic approach to 

examine firms’ occupation composition and document that the across-firm occupation-

composition relatedness is a key factor in mergers and acquisitions. 

Different from prior studies, we take a more comprehensive and granular approach to 

propose a new measure of firms’ human capital resources using employee skill requirements in 

job postings. Using skills (rather than occupations) as the basis to model teamwork lets us better 

understand the multidimensionality and heterogeneity of teamwork in firm-level human capital. 

First, individuals’ human capital is multidimensional (Lise and Postel-Vinay 2020). They 

develop bundles of different skills via training, education, and exploration. Also, the needs for 

individual human capital are heterogeneous across firms. Even for the same occupation, 

employees may use different combinations of skills with different weights attached to the skills 

depending on firms’ needs (Lazear 2009).  

III. MEASURING TEAMWORK USING JOB POSTINGS  

Main data 

Our main data come from Burning Glass Technologies (BGT). BGT is an employment data 

analytics firm that provides data on online job postings and skills in demand, sourcing from over 

40,000 online job boards and company websites. After removing duplicate job postings, BGT 

uses its proprietary algorithm to extract and standardize job-level characteristics in each job 

posting, such as employer name, job title, job location, and skill requirements.  
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Table 1 Panel A presents the sample selection process. Our BGT data contain 233,098,988 

job postings issued by 37,017 firm-year observations from 2010 to 2019 (the last year of job 

postings data we obtain). We use the crosswalk file provided by BGT to merge the job postings 

data with the financial data from Compustat and require the subsequent-year Return on Assets 

(ROAt+1) to be non-missing. The final sample consists of 15,226 firm-year observations.  

Table 1 Panels B and C report the number of firm-year observations by year and by Fama-

French 30 industry, respectively. The number of observations increases slightly over the years, 

consistent with BGT gradually expanding its coverage. Also, the industry distribution of our 

final sample is similar to that of the Compustat universe. The most populated industries are 

banking, services, business equipment, and healthcare. 

Teamwork Measure using Skill Vectors  

Teamwork encompasses the collective skills and knowledge possessed by individual 

employees within the firm. To measure teamwork, we begin with the foundational elements of 

human capital, namely the skills and knowledge of each employee. We obtain the job-posting-

level skill requirement data from BGT, assuming that the skill requirements in each job posting 

represent individual-level employees’ skill endowments for the focal firm.10 To limit the 

dimensionality of our predictors to a manageable level, we use skill family cluster, the coarsest 

level of skill requirements coded by BGT using its own proprietary algorithm. 

We construct the teamwork measure by aggregating job-posting-level skill requirements to 

the firm-year level. To mitigate the influence of outliers, we exclude the skills and skill pairs 

 
10 We take the skill requirements in the job posting as the components of focal firm’s human capital rather than 
trying to capture individuals’ total skill endowment from their resume. The reason is that firm-level human capital 
resources are composed of individual skills that are valuable to the focal firm’s business operations. For example, 
when an accountant plays the piano well, the latter skill is not directly relevant to firm business operations and 
should not be included in our measurement of teamwork. 
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required by less than 2 percent of job postings. In the aggregation process, we first count the total 

number of every skill required in all job postings issued by firm i in year t. We then measure the 

simple additive sum of employees’ skills within each firm-year. Specifically, we group the job 

postings by firm and year and aggregate the skill requirements of firm i in year t by counting the 

frequency of each unique skill and scaling them by the total number of skills.11 Next, assuming 

that firms will design job requirements and post job advertisements based on the synergistic 

effects within a certain combination of skills, we capture the multiplicative effects of employee 

skills by counting unique skill pairings at various levels. Counting the co-occurrences of skills 

allows us to explore the synergies that emerge when specific skills are combined. This approach 

aligns with a fundamental rationale rooted in the concept of labor division since Smith (1776), 

which posits that combining skills at a lower level leads to the creation of synergies at a higher 

level (see Figure 1).  

We measure the skill complementarities at the individual, department, division, and firm 

levels by counting co-occurrences of skill pairs in the following ways. First, we assume one job 

posting represents one employee and measure the complementarity across skills within the same 

individual by counting the co-occurrences of unique skill pairs (e.g., Python and writing) within 

the same job posting, aggregating the count of all job postings to the firm-year level, and scaling 

them by the total number of skills.12  

Second, we measure the complementarity across individuals within the same department. 

We define a department as a group of individuals working within the same occupation and the 

 
11 In counting the skill frequency, we give all the job postings posted by firm i in year t the same weight and view 
the aggregation of all the job postings posted by firm i in year t as a bag of skills. An analogy would be the bag-of-
words approach in textual analysis. 
12 Skill combinations within a single job posting can be synergistic (Gibbons and Waldman 2004; Lazear 2009). For 
example, an individual can use multiple complementary skills to fulfill his/her job, such as empirical research and 
academic writing abilities to publish journal articles. 
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same geographic area, count the co-occurrences of unique skill pairs in two different job postings 

within the same department, aggregate across all departments to the firm-year level, and scale 

them by the total number of skills. Note that in measuring the complementarities at a higher 

level, we disregard the skill pairs that were counted at lower levels to avoid double counting. For 

example, assuming that job posting No. 1 required skills A, B, and C and job posting No. 2 

required skills B, C, and D, we count A&B, B&C, A&C, B&D, and C&D as within-individual 

skill pairs and A&D as the within-department across-individual skill pair. As a result, the 

measured skill complementarity is contingent upon the heterogeneity of employee skills. For 

example, if the skill requirements are similar across individuals within a department, we would 

observe a smaller number of unique skill pairs at the department level.   

Third, we measure the complementarity across departments within the same division. 

Because we cannot precisely isolate firms’ business segments using job posting data, we focus 

on geographical segments and define geographical division as a group of job postings that share 

the same metropolitan statistical area (MSA). We then count the co-occurrences of unique skill 

pairs in two different teams within the same division, aggregate the counts across all segments to 

the firm-year level, and scale them by the total number of skills.  

Last, we measure the complementary across divisions within the same firm by counting the 

co-occurrences of unique skill pairs across two different divisions within the same firm and 

scaling them by the total number of skills. Note that under this research design, firms with more 

than one hiring MSA, especially retailers, would have more non-zero values for the skill pairs at 

the firm level.  

As a result, our measure of teamwork is a multi-dimensional skill vector for each firm-year 

observation. Table 2 Panel A shows the number of predictors by category. The skill vector 
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contains 1 variable of total skill requirement count, 27 unique skill counts representing the 

additive sum of employee skills, and 1,371 unique skill pair counts representing skill 

complementarity across different levels. Table 2 Panels B to F list the top 10 most frequently 

required skills or skill pairs by category and present summary statistics.  

We caveat several limitations associated with our measure. First, our assessment of skill-

based human capital relies on the skills specified in online job postings. However, it is important 

to recognize that firms, particularly their HR teams, may have access to additional labor-related 

information from alternative sources such as resumes or job interviews, which are not captured 

in our measure. Second, our current measure of skill complementarities is constrained by the co-

occurrences of skill pairs, determined by computational limitations. Firms can achieve even 

greater synergy by combining multiple skills in various ways. Therefore, our measure of synergy 

serves as a conservative estimate, representing a lower bound of the potential synergy that can be 

generated through the interaction of different skills within a firm. Last, as a common caveat of 

research using job postings, the skills identified in job postings reflect the skills demanded by 

firms but may not align with the actual skills acquired through the recruitment process.  

IV. PREDICTING FIRM PERFORMANCE USING MACHINE LEARNING METHOD 

We evaluate our firm-level teamwork measure by employing machine learning models to 

examine its ability to predict future operating performance (ROAt+1), which is a joint test of the 

importance of human capital resources and the validity of our measure. The complexity of our 

prediction analysis is notable, as our firm-level teamwork measure encompasses a substantial set 

of over 1,400 variables. These variables are likely to exhibit nonlinear interactions, and the 

relationships between these variables and firm performance can be intricate and lack well-

defined patterns. Hence, trying to construct an elaborate OLS regression model will likely be 
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suboptimal. Thus, we opted for a machine learning approach, which provides greater flexibility 

and predictive capacity, especially when dealing with large and intricate datasets like ours. We 

emphasize that our analysis does not examine the causal relationship between human capital 

resources and firm performance; instead, we focus on the out-of-sample prediction power of our 

teamwork measure on one-year ahead operating performance (Bao et al. 2020; Brown, Crowley, 

and Elliott; Ding et al. 2020; Bertomeu, Cheynel, Floyd, and Pan 2021; Chen, Cho, Dou, and 

Lev 2022). 

