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ABSTRACT 
___________________________________________________________________________ 

Firm quality is a foundational construct in the fundamental analysis literature. Asness et al. 
(2019), a recent representative example of this literature, measures firm quality based on 19 
fundamental signals guided by valuation theory (referred to as Asness’ Q score). We examine 
whether it is possible to leverage the power of machine learning to construct a better measure 
of firm quality using the same 19 fundamental signals. We show that an advanced machine 
learning model called XGBoost based on the 19 signals can outperform a linear OLS regression 
model based on Asness’ Q score (our benchmark) by 27%. However, we fail to find 
economically significant evidence that adding more raw accounting data items identified by 
the prior literature or commercial databases to XGBoost can generate a stronger prediction 
model. We show that our measure of firm quality based on XGBoost and the 19 signals can 
better explain contemporaneous stock prices than Asness’ Q score. In addition, a value 
investing trading strategy using our XGBoost model outperforms the same trading strategy 
based on Asness’ Q score by an economically significant margin.   
___________________________________________________________________________ 
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1. Introduction 

Value investing consists of two key elements: (1) finding quality companies and (2) 

buying them at reasonable prices, commonly referred to as “cheapness” (Lee 2014).  A stock’s 

cheapness is relatively easy to measure because it is typically defined using a stock’s current 

price relative to its existing capital-in-place. However, firm quality is much harder to measure 

because it is a forward-looking concept (Lee 2014).    

Developing an accurate measurement of firm quality is important not only to value 

investors but also to many other stakeholders. For example, prospective employees often prefer 

to work for high quality firms because such firms have stronger future prospects. Corporate 

boards may require a forward-looking measure of firm quality in order to better evaluate and 

monitor management’s current decisions. Financial regulators may also need a reliable measure 

of quality to gauge a firm’s health as part of their regulatory interventions.    

There has been a long stream of literature in accounting and finance (commonly 

referred to as fundamental analysis) that is devoted to developing observable signals from 

publicly available financial statements that are suggestive of firm quality (see Lee and So 2014 

and Hou et al. 2022 for reviews). Many empirical studies develop proxies for firm quality in 

an ad hoc manner. Asness et al. (2019) is one of the most recent studies in this literature. They 

develop a unified theoretical framework of firm quality that can be expressed as a function of 

four additive components: profitability, growth, safety and payout. Asness et al. develop a 

comprehensive list of 19 standardized proxies for the four components based on publicly 

available financial statement data. They compute the value of each component based on the 

average of the standardized proxies and then construct an index of firm quality based on the 

average of the four standardized components (referred to as Asness’ Q score or Q score 

thereafter). Asness et al. (2019) show that high-quality stocks based on the Q score not only 

have higher contemporaneous stock prices but also predict higher future risk-adjusted returns.  



2 
 

However, like many prior empirical studies, Asness et al. (2019) use a heuristic 

approach to construct their Q score. Recent research in accounting and finance has 

demonstrated the power of machine learning in many prediction tasks (e.g., Bao et al. 2020; 

Ding et al. 2020; Gu et al. 2020; Bertomeu et al. 2021; Chen et al. 2022). As firm quality is a 

forward-looking concept that requires forecasting, machine learning could be more appropriate 

for the measurement of firm quality. The objective of this study is to explore whether we can 

leverage the power of machine learning to construct a more accurate measure of firm quality. 

Compared with human heuristics, machine learning can accommodate more flexible functions 

in the mapping from model inputs to model output. In addition, many machine learning 

methods can readily handle missing values of model inputs, which is a common challenge for 

fundamental analysis based on financial statement data (Bao et al. 2020; Chen et al. 2022). 

Consistent with Lee (2014) and Asness et al. (2019), we define true firm quality (i.e., 

the ground truth) as the sum of the present value of a firm’s future realized residual earnings. 

We use the one-year expansion of the residual income valuation model to measure true firm 

quality, though inferences are qualitatively similar if we use a two-year or three-year expansion 

of the residual income valuation model. Following Asness et al. (2019), we scale true firm 

quality by the current book value of common equity to make our measure of true firm quality 

more stationary over time and in the cross section. As true firm quality, the dependent variable, 

is continuous, we use mean absolute error (MAE) as our primary performance evaluation 

criterion, which is less sensitive to the influence of outliers. However, all of our inferences are 

qualitatively similar if we use the mean square error (MSE) as the performance evaluation 

criterion.  

Our sample covers all publicly listed U.S. firms that satisfy our sample selection criteria 

for the period 1973-2018. We use a three-year rolling window for model training and hence 

the test sample covers the years 1976-2018. As publicly listed U.S. firms follow different fiscal 
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year ends, we follow Hou et al. (2012) and Li and Mohanram (2014) by training the machine 

learning models using only publicly available data as of June 30 for each year.  

Since Asness et al. (2019) constructed their Q score without referring to the ground 

truth, we develop a baseline benchmark model that uses Asness’ Q score as the only model 

input and the linear OLS regression as the machine learning model (referred to as LR-Q).  

First, we show that it pays to use disaggregated fundamental signals (i.e., the 19 proxies) 

rather than Asness’ Q score (i.e., the aggregation of the 19 proxies based on human heuristics) 

to predict true firm quality. Compared with LR-Q, we find that a firm quality prediction model 

based on the 19 proxies and OLS regression (referred to as LR-19) significantly outperforms 

LR-Q. For all test years, the mean MAE of LR-19 drops by 16% relative to the mean MAE of 

LR-Q.    

Second, we show that it pays to use an advanced machine learning method (i.e., 

XGBoost, one of the state-of-art machine learning methods), to construct firm quality. We 

build two prediction models using XGBoost: (i) use Asness’ Q score as the model input 

(referred to as XGBoost-Q); and (ii) use the 19 proxies as model inputs (referred to as 

XGBoost-19). Using the Q score as the only model input, we find that the mean MAE of 

XGBoost-Q drops by 15% relative to the mean MAE of LR-Q. Similarly, using the 19 proxies 

as model inputs, we show that the mean MAE of XGBoost-19 drops by 14% relative to the 

mean MAE of LR-19. These results demonstrate the power of using state-of-art machine 

learning in constructing firm quality measures. 

Combining the benefits of using both more disaggregated model inputs and a more 

powerful machine learning model, we find that the mean MAE of XGBoost-19 drops by 27% 

relative to the mean MAE of LR-Q (the baseline model). The performance of our best model 

XGBoost-19 is also highly stable over time: XGBoost-19 always outperforms all the other 

models for each of the test years.  
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When constructing firm quality, one empirical challenge is the presence of missing 

values for many raw accounting data items used to construct the 19 proxies. To maintain a 

relatively large sample, Asness et al. (2019) drop an individual proxy in the construction of the 

Q score if the individual proxy contains missing values. As the OLS regression model requires 

all input variables to be non-missing, we filled the missing values of raw accounting data items 

based on accounting knowledge and then discarded all remaining firm years with missing 

values on any of the 19 proxies so that we can maintain a common sample for all models 

discussed above. To make sure that the superior performance of XGBoost-19 relative to LR-Q 

is not driven by this special missing value treatment, we perform two robustness checks. First, 

we examine whether our manual filling of missing raw accounting data items affects our 

inferences. Specifically, we rerun the XGBoost-19 model by retaining the firm-years with 

missing values for any of the 19 proxies (referred to as XGBoost-19m). We add an “m” at the 

end of a model name to denote the fact that the model can accommodate missing values. The 

sample size for XGBoost-19m is identical to that for the aforementioned models including 

XGBoost-19. We find that the mean MAE is not significantly different for XGBoost-19 versus 

XGBoost-19m. This finding suggests that the missing value treatment is not a driver of 

XGBoost-19’s superior performance. 

Second, we examine whether the superior performance of XGBoost-19m relative to 

LR-Q is driven by the sample size reduction resulting from the non-filled missing values. 

Compared with Asness’ Q score, our final sample used in the above analyses loses 

approximately 27.7% of the full sample before the missing value treatment. To make sure that 

the superior performance of XGBoost-19m relative to LR-Q is not due to the difference in 

sample size resulting from missing values, we rerun the LR-Q model and the XGBoost-19m 

model by using full sample of firm-years that contains all observations with missing values for 

any of the 19 proxies (referred to as LR-Q_Full and XGBoost-19m_Full, respectively). We 
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find that the mean MAE is still significantly larger for LR-Q_Full than for XGBoost-19m_Full. 

This finding suggests that the sample size reduction resulting from missing values is not a 

driver of XGBoost-19m’s superior performance relative to LR-Q. 

Even though Asness et al. (2019) define firm quality based on valuation theory, the 19 

standardized proxies they use to construct firm quality are selected in an ad hoc manner due to 

a lack of theoretical guidance. As they utilize only a subset of publicly available financial 

statement raw data items, they could have missed important financial statement variables that 

are useful for the measurement of firm quality. To investigate this possibility, we perform three 

inductive analyses advocated by Karpoff and Wittry (2018). The first inductive analysis uses 

the 63 individual raw accounting data items that are used to construct the 19 individual firm 

quality proxies. As the aforementioned analyses suggest that disaggregated financial data could 

be more useful than aggregated ones for the purpose of predicting firm quality, we examine 

whether we can develop a more accurate XGBoost prediction model using the 63 individual 

raw accounting data items as model inputs (referred to as XGBoost-63m). We do not delete 

observations with missing values for any of the 63 raw accounting data items because XGBoost 

allows missing values. The mean MAE of XGBoost-63m drops by 1.8% relative to the mean 

MAE of XGBoost-19m, suggesting limited benefit of further disaggregating the 19 proxies 

used by Asness et al. (2019). 

Second, we include an additional 24 raw accounting data items used by two recent 

fundamental analysis studies (Li and Mohanram 2019 and Bartram and Grinblatt 2018) but 

omitted by Asness et al. (2019). We examine whether XGBoost based on the 87 (63+24) raw 

accounting data items (referred to as XGBoost-87m) can outperform XGBoost-63m. The mean 

MAE of XGBoost-87m drops by 1% relative to the mean MAE of XGBoost-63m, suggesting 

weak evidence of further performance improvement for XGBoost-87m versus XGBoost-63m. 
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Our final inductive analysis examines whether it is possible to build a more powerful 

XGBoost model by deploying all readily available 318 raw accounting data items from 

Compustat (referred to XGBoost-318m). We find no statistically significant evidence that 

XGBoost-318m can outperform XGBoost-87m, suggesting that a brutal data mining approach 

devoid of any theoretical guidance does not yield a more powerful firm quality prediction 

model.  

As noted above, reliable measures of firm quality are useful to many different 

stakeholders. We illustrate the usefulness of our machine learning models in the context of 

value investing. To benchmark with Asness’ Q score, which is constructed based on 19 

financial variables, we focus on XGBoost-19m for the following discussions. We conduct two 

complementary analyses. First, we show that firm quality based on XGBoost-19m can better 

explain contemporaneous stock prices than Asness’ Q score. This finding suggests that our 

firm quality measure is closer to the firm quality measure used by stock market investors.   

Second, we examine whether it is possible to use XGBoost-19m based firm quality 

measure to construct a value investing trading strategy that can generate abnormal returns 

(alpha) over a 12-month investment horizon and whether our measure can outperform Asness’ 

Q score. We have no clear predictions on these questions because all of our firm quality 

measures are based on publicly available accounting data and thus, if the stock market is semi-

strong efficient, we should not be able to obtain abnormal stock returns using either Asness’ Q 

score or any of our machine learning models.  

