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Abstract 
 
We develop a method for estimating the private value of knowing the future realization of some 
financial statistic and then apply the measure to the familiar ratios arising from the Dupont 
decomposition of return on equity. The estimation is grounded in the standard rational expectations 
model, adapted to accommodate relative risk aversion, and produces an investor’s willingness to 
pay for the signal. The method can accommodate different levels of investable wealth, multiple 
assets, and any information system that produces signals about those assets. To illustrate the use 
of this measure, we show that knowing next year’s return on equity, given that the investor already 
knows the current value, is worth six times more than knowing the value of next year’s sales 
growth. And, as predicted by the Dupont model, we find the value of knowing next year’s 
operating asset turnover depends crucially on the level of the operating profit margin. Finally, we 
show that knowing next year’s leverage is practically worthless. Given that investors face trade-
offs when deciding where to expend effort in financial statement analysis, these estimates can help 
them to know where to allocate their time. 
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Estimating the Private Value of Financial Statement Statistics 
 

1. Introduction 
 

Consider the problem of an effort-constrained investor who is trying to forecast a firm’s 

future fundamental value using the standard tools of financial statement analysis. The investor 

could read marketing reports to assess the firm’s expected future profit margin, she could talk 

with management to learn about future investments, or she could study industry reports to learn 

about excess capacity, as just a few examples. But investors face time and resource constraints. 

When deciding how much effort to expend forecasting one part of a firm’s performance, the 

investor necessarily trades off learning about another part of the firm’s performance. How much 

effort an investor expends on learning about some aspect of the firm depends on what the 

investor already knows, and on how valuable learning the new thing is expected to be. This paper 

gives theoretical and empirical evidence to help with this problem by measuring the private value 

of knowing different financial statement statistics.  We answer questions of the form, if you are 

trying to forecast F, and you already know Z, how much would you pay to know Y? 

Many different literatures in accounting indirectly address our question, but none of them 

directly ask how information changes an investor’s portfolio, and hence the value of that 

information. The market inefficiency literature documents the returns that could have been 

earned by trading on publicly available information, but doesn’t estimate the private value of 

learning something new that other investors don’t know. The forecasting literature shows how to 

use existing financial data to forecast future financial data, but doesn’t produce an estimate of the 

value of doing so. Short-window return studies can be seen as estimates of the value of knowing 

the earnings announcement prior to its public release.  However, this method only works for 
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financial statistics that are reported in isolation, unconfounded by other value-relevant 

information. We discuss specific papers in the next section. 

We assume the investor starts with complete knowledge of all the current financial 

statement statistics and then gathers information to inform herself about the next year’s 

realization of those same statistics. For example, we assume that the investor knows the current 

operating profit margin, but expends effort to learn about next year’s operating profit margin. 

Because we cannot possibly measure how precisely an investor can estimate next year’s financial 

statistics, we go to the extreme and assume that the effort expended results in perfect foresight of 

next year’s value of that statistic. We then measure the value of knowing next year’s result, given 

that the investor knows this year’s result. While perfect foresight is unlikely to be attained, it 

gives a crisp upper bound on the value of information, and it abstracts away from the 

heterogeneity of investors. Practically speaking, it is likely that an analyst has some assessment 

of how much effort would be required to reach a given level of precision on some forecasting 

statistic; our estimates give an upper bound on how valuable expending that effort would be. 

Our method of estimating the value of information can be applied to any number of 

tradeable assets and any collection of signals about those assets’ payoffs. Because financial 

statement analysis is primarily a firm-specific exercise, and for tractability, we begin by 

estimating the value of learning about a single stock at a time. While valuing information about 

only one asset may appear overly restrictive, if the asset payoffs are independent then the value 

of learning about multiple assets is simply the sum of the value of learning about each asset 

individually. In addition, in section 5.5 we consider how adding the ability to trade an industry 

ETF as a second tradeable asset might facilitate hedging, and how this changes the value of firm-

specific information. 
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The financial statistics that we consider are the components of the standard Dupont 

decomposition of return on equity (e.g., sales growth, operating margin, asset turnover, 

leverage). Limiting the investor’s ability to only these financial statistics is not overly restrictive, 

as the firm’s fundamental value can be expressed as a function of these values (see Nissim and 

Penman 2001).  Further, these financial statistics are the mainstay of financial statement analysis 

and are ubiquitous in analyst reports. We use this model to structure our empirical findings, 

starting with the two drivers of firm value – growth and profitability – and then systematically 

estimating the value of knowing the different sub-components of these statistics. 