Extreme Gradient Boosting (XGBoost) method  

We employ a state-of-the-art machine learning method, extreme gradient boosting 

(XGBoost), to assess the predictive performance of our teamwork measure. XGBoost is a 

decision-tree-based ensemble machine learning algorithm that uses a gradient boosting 

framework, introduced by Chen and Guestrin (2016). XGBoost outperforms other machine 

learning algorithms (e.g., GBRT and LASSO) due to its superior performance and high speed in 

solving regression, classification, and ranking problems (Tantri 2021; Zheng 2021; Li and Zheng 

2023).13 

XGBoost, like other machine learning algorithms, relies on a set of parameters that require 

optimization to achieve the best prediction performance. This optimization process is not guided 

 
13 XGBoost is an improvement over the basic Gradient Boosting Regression Tree (GBRT) algorithm, as it includes 
algorithmic enhancements and system optimization features. GBRT uses an ensemble technique termed gradient 
boosting to combine multiple weak models (i.e., regression trees) to generate a strong model, with weak models 
being additively generated based on the gradient of the error with respect to the prediction (Friedman, 2001). 
Specifically, GBRT iteratively trains an ensemble of shallow regression trees, with each iteration using the error 
residuals of the previous model to fit the next model. The final prediction is a weighted sum of all tree predictions. 
XGBoost is a scalable and highly accurate implementation of gradient boosting, being built largely for energizing 
machine learning model performance and computational speed. In contrast to GBRT, XGBoost builds trees in 
parallel rather than sequentially, resulting in significantly improved computational performance. Moreover, 
XGBoost uses a depth-first approach as the stopping criterion for tree splitting and prevents overfitting by 
penalizing more complex models through both LASSO (L1) and Ridge (L2) regularization. 
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by theory but by empirical exploration (i.e., fine tuning). We utilize the grid search method to 

identify the optimal parameters that produce the best prediction performance across all possible 

combinations of a specified subset of parameters. For XGBoost, the parameters are categorized 

into two groups that define a regression tree and manage boosting. Due to computational 

constraints, we fine-tune three key parameters used in XGBoost, namely the number of trees, the 

maximum depth of the tree, and the learning rate.14 Online Appendix Table OA1 Panel A 

presents the parameter values’ grids used in our fine-tuning process. 

We fine-tune the parameters using a 4-split time-series cross-validation approach (Anand, 

Brunner, Ikegwu, and Sougiannis 2019). First, we partition the sample into five folds and vary 

the training and validation set in each iteration.15 In the nth iteration, the XGBoost model is 

trained using the first n folds and validated on the (n+1)th fold (see Figure 2). For example, in the 

2nd iteration, the training set is the first two folds, and the validation set is the 3rd fold. In this 

way, we ensure that the validation data is more recent than the training data to avoid look-ahead 

bias. Second, in each of the four iterations, we train the model for every possible combination of 

the above-mentioned parameter values and assess the model performance by calculating the 

mean squared error on the validation set.16 Last, the fine-tuning process chooses the optimal 

parameter combination that maximizes the model’s average performance over the four iterations. 

 
14 Increasing these parameters’ values improves the model fit, but it may lead to overfitting, where the machine 
learning model explains noise rather than the generalizable underlying relationship in the test sample. 
15 We use the time-series split cross-validation option in scikit-learn machine learning package. Note that the data is 
split in five folds instead of four, even though our approach is 4-split time series split. This is because we cannot use 
the first fold as a test fold since there is no training data before the first fold.  
16 There are 4 iterations in each 4-split time-series cross-validation process to train an XGBoost model. Moreover, 
we grid search for 15 possibilities of the number of trees, 6 possibilities of the maximum depth of the tree, and 3 
possibilities of learning rate. In total, we run the XGBoost algorithm for 1,080 (=4*15*6*3) times for each training 
and validation attempt. 
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Performance evaluation 

To test the predictive performance of our teamwork measure, we follow prior studies to 

divide our sample into training/validation and test samples that maintain the temporal ordering of 

the full sample. We use a rolling-sample splitting scheme, in which the samples gradually shift 

forward in time to incorporate more recent data while keeping the total number of time periods 

fixed. Specifically, we build an XGBoost model using a five-year window of training/validation 

data and assess the out-of-sample performance using a one-year window of testing data (e.g., 

2010-2014 for training/validation and 2015 for testing in the first rolling window). Under this 

rolling scheme, our test period covers the years from 2015 to 2019 and consists of five testing 

samples, corresponding to the five rolling windows (see Figure 3). The results of our analysis 

will comprise a sequence of out-of-sample R2s, one for each rolling window.  

Benchmark selection 

To further assess the out-of-sample performance of our teamwork measure, we compare it 

with two benchmarks. The first benchmark is the number of employees, which is chosen due to 

its wide data availability from Compustat. However, as a simple aggregate measure, the number 

of employees offers limited information on the composition and quality of human capital.  

We add a second benchmark, employee turnover, which is constructed using employment 

data gathered from online platforms. Li et al. (2022) use this measure and document a negative 

association between current employee turnover and future operating performance. We construct 

firm-year level employee turnover rate based on resume data from Revelio Labs. The Revelio 

Labs resume data include individuals’ demographic data, educational background, and 

employment history (e.g., start and end dates of a job position, employer name, and job title). We 
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follow Li et al. (2022) and calculate the turnover rate as the employee outflow scaled by the 

number of employees of a firm at the beginning of a year. 

We repeat the above-mentioned method to train the XGBoost models of these two 

benchmarks separately and jointly and evaluate their out-of-sample prediction performance. 

V. EMPIRICAL RESULTS 

Predicting future firm performance  

In this section, we apply the models derived from the training/validation sample to predict 

future performance during the test period.17 Table 3 reports the out-of-sample R2 results of the 

test sample in each of the five rolling windows and online appendix Table OA2 reports the MSE 

and MAE results for robustness. When employing our teamwork measure as the predictor, the 

out-of-sample R2 values range from 8.65% to 22.88%, with an average of 17.52% across the five 

test samples. To provide a better understanding of these figures, we compare the prediction 

performance of the teamwork models (row 1) with those of benchmark models (rows 2-4). The 

results consistently demonstrate that the teamwork measure significantly outperforms other 

variables related to human capital in forecasting future firm performance across all five rolling 

windows. For example, Table 3 shows that the average out-of-sample R2 is 12.86% for models 

with the number of employees, 1.57% for models with turnover, and 13.68% for models with 

both the number of employees and turnover.18 We further assess if teamwork enhances the 

model's predictive power beyond existing benchmark variables. Upon integrating the teamwork 

 
17 Online appendix Table OA1 Panel B provides the parameters for the main XGBoost models selected on the 
training/validation data, which is based on the cross-validation approach mentioned in Section IV. The values are 
relatively stable over time and do not cluster at the lower or upper bounds, suggesting that the allowed range for 
each parameter is typically not binding. 
18 Note that we evaluate the prediction performance after fine tuning the parameters in XGBoost models using the 
training/validation set. Therefore, the performance evaluation results of our benchmark models cannot be directly 
compared with the in-sample OLS R2 reported in the existing published papers. 
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measure into the benchmark models (rows 5-7), we observe a substantial improvement in 

predictive performance. For instance, the average out-of-sample R2 of models employing 

employee count nearly doubles (from 12.86% to 24.96%) with the inclusion of the teamwork 

measure. This highlights the teamwork measure's ability to unveil additional insights not 

captured by existing human-capital-related variables.  

To enhance the interpretability of our teamwork models and make transparent the items 

responsible for prediction performance, we quantify the importance of each predictor within the 

teamwork measure using SHapley Additive exPlanations (SHAP). SHAP values use game theory 

concepts to allocate a contribution of each feature for a specific prediction, offering a consistent 

approach to explain the output of any machine learning model (Lundberg, Erion, and Lee 2019). 

Based on the magnitude of feature attributions, we estimate each predictor’s importance by 

averaging the absolute SHAP values across the test data in five rolling windows.19 Table 4 Panel 

A presents the top 10 predictors with the highest average absolute SHAP values across all rolling 

windows.20 Among these predictors, several relate to skill combinations at different levels, such 

as health care combined with science and research, analysis combined with health care, business 

combined with customer and client support, and customer and client support combined with 

industry knowledge. Furthermore, individual skills also exhibit significant importance in 

 
19 Permutation importance is an alternative to SHAP values. Based on the decrease in model performance rather than 
the magnitude of feature attributions, permutation importance of a predictor is computed as the R2 decrease when that 
predictor is randomly shuffled (Altmann, Toloşi, Sander, and Lengauer 2010). Table OA3 in the online appendix 
shows the top 10 most important predictors and cumulative feature importance by group based on permutation 
importance. One major advantage of SHAP values over permutation importance is to better account for the interactions 
between features because it calculates the marginal contribution of a feature by considering it in all possible 
combinations with other features. SHAP calculations can be computationally more expensive than permutation 
importance, especially for complex models or high-dimensional data, because SHAP values require evaluating the 
model for every possible combination of predictors.   
20 A predictor has one feature importance value for each of the five rolling windows. We compute the correlation of 
importance values between two consecutive test years. For the four pairs of consecutive test years (2015 vs. 2016, 
2016 vs. 2017, 2017 vs. 2018, and 2018 vs. 2019), the correlation coefficients are 0.88, 0.60, 0.61, and 0.62, 
suggesting that the predictor importance is reasonably stable over time.   
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predicting future performance, including maintenance, repair, and installation, supply chain and 

logistics, customer and client support, industry knowledge, and business. 

To comprehensively assess the collective importance of all predictors within our teamwork 

measure, we categorize them into five groups: individual skills, skill pairs at the individual level, 

skill pairs at the department level, skill pairs at the division level, and skill pairs at the firm level. 