To make sure that we have adequately controlled for all known pricing factors, we use 

the most comprehensive asset pricing factor model available in the literature, i.e., the q5 factor 

model developed by Hou et al. (2021). Hou et al. (2021) show that many documented stock 

pricing anomalies vanish once abnormal stock return is defined using the q5 factor model.  
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Following Asness et al. (2019), we use the standard calendar time portfolio approach 

to assess the statistical significance of abnormal stock returns by forming equal weighted 

calendar time hedging portfolios that take a long position in the stocks in the top decile of a 

relevant sorting variable and take a short position in the stocks in the bottom decile of a relevant 

sorting variable. Asness et al. (2019) form their hedging portfolio using the level of their Q 

score. We use change rather than level of firm quality in the construction of our hedging 

portfolios because stock markets react to new information, which is better measured by change 

rather than level of firm quality (Ball and Brown 1968; Chen et al. 2022). Value investing 

requires purchasing high quality stocks at reasonable prices (Lee 2014). Hence, we form our 

hedging portfolios based on the double sorting of the following two variables: first sort all 

stocks into 10 deciles based on change in firm quality; second, for all stocks in each decile, we 

sort them into 10 deciles based on the book-to-market ratio.1 The double sorting value investing 

strategy based on Asness’ Q score yields a statistically significant monthly alpha of 0.84%. In 

contrast, the double-sort value investing strategy based on XGBoost-19m yields a much larger 

monthly alpha of 2.18%, which is almost 3 times as large as the monthly alpha for the trading 

strategy based on Asness’ Q. This finding offers further support that machine learning based 

on disaggregated input data (i.e., XGBoost-19m) is more effective than heuristics in 

constructing a firm quality proxy.  

We also examine whether the double-sort value investing trading strategy based on 

XGBoost-63m, XGBoost-87m and XGBoost-318m can outperform the trading strategy based 

on XGBoost-19m. Even though XGBoost-63m, XGBoost-87m and XGBoost-318m all 

statistically outperform XGBoost-19m in predicting firm quality, we find no evidence that the 

                                              
1 Our double sort trading strategy does not yield a significant q5 factor model alpha if we use the level of firm 
quality as a sorting variable (untabulated). 
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double-sort trading strategy based on any of these three XGBoost models generates a larger 

alpha than the same trading strategy based on XGBoost-19m.  

As our test sample spans a fairly long time period over 1976-2018, we also break it into 

3 equal time periods for the double-sorting hedging portfolio analysis. We find that the double 

sort trading strategy’s alpha for XGBoost-19m is statistically and economically significant for 

all three time periods, suggesting that our machine learning based firm quality measure 

provides benefits to value investing even in the most recent time period.     

We make two important contributions to the existing literature. First, we contribute to 

the literature on measurement of firm quality. A large accounting and finance literature is 

devoted to developing observable signals of firm quality based on human heuristics (e.g., 

Piotroski 2000; Mohanram 2005; Piotroski and So 2012; Asness et al. 2019; Li and Mohanram 

2019). We contribute to this literature by being one of the first studies to use machine learning 

to develop a more accurate measure of firm quality. Two concurrent studies by Binz et al. (2022) 

and Cao and You (2021) also apply machine learning to fundamental analysis. Our study differs 

from these two studies in two important ways. First, the dependent variables are different. Binz 

et al. (2022) use return on common equity (ROCE) and return on net operating assets (RNOA) 

and Cao and You (2021) focus on earnings. In contrast, we aim to predict firm quality, a 

concept that is closely related to but still distinct from earnings. Second and more importantly, 

we use different input variables (i.e., predictors). Even though all three studies construct their 

input variables based on financial statement data items, they adopt different approaches. As 

noted by Binz et al. (2022), Cao and You (2021) identify a comprehensive list of 60 financial 

statement raw data items (both levels and changes) without a framework. Binz et al. (2022) 

select their input variables based on Nissim and Penman’s (2001) hierarchical approach to 

financial statement analysis (i.e., the DuPont decomposition), which implicitly assumes that 

lagged financial statement data items from the DuPont decomposition are useful in predicting 
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future firm performance. In contrast, Asness et al.’s (2019) approach used in our study is 

different in that the 19 firm quality predictors are selected based on a rigorous value framework, 

which is distinct from Nissim and Penman (2001). We show in the inductive analysis that 

adding additional financial statement raw data items beyond the 19 proxies used by Asness et 

al. does not materially improve the prediction performance of firm quality, suggesting that 

Asness et al.’s approach to selecting fundamental signals for measuring firm quality is 

relatively complete. 

Second, we contribute to the asset pricing anomaly literature based on fundamental 

analysis. Hou et al. (2022) show that many previously documented pricing anomalies based on 

fundamental analysis disappears using the q5 factor pricing model, including Asness et al.’s 

(2019) trading strategy based on level of firm quality. We show that a trading strategy based 

on change of our firm quality measure still yields an economically significant q5 factor-adjusted 

alpha that is much higher than the alpha based on the change of Asness et al.’s Q score. This 

finding suggests that the stock market has not fully incorporated the value of fundamental 

analysis which can be extracted more effectively using machine learning. 

The remainder of the paper is structured as follows. The next section discusses the 

research design, including definition and measurement of firm quality, an introduction to 

XGBoost, model estimation procedures, and sample selection procedures. Section 3 presents 

the prediction performance of different models. Section 4 shows the ability of various firm 

quality measures in explaining contemporaneous stock prices. Section 5 shows the abnormal 

returns from the trading strategy based on different firm quality proxies. Section 6 concludes. 

2. Research Design 

2.1. Firm quality: definition and measurement 

Lee (2014) define firm quality based on the residual income valuation framework 

(Feltham and Ohlson 1995) below: 
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  (1) 

Where  is the present value of residual income of firm i at time t;  is the book value of 

common equity for firm i at time t;  is the expectation based on information available at 

time t;  is the net income of firm i for period t+j;  is the after-tax return on book 

equity of firm i for period t+j;  is the cost of equity capital of firm i. The residual income of 

firm i for period t in this formula, , is defined as , i.e., the period t earnings 

minus a normal rate-on-return (i.e., ) on the beginning capital base. 

Equation (1) expresses a firm’s fundamental value as the sum of two components: 

invested capital in place  and present value of expected future residual income  (i.e., 

the second term of Equation (1)). Lee (2014) refers to  as the stock market’s measure 

of firm quality. To make  more comparable both over time and in the cross section, 

prior studies typically scale  by the current book value of common equity (Lee 2014; 

Asness et al. 2019). Hence, one could define firm quality as follows: 

  (2) 

Equation (2) does not have a closed form solution. The fundamental analysis literature 

typically uses an n-period expansion of equation (2) by assuming that the future residual 

income (RI) grows at a constant rate  starting from period n+1. Following Frankel and Lee 

(1998), we use a one-year expansion of equation (2) and assume .2 As a result, equation 

(2) can be further simplified as follows: 

                                              
2 We find similar inferences if we use a two-year or three-year expansion of equation (2). 
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  (3) 

By replacing  with , which is realized in year t+1, we derive the 

following measure of a firm’s true firm quality (i.e., the ground truth) that will be used in 

subsequent machine learning:3 

  (4) 

As it is difficult to estimate a firm-specific cost of equity capital,  is proxied using 

the industry cost of capital as of year t. The industry cost of capital is defined as the sum of the 

industry risk premium calculated following Fama and French (1997, the last column of Table 

7) and a risk-free rate equal to the average annualized 30-day T-bill rate. 

This study’s primary goal is to develop an empirical proxy for . We model  as a 

function of various fundamental variables available as of current year t: 

  (5) 

Where  is a P-dimensional vector of fundamental variables. The fundamental analysis 

literature in accounting and finance has been devoted to identifying proxies for  using 

heuristic approaches. In contrast, we use machine learning to estimate model (5). After 

estimating the function f (·), we construct a proxy for firm quality (denoted as ) for firm i at 

calendar year t.  

Figure 1 shows the timeline for our firm quality prediction model. Following Hou et al. 

(2012) and Li and Mohanram (2014), we perform the prediction as of June 30 for each calendar 

                                              
3 Chen et al. (2022) use machine learning to predict the sign of annual earnings change, which is defined as (epst+1 
– epst – driftt+1), where eps is the earnings-per-share before extraordinary item and driftt+1 is the mean eps change 
over the four years prior to year t+1. The Pearson correlation between Chen et al.’s earnings change sign and 

is 0.08 only, suggesting that is conceptually different from the dependent variable of Chen et al. (2022). 
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year t. To avoid any look-ahead biases, we assume that only financial information for firms 

with fiscal year ending (FYE) prior to April 1 of calendar year t is available on June 30 of 

calendar year t. We compute  on June 30 of calendar year t and then form trading portfolios 

on July 1 of calendar year t. 

As Asness et al. (2019) is our benchmark paper, we start with their 19 variables used to 

construct their firm quality measure. Table A1 in the Appendix lists the definitions of the 19 

variables. Asness et al. identify four components of firm quality derived from a unifying 

valuation framework, including profitability, growth, safety and payout. Then, they use the 

standardized values of the 19 variables to construct the four components of firm quality 

(referred to as Asness’ Q score). Their Q score is the sum of these four components. 

 

2.2. An introduction to XGBoost 

Asness et al.’s (2019) construction of their Q score is based on human heuristics. To 

find the optimal weights of fundamental variables, we use machine learning to approximate 

Equation (5). The simplest form of machine learning model we consider is the linear ordinary 

least squares (OLS) regression. As the functional form of equation (5) could be nonlinear, we 

also consider nonlinear models that can allow nonlinear effects and interaction effects among 

the predictors. We choose XGBoost, a state-of-art machine learning method belonging to 

ensemble learning, which aims to improve model performance by combining single models. 

We also use a Pseudo Huber loss for XGBoost to further increase its robustness to the influence 

of outliers. In the remainder of this section, we provide a brief introduction to XGBoost. 

Proposed by Chen and Guestrin (2016), XGBoost, which stands for “extreme gradient 

boosting”, is an implementation of machine learning algorithms under the gradient boosting 

framework originating from Friedman (2001). XGBoost refers to the engineering goal to push 

the limit of computation resources for gradient boosting trees (GBT). In other words, XGBoost 
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is an improved GBT in terms of execution speed and model performance. In this section, we 

mainly introduce the GBT algorithms and simply discuss how XGBoost makes improvements 

for the algorithms. 

As a member of ensemble learning, GBT is a tree-based method that combines multiple 

decision trees via gradient boosting technique. The decision tree is a common machine learning 

method for allowing interactions of independent variables and nonlinearity (Gu et al. 2020), 

which follows a divide-and-conquer procedure to make prediction for each observation. Figure 

2 provides a simple example of a decision tree to show how it works in our regression task. For 

a given observation, the example decision tree makes a prediction based on the variables ROE 

and ROA of the observation: If the ROE of the observation is larger than 0.3, the example 

decision tree will predict its quality measure to be V1; If not, the decision tree will further check 

if the observation’s ROA is smaller than 0.1, and gives the prediction based on this judgement. 

The decision tree can grow deeper when using more independent variables to make predictions. 

Using observations of the training set, the decision tree can be constructed by choosing 

the independent variable in each node and determining the cutoff of each independent variable. 