Our estimate of the value of information is taken from the models in Alles and Lundholm 

(1993) and Admati and Pfleiderer (1987). These papers derive a ‘willingness to pay’ statistic that 

is denominated in units of the riskless asset (e.g., money) and is estimable using standard 

regression techniques. This is the amount the investor would be willing to pay, ex ante, to learn 

the information. The statistic is remarkably simple; it compares the posterior variance of next 

year’s stock return, given the new information, with the posterior variance without the 

information. For instance, the model expresses the value of knowing next year’s sales growth, 

given that you already know this year’s value, as the ratio of the posterior variance of next year’s 

stock return conditioned on the current and future sales growth to the posterior variance 

conditioned on only the current period sales growth.1 

As financial statement analysis textbooks emphasize, the meaning of many financial 

statistics depend on the levels of other financial statistics. For instance, growth in equity is only 

                                                 

1 The model estimates the ‘private value’ of the statistic – the value of being the only one in the market who 
knows it, given that everyone knows the ‘public’ information.  What the model doesn’t estimate is the value of 
information given that some fraction of other agents in the model also know the information.  See Hellwig and 
Veldkamp (2009) for a discussion of this more complicated problem. 
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valuable if the firm’s return on equity exceeds its cost of capital. A higher asset turnover ratio is 

a good thing if the profit margin is positive, but is a bad thing if the profit margin is negative.  

We refer to these interactive effects as providing “context” to the analysis of any one financial 

statistic, and we make predictions about when the value of perfect foresight on one statistic will 

depend on the level of another statistic. 

We find a number of interesting contrasts.  It is six times more valuable to know next 

year’s ROE than it is to know next year’s sales growth. In fact, knowing nothing more than next 

year’s ROE is worth 72 percent of the value of knowing the entire battery of statistics that come 

out of the Dupont model. Most of the value of ROE comes from the operating contribution (the 

return on net operating assets), rather than the financing contribution. And most of the value of 

knowing the return on net operating assets comes from knowing the operating profit margin.  

Further, knowing the future value of the operating asset turnover increases as the operating profit 

margin increases, consistent with the multiplicative nature of these two ratios. Finally, knowing 

next year’s leverage ratio is practically worthless.  

We replicate these results by estimating the value of different statistics separately for 

each industry. We find that the central tendencies across the distribution of industry results are 

very close to the pooled results.  We also find that, even at the 75th percentile, foreknowledge of 

sales growth is worth less than the 25th percentile of the value of knowing future ROE. Finally, 

we find that the value of foresight into the future ROE is highest in the Consumer-Nondurables 

industry (e.g., food, clothing) and lowest in the Consumer-Durables industry (e.g., cars, 

dishwashers).   

Lastly, we ask how the value of information changes when the investment opportunity set 

changes.  In particular, we allow our hypothetical investor to trade in the firm and in an ETF that 
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holds the firm. The ETF might offer hedging opportunities that could make the value of the firm-

specific information more valuable. Alternatively, the existence of the ETF might make prices 

more informative, lowering the value of being privately informed. We find mixed results. 

Focusing again on the value of knowing future ROE, we find that the value increases 

significantly in the Utilities, Telecom and Finance industries, but decreases significantly in the 

Manufacturing, Healthcare, and Consumer Durables industries.   

In the next section we summarize the related literature, and in section three we formally 

develop our measure of the value of information. We describe the sample in section four and 

present our results in section five.  Section six concludes. 

 
2. Literature Review 
 

The residual income valuation model (Ohlson 1995) expresses the value of an equity in 

terms of forecasts of future accounting statistics.  In particular, the value of a firm can be written 

in terms of the forecasted future ROE and forecasted growth in common equity (CSE). This 

observation motivates a large accounting literature aimed at forecasting these two drivers of 

value. A common approach is to use the Dupont decomposition to write ROE or CSE in terms of 

other more fundamental financial statistics, and see how well these underlying financial statistics 

predict the future. For instance, a number of studies find that the asset turnover ratio is more 

persistent than the profit margin (Fairfield and Yohn (2001), Nissim and Penman (2001), 

Penman and Zhang (2003) and Soliman (2008)). Amir, Kama, and Livnat (2011) extend this 

result by showing that, while the asset turnover ratio is more persistent, changes in the profit 

margin are more predictive of changes in future RNOA (something they label as “conditional 

persistence”). If we summarize this literature as ‘the search for good forecasting variables,’ then 

the earliest systematic work is Ou and Penman (1989) who used a battery of financial statement 
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statistics taken from textbooks to predict the sign of next year’s earnings change, and then used 

this statistic to predict future returns. More recently Chen, Cho, Dou and Lev (2022) address this 

same question using machine learning techniques. 