Table 4 Panel B shows the sum of predictor importance by group.21 In aggregate, skill pairs at 

the individual level contribute the most in forecasting future performance, followed by stand-

alone individual skills.  

When teamwork is more valuable 

We next examine whether the predictive performance of our teamwork measure is 

contingent upon the levels of task complexity and ease of communication among employees. We 

divide the entire sample into subsamples and construct separate training/validation and test 

samples for each subsample. We then retrain the models to fine-tune the parameters and evaluate 

the out-of-sample prediction accuracy.22 Given that the benefits of teamwork are amplified when 

tasks are complex and when communication among employees is smooth, we expect that the 

prediction performance of our teamwork measure increases with task complexity and ease of 

communication.  

For complex job tasks, a significant portion of the knowledge required for production is 

intangible and resides within individuals, rather than being readily codified and routinized 

 
21 The approach to calculating grouped feature importance is not well defined in machine learning literature (Au et 
al. 2021). Therefore, we follow prior literature and sum the predictors to calculate the cumulative importance by 
group (Bertomeu, Cheynel, Floyd, and Pan 2021; Chen, Cho, Dou, and Lev 2022). Note that the summed 
cumulative importance may overestimate the group importance, especially if there is multicollinearity.   
22 For robustness, we check the sub-sample prediction performance using the parameter values of the main models 
without retraining the models. Online appendix Table OA4 shows that the results are robust to this research design 
modification. 
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(Freund 2022). It is particularly pronounced in high-tech industries characterized by extensive 

research and development endeavors. Therefore, we use the routine task index, Tobin’s Q, and a 

high-tech industry indicator as proxies to capture the multifaceted nature of task complexity 

(Francis, Philbrick, and Schipper 1994; Peters and Taylor 2017; Tuzel and Zhang 2021).  

Table 5 Panel A presents the out-of-sample R2 values of teamwork measure for low task 

complexity and high task complexity subsamples. As shown in the shaded area, we find that the 

R2 values are consistently higher in the high task complexity subsamples across all test years and 

partitions compared to their low task complexity counterparts. For example, the average R2 is 

21.58% for the subsample with low routine task index and 2.74% for the subsample with high 

routine task index, 22.16% for the subsample with high Tobin’s Q and 8.36% for the subsample 

with high Tobin’s Q, and 26.08% for high-tech industries and 8.06% for non-high-tech 

industries. These findings suggest that our teamwork measure exhibits stronger predictive power 

for firms engaged in complex tasks, consistent with the notion that teamwork contributes more 

value in such contexts. 

To capture the level of ease of communication within firms, we employ four proxies. First, 

communication and coordination among employees are more likely to occur in a social 

environment that fosters such behavior. Therefore, our first two proxies pertain to the social 

environment: (1) teamwork culture intensity, measured by the frequency of teamwork-related 

keywords in earnings conference calls (Teamwork Culture) (Li et al. 2021); (2) the number of 

teamwork skills in all job postings required by the focal firm in a given year (Teamwork Job). 

Additionally, the structure of the firm also influences employee collaboration. For instance, firms 

with multiple business segments or operations at diverse locations often face challenges in 

integrating employees across segments, impeding collaboration. To capture this aspect, we use 
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an indicator of one business segment (One Segment) and the number of unique hiring MSAs in 

all job postings by the focal firm in a given year (# MSA).  

Table 5 Panel B presents the out-of-sample R2 values of the teamwork measure for low and 

high communication-ease subsamples. The shaded results consistently show higher R2 values in 

the high communication-ease subsamples compared to their low communication-ease 

counterparts. For example, the average R2 is 15.20% (2.22%) for the subsample with high (low) 

teamwork culture and 21.36% (0.58%) for the subsample with more (fewer) teamwork skill 

requirements. Moreover, the teamwork measure shows better prediction performance for 

subsamples with fewer geographical locations (18.76% vs. 3.90%) and only one business 

segment (19.42% vs. 11.59%). These findings collectively suggest that our teamwork measure 

demonstrates enhanced predictive power when the firm’s social environment and structure foster 

effective communication among employees. 

We then continue to explore whether the prediction performance of the teamwork measure 

is contingent upon both task complexity and ease of communication. To facilitate this analysis, 

we employ the principal component method of factor analysis to condense the proxies of each 

dimension into a single factor. Table 6 Panel A presents the factor loadings obtained from both 

factor analyses. In the complexity factor, the loadings are negative for the routine task index and 

positive for Tobin’s Q and the high-tech indicator. Consequently, a higher value of the 

complexity factor indicates higher task complexity. In the communication factor, the loadings are 

positive for teamwork culture and teamwork skill requirements and negative for the number of 

geographical locations and business segments. Thus, a higher value of the communication factor 

signifies a higher level of ease of communication among employees. Next, we partition the 

sample based on both factors, creating four subsamples: low-low, low-high, high-low, and high-
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high. For each subsample, we retrain the models to fine-tune the model parameters and evaluate 

the out-of-sample prediction accuracy. 

Given that a higher value of complexity factor indicates higher task complexity and a 

higher value of communication factor indicates a higher ease of communication, we expect that 

the teamwork measure will exhibit the best predictive performance in the high-high subsample. 

Table 6 Panel B presents the out-of-sample R2 values of teamwork measure for each 

subsample.23 Consistent with our expectation, the values of out-of-sample R2 are the highest in 

the high-high subsamples for all five test years. For example, in the test year 2019, the R2 is        

-12.86% for the low-low subsample, 1.45% for the high-low subsample, 1.04% for the low-high 

subsample, and 15.02% for the high-high subsample. Overall, these results demonstrate that our 

teamwork measure exhibits superior prediction performance for firms with complex tasks and 

effective employee communication. 

VI. ADDITIONAL ANALYSIS 

High-skills vs low-skills 

In this section, we conduct additional analysis to assess the heterogeneous performance of 

our teamwork measure based on the complexity level of skill requirements across occupations. 

Specifically, we evaluate the performance of the teamwork measure constructed using firms’ 

skill requirements in low-skill occupations vs. high-skill occupations. To measure the complexity 

level of skill requirements, we use the job zone classification by O*NET that classifies each job 

occupation into five job zone groups based on levels of education, experience, and training 

necessary to perform the occupation. Occupations with Job Zone 1 assignment need little or no 

 
23 Without factor analysis, we find consistent results when partitioning the sample into four subsamples using other 
proxies. Online appendix Table OA5 presents the results of other two-by-two subsample analysis with and without 
retraining the models to fine-tune the model parameters. 
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preparation while occupations with Job Zone 5 assignment need extensive preparation. Since 

jobs with Job Zone 1 assignment need little preparation and are more mechanical, we would 

expect that teamwork provides less incremental value to improve team performance. In contrast, 

for jobs with Job Zone 5 assignments, the extensive collaboration between team members will 

boost team performance by incorporating synergy from different skill combinations. 

Table 7 reports out-of-sample R2 values of 5 different versions of teamwork measures 

created using job posting data with each job zone assignment. As shown in the shaded area, we 

find that the R2 values are consistently higher in the subsamples of greater job zone scores. For 

example, the average R2 is 17.16% for the teamwork measure based on Job Zone 5 data and is 

much greater than the average R2 of 0.72% for the teamwork measure based on Job Zone 1 data. 

These findings suggest that our teamwork measure exhibits stronger predictive power for high-

skill occupations, consistent with the notion that teamwork contributes more value when job 

tasks are complex. 

Specialization and complementarity 

While separating specialization and complementarity is conceptually and empirically 

challenging, we examine whether both parts of teamwork contribute to the predictive 

performance in the subsample analysis. Due to the division of labor, an employee contributes to 

the collective human capital of a firm by specializing in a specific domain with her skill 

endowments to fulfill her job requirements. We label such human capital as the specialization 

component, which is captured by the vectors of unique skills or skill pairs at the individual level. 

Then, we label the remaining component (i.e., the skill pairs at the department, MSA, and firm 

levels) in the skill vector as the complementarity component. To test whether both specialization 

and complementarity components contribute to the predictive power of human capital on firm 

performance, we retrain XGBoost models using the specialization and complementarity 

components one at a time for each subsample and evaluate the prediction performance. 



 

26 

Table 8 reports the prediction performance separately for specialization and 

complementarity components of teamwork by task complexity and ease of communication.  

Consistent with the previous subsample analysis, we use routine task index, Tobin’s Q, and a 

high-tech industry indicator as proxies for task complexity and use teamwork culture, teamwork 

skill requirements, number of MSAs, and a one-business-segment indicator as proxies for ease of 

communication. In Panel A of Table 8, we present the out-of-sample R2 values for the 

specialization component. The shaded area highlights that the R2 values for the specialization 

component consistently exhibit higher values in subsamples characterized by high task 

complexity and high communication ease across all test years. Moving to Panel B of Table 8, we 

present the out-of-sample R2 values for the complementarity component of teamwork. Once 

again, the shaded results consistently show higher R2 values for the complementarity component 

in subsamples with high task complexity and high communication ease across all test years. 