The typical algorithm tries every possible cutoff for each independent variable and chooses the 

variable and cutoff that minimizes the prediction error. The tree stops growing when adding a 

node cannot reduce the prediction error, or a tree attribute reaches a pre-set threshold. For the 

regression task, the prediction for a leaf node is the simple average of the true dependent 

variable values of the training observations whose values of independent variables satisfy all 

the cutoffs in the path of the leaf node. 

Although easy to interpret, decision trees might not be accurate as it is overly dependent 

on the training data. The hierarchical nature of the tree-growing process makes the decision 

trees sensitive to small changes of data: For example, errors at the top node can heavily affect 

the rest of the tree (Murphy 2012). A popular solution is to combine the predictions of multiple 
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decision trees, which is what the GBT aims to do. GBT is based on the ensemble technique 

boosting that adds new decision trees to correct the errors of existing trees. Given a set of 

existing decision trees and their prediction errors on training data, a new decision tree is 

constructed by minimizing the prediction error via specific algorithms. Proposed by Friedman 

(2001), “gradient” refers to the gradient descent algorithm that is used to minimize the 

prediction error when adding new decision trees.  

Based on GBT, XGBoost makes some key improvements for model performance, 

including the optimization of the loss function, introduction of regularization terms, support 

for sampling independent variables, as well as some engineering improvement that can speed 

up its execution. More importantly, XGBoost can handle missing values of independent 

variables, which could be severe for machine learning tasks using financial statement data. 

 

2.3. Model Estimation Procedures 

As our dependent variable is continuous, we adopt Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) as our performance evaluation metrics. Even though inferences 

are qualitatively similar using both performance evaluation metrics, we focus on MAE in the 

following discussions because MAE is more robust to the influence of outliers. 

To estimate the objective function in equation (5) that maps the independent variables 

 to true firm quality  of firm i for each calendar year t, we need a training set to train the 

prediction model and a testing set to evaluate the out-of-sample performance of the model. To 

avoid any look-ahead biases, we use historical data over the past three years up to calendar year 

t (i.e., year t-3 to year t-1) as the training set. We use three years rather than one year of training 

data so that we have a sufficiently large training data set for model training. Figure 3 shows a 

graphical timeline of the training period and test period for a typical calendar year. 
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XGBoost requires tuning of hyperparameters. Table 1 shows the hyperparameters and 

the candidate values for the hyperparameter tuning process. We focus on tuning four key 

hyperparameters only and set the rest at fixed values to strike a balance between prediction 

accuracy and computational cost. Hyperparameters not mentioned in Table 1 are set at their 

default values. We use grid search to identify the optimal hyperparameters of XGBoost by 

employing a five-fold time-series cross-validation on the training dataset. As our prediction 

task has a temporal dimension, it is not appropriate to use the typical k-fold cross-validation 

for cross-section data that splits the training set into k groups randomly without considering the 

timing of the observations. Time-series cross-validation helps avoid the look-ahead bias in the 

ordinary k-fold cross-validation procedure as it does not introduce future data when splitting 

the training set and the testing set for validation (Hyndman and Athanasopoulos 2018). An 

intuitive illustration of our five-fold time-series cross-validation is shown in Figure 4. 

Specifically, the observations in the training dataset are first sorted in chronological order based 

on their fiscal year end (FYE), and then divided into six equal-size groups (labelled 1 to 6) in 

the chronological order. Group 1 is the earliest and group 6 the latest in calendar time. The 

five-fold cross validation is conducted as follows: the first fold takes group 1 as the training set 

and group 2 as the testing set; the second fold takes the groups 1 and 2 as the training set and 

group 3 as the testing set; we repeat this procedure for a total of five times. Given multiple 

alternative values of each hyperparameter, we can obtain a set of hyperparameter combinations 

in which the elements are the Cartesian product of the value set of each hyperparameter. By 

performing training and testing on each fold, the hyperparameter combination that achieves the 

best average performance on the five testing sets is selected. In our study, we use the average 

of the minimum absolute prediction error as our performance evaluation metric for selecting 

hyperparameters to avoid potential influence of outliers. After selecting the optimal 
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hyperparameters, we set the hyperparameters of the XGBoost algorithm as the optimal ones, 

and retrain the XGBoost model on the whole training dataset.   

For both model training and testing, we standardize all the independent variables before 

they are fed into a model.4 To avoid look-ahead biases, each independent variable in the testing 

set is standardized by the mean value and standard deviation of the same variable in the 

corresponding training set. Asness et al. (2019) first rank the raw values of each independent 

variable before performing the standardization. This approach could cause information loss 

because ranking ignores the magnitude of the distance between different observations. Hence, 

we perform the standardization on the raw values of each independent variable directly. As we 

aim to predict the magnitude of true firm quality, we prefer our standardization approach.  

 

2.4. Data sources and sample Selection procedures  

We obtain the raw accounting data and the stock return data from Compustat and CRSP, 

respectively. We match the observations from Compustat Fundamentals Annual whose FYEs 

are between April year t-1 and March year t with the monthly observations from CRSP whose 

data date is June year t. As the predictions are made on June 30 of calendar year t, and CRSP 

data is updated monthly, we make use of the latest stock information and accounting data when 

making predictions.  

Table 2 shows the detailed sample selection procedures. Our sample starts from all 

available common stocks in the merged Compustat/CRSP database at the end of 2018. Our 

initial sample consists of 238,607 firm-year observations for the calendar years 1951-2018. We 

drop firms that are not in the 49 industries defined in Fama and French (1997) because the 

construction of firm quality requires non-missing industry cost of capital. Considering that 

                                              
4  Although the performance of XGBoost model is not affected by whether the independent variables are 
standardized, we do so for XGBoost models in order to be consistent with other models. 
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many accounting variables are not meaningful for financial firms, we also exclude firms in the 

financial service industry. We obtain a sample of 199,225 firm years for the period 1951-2018.  

Many Compustat accounting variables contain missing values. As the missing value 

problem is very severe in the early years, we restrict the sample period to 1970-2018. As OLS 

regression cannot handle missing values, we further fill the missing values of each raw 

accounting data item to the extent possible based on accounting knowledge. Please see Table 

A2 of the Appendix for the details. After filling the missing values, we drop the firm years that 

still have missing values for any of the accounting variables, which reduces the sample to 

185,449 firm years for the period 1970-2018. 

As the calculation of certain independent variables requires data for at least four years, 

our sample is further reduced to 176,876 firm years for the period 1973-2017.  

Similarly, requiring a non-missing dependent variable reduces the sample to 118,267 

firm years. Following Frankel and Lee (1998), we further drop firm-years with negative or 

extremely small book value of common equity (referred to as abnormal dependent variable 

values in Table 2) for the calculation of the dependent variable. Extremely small book value of 

common equity is defined as firm-years whose book values are smaller than the 1% percentile 

of all firms in that year. This step reduces the sample to 113,336 firm years. Finally, we drop 

duplicate firm IDs (PERMNO) for each year due to fiscal year change.  

To avoid the influence of outliers, we winsorize all model input variables in the final 

sample at the top and bottom percentiles for each calendar year. We perform the winsorization 

procedure annually to avoid any look-ahead biases. 
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3. Out-of-Sample Performance results 

3.1. Results using Asness et al.’s (2019) 19 financial variables 

3.1.1. Results using the one-year expansion of the residual income valuation model 

Asness et al. (2019) construct their Q score using 19 individual financial variables based 

on valuation theory. Hence, we start with the same 19 financial variables to build machine 

learning models. Because Asness et al. use simple heuristics to construct their Q score without 

estimating equation (5), we first build a benchmark machine learning model, which is a linear 

OLS model using Asness’ Q score as the only model input (denoted as LR-Q). Next, we 

examine whether we can build better machine learning models by (i) using more disaggregated 

data (i.e., the 19 financial variables) rather than the aggregated Q score and (ii) using XGBoost 

rather than OLS. As a result, we build the following three types of machine learning models: 

(1) OLS regression model using Asness et al.’s 19 financial variables as model inputs (denoted 

as LR-19); (2) XGBoost model using Asness’ Q score as the only model input (denoted as 

XGBoost-Q); and (3) XGBoost model using Asness et al.’s 19 financial variables as model 

inputs (denoted as XGBoost-19). 

Table 3 shows the summary statistics (mean) of the out-of-sample performance metrics 

for the three machine learning models versus the benchmark model over the test period 1976-

2018. The test sample starts from 1976 because our sample starts from 1973 and model training 

requires a three-year rolling window (see Figure 3). For each model, Panel A of Table 3 reports 

the summary statistics for the two performance evaluation metrics, MSE and MAE. Panel B of 

Table 3 conducts formal statistical tests on the performance difference for each pair of machine 

learning models. As inferences are qualitatively similar using both performance evaluation 

metrics, we focus on MAE in the following discussions for brevity. 

 We first examine whether it is possible to develop a more accurate OLS prediction 

model by using the 19 disaggregated financial variables rather than the aggregated Q score. 
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The mean MAE is 2.206 for LR-19, representing a reduction of 16% relative to the mean MAE 

of 2.626 for the benchmark model LR-Q. This difference is both statistically and economically 

significant. Therefore, there is clear evidence that disaggregated financial variables are more 

useful than the aggregated Q score in constructing firm quality, even when one uses the linear 

OLS regression.  

 Second, we examine whether it is possible to build an even better firm quality prediction 

model using XGBoost. The mean MAE is 1.907 for XGBoost-19, representing a reduction of 

14% relative to the mean MAE of 2.206 for LR-19. This difference is both statistically and 

economically significant. Thus, we find strong evidence that the more advanced machine 

learning model, XGBoost, can further help improve the performance of the firm quality 

prediction model, while holding the model inputs constant. Combining the benefits of both 

disaggregated data (19 variables) and a more advanced machine learning model (XGboost), 

our best model XGBoost-19 outperforms LR-Q by more than 27% in terms of MAE (1.907 

versus 2.626).   

 So far we have assessed the performance of all machine learning models for all test 

years as a whole. To examine the stability of our best model, XGBoost-19 versus the other 

models, we tabulate the values of MAE for all the models in each test year in Figure 5. We find 

that the performance of all models suffers for the years around financial crises (e.g., 1988, 1994, 

2002, 2008). More importantly, the performance of our best model XGBoost always dominates 

the performance of the other models. In addition, the performance of the benchmark model 

LR-Q is almost always the worst for all years. 

 

3.1.2. XGBoost with missing values 

 Recall that we filled many raw accounting data items with missing values based on 

accounting knowledge. To examine whether this special treatment affects our inferences, we 
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re-estimate the XGBoost-19 model for the same sample without filling the missing values 

(referred to as XGBoost-19m). Table 3 shows the performance result of XGBoost-19m. We 

find no statistically significant difference in performance for XGBoost-19 versus XGBoost-

19m, suggesting that the missing value treatment does not drive the superior performance of 

XGBoost-19 in Table 3. 

 

3.1.3. XGBoost for the full sample without deleting observations with missing values 

The sample size for Asness’ Q score is much larger than our final sample used in Table 

3 because Asness et al. (2019) drop any of the 19 individual proxies if it contains missing 

values and use the remaining non-missing proxies to construct the Q score. Our final sample 

used in Table 3 loses approximately 27.7% of the full sample before the missing value 

treatment. To examine whether this sample size difference affects our inference, we re-estimate 

the LR-Q model and the XGBoost-19 model for the full sample without dropping the 

observations whose independent variables contain any missing values (referred to as LR-

Q_Full and XGBoost-19m_Full, respectively). Untabulated results show that the MAE is still 

significantly larger for LR-Q_Full than for XGBoost-19m_Full, suggesting that the sample size 

difference does not drive the superior performance of XGBoost-19m relative to LR-Q in Table 

3. 