Other studies have allowed estimates of a variable’s persistence to vary with some other 

attribute. Vorst and Yohn (2018) use a life cycle model to predict ROE and growth in CE, among 

other things. They find that the persistence of these variables changes dramatically depending on 

the life cycle stage a firm is in. Jackson, Plumlee, and Roundtree (2018) decompose a firm’s 

ROE into market, industry and firm-specific parts and find that letting each part have its own 

persistence parameter improves the forecast.  Esplin, Hewitt, Plumlee and Yohn (2014) focus on 

the benefit of decomposing ROE into operating and financing components. They find that this 

distinction only matters when the forecaster takes a two-step approach, first estimating the 

persistence of each component separately and then putting the two forecasts together using the 

Dupont model (as opposed to fitting a single model of ROE as a function of the operating and 

financing components).   

These papers tell the user how to map existing financial data into future values of the 

same statistic, or of a more value-relevant statistic, like future ROE. But if the user could learn 

more about the future value of some financial statistic, what would be the most beneficial 

statistic to learn about? A variable could be very persistent, and predict future ROE well, but still 

not be useful in predicting future stock returns. In that case it would not make sense for the 

investor to spend time trying to forecast the future value of this variable. Further, in our model 

we assume the investor knows the current value of any financial statistic in question. In this case 

learning about the future value of a highly persistent variable would be worth little because 

knowing its current value already provides most of the available information for free. 
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Our work is also related, but different than, the market inefficiency literature in 

accounting. One measure of the value of a signal is the abnormal return an investor could earn by 

forming investment portfolios based on the signal. Importantly, this literature only conditions on 

current publicly available information in order to show that these returns are realizable. This 

literature doesn’t answer the question of what it would be worth to develop private information 

about the future value of some financial statistic. Finally, our results regarding the impact of 

allowing trade in the firm and in its industry ETF are related to the findings in Bhojraj, 

Mohanram, and Zhang (2020).  They show that the introduction of a sector ETF improves the 

efficient pricing of the firms held by the ETF, while the introduction of a broad-based ETF 

harms the efficient pricing of its constituent firms. These findings help explain our mixed results 

when we add the ETF to the investment set. 

Our work is related to the vast accounting literature, beginning with Beaver (1968), that 

measures the short-window returns around some announcement, typically an earnings 

announcement. This approach to measuring the importance of a signal effectively estimates a 

beta from the regression of the short-window return on the signal in question. If an investor knew 

the value of the signal before the announcement window, then clearly a bigger beta would be 

more valuable to an investor. But that is where the similarity in approaches ends. First, short-

window returns are only good measures when the signal in question is released in isolation. This 

is rarely the case, even with earnings announcements, but is certainly not the case with the more 

focused financial statistics that we study. For the same reason, a short-window test cannot 

measure the value of a set of signals unless they happen to be released all at the same time. Our 

method allows us to estimate the value of any collection of signals in isolation or in sets.  

Second, a short-window test tacitly controls for other factors by keeping the return window 
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small, but this approach never specifies what exactly is being controlled for. Our test explicitly 

states the variables being controlled for, and other nuance variables are naturally controlled for 

by their presence in the error terms of both the full and reduced models. Finally, our approach 

explicitly pins down the set of tradeable assets and the wealth of the investor; a short-window 

approach is silent on these issues. 

Our work is similar to Nieuwerburgh and Veldkamp (2010) who study a setting where 

learning is constrained and so the investor has to trade off learning a lot about a few assets or a 

little about many assets. How does the investor choose how many assets to learn about? They 

model learning as a reduction from some fixed capacity and find that, depending on how learning 

consumes capacity, they can support various equilibrium allocations of effort. In some cases 

investors specialize in a few firms and ignore learning about the others, and in other equilibria 

investors spread their learning out across the maximum number of firms. In contrast, we 

constrain the number of risky assets the investor can learn about, so this is not a choice, and then 

we measure which firm-specific signals are most valuable to learn about. In effect, the 

Nieuwerburgh and Veldkamp (2010) paper assumes that the investor already knows what to 

study about a firm, she just doesn’t know which firms to study.  