We further test whether both specialization and complementarity components of teamwork 

have superior prediction performance in the high task complexity and high ease of 

communication subsamples. As in the previous two-by-two subsample analysis, we divide the 

entire sample into four subsamples using both complexity factor and communication factor. 

Table 9 Panel A presents the out-of-sample R2 values of the specialization component for each 

subsample. Consistent with our expectations, we observe that the subsamples with high 

complexity factor scores and high communication factor scores consistently exhibit the highest 

values of out-of-sample R2 across all five test years. Similarly, Table 9 Panel B presents the out-

of-sample R2 values of the complementarity component for each subsample. We again find that 

the complementarity component achieves the best prediction performance in the subsamples with 

high complexity factor scores and high communication factor scores across all five test years.  

Overall, our findings suggest that both the specialization and complementarity components 

of our teamwork measure add more value for firms with complex tasks and effective employee 

communication. These results emphasize the importance of considering both aspects of 
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teamwork when examining the relationship between teamwork and firm outcomes. By 

incorporating both specialization and complementarity, our measure provides a more 

comprehensive understanding of the impact of teamwork on firm performance. 

VII. CONCLUSION 

This study sheds light on the importance of teamwork in predicting firm performance. 

Drawing on classical economic theories that emphasize the division of labor and task 

specialization, we conjecture that collaboration among employees with specialized knowledge is 

crucial for developing internal human capital, creating a competitive advantage, and enhancing 

firm performance. Our study fills a gap in empirical studies by examining team members’ skills 

and their interactions, which have been largely overlooked due to limited data availability. 

By leveraging firms’ online job requirements and employing XGBoost models, we propose 

a novel approach to investigate the role of teamwork in firm performance. Our evidence 

demonstrates that teamwork outperforms other human-capital-related variables (e.g., employee 

count and turnover) in predicting firm performance. Furthermore, teamwork adds considerable 

incremental explanatory power to these variables indicating that it captures a new dimension of 

human capital. We find that teamwork has a higher predictive power for firms facing complex 

tasks and characterized by efficient employee communication, consistent with teamwork 

contributing more to firm values under these circumstances. 

Overall, this study underscores the significance of teamwork for firm performance, 

particularly in the context of complex tasks and effective employee communication. The findings 

contribute to theoretical understanding, inform managerial decision-making, and showcase the 

applicability of machine learning in accounting research. While previous research has focused on 

top executives and boards of directors, this study takes a holistic approach by proposing a new 
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and comprehensive measure of firms’ human capital resources based on skill requirements in job 

postings. Our findings address the growing importance of human capital disclosure for investors 

and expand the scope of measuring human capital beyond traditional metrics. We also extend the 

literature on the application of machine learning in accounting literature. 
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Appendix: Variable Definition 

Variable Definition 
ROA Return on assets, defined as income before extraordinary items scaled 

by the average book value of assets [Source: Compustat] 
 

Teamwork A vector of the numbers of individual skills and skill pairs in all job 
postings issued by a firm in a given year as defined in Section III 
[Source: Burning Glass] 
 

Ln(Employee) Log of the number of employees of a firm in a given year [Source: 
Compustat] 
 

Turnover Ratio of the number of departing employees over the number of total 
employees of a firm in a given year [Source: Revelio Labs] 
 

Routine Task Index Firm-level average routine task score of all occupations in a firm. We 
follow Tuzel and Zhang (2021) to construct the routine-task intensity 
score for each OES occupation as Ln(Troutine)-Ln(TAbstrct)-Ln(Tnonroutine). 
Troutine, TAbstrct, and Tnonroutine represent the required skill level for 
performing routine, abstract, and nonroutine manual tasks in each 
occupation, respectively. [Source: Burning Glass] 
 

Tobin’s Q Firm value scaled by the sum of physical and intangible capital as 
defined by Peters and Taylor (2017) [Source: Compustat] 
 

High Tech An indicator variable equals 1 if a firm’s SIC code is in biotechnology 
(2833-2836 and 8731-8734), computers (3570-3577 and 7370-7374), 
electronics (3600-3674), and retail (5200-5961) industries as defined by 
Francis, Philbrick, and Schipper (1994), and 0 otherwise [Source: 
Compustat] 
 

Teamwork Culture Weighted-frequency count of teamwork-related words in the Q&A 
section of earnings calls averaged over a 3-year window as defined by 
Li et al. (2021)  
 

Teamwork Job The number of teamwork skills required in all job postings issued by a 
firm in a given year [Source: Burning Glass] 
 

# MSA The number of unique recruiting MSAs in all job postings issued by a 
firm in a given year [Source: Burning Glass] 
 

# Segment The number of unique SIC 3-digit codes of a firm’s disclosed business 
segments [Source: Compustat] 
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One Segment An indicator variable equals 1 if the firm’s disclosed business segments 
share the same SIC 3-digit code, and 0 otherwise [Source: Compustat] 
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Figure 1: Skills to Firm-level Human Capital  

This figure illustrates the additive and complementarity properties of human capital resources 
(HCR) under two different structures. 
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Figure 2: Illustration of Time Series Split Cross-Validation Approach 

This figure presents our split cross-validation approach for our test. We cross validate our sample 
4 times. In the first iteration, we use 20% of the sample as the training set and the next 20% of the 
sample as the testing set. In the second iteration, we use 40% of the sample as the training set and 
the next 20% of the sample as the testing set. In the third iteration, we use 60% of the sample as 
the training set and the next 20% of the sample as the testing set. In the fourth iteration, we use 
80% of the sample as the training set and the next 20% of the sample as the testing set. 
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Figure 3: Illustration of the Rolling Scheme  

This figure presents the rolling scheme for our main test. We split our sample into 
training/validation and test samples that maintain the temporal ordering of the full sample. The 
rolling sample splitting scheme gradually shifts forward in time to incorporate more recent data 
while keeping the total number of time periods fixed. Each pass uses a five-year window of 
training/validation data and assesses the out-of-sample performance using a one-year window of 
testing data (e.g., 2010-2014 for training/validation and 2015 for testing in the first rolling 
window). 
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Table 1: Sample  

Panel A reports the sample selection process. Panel B shows the number of firm-level job posting 
data by fiscal year for the final sample of 15,226. Panel C provides the number of firm-level job 
posting data by Fama-French 30-industry classification. 
 
Panel A: Sample selection 

Source/Filter 
No. of 

Observations 
(1) All job postings collected by Burning Glass Technologies from 2010 
to 2019 

233,098,988 

(2) Aggregating job posting data to the firm year level  37,017 
(3) Requiring financial data available from Compustat 15,244 
(4) Requiring non-missing ROAt+1 15,226 

 
 
Panel B: Firm-year level job posting data by year 

Fiscal year Frequency Percentage 
2010 1,154 7.58 
2011 1,249 8.20 
2012 1,360 8.93 
2013 1,491 9.79 
2014 1,541 10.12 
2015 1,606 10.55 
2016 1,629 10.70 
2017 1,692 11.11 
2018 1,763 11.58 
2019 1,741 11.43 
Total 15,226 100.00 

 
  



 

41 

Panel C: Firm-year level job posting data by industry 
Industry Frequency Percentage Compustat 

Percentage 
Food Products 281 1.85 1.94 
Beer & Liquor 76 0.50 0.30 
Tobacco Products 17 0.11 0.09 
Recreation 238 1.56 1.69 
Printing and Publishing 131 0.86 0.47 
Consumer Goods 269 1.77 1.00 
Apparel 254 1.67 0.76 
Healthcare, Medical Equipment, 
Pharmaceutical Products 

1,325 8.70 14.83 

Chemicals 346 2.27 1.74 
Textiles 49 0.32 0.15 
Construction and Construction Materials 516 3.39 2.14 
Steel Works Etc 167 1.10 0.92 
Fabricated Products and Machinery 597 3.92 2.35 
Electrical Equipment 194 1.27 1.24 
Automobiles and Trucks 394 2.59 1.31 
Aircraft, Ships, and Railroad Equipment 147 0.97 0.54 
Precious Metals, Non-Metallic, and 
Industrial Metal Mining 

112 0.74 2.47 

Coal 28 0.18 0.30 
Petroleum and Natural Gas 473 3.11 4.57 
Utilities 494 3.24 3.61 
Communication 360 2.36 2.59 
Personal and Business Services 1,964 12.90 12.05 
Business Equipment 1,362 8.95 7.60 
Business Supplies and Shipping 
Containers 

263 1.73 0.85 

Transportation 424 2.78 2.80 
Wholesale 524 3.44 2.52 
Retail 800 5.25 3.28 
Restaurants, Hotels, Motels 304 2.00 1.39 
Banking, Insurance, Real Estate, Trading 2,632 17.29 20.73 
Other 485 3.19 3.75 
Total 15,226 100.00 100.00 
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Table 2: Summary Descriptives  

Panel A shows the number of predictors by category. Panels B, C, D, E, and F provide lists of the 
top 10 most populated individual skills, skill pairs at the individual level, skill pairs at the 
department level, skill pairs at the MSA level, and skill pairs at the firm level, respectively, and 
descriptive statistics for the predictor values. Except for the total number of skills, all predictor 
values are scaled by the total number of skills. 