 

3.1.4. Results using two-year and three-year expansions of the residual income valuation 

model 

 The fundamental analysis literature also defines PVRI using the two- or three-year 

expansion of the residual income model (Frankel and Lee 1998). As a robustness check, we 

use the two-year and three-year expansions of PVRI to define true firm quality  as follows:  
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  (6) 

 (7) 

The multiple-year expansion of the residual income valuation model imposes more 

demand on data availability because a firm may not always exist for multiple years into the 

future. For example, the three-year expansion of the model could be missing due to missing 

values for ROEt+3. To avoid losing observations for the three-year expansion of the residual 

income model, we use the two-year expansion of the model as a replacement. If the two-year 

expansion of the model is also missing, we use the one-year expansion as a replacement.   

Table 4 shows the performance results for the two-year expansion and three-year 

expansion of the valuation model. The mean MAE grows as n increases. This finding is 

expected because as n increases, the prediction of firm quality will cover a longer time horizon 

in the future and hence becomes more challenging. More importantly, the pecking order of the 

machine learning models remains the same. XGBoost-19 remains the best prediction model for 

firm quality. Because inferences are qualitatively similar using one-year expansion versus two-

year or three-year expansion of the valuation model, we will focus on the one-year expansion 

for the subsequent analyses. 

 

3.2. XGBoost results using more input variables 

 Asness et al. (2019) identified the 19 financial variables based on their conceptual 

valuation framework and prior research. We explore the possibility of building even more 

powerful machine learning models by using more input variables. We perform three types of 

extensions in this section. As XGBoost has proved to be a more powerful prediction method in 

Table 3, we use XGBoost only for the following models. In addition, we allow all of the 

following models to allow missing values so that we maintain the same sample for all model 
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comparisons. Accordingly, we also use XGBoost-19m as our benchmark model. Overall, we 

find little economically significant differences between XGBoost-19m and the XGBoost 

models with more model inputs.  

 

3.2.1. XGBoost results using disaggregation of the 19 financial variables 

 Given the evidence in Table 3 on the benefit of using disaggregated data for prediction, 

we examine whether we can build a more accurate prediction model by using the annual raw 

accounting data items that are used to construct the 19 financial variables. This treatment leads 

to a total of 63 input variables (see Table A3 in the Appendix for the details).5 We refer to this 

model as XGBoost-63m.  

 Table 5 shows the performance results of XGBoost-63m. The mean MAE is 1.872 for 

XGBoost-63m, representing a reduction of 1.8% relative to the mean MAE of 1.908 for the 

benchmark model XGBoost-19m. This difference is statistically significant, but it does not 

seem economically significant.  

 

3.2.2. XGBoost results using more fundamental signals beyond Asness et al. (2019) 

Even though Asness et al. (2019) identify a comprehensive list of 19 fundamental 

signals, their list is not exhaustive. Hence, we next explore whether we can construct a better 

firm quality prediction model by incorporating more fundamental signals from other studies. 

For this purpose, we identify two recent studies in the fundamental analysis literature: Li and 

Mohanram (2019) and Bartram and Grinblatt (2018). Li and Mohanram (2019) combines the 

FSCORE of Piotroski (2000) and GSCORE of Mohanram (2005) to measure firm quality. 

Piotroski (2000) chooses nine fundamental signals to measure three areas of a firm's financial 

                                              
5 The exception is that we still keep the variables beta and EVOL in their original forms as they are from stock 
market data and quarterly financial data instead of annual financial data. 
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condition: profitability, financial leverage/liquidity, and operating efficiency. Mohanram (2005) 

classifies his GSCORE into three categories: Earnings and cash flow profitability, naive 

extrapolation and accounting conservatism. Bartram and Grinblatt (2018) simply choose 28 

most common raw accounting data items from the three financial statements as predictors. The 

fundamental signals used by Asness et al. (2019), Li and Mohanram (2019), and Bartram and 

Grinblatt (2018) are derived from 87 raw accounting data items. See Table A3 in the Appendix 

for the detailed list. As we have shown the benefit of using disaggregated accounting data items 

for prediction, we use the 87 raw data items to construct the firm quality prediction model 

(referred to as XGBoost-87m).  

Table 5 shows the performance results of XGBoost-87m. The mean MAE is 1.853 for 

XGBoost-87m, representing a reduction of 2.9% relative to the mean MAE of 1.908 for 

XGBoost-19m. This difference is statistically significant, but it does not seem economically 

significant. In addition, the incremental reduction in MAE for XGBoost-87m relative to 

XGBoost-63m is only 1%.  

 

3.2.3. XGBoost results using more raw accounting data from Compustat 

 Compustat industrial annual database contains a total of 318 raw accounting data items, 

including those included in XGBoost-87m. Our final exploratory analysis builds an XGBoost 

model using the 318 raw accounting data items (referred to as XGBoost-318m). As shown in 

Table 5, the mean MAE is 1.858 for XGBoost-318m, not statistically different from the mean 

MAE for XGBoost-87m. This finding suggests no evidence that using all available raw 

accounting data items can build a better firm quality prediction model than XGBoost-87m. 
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4. Contemporaneous stock pricing of firm quality 

 The empirical analyses in Section 3 show that we can build a more powerful firm 

quality prediction model using machine learning and disaggregated accounting data (i.e., 

XGBoost-19m) than an OLS model based on Asness et al.’s (2019) Q score (i.e., LR-Q). In 

this and the next section we show the value of our machine learning model-based firm quality 

measure relative to Asness’ Q score within the context of value investing. However, we wish 

to emphasize that our machine learning based measure of firm quality can be used in a variety 

of contexts beyond value investing. In this section, we first examine whether firm quality based 

on XGBoost-19m can better explain contemporaneous stock pricing than Asness’ Q score. To 

test this hypothesis, we follow Asness et al. (2019) by running the following Fama and 

MacBeth (1973) cross-sectional regression: 

  (8) 

where  is firm i’s market-to-book ratio in natural logarithm at the end of June of calendar 

year t.   is a proxy of firm quality. We consider three measures of firm quality: (i) 

Asness’ Q score; (ii) predicted firm quality from XGBoost-19m; (iii) true firm quality based 

on future realized abnormal income (i.e.,  in equation (4)). Even though investors cannot 

directly observe , we include it as a benchmark. Following Asness et al. (2019), Controls 

include Firm_Size, One_Year_Return, Firm_Age, Profit_Uncertainty, Dividend_Payer, 

Profit_Uncertainty_by_Dividend_Payer, and industry fixed effects. See Table A4 in the 

Appendix for the definitions of all control variables. Following Asness et al (2019), all the 

explanatory variables (except for the dummies) are measured as the z-score of their cross-

sectional rank.  

 Table 6 reports the time series averages of the regression coefficients of model (8). We 

adjust the standard errors for heteroskedasticity and autocorrelation of five lags (Newey and 
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West 1987). Not surprisingly, the coefficient on the true firm quality measure  in column (1) 

is significantly positive, consistent with the forward-looking nature of the stock market. The 

average adjusted R2 for the model in column (1) is 43%. More importantly, the coefficients on 

both Asness’ Q score and firm quality based on XGBoost-19m are significantly positive, 

suggesting that they are both reasonable proxies for firm quality. However, the average 

adjusted R2 for the model using XGBoost-19m is 42% while the average adjusted R2 for the 

model using Asness’ Q score is 40%. This finding suggests that our firm quality measure based 

on XGBoost-19m does a better job in explaining contemporaneous stock prices than Asness’ 

Q score. We view this as another piece of complementary evidence to Table 3 that our firm 

quality based on XGBoost-19m is of higher quality than Asness’ Q score.  

 

5. Stock return prediction using firm quality based on XGBoost-19m 

Our final empirical analysis investigates whether it is possible to earn abnormal returns 

by building long-short hedging investment portfolios based on firm quality derived from 

XGBoost-19m. We use Asness’ Q score as our benchmark. As noted in the Introduction section, 

the answer to this question is ambiguous because the XGBoost-19m proxy is based on publicly 

available information only. If one assumes that the stock market is fully efficient in the semi-

strong form, we should not be able to earn abnormal stock returns from our hedging portfolios. 

Hence, our hedging portfolio analysis is a joint hypothesis of market efficiency and 

informativeness of our firm quality proxy.  

Consistent with the value investing philosophy of buying high quality stocks at 

reasonable prices, we construct our hedging portfolios using double sorting for each calendar 

year: first sort all stocks into 10 deciles based on change in firm quality; second, for all stocks 

in each decile, we sort them into 10 deciles based on the book-to-market ratio. We focus on the 

returns from the two most extreme portfolios in the double sort: (i) long on the stocks that are 
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in the top decile of the book-to-market ratio within the top decile of firm quality change; and 

(2) short on the stocks that are in the bottom decile of the book-to-market ratio within the 

bottom decile of firm quality change. We use change rather than level of firm quality in the 

construction of our hedging portfolios because stock markets react to new information, which 

is better measured by change of firm quality (Ball and Brown 1968; Chen et al. 2022). 

We use the standard procedures to construct our hedging portfolios. Figure 6 shows the 

timeline of the portfolio analysis. Our firm quality proxies are developed using publicly 

available information prior to July 1 of calendar year t. Hence, there is no look-ahead biases in 

the abnormal returns generated from our trading strategy. Following Asness et al. (2019), we 

hold each hedging portfolio for one year, rebalanced every month using equal weighting. Each 

portfolio’s alpha is computed using a standard time series factor pricing model (see below).  

We compute abnormal stock returns using the q5 factor pricing model proposed by Hou 

et al. (2021). This model is comprised of the four factors in Hou et al. (2015), including the 

market factor MKT, the size factor ME, the return on equity factor ROE (i.e., the profitability 

factor), and the investment factor IA and the expected investment growth factor EG in Hou et 

al. (2021). Asness et al. (2019) find that their Q score can generate future abnormal stock 

returns using the four-factor model that includes the three factors in Fama and French (1993) 

and the momentum factor, but Hou et al. (2022) argue that many market anomalies including 

Asness et al.’s abnormal returns disappear once they use the q5 factor model.  

Table 7 shows the monthly alpha for our hedging portfolios. Panel A uses change in 

Asness’ Q score (i.e., Q score in year t minus Q score in year t-1) as our proxy for the change 

in firm quality. Panel B defines change in firm quality as the change in predicted firm quality 

based on XGBoost-19m relative to the realized firm quality in year t-1 (i.e., ). Using 

Asness’ Q score as a proxy for firm quality, the monthly alpha for the long minus short hedging 

portfolio is 0.84% and statistically significant. More importantly, using firm quality based on 
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XGBoost-19m, we find that the monthly alpha for the long minus short hedging portfolio is an 

even larger 2.18% and statistically significant. It is also worth noting that most of the long-

short hedging portfolio’s alpha is driven by the long position for both firm quality proxies. 

Overall, these results suggest that the stock market is not fully semi-strong efficient; moreover, 

our machine learning based firm quality measure can be used to build a more profitable stock 

trading strategy than Asness et al.’s (2019) Q score based on human heuristics.  