 Farboodi, Singal, Veldkamp, and Venkateswaran (2022) also measure the value of 

information, deriving a measure similar to the one presented here. They consider an economy 

where investors can only trade in a few classic portfolios: growth firms, value firms, small firms, 

large firms, or the entire market portfolio. In this setting they estimate the value of IBES growth 

forecasts, aggregating together the forecasts for each portfolio. They find that these aggregated 

growth forecasts are most valuable for investors specializing in large growth stocks. They also 

estimate the value of perfect foresight of next quarter’s GDP growth rate, and find that it is most 
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valuable for investors who only trade in the small stock portfolio. Our estimation method is 

similar to theirs, but we measure the value of very different information sets, and we estimate the 

value of information at the firm level rather than at the economy level.  

 
3.  Model of the Value of Information 
 

We begin with a generic expression for the value of information derived from the 

standard rational expectations framework. Assume there is a single riskless asset serving as the 

numeraire (e.g., money). The investor trades in N risky assets with payoff vector denoted by F. 

There is a public signal vector Z that is commonly observed and is informative about some or all 

of the payoffs in F. In addition, by expending costly effort on financial statement analysis, the 

investor can observe the private signal vector Y which is also informative about some or all of 

the payoffs in F. All random variables are jointly normally distributed. The investor’s posterior 

uncertainty about F, after having observed Y and Z, is given by the NxN covariance matrix 

Var(F|Y,Z). If the investor does not expend effort to acquire the private signal Y then her NxN 

posterior covariance matrix is Var(F|Z).  

The value of information in this setting is the cost Φ  that equates the utility of wealth 

achieved by trading on both signal vectors Y and Z, but having to pay Φ  for Y, with the utility 

of wealth achieved by trading on only the public sector Z, but foregoing the private information 

cost. As is standard in the rational expectations literature, we assume investors have a negative 

exponential utility function with risk tolerance parameter ρ. Later we let ρ vary with the wealth 

level of the investor, effectively turning an estimate based on constant absolute risk aversion into 

an estimate based on constant relative risk aversion (as discussed in detail later).  

In this setting the value of information can be shown to be 
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Φ = �
𝜌𝜌
2
� 𝑙𝑙𝑙𝑙𝑙𝑙 �

det[𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹|𝑍𝑍)]
det[𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹|𝑌𝑌,𝑍𝑍)]�. 

 

 See Admati and Pfliederer (1987) or Alles and Lundholm (1993) for the derivation. The value of 

information equation is remarkably general. It allows for any number of risky assets and any 

number of signals, with arbitrary relations between them. Φ is denominated in units of the 

riskless asset and so, in theory, we can compute an actual dollar value for the Y signal. As 

discussed later, we transform the utility function to have constant relative risk aversion by 

backing into the level of risk tolerance that is implied by a given level of wealth. While we do 

not take the level of this estimate too seriously, it provides a useful way to rank-order the value 

of different statistics, or to make relative statements about them.  Finally, Φ is always positive 

because, in a normal random variable setting, posterior variances can only get smaller when 

conditioning on more information.  

To develop some intuition for this expression, suppose there is only one risky asset with 

payoff F.  In this case Var(F|Z) and Var(F|Y,Z) are scalars. As the signal Y becomes more 

informative, given Z, it reduces the posterior variance Var(F|Y,Z) and Φ  increases. 

Alternatively, if the signal Y is redundant given Z, then Var(F|Y,Z)=V(F|Z), and Φ is zero. The 

log function shows that the marginal value of additional information is positive but decreasing. 

Finally, information is more valuable to a more risk tolerant investor because she is willing to 

take larger positions for a given level of posterior variance.  

Now suppose there are N risky assets available to trade. The numerator and denominator 

in Φ are now the determinants of the posterior variance matrices (so that the ratio is once again a 

scalar). Suppose that the N assets’ payoffs are independent, and that Y consists of N signals, one 

for each asset, that are independent of each other. In this case the determinant is the product of 
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the diagonal in the posterior variance matrix, where each term is the posterior variance of the 

asset payoff conditioned on its associated signal. Since each diagonal element is a posterior 

variance, not surprisingly, more precise information on any asset increases the value of 

information. 2  However, if the asset payoffs or the signals are correlated, then the impact of 

changing any one part of the information system can have a quite complicated impact on the 

value of information. Such complications play out in the computation of the determinants of the 

two variance matrices. 