 

Panel A: Number of predictors by category 
Group # of predictors 
Total number of individual skills 1 
Individual skills 27 
Skill pairs at the individual level 336 
Skill pairs at the department level 333 
Skill pairs at the division level 351 
Skill pairs at the firm level 351 

 

 
Panel B: Top 10 most frequently required individual skills 
Predictor Mean Std. 25% 50% 75% 
Information Technology 0.0326 0.0621 0.0010 0.0075 0.0348 
Business 0.0199 0.0317 0.0006 0.0047 0.0240 
Sales 0.0190 0.0468 0.0003 0.0025 0.0145 
Finance 0.0135 0.0269 0.0005 0.0033 0.0152 
Customer and Client Support 0.0112 0.0300 0.0002 0.0015 0.0081 
Supply Chain and Logistics 0.0094 0.0217 0.0001 0.0012 0.0080 
Administration 0.0073 0.0145 0.0002 0.0015 0.0083 
Marketing and Public Relations 0.0070 0.0140 0.0002 0.0014 0.0072 
Health Care 0.0062 0.0296 0.0000 0.0003 0.0023 
Manufacturing and Production 0.0058 0.0136 0.0000 0.0006 0.0042 
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Panel C: Top 10 most frequently required skill pairs at individual level 
Predictor Mean Std. 25% 50% 75% 
Business & Information Technology 0.0003 0.0009 0.0000 0.0001 0.0002 
Analysis & Information Technology 0.0003 0.0008 0.0000 0.0001 0.0002 
Finance & Information Technology 0.0003 0.0006 0.0000 0.0001 0.0002 
Design & Information Technology 0.0002 0.0008 0.0000 0.0001 0.0002 
Engineering & Information Technology 0.0002 0.0006 0.0000 0.0000 0.0002 
Business & Finance 0.0002 0.0005 0.0000 0.0001 0.0002 
Marketing and Public Relations & Sales 0.0002 0.0004 0.0000 0.0001 0.0002 
Information Technology & Marketing and Public Relations 0.0002 0.0005 0.0000 0.0000 0.0002 
Information Technology & Supply Chain and Logistics 0.0002 0.0004 0.0000 0.0000 0.0002 
Design & Marketing and Public Relations 0.0002 0.0006 0.0000 0.0000 0.0001 

 

 
Panel D: Top 10 most frequently required skill pairs at department level 
Predictor Mean Std. 25% 50% 75% 
Finance & Human Resources 0.0002 0.0006 0.0000 0.0000 0.0001 
Finance & Marketing and Public Relations 0.0002 0.0006 0.0000 0.0000 0.0001 
Finance & Information Technology 0.0002 0.0006 0.0000 0.0000 0.0001 
Business & Finance 0.0002 0.0005 0.0000 0.0000 0.0001 
Finance & Supply Chain and Logistics 0.0002 0.0006 0.0000 0.0000 0.0001 
Finance & Sales 0.0001 0.0005 0.0000 0.0000 0.0001 
Information Technology & Marketing and Public Relations 0.0001 0.0004 0.0000 0.0000 0.0001 
Information Technology & Sales 0.0001 0.0005 0.0000 0.0000 0.0001 
Business & Information Technology 0.0001 0.0004 0.0000 0.0000 0.0001 
Human Resources & Supply Chain and Logistics 0.0001 0.0004 0.0000 0.0000 0.0001 
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Panel E: Top 10 most frequently required skill pairs at division level 
Predictor Mean Std. 25% 50% 75% 
Information Technology & Maintenance, Repair, and Installation 0.0010 0.0170 0.0000 0.0000 0.0002 
Finance & Maintenance, Repair, and Installation 0.0010 0.0079 0.0000 0.0000 0.0003 
Information Technology & Sales 0.0009 0.0080 0.0000 0.0000 0.0003 
Information Technology & Legal 0.0008 0.0193 0.0000 0.0000 0.0001 
Engineering & Finance 0.0008 0.0064 0.0000 0.0000 0.0002 
Maintenance, Repair, and Installation & Sales 0.0007 0.0049 0.0000 0.0000 0.0003 
Design & Finance 0.0007 0.0041 0.0000 0.0000 0.0002 
Finance & Manufacturing and Production 0.0006 0.0037 0.0000 0.0000 0.0002 
Business & Maintenance, Repair, and Installation 0.0006 0.0054 0.0000 0.0000 0.0002 
Design & Sales 0.0006 0.0062 0.0000 0.0000 0.0002 

 

 
Panel F: Top 10 most frequently required skill pairs at firm level 
Predictor Mean Std. 25% 50% 75% 
Information Technology & Sales 0.0007 0.0098 0.0000 0.0000 0.0002 
Maintenance, Repair, and Installation & Sales 0.0005 0.0028 0.0000 0.0000 0.0001 
Manufacturing and Production & Sales 0.0005 0.0032 0.0000 0.0000 0.0001 
Finance & Maintenance, Repair, and Installation 0.0004 0.0051 0.0000 0.0000 0.0001 
Engineering & Sales 0.0004 0.0027 0.0000 0.0000 0.0001 
Sales & Supply Chain and Logistics 0.0004 0.0026 0.0000 0.0000 0.0001 
Human Resources & Sales 0.0004 0.0023 0.0000 0.0000 0.0001 
Finance & Sales 0.0003 0.0019 0.0000 0.0000 0.0001 
Business & Sales 0.0003 0.0026 0.0000 0.0000 0.0001 
Information Technology & Maintenance, Repair, and Installation 0.0003 0.0028 0.0000 0.0000 0.0001 
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Table 3: Prediction Performance of Teamwork 

This table presents the out-of-sample R2 in percentage of each XGBoost model. Each column 
indicates the test year. We build an XGBoost model using a five-year window of 
training/validation data (before each test year) and assess the out-of-sample performance using the 
data in each test year. The predictors used in building the XGBoost model are specified by rows. 
The results of our analysis will comprise a sequence of out-of-sample R2s, one for each rolling 
window and one set of predictors. 
 

 

Predictor 

Test Year  

2015 2016 2017 2018 2019 

Average 
Out-of-Sample  

R2 
(1) Teamwork 19.94 16.72 22.88 19.38 8.65 17.52 
(2) Ln(Employee)  15.77 15.91 15.91 12.66 4.04 12.86 
(3) Turnover 3.10 2.12 0.59 1.01 1.04 1.57 
(4) Ln(Employee) + Turnover 16.25 16.51 15.26 12.67 7.73 13.68 
(5) Teamwork + Ln(Employee) 28.44 25.02 30.40 25.03 15.91 24.96 
(6) Teamwork + Turnover 14.98 21.50 21.14 20.21 9.91 17.55 
(7) Teamwork + Ln(Employee) + Turnover 27.31 28.57 29.58 25.63 14.79 25.17 

 

  



 

46 

Table 4: Feature Importance 

This table presents the feature importance of different predictors for human capital. Feature 
importance is calculated as the average SHapley Additive exPlanations (SHAP) values across all 
observations and multiplied by 100. Panel A presents the top 10 most important single predictors 
among all skill requirements with the highest average SHAP values across all rolling windows. 
Panel B reports the grouped cumulative predictor importance of skill groups.  

 
Panel A: Top 10 most important single predictors 

Rank Predictor 

Average 
feature 

importance 
1 Maintenance, Repair, and Installation 0.892 
2 Health Care & Science and Research at the individual level 0.655 
3 Total number of individual skills 0.650 
4 Supply Chain and Logistics 0.472 
5 Analysis & Health Care at the individual level 0.466 
6 Customer and Client Support 0.424 
7 Industry Knowledge 0.324 
8 Business 0.228 
9 Business & Customer and Client Support at the firm level 0.207 
10 Customer and Client Support & Industry Knowledge at the firm level 0.188 

 

Panel B: Grouped cumulative predictor importance 
Group Sum 
Individual skills 3.77 
Skill pairs at the individual level 5.49 
Skill pairs at the department level 2.15 
Skill pairs at the division level 2.51 
Skill pairs at the firm level 1.74 
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Table 5: Prediction Performance of Teamwork in Subsamples  

This table presents the out-of-sample R2 in percentage of our teamwork measure in subsamples 
after retraining the models. Panel A partitions our sample by a firm’s task complexity level. Panel 
B partitions our sample by a firm’s ease of communication. 

Panel A: Task complexity 
  Test Year Average 

Out-of-Sample R2   2015 2016 2017 2018 2019 
Routine Task 
Index 

Low 25.54 17.90 26.48 22.05 15.92 21.58 
High 0.69 6.45 8.33 4.17 -5.95 2.74 

Tobin’s Q Low -6.25 9.00 15.65 17.01 6.36 8.36 
High 18.10 26.28 25.25 25.62 15.57 22.16 

High Tech =0 7.27 17.12 8.51 5.21 2.21 8.06 
=1 21.34 16.21 36.83 33.47 22.54 26.08 

 
Panel B: Ease of communication 
  Test Year Average 

Out-of-Sample  
R2 

 
 2015 2016 2017 2018 2019 

Teamwork Culture Low 2.76 3.06 7.96 2.82 -5.52 2.22 
High 9.40 15.32 22.10 17.82 11.35 15.20 

Teamwork Job Low 1.27 4.00 1.80 2.07 -6.23 0.58 
High 24.74 25.46 23.16 21.95 11.49 21.36 

# MSA Low 22.68 18.40 23.80 16.67 12.26 18.76 
High 5.52 6.01 5.00 5.44 -2.46 3.90 

One Segment =0 4.17 10.43 15.60 20.21 7.52 11.59 
=1 21.18 21.91 24.75 22.09 7.16 19.42 
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Table 6: Prediction Performance of Teamwork in Two-by-two Subsamples  

This table presents the out-of-sample R2 in percentage of our teamwork measure in two-by-two 
subsamples after retraining the models. Panel A presents factor loadings of proxies for task 
complexity and ease of communication using principal component analyses. Panel B partitions our 
sample into two-by-two subsamples based on the complexity factor and the communication factor. 