The abnormal return analysis in Table 7 covers a fairly long time period of more than 

40 years. As many things have changed over the period, including the availability of 

information technologies (e.g., algorithm trading) that could have significantly changed the 

ways people make investment decisions and the efficiency of the stock market. Hence, one 

may wonder whether the results show in Table 7 hold for the more recent time period. To 

address this question, we redo Panel B of Table 7 by dividing our sample period into three 

equal sub-periods. The results are reported in Table 8. The monthly alpha from the value 

investing strategy is significantly positive and economically significant for all three sub-

periods. In particular, the monthly alpha is 1.81% for the most recent period 2004-2018, 

suggesting that our value investing trading strategy based on XGBoost-19m continues to work 

even in the most recent time period.  

Table 5 shows that XGBoost-63m, XGBoost-87m and XGBoost-138m all outperform 

XGBoost-19m in predicting firm quality statistically but not economically. Table 9 examines 

whether the double-sort value investing trading strategy based on XGBoost-63m, XGBoost-

87m or XGBoost-138m can beat the same trading strategy based on XGBoost-19m. The 

monthly alphas for XGBoost-63m, XGBoost-87m and XGBoost-138m are also smaller than 

the monthly alpha for XGBoost-19m. This finding may not be too surprising given that these 

models do not show economically significant improvements in predicting firm quality relative 

to XGBoost-19m. 
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6. Conclusion 

Firm quality is of paramount importance to not only value investors but also a variety 

of other stakeholders, including corporate managers, governance activists and government 

regulators. The fundamental analysis literature relies on simple heuristics to measure firm 

quality based on publicly observable fundamental signals. The objective of this study is to 

examine whether we can use machine learning to construct a better proxy for firm quality. As 

firm quality is a forward-looking concept, we argue that machine learning should be more 

powerful than human heuristics in measuring firm quality. 

We use the human-built firm quality proxy (referred to as Asness’ Q score) by Asness 

et al. (2019) as our benchmark. Asness et al. (2019) is one of the most recent studies in the 

fundamental analysis literature. They construct their Q score based on a comprehensive list of 

19 standardized fundamental signals derived from valuation theory and publicly available 

financial statement data. Since Asness et al. (2019) constructed their Q score without referring 

to the ground truth (i.e., future realized firm quality), we develop a baseline benchmark model 

that uses Asness’ Q score as the only model input and the linear OLS regression as the machine 

learning model (referred to as LR-Q). We construct our firm quality proxy based on the same 

19 standardized fundamental signals but we use XGBoost, one of the state-of-art machine 

learning methods that can accommodate regression variables with missing values (referred to 

as XGBoost-19m). We show that XGBoost-19m easily beats LR-Q by a significant margin in 

out-of-sample performance. We also explore the possibility of building a better firm quality 

prediction model than XGBoost-19m and find limited success, suggesting the importance of 

theoretical guidance in model input selection.  

We illustrate the usefulness of our machine learning models in the context of value 

investing. We show that firm quality based on XGBoost-19m can better explain 
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contemporaneous stock prices than Asness’ Q score. In addition, we find that a hedging 

portfolio based on the double sorting of the change in firm quality and the book-to-market ratio 

(a proxy for a stock’s cheapness) yields an economically larger abnormal return over the 12-

month investment horizon for XGBoost-19m than for Asness’ Q score. 

The findings of our study raise many exciting new research opportunities for the 

fundamental analysis literature. We identify a few that are worth exploring. First, what are the 

additional fundamental signals one could consider to build an even more powerful machine 

learning prediction model of firm quality? Second, are there more advanced machine learning 

models (e.g., deep learning) that are more powerful than XGBoost in constructing firm quality? 

Third, how can the availability of our more powerful firm quality proxy based on XGBoost aid 

future research that requires a measure of firm quality? 
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Appendix 
 

Table A1. Comparison of Independent Variables with Asness et al. (2019) 
 

 Name Definition 
Whether the definition 
is the same as that of 
Asness et al. (2019) 

Definitions in Asness et al. (2019) Modified definitions 

Profitability 

GPOA Gross profits over 
assets Yes (REVT - COGS)/AT - 

ROE Return on equity Yes IB/BE - 
ROA Return on assets Yes IB/AT - 

CFOA Cash flow over 
assets Yes (NI + DP - ΔWC - CAPX)/AT - 

GMAR Gross margin Yes (REVT - COGS)/SALE - 
ACC Low accruals Yes - (ΔWC − DP)/AT - 

Growth 

ΔGPOA 
Three-year growth in 
residual gross profits 
over assets 

No [(gpt − rfatt − 1) − (gpt − 5 − rfatt − 6)]/att − 5 [(gpt − rfatt − 1) − (gpt − 2 − rfatt − 3)]/att − 2 

ΔROE 
Three-year growth in 
residual return on 
equity 

No [(ibt − rfbet − 1) − (ibt − 5 − rfbet − 6)]/bet − 5 [(ibt − rfbet − 1) − (ibt − 2 − rfbet − 3)]/bet − 2 

ΔROA 
Three-year growth in 
residual return over 
assets 

No [(ibt − rfatt − 1) − (ibt − 5 − rfatt − 6)]/att − 5 [(ibt − rfatt − 1) − (ibt − 2 − rfatt − 3)]/att − 2 

ΔCFOA 
Three-year growth in 
residual cash flow 
over assets 

No [(cft − rfatt − 1) − (cft − 5 − rfatt − 6)]/att − 5 [(cft − rfatt − 1) − (cft − 2 − rfatt − 3)]/att − 3 

ΔGMAR Three-year growth in 
gross margin No (gpt − gpt − 5)/salet − 5 (gpt − gpt − 2)/salet − 2 

Safety 

BAB Low market beta No -Beta (following Frazzini and Pedersen 
2014) -Beta (obtained directly from CRSP) 

LEV Low leverage  Yes - (DLTT + DLC + MIBT + PSTK)/AT - 
Ohlson’s 
O 

Low bankruptcy risk 
(Ohlson 1980) Yes -( -1.32 - 0.407log(ADJASSET/CPI) + 

6.03TLTA - 1.43WCTA + 0.076CLCA - - 
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1.72OENEG - 2.37NITA - 1.83FUTL + 
0.285INTWO - 0.521CHIN) 

Altman’
s Z 

Low bankruptcy risk 
(Altman 1968) Yes (1.2WC + 1.4RE + 3.3EBIT + 0.6ME + 

SALE) / AT - 

EVOL Low earnings 
volatility No 

standard deviation of IBQ/BEQ over the 
past 60 quarters or IB/BE over the past 5 
years (Taken as missing values if there are 
no more than 12 non-missing quarters or 
five non-missing fiscal years) 

(-1)×standard deviation of 
IBQ/BEQ over the past 60 quarters or 
IB/BE over the past 5 years (Taken as 
missing values if there are no more 
than 12 non-missing quarters or three 
non-missing fiscal years) 

Payout 

EISS Net equity issuance Yes - log(SHROUT_ ADJt/SHROUT_ ADJt − 1) - 

DISS Net debt issuance No - log (TOTDt/TOTDt − 1) 
- sgn(TOTDt - TOTDt − 1) * log(1+ 
|TOTDt - TOTDt − 1| ); sgn(x) = 1 if 
x>0, else sgn(x) = -1 

NPOP Total net payout 
over profits No Σ5 (IB - ΔBE) /Σ5 (REVT - COGS) Σ3 (IB - ΔBE) /Σ3 (REVT - COGS) 

This table describes the definition of the 19 variables from Asness et al. (2019). Some of the variables are defined differently in our analysis to minimize losing too 
many observations due to the missing value problem.  
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Table A2. Methods for Filling Missing Data Items 
 

Variable 
Name 

Variable Description Data 
Source 

Our Way to Fill 
Missing Values 

Rationale for the filling method Number of Filled Missing Values / 
Number of Total Missing Values 

act ACT -- Current Assets - 
Total 

Compustat Use lagged value ACT is a stock variable, so it is reasonable 
to use lagged value to fill missing 
observations 

297/4550 

at AT -- Assets - Total Compustat Use lagged value AT is a stock variable 76/244 
capx CAPX -- Capital 

Expenditures 
Compustat Use 0 Missing values in CAPX may indicate 

CAPX is not material, so filling with 0 is 
appropriate 

2673/2673 

ceq CEQ -- Common/Ordinary 
Equity - Total 

Compustat Use lagged value CEQ is a stock variable 85/408 

che CHE -- Cash and Short-
Term Investments 

Compustat Use 0 Lagged value may not be appropriate 757/757 

cogs COGS -- Cost of Goods 
Sold 

Compustat Use (1-lagged 
gross profit 
margin)*current 
sales 

Usually a firm’s gross profit margin should 
not change significantly over time; gross 
profit margin = (1 – cogs/sale) 

5/512 

csho CSHO -- Common Shares 
Outstanding 

Compustat Use lagged value CSHO usually does not change too much 
within one year 

107/288 

dlc DLC -- Debt in Current 
Liabilities - Total 

Compustat Use 0 DLC is a stock variable 565/565 

dltt DLTT -- Long-Term Debt - 
Total 

Compustat Use lagged value DLTT is a stock variable 218/618 

dp DP -- Depreciation and 
Amortization 

Compustat Use 0 Missing values in DP may indicate DP is not 
material, so filling with 0 is appropriate 

840/840 

ebit EBIT -- Earnings Before 
Interest and Taxes 

Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

2589/2589 

gp GP -- Gross Profit (Loss) Compustat Use (1 – lagged 
cogs/current sale) 

Similar to cogs 5/512 

ib IB -- Income Before 
Extraordinary Items 

Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

502/502 

lct LCT -- Current Liabilities - 
Total 

Compustat Use lagged value LCT is a stock variable 311/3563 
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lt LT -- Liabilities - Total Compustat Use lagged value LT is a stock variable 192/614 
mib MIB -- Minority Interest 

(Balance Sheet) 
Compustat Use lagged value if 

it exists; Else 0 
MIB is a stock variable; In most case the 
missing values can be regarded as 0 since 
some firms do not have this item and do not 
report it 

11836/11836 

mibt MIBT -- Noncontrolling 
Interests - Total - Balance 
Sheet 

Compustat Use lagged value if 
it exists; Else 0 

MIBT is a stock variable; In most case the 
missing values can be regarded as 0 since 
some firms do not have this item and do not 
report it 

12819/12819 

ni NI -- Net Income (Loss) Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

510/510 

pi PI -- Pretax Income Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

507/507 

pstkl PSTKL -- Preferred Stock 
Liquidating Value 

Compustat Use 0 Many firms may not have perferred stocks, 
so filling with 0 is appropriate 

333/333 

pstkrv PSTKRV -- Preferred Stock 
Redemption Value 

Compustat Use 0 Many firms may not have perferred stocks, 
so filling with 0 is appropriate 

359/359 

re RE -- Retained Earnings Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

671/671 

revt REVT -- Revenue - Total Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

499/499 

sale SALE -- Sales/Turnover 
(Net) 

Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

499/499 

seq SEQ -- Stockholders' 
Equity - Total 

Compustat Use lagged value SEQ is a stock variable 113/1172 

txp TXP -- Income Taxes 
Payable 

Compustat Use 0 Flow variable; Lagged value may not be 
appropriate 

3155/3155 

prcc_f PRCC_F -- Price Close - 
Annual - Fiscal 

Compustat Use the most 
recent available 
price in the last 
one month in crsp  

0 may not be appropriate 1349/2462 

SHROU
T 

SHROUT -- Number of 
Shares Outstanding 

CRSP Use lagged value SHROUT usually does not change too much 
within one year 

24/24 

CFACS
HR 

CFACSHR --Cumulative 
Factor to Adjust Shares 

CRSP Use lagged value 0 may not be appropriate 24/24 



37 
 

pstk PSTK -- 
Preferred/Preference Stock 
(Capital) - Total 

Compustat Use 0 Many firms may not have perferred stocks, 
so filling with 0 is appropriate 