Panel A: Factor loadings 
Task complexity factor  Ease of communication factor 

Proxy Factor loading  Proxy  Factor loading 
Routine Task Index -0.41  Teamwork Culture  0.56 
Tobin’s Q 0.10  Teamwork Job  0.36 
High Tech 0.26  # MSA  -0.15 
   One Segment  -0.19 

 
Panel B: Out-of-sample R2 in percentage 

   Complexity factor 
Test Year   Low High 

2015 Communication 
factor 

Low -0.94 -2.24 
High -3.53 15.18 

2016 Communication 
factor 

Low 2.43 0.19 
High 2.36 17.99 

2017 Communication 
factor 

Low 3.51 2.66 
High -1.76 19.21 

2018 Communication 
factor 

Low 0.65 -1.15 
High -0.72 22.34 

2019 Communication 
factor 

Low -12.86 1.04 
High 1.45 15.02 

Average Communication 
factor 

Low -1.44 0.1 
High -0.44 17.95 
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Table 7: Prediction Performance of Teamwork by Job Zone 

This table presents the out-of-sample R2 in percentage of our teamwork measure by job zone. Job 
zones group occupations into one of five categories based on levels of education, experience, and 
training necessary to perform the occupation. Zone 1 indicates the lowest requirement and Zone 5 
indicates the highest requirement. 

Job Zone 
Test Year  

2015 2016 2017 2018 2019 Average 
Zone 1 0.07 1.86 1.51 1.87 -1.67 0.72 
Zone 2 6.35 7.46 10.12 12.45 1.61 7.60 
Zone 3 7.59 13.99 11.77 16.80 4.06 10.84 
Zone 4 18.32 14.75 22.67 17.18 9.54 16.49 
Zone 5 11.59 12.89 19.78 24.07 17.47 17.16 
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Table 8: Prediction Performance of Specialization and Complementarity in Subsamples 

This table presents the out-of-sample R2 in percentage of our specialization and complementarity 
components in subsamples after retraining the models. Panel A presents the prediction 
performance of specialization component by task complexity. Panel B presents the prediction 
performance of complementarity component by ease of communication. 

Panel A: Out of sample R2 for specialization 
  Test Year  
  2015 2016 2017 2018 2019 Average 
Routine  
Task Index 

Low 24.78 14.82 23.58 18.94 9.47 18.32 
High -3.52 6.86 9.52 5.69 -6.04 2.50 

Tobin’s Q Low -12.00 12.37 17.84 16.75 11.22 9.24 
High 20.58 22.93 23.97 23.70 9.90 20.22 

High Tech =0 3.94 16.97 7.47 4.39 2.83 7.12 
=1 16.09 17.42 29.93 29.50 21.03 22.80 

        
Teamwork 
Culture 

Low 4.45 2.19 6.85 3.04 -4.98 2.31 
High 6.42 13.20 18.43 17.82 10.37 13.25 

Teamwork 
Job 

Low 1.11 4.17 2.61 -0.48 -4.36 0.61 
High 20.39 25.18 20.55 20.10 12.70 19.78 

# MSA Low 19.26 18.05 20.24 15.93 12.16 17.12 
High 2.58 11.01 6.18 3.50 -2.47 4.16 

One Segment =0 9.34 11.79 15.32 18.82 13.84 13.82 
=1 19.70 20.93 19.16 18.69 5.45 16.79 

 
Panel B: Out of sample R2 for complementarity 
  Test Year  
  2015 2016 2017 2018 2019 Average 
Routine  
Task Index 

Low 19.83 18.99 23.22 20.85 9.28 18.43 
High -0.66 0.57 4.17 2.47 -5.27 0.25 

Tobin’s Q Low -0.05 5.18 6.03 9.88 -2.76 3.66 
High 15.39 20.82 25.94 25.02 11.13 19.66 

High Tech =0 3.87 9.54 5.80 4.86 -4.60 3.90 
=1 17.43 15.01 25.70 20.28 18.13 19.31 

        
Teamwork 
Culture 

Low 0.21 4.07 5.22 2.29 -5.64 1.23 
High 9.84 14.23 16.04 12.92 6.29 11.86 

Teamwork 
Job 

Low -0.96 3.24 1.29 1.72 -6.67 -0.27 
High 24.74 20.28 20.69 23.59 6.49 19.16 

# MSA Low 14.40 11.97 16.33 17.79 4.12 12.92 
High 1.11 6.10 3.84 4.24 0.41 3.14 

One Segment =0 9.98 8.98 16.02 12.27 5.52 10.55 
=1 13.46 19.53 15.48 18.34 3.35 14.03 
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Table 9: Prediction Performance of Specialization and Complementarity in Two-by-two 

Subsamples 

This table presents the out-of-sample R2 in percentage of specialization and complementarity 
components after retraining the models. Panel A presents the prediction performance of 
specialization component with two-by-two subsamples based on the complexity factor and the 
communication factor. Panel B presents the prediction performance of complementarity 
component with two-by-two subsamples based on the complexity factor and the communication 
factor. 

 

Panel A: Out of sample R2 for specialization 
   Complexity factor 

Test Year   Low High 

2015 Communication 
factor 

Low -1.66 1.54 
High -3.98 9.48 

2016 Communication 
factor 

Low 4.47 0.33 
High 4.82 16.36 

2017 Communication 
factor 

Low 2.68 2.88 
High -1.51 16.47 

2018 Communication 
factor 

Low -0.24 -1.97 
High -0.39 19.80 

2019 Communication 
factor 

Low -11.94 1.16 
High -3.45 14.57 

Average Communication 
factor 

Low -1.34 0.79 
High -0.9 15.33 

 
Panel B: Out of sample R2 for complementarity 

   Complexity factor 
Test Year   Low High 

2015 Communication 
factor 

Low -1.11 -5.4 
High -2.33 13.48 

2016 Communication 
factor 

Low 3.11 -1.98 
High -1.64 17.43 

2017 Communication 
factor 

Low 2.68 -1.88 
High -1.59 13.91 

2018 Communication 
factor 

Low 0.05 0.24 
High -4.16 16.94 

2019 Communication 
factor 

Low -13.52 -0.6 
High 0.92 10.09 

Average Communication 
factor 

Low -1.76 -1.92 
High -1.76 14.37 
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Online Appendix to “The Contribution of Teams to Firm Human Capital” 

 

Table of contents: 

Table OA1: Chosen parameter values 

Table OA2: Prediction Performance of Teamwork 

Table OA3: Permutation Feature Importance 

Table OA4: Prediction Performance of Teamwork in Subsamples 

Table OA5: Prediction Performance of Teamwork in Two-by-two Subsamples 
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Table OA1: Tuning Details for XGBoost Parameter  

Panel A reports the search range of XGBoost parameter values. Panel B shows the chosen 
parameter values for the main XGBoost models for each test year. In the main XGBoost models, 
we use our teamwork measure to predict future ROA.  
 
Panel A: Search range of XGBoost parameter values 

Number of trees 200, 400, 600, …, 3000 
Maximum depth of the tree 1, 2, 3, 4, 5, 6 
Learning rate 0.001, 0.01, 0.1 

 
 
Panel B: Chosen parameter values 

 Predictor: Teamwork Test Year 
 2015 2016 2017 2018 2019 

(1) Number of trees 1600 800 600 600 600 
(2) Maximum depth of the tree 3 3 6 5 3 
(3) Learning rate 0.01 0.01 0.01 0.01 0.01 
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Table OA2: Prediction Performance of Teamwork 

Panel A of this table presents the out-of-sample MSEs of each XGBoost model. Panel B of this 
table presents the out-of-sample MAEs of each XGBoost model. Each column indicates the test 
year. We build an XGBoost model using a five-year window of training/validation data (before 
each test year) and assess the out-of-sample performance using the data in each test year. The 
predictors used in building the XGBoost model are specified by rows. The results of our analysis 
will comprise a sequence of out-of-sample MSEs, one for each rolling window and one set of 
predictors. 
 
Panel A: Out-of-sample MSE 
 

Predictor 

Test Year  

2015 2016 2017 2018 2019 
Average 

MSE 
(1) Teamwork 0.013 0.012 0.012 0.012 0.013 0.012 
(2) Ln(Employee)  0.015 0.014 0.014 0.014 0.013 0.014 
(3) Turnover 0.013 0.012 0.012 0.012 0.012 0.012 
(4) Ln(Employee) + Turnover 0.012 0.012 0.011 0.011 0.012 0.012 

 
Panel B: Out-of-sample MAE 
 

Predictor 

Test Year  

2015 2016 2017 2018 2019 
Average 

MAE 
(1) Teamwork 0.066 0.064 0.064 0.063 0.069 0.065 
(2) Ln(Employee) 0.066 0.065 0.066 0.064 0.066 0.066 
(3) Turnover 0.065 0.064 0.064 0.063 0.067 0.065 
(4) Ln(Employee) + Turnover 0.062 0.062 0.061 0.061 0.067 0.062 
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Table OA3: Permutation Feature Importance  

This table presents the feature importance of different predictors for human capital. Permutation 
feature importance is calculated as the decrease in R2 when the chosen feature is randomly 
shuffled. Panel A presents the top 10 most important single predictors among all skill requirements 
with the highest average R2 decreases across all rolling windows. Panel B reports the grouped 
cumulative predictor importance of skill groups.  

 
Panel A: Top 10 most important single predictors 

Rank Predictor 

Average 
feature 

importance 
1 Health Care & Science and Research at the individual level 6.55 
2 Analysis & Health Care at the individual level 4.78 
3 Total number of individual skills 3.76 
4 Customer and Client Support 2.64 
5 Maintenance, Repair, and Installation 2.61 
6 Business & Engineering at the division level 1.63 
7 Information Technology & Science and Research at the individual level 1.47 
8 Business 1.42 
9 Supply Chain and Logistics 0.92 
10 Health Care & Science and Research at the department level 0.81 

 

Panel B: Grouped cumulative predictor importance 
Group Sum 
Individual skills 10.78 
Skill pairs at the individual level 19.95 
Skill pairs at the department level 2.93 
Skill pairs at the division level 3.99 
Skill pairs at the firm level 2.76 
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Table OA4: Prediction Performance of Teamwork in Subsamples 

This table presents the prediction performance of our teamwork measure in subsamples using the 
parameter values of the main models without retraining the models. Panel A partitions our sample 
by a firm’s task complexity level. Panel B partitions our sample by a firm’s ease of communication. 
Panel C partitions our sample by a firm’s complexity factor and communication factor. 
Panel A: Task complexity 
  Test Year Average 

Out-of-Sample R2   2015 2016 2017 2018 2019 

Routine Task Index Low 26.65 21.14 26.82 23.03 13.21 22.17 
High -3.59 0.16 6.00 5.08 -4.43 0.64 

Tobin’s Q Low -5.49 12.59 13.49 2.11 -4.58 3.62 
High 28.61 16.85 25.71 26.56 12.85 22.12 

High Tech = 0 7.77 9.63 5.15 0.98 -1.10 4.48 
= 1 27.95 19.43 34.54 33.94 20.61 27.30 

 
Panel B: Ease of communication 
  Test Year Average 

Out-of-Sample R2   2015 2016 2017 2018 2019 

Teamwork Culture Low 4.06 0.08 -3.44 -1.01 -2.12 -0.49 
High 16.68 14.41 19.74 20.16 10.26 16.25 

Teamwork Job Low 9.33 -0.36 15.70 8.52 1.03 6.85 
High 24.38 23.85 24.81 23.41 12.09 21.71 

# MSA Low 19.60 16.60 23.89 18.87 11.29 18.05 
High 4.06 0.08 -3.44 -1.01 -2.12 -0.49 

One Segment = 0 16.68 14.41 19.74 20.16 10.26 16.25 
= 1 9.33 -0.36 15.70 8.52 1.03 6.85 

 
Panel C: Complexity factor and communication factor 
   Complexity factor 
Test Year   Low High 

2015 Communication 
factor 

Low -25.61 8.22 
High -1.14 24.28 

2016 Communication 
factor 

Low -19.90 5.00 
High -0.33 16.42 

2017 Communication 
factor 

Low -11.43 0.97 
High 4.55 25.02 

2018 Communication 
factor 

Low -7.02 -0.31 
High -2.56 24.04 

2019 Communication 
factor 

Low -9.04 0.29 
High -3.77 12.78 

Average Communication 
factor 

Low -14.60 2.83 
High -0.65 20.51 
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Table OA5: Prediction Performance of Teamwork in Two-by-two Subsamples 

This table presents the results of other two-by-two subsample analyses with and without retraining 
the models.  
 
Panel A: Routine Task Index and Teamwork Culture after retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 Teamwork 
Culture 

Low 0.83 -5.12 
High 18.90 -2.31 

2016 Teamwork 
Culture 

Low 3.25 5.22 
High 18.53 3.46 

2017 Teamwork 
Culture 

Low 1.54 10.00 
High 25.45 1.61 

2018 Teamwork 
Culture 

Low 0.60 5.89 
High 24.69 9.47 

2019 Teamwork 
Culture 

Low 3.75 -10.00 
High 15.15 -9.91 

Average Teamwork 
Culture 

Low 1.99 1.20 
High 20.55 0.47 

 
 
Panel B: Routine Task Index and Teamwork Culture without retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 Teamwork 
Culture 

Low 13.29 -7.40 
High 22.65 -6.20 

2016 Teamwork 
Culture 

Low 12.50 -18.03 
High 15.48 5.70 

2017 Teamwork 
Culture 

Low 2.07 -11.27 
High 21.68 10.61 

2018 Teamwork 
Culture 

Low 0.40 -2.71 
High 22.22 6.19 

2019 Teamwork 
Culture 

Low -0.07 -3.85 
High 12.84 -14.68 

Average Teamwork 
Culture 

Low 5.64 -8.65 
High 18.97 0.32 
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Panel C: Routine Task Index and Teamwork Job after retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 Teamwork Job Low 10.90 -4.37 
High 17.22 -10.26 

2016 Teamwork Job Low 15.80 0.12 
High 17.66 4.27 

2017 Teamwork Job Low 7.51 -0.38 
High 26.58 3.92 

2018 Teamwork Job Low -14.76 5.08 
High 28.94 3.00 

2019 Teamwork Job Low -1.50 -11.80 
High 14.57 -1.05 

Average Teamwork Job Low 3.59 -2.27 
High 20.99 -0.03 

 
 
 
 
Panel D: Routine Task Index and Teamwork Job without retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 Teamwork Job Low 18.08 -15.97 
High 27.77 5.36 

2016 Teamwork Job Low -2.65 -13.29 
High 24.94 12.17 

2017 Teamwork Job Low 22.67 -1.23 
High 27.12 11.72 

2018 Teamwork Job Low 7.79 -4.94 
High 25.06 14.28 

2019 Teamwork Job Low 8.86 -8.95 
High 13.94 0.45 

Average Teamwork Job Low 10.95 -8.88 
High 23.77 8.80 
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Panel E: Routine Task Index and # MSA after retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 # MSA Low 27.68 -2.85 
High 0.23 0.00 

2016 # MSA Low 21.38 3.06 
High -0.16 6.09 

2017 # MSA Low 27.33 6.94 
High 4.62 1.15 

2018 # MSA Low 20.65 0.66 
High 7.32 4.22 

2019 # MSA Low 17.67 -5.43 
High 16.71 -13.18 

Average # MSA Low 22.94 0.47 
High 5.74 -0.34 

 
 
Panel F: Routine Task Index and # MSA without retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 # MSA Low 25.79 -8.45 
High 9.59 1.49 

2016 # MSA Low 21.03 -5.97 
High 9.61 3.32 

2017 # MSA Low 27.66 5.17 
High 13.86 2.92 

2018 # MSA Low 21.32 4.86 
High 21.01 -2.00 

2019 # MSA Low 15.05 -2.21 
High 6.14 -9.88 

Average # MSA Low 22.17 -1.32 
High 12.04 -0.83 
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Panel G: Routine Task Index and One Segment after retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 One Segment =0 18.11 -13.36 
=1 29.15 7.87 

2016 One Segment =0 14.69 0.92 
=1 25.96 7.35 

2017 One Segment =0 22.27 -1.34 
=1 27.94 10.22 

2018 One Segment =0 18.20 1.39 
=1 22.15 10.12 

2019 One Segment =0 12.82 -4.73 
=1 8.69 -4.02 

Average One Segment =0 17.22 -3.43 
=1 22.78 6.31 

 
 
 
Panel H: Routine Task Index and One Segment without retraining the models 
   Routine Task Index 
Test Year   Low High 

2015 One Segment =0 25.12 -14.62 
=1 27.61 2.65 

2016 One Segment =0 19.73 -7.75 
=1 21.25 7.89 

2017 One Segment =0 21.92 -2.62 
=1 34.64 16.43 

2018 One Segment =0 21.17 -1.11 
=1 26.03 12.96 

2019 One Segment =0 12.91 -6.18 
=1 13.67 -1.49 

Average One Segment =0 20.17 -6.45 
=1 24.64 7.69 
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Panel I: Tobin’s Q and Teamwork Culture after retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 Teamwork 
Culture 