293/293 

Beta  CRSP Use lagged value Use the data of the latest month; The 
interval between the latest month and the 
current month should be less than 1 year 

1165/3331 

 
This table describes how we fill missing values of the accounting variables that are used in the dependent and independent variables of our model. Based on knowledge 
of the accounting meaning of the variables, we design different methods for filling the missing values. Specifically, according to the different types of accounting 
variables (like stock variable versus flow variable), we fill the missing values by lagged value or zero. If the missing values cannot be filled (e. g., the lagged values 
are also missing), we simply let them remain missing. The last column shows the number of filled missing values and the total number of missing values for the 185449 
observations in 1970-2018 reported in the fourth step of Table 2’s sample selection. 
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Table A3. Input variables for XGBoost-63m and XGBoost-87m 
 

Panel A: Input variables for XGBoost-63m 
 Definition Period Related financial ratios 

act Current Assets - Total t, t-1, t-2, t-3 CFOA, ACC, ΔCFOA, Ohlson's O, 
Altman's Z 

at Assets - Total t, t-1, t-2, t-3 GPOA, ROA, CFOA, ACC, ΔGPOA, 
ΔROA, ΔCFOA, LEV, Ohlson's O, 
Altman's Z 

capx Capital Expenditures t, t-2 CFOA, ΔCFOA 
che Cash and Short-Term Investments t, t-1, t-2, t-3 CFOA, ACC, ΔCFOA, Altman's Z 
cogs Cost of Goods Sold t, t-1, t-2 GPOA, GMAR, ΔGPOA, ΔGMAR, 

NPOP 
dlc Debt in Current Liabilities - Total t, t-1, t-2, t-3 CFOA, ACC, ΔCFOA, LEV, Ohlson's 

O, Altman's Z, DISS 
dltt Long-Term Debt - Total t, t-1 LEV, Ohlson's O, DISS 
dp Depreciation and Amortization t, t-2 CFOA, ACC, ΔCFOA 
ib Income Before Extraordinary Items t, t-1, t-2 ROA, ROE, ΔROA, ΔCFOA, ΔROE, 

Ohlson's O, EVOL, NPOP 
ebit Earnings Before Interest and Taxes t Altman's Z 
lct Current Liabilities - Total t, t-1, t-2, t-3 CFOA, ACC, ΔCFOA, Ohlson's O, 

Altman's Z 
lt Liabilities - Total t ROE, ΔROE, Ohlson's O, EVOL, 

NPOP 
mibt Noncontrolling Interests - Total - Balance 

Sheet 
t, t-1 LEV, DISS 

ni Net Income (Loss) t CFOA 
pi Pretax Income t Ohlson's O 
pstk* prefered stock value (PSTKRV, PSTKL, or 

PSTK depending on availability) 
t, t-1, t-2, t-3 ROE, ΔROE, LEV, Ohlson's O, EVOL, 

TOTD, NPOP 
re Retained Earnings t Altman's Z 
revt Revenue - Total t, t-1, t-2 GPOA, GMAR, ΔGPOA, ΔGMAR, 

NPOP 
sale Sales/Turnover (Net) t, t-2 GMAR, ΔGMAR, Altman's Z 
seq* shareholders' equity - seq, ceq+pstk, at-

(lt+mib) depending on availability 
t, t-1, t-2, t-3 ROE, ΔROE, Ohlson's O, EVOL, 

NPOP 
txp Income Taxes Payable t, t-1, t-2, t-3 CFOA, ACC, ΔCFOA, Altman's Z 
shrout_adj split-adjusted shares - product of shrout and 

cfacshr 
t, t-1, t-2, t-3 ΔGPOA, ΔROE, ΔROA, ΔCFOA, 

ΔGMAR 
beta beta provided by CRSP t beta 
me market equity (product of shrout and price) t Altman's Z 
EVOL minus standard deviation of quarterly ROE 

over the past 60 quarters or annual ROE over 
the past 5 years depending on availability) 

t EVOL 

Panel B: Input variables for XGBoost-87m beyond those for XGBoost-63m 
oancf Operating Activities Net Cash Flow t CFO 
sstk Sale of Common and Preferred Stock t EQ_OFFER 
VARROA standard deviation of quarterly ROA 

(ibq/atq) over the past two years 
t VARROA 

VARSGR standard deviation of quarterly sales growth 
rate ((saleqt/saleqt-1)-1)) over the past two 
years 

t VARSGR 

xrd Research and Development Expense t RDINT 
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xad Advertising Expense t ADINT 
DVP Dividends - Preferred/Preference t - 
XIDO Extraordinary Items and Discontinued 

Operations 
t - 

IBADJ Income Before Extraordinary Items Adjusted 
for Common Stock Equivalents 

t - 

IBCOM Income Before Extraordinary Items 
Available for Common 

t - 

ICAPT Invested Capital - Total t - 
TEQ Stockholders Equity - Total t - 
PSTKR Preferred/Preference Stock - Redeemable t - 
PPENT Property, Plant and Equipment - Total (Net) t - 
CEQ Common/Ordinary Equity - Total t - 
TXT Income Taxes - Total t - 
NOPI Nonoperating Income (Expense) t - 
AO Assets - Other t - 
DO Discontinued Operations t - 
LO Liabilities - Other - Total t - 
ACO Current Assets Other Total t - 
DV Cash Dividends (Cash Flow) t - 
LCO Current Liabilities Other Total t - 
AP Accounts Payable - Trade t - 

This table describes the definitions of the input variables in our XGBoost-63m model and XGBoost-87m 
model. Panel A shows the 63 input variables of XGBoost-63m and Panel B shows the 24 input variables 
for XGBoost-87m in addition to those for XGBoost-63m. Bartram and Grinblatt (2018) use quarterly data 
or annual data depending on which is the most recently reported but we use annual data only. As they use 
raw financial data items, the 24 variables in Panel B do not have related financial ratios. 
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Table A4. Definitions of Controls in Equation (8) 
 

Variables Definition 
Firm_Size The log of the firm’s market capitalization in June of year t. 

One_Year_Return The firm’s stock return over the prior year (from June of year t-1 to June 
of year t) 

Firm_Age 

In June of year t, the cumulative number of years since the first occurrence 
of a stock. Specifically, we look for the first occurrence of a valid stock 
price on CRSP, as well as the first occurrence of the valid market value in 
the CRSP/COMPUSTAT database, and take the earlier of the two. 

Profit_Uncertainty 
The standard deviation of the residuals of an AR(1) model for each firm’s 
ROE, using the longest continuous series of a firm’s valid annual ROE up 
to June of year t. We require a minimum of 5 years of non-missing ROEs. 

Dividend_Payer A dummy equal to one if the firm paid any dividends (CRSP data field 
DIVAMT>0) over the prior year (from June of year t-1 to June of year t) 

Profit_Uncertainty_by_Dividend_Payer Profit_Uncertainty × Dividend_Payer 
This table shows the definitions of control variables in Equation (8). 
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Figure 1. Timeline of the Prediction Model 
 

 
 
This figure shows the timeline for our firm quality prediction model. Following Hou et al. (2012) and Li and 
Mohanram (2014), we perform the prediction as of June 30 for each calendar year t. To avoid any look-ahead 
biases, we assume that only financial information for firms with fiscal year ending (FYE) prior to April 1 of 
calendar year t is available on June 30 of calendar year t. We compute  on June 30 of calendar year t and then 
form trading portfolios on July 1 of calendar year t. 
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Figure 2. An Example of a Decision Tree for Predicting Firm Quality 
 

 
 

This figure depicts a simple example of a decision tree for how it works in our regression task. For a given 
observation, the example decision tree makes prediction based on the variables ROE and ROA of the observation: 
If the ROE of the observation is larger than 0.3, the example decision tree will predict its quality measure as V1; 
If not, the decision tree will further check if the observation’s ROA is smaller than 0.1, and gives the prediction 
based on this judgement result. The decision tree can grow deeper when using more independent variable to make 
predictions. 
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Figure 3. Timeline of Training and Testing Sets 

 
 

 
This figure shows the graphical timeline of obtaining the data for training and testing set in a four-year sliding 
window. For a testing set consisting of observations whose independent variables are available at calendar year t, 
the corresponding training set includes observations whose independent variables are available between calendar 
year t-3 and t-1. For samples in the training set, their dependent variables are obtained in June of each calendar 
year between calendar year t-2 and t, respectively. Therefore, in June of calendar year t, we can train a model 
using the data of the training set, and then apply the model to make predictions  for samples of calendar year t 
based on their independent variables that are obtained at the same cross-section. In June of calendar year t+1, we 
can obtain the true quality measure  and evaluate the performance of our predictions . By traversing the 
whole sample period using the sliding window, we are able to make predictions for each cross-section in the 
sample period and evaluate the prediction performance. 
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Figure 4. Five-fold Time-Series Cross-validation 
 

 
 

This figure illustrates how to perform time-series cross-validation (Hyndman and Athanasopoulos 2018). 
Specifically, the observations in a training set are first sorted in chronological order based on their fiscal year end 
(FYE), and then divided into six equal-size groups (labelled 1 to 6) in the chronological order. Group 1 is the 
earliest and group 6 the latest in calendar time. The five-fold cross validation is conducted as follows: the first 
fold takes group 1 as the training set and group 2 as the testing set; the second fold takes the groups 1 and 2 as the 
training set and group 3 as the testing set; we repeat this procedure for a total of five times. Given multiple 
alternative values of each hyperparameter, we can obtain a set of hyperparameter combinations in which the 
elements are the Cartesian product of the value set of each hyperparameter. By performing training and testing on 
each fold, the hyperparameter combination that achieves the best average performance on the five testing sets is 
selected. In our study, we use the average of the minimum absolute prediction error as our performance evaluation 
metric to avoid potential influence of outliers. 
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Figure 5. Time-varying prediction performance of each prediction model 
 

 
 
This figure tabulates the values of MAE for all the models in each test year. It is found that the performance of all 
models suffers for the years around financial crises (e.g., 1988, 1994, 2002, 2008). More importantly, the 
performance of our best model XGBoost always dominates the performance of the other models. In addition, the 
performance of the benchmark model LR-Q is almost always the worst for all years. 
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Figure 6. Timeline of the Portfolio Analysis 
 

 
 
This figure shows the timeline of the portfolio analysis. Our firm quality proxies are developed using publicly 
available information prior to July 1 of calendar year t. Hence, there is no look-ahead biases in the abnormal 
returns generated from our trading strategy. Following Asness et al. (2019), we hold each hedging portfolio 
for one year, rebalanced every month using equal weighting. 
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Table 1. Hyperparameters for XGBoost 

 

Hyperparameters Definitions Candidate values 

objective The learning task and the learning objective reg:pseudohubererror 
seed The seed of random number 42 
num_round Number of trees 500 
eta Learning rate 0.01 
max_depth Maximum depth of a tree 2, 3, 4, 5 

min_child_weight Minimum sum of instance weight (hessian) 
needed in a child 1, 2 

subsample Subsample ratio of the training instances 0.6, 0.7, 0.8, 0.9 

colsample_bytree Subsample ratio of features when constructing 
each tree 0.6, 0.7, 0.8, 0.9 