Low -3.12 -1.59 
High -4.30 9.67 

2016 Teamwork 
Culture 

Low 1.67 5.10 
High 10.66 31.45 

2017 Teamwork 
Culture 

Low 2.02 -5.14 
High 12.13 20.10 

2018 Teamwork 
Culture 

Low -4.97 -8.94 
High 22.31 26.60 

2019 Teamwork 
Culture 

Low -8.50 -6.06 
High 23.23 10.86 

Average Teamwork 
Culture 

Low -2.58 -3.33 
High 12.80 19.74 

 
 
Panel J: Tobin’s Q and Teamwork Culture without retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 Teamwork 
Culture 

Low -14.91 -7.22 
High -3.05 21.72 

2016 Teamwork 
Culture 

Low 5.70 -23.11 
High 3.54 20.28 

2017 Teamwork 
Culture 

Low -4.60 -43.08 
High 14.93 20.60 

2018 Teamwork 
Culture 

Low -27.13 -17.09 
High 5.89 27.09 

2019 Teamwork 
Culture 

Low -24.37 -5.95 
High 4.12 11.46 

Average Teamwork 
Culture 

Low -13.06 -19.29 
High 5.09 20.23 
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Panel K: Tobin’s Q and Teamwork Job after retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 Teamwork Job Low -10.66 4.08 
High 4.78 25.97 

2016 Teamwork Job Low -11.17 -2.35 
High 8.42 28.06 

2017 Teamwork Job Low 0.07 -0.43 
High 12.26 30.19 

2018 Teamwork Job Low -11.33 4.03 
High 22.82 24.43 

2019 Teamwork Job Low -14.25 -3.57 
High 20.17 15.91 

Average Teamwork Job Low -9.47 0.35 
High 13.69 24.91 

 
 
Panel L: Tobin’s Q and Teamwork Job without retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 Teamwork Job Low -8.53 2.77 
High -1.29 33.05 

2016 Teamwork Job Low 15.73 -42.90 
High 9.01 34.09 

2017 Teamwork Job Low 1.95 4.96 
High 16.43 29.61 

2018 Teamwork Job Low -25.55 4.96 
High 8.93 29.99 

2019 Teamwork Job Low -26.97 3.49 
High 3.72 14.22 

Average Teamwork Job Low -8.67 -5.35 
High 7.36 28.19 
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Panel M: Tobin’s Q and # MSA after retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 # MSA Low -2.68 25.44 
High -8.25 -0.21 

2016 # MSA Low -2.47 21.87 
High 0.94 0.34 

2017 # MSA Low 9.29 22.61 
High 0.93 16.11 

2018 # MSA Low 19.77 23.20 
High -2.45 13.92 

2019 # MSA Low -15.59 22.07 
High -11.92 6.19 

Average # MSA Low 1.67 23.04 
High -4.15 7.27 

 
Panel N: Tobin’s Q and # MSA without retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 # MSA Low -0.02 27.74 
High -22.92 8.21 

2016 # MSA Low 14.58 16.45 
High -16.54 2.13 

2017 # MSA Low 15.69 28.30 
High -14.80 11.26 

2018 # MSA Low -0.05 28.90 
High 0.15 11.87 

2019 # MSA Low 2.78 15.94 
High -27.09 5.16 

Average # MSA Low 6.60 23.47 
High -16.24 7.72 
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Panel O: Tobin’s Q and One Segment after retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 One Segment =0 -17.91 14.92 
=1 2.41 9.74 

2016 One Segment =0 12.71 17.37 
=1 15.26 17.33 

2017 One Segment =0 16.92 13.70 
=1 11.89 36.24 

2018 One Segment =0 21.37 21.18 
=1 5.85 30.17 

2019 One Segment =0 17.55 9.09 
=1 -7.55 7.68 

Average One Segment =0 10.13 15.25 
=1 5.57 20.23 

 
 
Panel P: Tobin’s Q and One Segment without retraining the models 
   Tobin’s Q 
Test Year   Low High 

2015 One Segment =0 -5.36 23.36 
=1 -5.68 33.80 

2016 One Segment =0 13.33 10.84 
=1 11.49 23.49 

2017 One Segment =0 15.41 12.27 
=1 9.13 40.60 

2018 One Segment =0 0.98 23.81 
=1 4.79 29.51 

2019 One Segment =0 -5.56 12.63 
=1 -2.82 13.10 

Average One Segment =0 3.76 16.58 
=1 3.38 28.10 
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Panel Q: High Tech and Teamwork Culture after retraining the models 
   High Tech 
Test Year   =0 =1 

2015 Teamwork 
Culture 

Low 6.20 3.41 
High -2.97 20.75 

2016 Teamwork 
Culture 

Low 8.82 -4.11 
High 0.59 16.36 

2017 Teamwork 
Culture 

Low 8.97 -80.36 
High 3.04 26.00 

2018 Teamwork 
Culture 

Low 4.66 -2.34 
High 1.31 29.87 

2019 Teamwork 
Culture 

Low -8.57 1.28 
High 2.37 19.95 

Average Teamwork 
Culture 

Low 4.02 -16.43 
High 0.87 22.59 

 
 
 
Panel R: High Tech and Teamwork Culture without retraining the models 
   High Tech 
Test Year   =0 =1 

2015 Teamwork 
Culture 

Low 4.70 -1.62 
High 5.95 19.94 

2016 Teamwork 
Culture 

Low -4.49 12.23 
High 9.01 13.34 

2017 Teamwork 
Culture 

Low -2.06 -13.90 
High 6.14 26.15 

2018 Teamwork 
Culture 

Low -3.28 8.13 
High 1.19 33.92 

2019 Teamwork 
Culture 

Low -3.87 -2.66 
High 0.89 17.28 

Average Teamwork 
Culture 

Low -1.80 0.43 
High 4.64 22.13 
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Panel S: High Tech and Teamwork Job after retraining the models 
   High Tech 
Test Year   =0 =1 

2015 Teamwork Job Low -3.01 -39.16 
High 12.83 25.42 

2016 Teamwork Job Low 8.17 -67.32 
High 17.80 27.08 

2017 Teamwork Job Low 3.47 11.79 
High 9.09 32.05 

2018 Teamwork Job Low 0.57 5.19 
High 7.74 28.79 

2019 Teamwork Job Low -9.61 14.20 
High 6.22 26.01 

Average Teamwork Job Low -0.08 -15.06 
High 10.73 27.87 

 
 
Panel T: High Tech and Teamwork Job without retraining the models 
   High Tech 
Test Year   =0 =1 

2015 Teamwork Job Low -5.53 12.50 
High 12.01 32.11 

2016 Teamwork Job Low -2.49 -22.81 
High 14.44 26.91 

2017 Teamwork Job Low 2.44 31.78 
High 6.36 32.14 

2018 Teamwork Job Low -3.11 14.22 
High 2.79 35.29 

2019 Teamwork Job Low -7.94 25.77 
High 2.82 18.86 

Average Teamwork Job Low -3.33 12.29 
High 7.68 29.06 
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Panel U: High Tech and # MSA after retraining the models 
   High Tech 
Test Year   =0 =1 

2015 # MSA Low -4.47 20.36 
High 3.17 -0.16 

2016 # MSA Low 14.03 16.58 
High 9.89 6.46 

2017 # MSA Low 2.44 26.41 
High 7.35 4.27 

2018 # MSA Low -0.36 31.33 
High 2.87 22.09 

2019 # MSA Low -7.13 25.92 
High -3.60 12.41 

Average # MSA Low 0.90 24.12 
High 3.94 9.01 

 
Panel V: High Tech and # MSA without retraining the models 
   High Tech 
Test Year   =0 =1 

2015 # MSA Low 5.34 22.33 
High 7.15 3.35 

2016 # MSA Low 7.68 15.06 
High 8.83 0.08 

2017 # MSA Low 0.84 34.66 
High 10.81 8.81 

2018 # MSA Low -4.61 29.37 
High 6.84 35.67 

2019 # MSA Low -0.99 22.07 
High -2.28 6.61 

Average # MSA Low 1.65 24.70 
High 6.27 10.90 
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Panel W: High Tech and One Segment after retraining the models 
   High Tech 
Test Year   =0 =1 

2015 One Segment =0 -5.84 14.32 
=1 12.76 27.12 

2016 One Segment =0 -0.03 7.62 
=1 25.15 22.11 

2017 One Segment =0 0.36 21.87 
=1 12.70 39.46 

2018 One Segment =0 -0.26 26.23 
=1 14.96 35.97 

2019 One Segment =0 0.47 19.09 
=1 3.38 25.39 

Average One Segment =0 -1.06 17.82 
=1 13.79 30.01 

 
 
 
 
Panel X: High Tech and One Segment without retraining the models 
   High Tech 
Test Year   =0 =1 

2015 One Segment =0 7.12 22.06 
=1 7.64 31.79 

2016 One Segment =0 1.14 22.14 
=1 16.30 13.92 

2017 One Segment =0 -1.45 32.54 
=1 15.48 35.10 

2018 One Segment =0 -2.65 34.92 
=1 6.91 31.40 

2019 One Segment =0 -0.95 19.20 
=1 -1.37 22.79 

Average One Segment =0 0.64 26.17 
=1 8.99 27.00 
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