 
This table shows the hyperparameters and the candidate values for the hyperparameter tuning process. We 
list the standard name of the hyperparameters in XGBoost tutorials and explain their definitions. The first 
four rows show the parameters that have fixed values and the rest have multiple candidate values. As our 
dependent variable is continuous, we set the hyperparameter ‘objective’ as ‘reg:pseudohubererror’, which 
means that the learning task is regression and the objective of the model training is to minimize the Pseudo-
Huber loss (i.e., a twice differentiable alternative to absolute loss). We use a fixed seed of random number 
to make sure the training set can be replicated. The number of trees is set as 500 and the learning rate is 0.01. 
To control overfitting of the model training, we mainly tune the hyperparameters ‘max_depth’, 
‘min_child_weight’, ‘subsample’ and ‘colsample_bytree’. The former two control the model complexity, 
and the latter two are used to add randomness to make training robust to noise. 
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Table 2. Sample Selection 
 

Steps of Sample Selection The Number of Kept 
Observations 

Sample Period 

Merged Compustat/CRSP data 238607 1951-2018 
Delete firms that are not in the 49 industries 
defined in Fama and French (1997) 

238199 1951-2018 

Delete financial industry firms 199225 1951-2018 
Delete observations before 1970  185449 1970-2018 
Compute variables 176876 1973-2017 
Delete observations with missing independent 
variables 

127830 1973-2017 

Delete observations with missing dependent 
variables 

118267 1973-2017 

Delete observations with abnormal dependent 
variable values 

113336 1973-2017 

Delete duplicated observations of the same firm 
in one cross-section 

113296 1973-2017  

 
This table describes sample selection procedures. Our sample starts from all available common stocks in the 
merged Compustat/CRSP database at the end of 2018, which consists of 238,607 firm-year observations for 
the calendar years 1951-2018. We drop firms that are not in the 49 industries defined in Fama and French 
(1997) because the construction of firm quality requires non-missing industry cost of capital. Considering 
that many accounting variables are not meaningful for financial firms, we also exclude firms in the financial 
service industry. We obtain a sample of 199,225 firm years for the period 1951-2018. Many Compustat 
accounting variables contain missing values. As the missing value problem is very severe in the early years, 
we restrict the sample period to 1970-2018. As the calculation of certain independent variables requires data 
for at least four years, our sample is further limited to 176,876 firm years for the period 1973-2018. After 
filling the missing values of each raw accounting data item from Compustat to the extent possible based on 
accounting knowledge, we drop all the firm years that still have missing values for any of the accounting 
variables. This restriction reduces the sample to 127,830 firm years for the period 1973-2018. Similarly, 
requiring a non-missing dependent variable reduces the sample to 118267 firm years. Following Frankel and 
Lee (1998), we further drop firm-years with negative or extremely small book value of common equity 
(referred to as abnormal dependent variable values in the table) for the calculation of dependent variable. 
Extremely small book value of common equity is defined as firm-years whose book values are smaller than 
the 1% percentile of all firms in that year. This step reduces the sample to 113,336 firm years. Finally, we 
drop duplicate firm IDs (PERMNO) for each year due to fiscal year change, and the final sample consists of 
113296 firm-years. 
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Table 3. Out-of-Sample Performance of Quality Prediction 
 

Panel A: Out-of-Sample Performance of Quality Prediction for Different Models 

 MSE MAE 
LR-Q 34.654 2.626 
LR-19 27.896 2.206 
XGBoost-Q 36.535 2.227 
XGBoost-19 27.592 1.907 
XGBoost-19m 27.654 1.908 

Panel B: Comparison of Prediction Performance Using Newey-West Adjusted t-test 

 MSE MAE 
LR-Q vs. LR-19 3.28** 3.73** 
LR-Q vs. XGBoost-Q -3.34** 3.87** 
LR-Q vs. XGBoost-19 3.09** 4.19** 
LR-19 vs. XGBoost-Q -3.41** -0.34 
LR-19 vs. XGBoost-19 0.58 4.49** 
XGBoost-Q vs. XGBoost-19 3.31** 3.83** 
XGBoost-19 vs. XGBoost-19m -1.94 -1.07 

 
This table shows the summary statistics (mean and standard deviation) of the out-of-sample performance for the 
three machine learning models versus the benchmark model over the test period 1976-2018. For each model, Panel 
A reports the summary statistics for the two performance evaluation metrics, MSE and MAE. Panel B conducts 
formal statistical tests on the performance difference for each pair of machine learning models. The values in 
Panel B are t-stat. A negative value means that the left model performs better than the right, and vice versa. Double 
asterisk indicates the difference is significant at 1% level (single asterisk indicates the 5% level) or better for 
individual tests. The t-stat is Newey-West adjusted following Newey and West (1987), and the lag is set to 5. 
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Table 4. Out-of-Sample Performance of Quality Prediction for Two- and Three- year 
Expansion of PVRI 

 

Panel A: Out-of-Sample Performance of Quality Prediction for Different Model 

 Two-year 
expansion of PVRI 

 Three-year 
expansion of PVRI 

 MSE MAE  MSE MAE 
LR-Q 47.866  2.952   70.499 3.385 
LR-19 41.097  2.660   61.879 3.130 
XGBoost-Q 50.019  2.578   73.430 2.973 
XGBoost-19 41.092  2.349   63.122 2.782 
XGBoost-19m 41.165  2.352   63.258 2.784 

Panel B: Comparison of Prediction Performance Using Newey-West Adjusted t-test 

 Two-year 
expansion of PVRI 

 Three-year 
expansion of PVRI 

 MSE MAE  MSE MAE 
LR-Q vs. LR-19 3.30** 3.59**  3.34** 3.29** 
LR-Q vs. XGBoost-Q -3.42** 3.49**  -3.41** 3.33** 
LR-Q vs. XGBoost-19 3.19** 3.99**  3.21** 3.80** 
LR-19 vs. XGBoost-19 0.01 3.77**  -1.26 3.29** 
LR-19 vs. XGBoost-Q -3.38** 1.14  3.44** -1.61 
XGBoost-Q vs. XGBoost-19 3.37** 3.71**  3.42** 3.48** 
XGBoost-19 vs. XGBoost-19m -0.73 -1.25  -2.12* -1.51 

 
This table shows the performance results for the two-year expansion and three-year expansion of the valuation 
model. For each model, Panel A reports the summary statistics for the two performance evaluation metrics, MSE 
and MAE. Panel B conducts formal statistical tests on the performance difference for each pair of machine 
learning models. The values in Panel B are t-stat. A negative value means that the left model performs better than 
the right, and vice versa. Double asterisk indicates the difference is significant at 1% level (single asterisk indicates 
the 5% level) or better for individual tests. The t-stat is Newey-West adjusted following Newey and West (1987), 
and the lag is set to 5. 
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Table 5. Out-of-Sample Performance of Quality Prediction for XGBoost Models Using 
More Input Variables 

 

Panel A: Out-of-Sample Performance of Quality Prediction for Different Models 

 MSE MAE 
XGBoost-19m 27.654  1.908  
XGBoost-63m 27.316  1.872  
XGBoost-87m 26.887  1.853  
XGBoost-318m 26.712  1.858  

Panel B: Comparison of Prediction Performance Using Newey-West Adjusted t-test 

 MSE MAE 
XGBoost-19m vs. XGBoost-63m 1.90 4.59** 
XGBoost-19m vs. XGBoost-87m 3.12** 4.44** 
XGBoost-19m vs. XGBoost-318m 3.60** 4.49** 
XGBoost-63m vs. XGBoost-87m 3.41** 3.00** 
XGBoost-63m vs. XGBoost-318m 2.11* 1.75 
XGBoost-87m vs. XGBoost-318m 0.76 -0.81 

 
This table shows the performance results for the XGBoost models using more input variables. For each model, 
Panel A reports the summary statistics for the two performance evaluation metrics, MSE and MAE. Panel B 
conducts formal statistical tests on the performance difference for each pair of machine learning models. The 
values in Panel B are t-stat. A negative value means that the left model performs better than the right, and vice 
versa. Double asterisk indicates the difference is significant at 1% level (single asterisk indicates the 5% level) or 
better for individual tests. The t-stat is Newey-West adjusted following Newey and West (1987), and the lag is set 
to 5.  
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Table 6. The Contemporaneous Stock Pricing of Firm Quality 
 

 (1) (2) (3) 

The true firm quality measure  0.20***   
 [16.28]   
Predicted firm quality from XGBoost-19m  0.19***  
  [17.54]  
Asness’ Q score   0.12*** 
   [9.91] 
Firm_size 0.33*** 0.32*** 0.37*** 
 [12.49] [12.10] [15.71] 
One_year_return 0.19*** 0.23*** 0.24*** 
 [12.17] [15.56] [17.23] 
Firm_age -0.02 -0.02 -0.01 
 [-1.39] [-1.14] [-0.66] 
Profit_Uncertainty 0.24*** 0.24*** 0.26*** 
 [16.69] [16.03] [21.83] 
Dividend_Payer -0.08*** -0.09*** -0.08*** 
 [-3.94] [-4.66] [-3.94] 
Profit_Uncertainty_by_Dividend_Payer -0.02 -0.02 -0.01 
 [-1.11] [-1.12] [-0.38] 
Adjusted R2 0.43 0.42 0.40 
Nobs 42 42 42 
Industry FE Y Y Y 

 
This table reports the time series averages of the regression coefficients of model (8). We adjust the standard 
errors for heteroskedasticity and autocorrelation of five lags (Newey and West 1987). Adjusted R2 is the time 
series average of the adjusted R-squared of the cross-sectional regression. T-statistics are shown below the 
coefficient estimate. 10% statistical significance is indicated by *, 5% statistical significance is indicated by **, 
and 1% statistical significance is indicated by ***.  
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Table 7. Risk-Adjusted Return to the Combination of Changes in Firm Quality and Book-to-Market Ratio 

Panel A: Change in Asness’ Q score relative to the Q-score in year t-1 (1976/07 - 2018/06) 

Quality Change 
Group 

1 
(Low quality change) 2~9 10 

(High quality change) H-L 
(10 and 10 
– 1 and 1) BM Group 1 

(Expensive) 2~9 10 
(Cheap) 

1 
(Expensive) 2~9 10 

(Cheap) 
1 

(Expensive) 2~9 10 
(Cheap) 

q5-factor alpha 0.08 0.38*** 1.64*** 0.03 0.26*** 1.03*** 0.19 0.39*** 0.92*** 0.84*** 
 [0.27] [2.65] [4.69] [0.20] [3.01] [5.03] [0.81] [3.23] [4.13] [2.67] 
Beta 1.13 1.02 0.85 1.09 0.94 0.92 1.17 0.99 0.84 -0.29 
Sharpe Ratio 0.21 0.57 0.85 0.31 0.68 0.91 0.31 0.67 0.88 0.88 
Information Ratio 0.07 0.66 1.01 0.05 0.74 1.11 0.17 0.70 0.75 0.53 
Adjusted R2 0.72 0.89 0.47 0.89 0.94 0.75 0.77 0.89 0.59 0.25 
Nobs 24 187 23 188 1494 186 24 186 23 47 

Panel B: Change in predicted firm quality based on XGBoost-19m relative to the realized firm quality in year t-1 (1976/07 - 2018/06) 

q5-factor alpha 0.22 0.36** 1.23*** 0.01 0.22*** 0.86*** 0.01 0.77*** 2.41*** 2.18*** 
 [1.12] [2.42] [3.76] [0.05] [2.88] [4.48] [0.04] [2.84] [5.08] [4.7] 
Beta 1.14 0.98 0.9 1.09 0.93 0.9 1.13 1.06 1 -0.15 
Sharpe Ratio 0.39 0.51 0.64 0.32 0.7 0.88 0.19 0.57 0.93 0.93 
Information Ratio 0.23 0.58 0.74 0.01 0.61 1.02 0.01 0.85 1.09 0.95 
Adjusted R2 0.77 0.87 0.54 0.91 0.94 0.76 0.69 0.83 0.45 0.22 
Nobs 24 187 23 188 1494 186 24 186 23 47 

 
This table shows the monthly alpha for our hedging portfolios. Deciles are created along the dimension of changes in firm quality (Asness’ Q score in year t minus Q 
score in year t-1, or the change in predicted firm quality based on XGBoost-19m relative to the realized firm quality in year t-1), and within each decile, deciles of 
book-to-market ratio are created. For brevity, the results of the middle deciles are condensed by putting them into one portfolio. Following Asness et al (2019), we hold 
each hedging portfolio for one year, rebalanced every month using equal weighting. Alpha is the intercept in a time-series regression on the whole sample period of 
monthly excess return. The explanatory variables are the five factors from q5 factor model including the market factor MKT, the size factor ME, the return on equity 
factor ROE (i.e., the profitability factor), and the investment factor IA and the expected investment growth factor EG. Returns and alphas are in monthly percentage, t-
statistics are shown below the coefficient estimates. 10% statistical significance is indicated by *, 5% statistical significance is indicated by **, and 1% statistical 
significance is indicated by ***. Beta is the realized loading on the market portfolio in q5 factor model. Information ratio is equal to the q5 factor alpha divided by the 
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standard deviation of the estimated residuals in the time-series regression. Sharpe ratios and information ratios are annualized. Nobs is the number of stocks in the 
portfolio. The t-stat is Newey-West adjusted (following Newey and West (1987)). The lag is set as 5 following Asness et al (2019). 
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Table 8. Risk-Adjusted Return to the Combination of Changes in Firm Quality and Book-to-Market Ratio Based on XGBoost-19m for 
Different Subperiods  

Panel A: Subperiod 1 (1976/07 - 1990/06) 

Quality Change 
Group 

1 
(Low quality change) 2~9 10 

(High quality change) H-L 
(10 and 10 
– 1 and 1) BM Group 1 

(Expensive) 2~9 10 
(Cheap) 

1 
(Expensive) 2~9 10 

(Cheap) 
1 

(Expensive) 2~9 10 
(Cheap) 

q5-factor alpha -0.28 0.11 0.56 -0.14 0.23*** 0.42** -0.71 0.14 1.50** 1.78*** 
 [-0.88] [0.67] [1.1] [-0.92] [3.70] [2.19] [-1.55] [0.56] [2.21] [2.99] 
Beta 1.21 1.06 0.98 1.09 0.95 0.89 1.17 1.06 1.00 -0.21 
Sharpe Ratio 0.32 0.42 0.49 0.26 0.63 0.79 0.03 0.50 0.76 0.76 
Information Ratio -0.32 0.24 0.51 -0.35 1.30 0.79 -0.56 0.22 0.91 0.99 
Adjusted R2 0.84 0.92 0.63 0.95 0.99 0.87 0.71 0.88 0.49 0.25 
Nobs 24 183 23 184 1465 183 24 182 22 46 

Panel B: Subperiod 2 (1990/07 - 2004/06) 

q5-factor alpha 0.88** 1.05*** 2.37*** 0.39 0.39 1.42*** 1.20** 2.06*** 4.31*** 3.43*** 
 [2.42] [3.29] [4.30] [1.18] [1.63] [2.89] [2.07] [3.31] [5.06] [3.77] 
Beta 0.96 0.86 0.99 0.99 0.83 0.66 0.89 0.87 0.66 -0.29 
Sharpe Ratio 0.36 0.61 0.92 0.26 0.84 1.22 0.29 0.78 1.29 1.29 
Information Ratio 0.91 1.43 1.30 0.57 0.79 1.45 0.71 1.84 1.70 1.34 
Adjusted R2 0.77 0.85 0.61 0.86 0.86 0.62 0.68 0.81 0.40 0.21 
Nobs 27 207 26 208 1660 207 27 206 26 53 

Panel C: Subperiod 3 (2004/07 - 2018/06) 

q5-factor alpha 0.20 0.06 0.68 -0.14 0.23*** 1.06*** -0.38 0.16 2.01** 1.81** 
 [0.74] [0.48] [1.32] [-1.18] [2.95] [4.15] [-1.20] [0.65] [2.43] [2.2] 
Beta 0.97 0.92 0.78 1.05 0.95 0.90 1.11 1.09 1.03 0.05 
Sharpe Ratio 0.54 0.52 0.44 0.49 0.65 0.72 0.25 0.39 0.71 0.71 
Information Ratio 0.26 0.13 0.38 -0.37 0.91 1.33 -0.32 0.26 0.91 0.78 
Adjusted R2 0.75 0.89 0.42 0.93 0.97 0.85 0.73 0.89 0.50 0.20 
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Nobs 22 170 21 171 1358 169 22 169 21 43 
 
This table shows the monthly alpha for our hedging portfolios based on XGBoost-19m for different subperiods. Deciles are created along the dimension of changes in 
firm quality (Asness’ Q score in year t minus Q score in year t-1, or the change in predicted firm quality based on XGBoost-19m relative to the realized firm quality in 
year t-1), and within each decile, deciles of book-to-market ratio are created. For brevity, the results of the middle deciles are condensed by putting them into one 
portfolio. Following Asness et al (2019), we hold each hedging portfolio for one year, rebalanced every month using equal weighting. Alpha is the intercept in a time-
series regression on the whole sample period of monthly excess return. The explanatory variables are the five factors from q5 factor model including the market factor 
MKT, the size factor ME, the return on equity factor ROE (i.e., the profitability factor), and the investment factor IA and the expected investment growth factor EG. 
Returns and alphas are in monthly percentage, t-statistics are shown below the coefficient estimates. 10% statistical significance is indicated by *, 5% statistical 
significance is indicated by **, and 1% statistical significance is indicated by ***. Beta is the realized loading on the market portfolio in q5 factor model. Information 
ratio is equal to the q5 factor alpha divided by the standard deviation of the estimated residuals in the time-series regression. Sharpe ratios and information ratios are 
annualized. Nobs is the number of stocks in the portfolio. The t-stat is Newey-West adjusted (following Newey and West (1987)). The lag is set as 5 following Asness 
et al (2019). 
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Table 9. Risk-Adjusted Return to the Combination of Changes in Firm Quality and Book-to-Market Ratio Based on XGBoost Models 
using More Input Variables 

Panel A: XGBoost-63m (1976/07 - 2018/06) 

Quality Change 
Group 

1 
(Low quality change) 2~9 10 

(High quality change) H-L 
(10 and 10 
– 1 and 1) BM Group 1 

(Expensive) 2~9 10 
(Cheap) 

1 
(Expensive) 2~9 10 

(Cheap) 
1 

(Expensive) 2~9 10 
(Cheap) 

q5-factor alpha 0.27 0.51*** 1.00*** 0.01 0.21*** 0.92*** 0.18 0.67*** 2.11*** 1.84*** 
 [1.14] [3.09] [3.75] [0.10] [2.69] [4.69] [0.62] [2.72] [4.6] [4.14] 
Beta 1.09 0.98 0.84 1.10 0.94 0.90 1.12 1.06 1.02 -0.07 
Sharpe Ratio 0.30 0.52 0.64 0.35 0.70 0.90 0.21 0.58 0.84 0.84 
Information Ratio 0.26 0.79 0.66 0.03 0.58 1.06 0.13 0.79 0.99 0.83 
Adjusted R2 0.76 0.87 0.53 0.90 0.94 0.75 0.69 0.84 0.47 0.21 
Nobs 24 187 23 188 1494 186 24 186 23 47 

Panel B: XGBoost-87m (1976/07 - 2018/06) 

q5-factor alpha 0.15 0.40** 1.14*** 0.04 0.22*** 0.93*** 0.15 0.69*** 1.91*** 1.77*** 
 [0.63] [2.57] [3.68] [0.30] [2.85] [4.64] [0.49] [2.70] [4.33] [3.95] 
Beta 1.14 0.99 0.92 1.08 0.94 0.89 1.14 1.06 1.07 -0.08 
Sharpe Ratio 0.27 0.48 0.68 0.35 0.70 0.91 0.19 0.59 0.79 0.79 
Information Ratio 0.14 0.63 0.70 0.08 0.61 1.08 0.10 0.81 0.90 0.78 
Adjusted R2 0.77 0.88 0.53 0.90 0.94 0.76 0.69 0.84 0.48 0.20 
Nobs 24 187 23 188 1494 186 24 186 23 47 

Panel C: XGBoost-318m (1976/07 - 2018/06) 

q5-factor alpha 0.13 0.38** 1.24*** 0.01 0.23*** 0.91*** 0.16 0.68*** 2.1*** 1.97*** 
 [0.60] [2.12] [3.75] [0.09] [2.95] [4.7] [0.49] [2.94] [4.57] [4.13] 
Beta 1.12 1.01 0.87 1.09 0.93 0.89 1.12 1.04 1.07 -0.05 
Sharpe Ratio 0.26 0.47 0.58 0.34 0.70 0.91 0.20 0.60 0.85 0.85 
Information Ratio 0.13 0.57 0.71 0.02 0.63 1.06 0.11 0.84 0.97 0.86 
Adjusted R2 0.79 0.87 0.54 0.90 0.94 0.76 0.68 0.85 0.47 0.18 
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Nobs 24 187 23 188 1494 186 24 186 23 47 
 
This table shows the monthly alpha for our hedging portfolios based on XGBoost models using more input variables. Deciles are created along the dimension of changes 
in firm quality (the change in predicted firm quality based on XGBoost-63m, XGBoost-87m or XGBoost-318m relative to the realized firm quality in year t-1), and 
within each decile, deciles of book-to-market ratio are created. For brevity, the results of the middle deciles are condensed by putting them into one portfolio.  Following 
Asness et al (2019), we hold each hedging portfolio for one year, rebalanced every month using equal weighting. Alpha is the intercept in a time-series regression on 
the whole sample period of monthly excess return. The explanatory variables are the five factors from q5 factor model including the market factor MKT, the size factor 
ME, the return on equity factor ROE (i.e., the profitability factor), and the investment factor IA and the expected investment growth factor EG. Returns and alphas are 
in monthly percentage, t-statistics are shown below the coefficient estimates. 10% statistical significance is indicated by *, 5% statistical significance is indicated by 
**, and 1% statistical significance is indicated by ***. Beta is the realized loading on the market portfolio in q5 factor model. Information ratio is equal to the q5 factor 
alpha divided by the standard deviation of the estimated residuals in the time-series regression. Sharpe ratios and information ratios are annualized. Nobs is the number 
of stocks in the portfolio. The t-stat is Newey-West adjusted (following Newey and West (1987)). The lag is set as 5 following Asness et al (2019). 
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