To operationalize this framework, we need to specify F, the asset payoff that investors 

collect information about, and we need to propose some Y and Z signals that have a plausible 

relation with F. We assume that investors have a one-year horizon, so that F is the gross realized 

return RET1 = (P1 + D1 - P0), where P0 and P1 are prices at time 0 or time 1, respectively, and D1 

is the dividend paid during the period.3 For Y signals, we use the future realized date 1 values of 

some common accounting statistics, and for Z signals we use the date 0 values of these same 

statistics plus a few control variables. Thus, our characterization of financial statement analysis 

is a process that moves the investor from knowing the public date 0 value of some important 

statistic to privately knowing the date 1 future realization of that statistic. For instance, to 

estimate the value of perfect foresight about ROE1 we compare the posterior variance of RET1 

given ROE1 and ROE0, with the posterior variance of RET1 given only ROE0. 

We pick our accounting statistics based on how the residual income model relates 

changes in financial statement data to changes in value. Specifically, we show in the Appendix 

                                                 

2 Taking the log of this product produces the result that in this case the value of Y is the sum of the value of 
each of its elements 

3 In setting F = P1 + D1 – P0, note that the relevant uncertain variables are P1 and D1; P0 is known at the 
beginning of the period.  
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that RET1 is increasing in beliefs about the future ROE1 and, conditional on ROE1 being greater 

than the discount rate, is increasing in beliefs about the growth in common shareholders’ equity 

(CSE1). Finally, these two forces are multiplicative, so that expected growth in CSE1 is 

particularly valuable when expected future ROE1 is large (and visa versa). Thus, knowing the 

future realization of ROE1 or CSE1 has direct implications for RET1.   

Along with ROE1 and CSE1, we measure the value of different components of these 

statistics. As is standard in financial statement analysis, we express ROE using the advanced 

Dupont model (e.g. Lundholm and Sloan 2023, pp. 107) as  

 
ROE = RNOA + LEV*(RNOA – NBC), where  
 
RNOA = return on net operating assets = net operating income/net operating assets, 
LEV = financial leverage = net financial obligations/CSE, and 
NBC = net borrowing costs = net financial expense/net financial obligations. 
 
In addition, label (RNOA – NBC) as the spread, or SPD, and label the combined value 

LEV*(RNOA – NBC) as financing, or FIN, so that ROE = RNOA + FIN. Finally, RNOA can be 

expressed as the product of the operating profit margin (OPM) and the operating asset turnover 

(OAT). The exact construction for these values using COMPUSTAT data are given in the next 

section.  

For the growth in CSE, note that this is equivalent to the growth in net operating assets if 

LEV remains constant, and is equivalent to growth in sales (Sg) if LEV and the OPM remain 

constant. To the extent that the growth rates in common equity, total assets, or sales differ, it is 

because of the changes in these other financial statement items. Finally, note that one reason 

CSE grows is that the firm earns positive net income. Thus, growth in CSE does not cleanly 

identify growth as a separate element from profitability. Further, other reasons for changes in 

CSE are capital market transactions, such as share issuances, repurchases, or dividends. These 
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actions have immediate and know impacts on returns.  For these reasons, Sales growth is the 

more common measure of ‘growth’ as a separate concept from profitability.   

For each of these accounting statistics, we compute the value of knowing the date 1 value 

at date 0, given that the investor already knows the date 0 value. By assuming perfect one-year-

ahead foresight, our estimates are the upper bounds of the value of information. Clearly the 

reality of financial statement analysis lies somewhere between knowing only the publicly 

available value at date 0 and having perfect foresight of the next year’s date 1 value.  

The size of the payoff vector F determines the investor’s available opportunity set. We 

consider two different specifications of what the investor can trade: a single stock, or a single 

stock and its industry ETF. 4 Note that this specification choice can affect the value of 

information even if it doesn’t change the information set available to the investor. For example, 

the investor’s value of a firm-specific piece of information may depend on whether the investor 

can hedge out the industry component from the future return. Indeed, when on industry ETF is 

launched, Lundholm and Zheng (2021) show that analysts change the mix of firms they follow 

and their recommendation style in a way that aids their clients use of the ETF as a hedge.  

 
3.1 Estimation 

To operationalize the Φ equation we need estimates of the elements in Var(F|Y,Z) and 

Var(F|Z), the two posterior variance matrices in the value of information function. In a linear 

regression framework, the regression residuals’ mean squared error with n degrees of freedom is 

                                                 

4A one or two firm investment opportunity set sounds restrictive. However, if the payoffs are independent, 
the value of information in an N-firm investment set is simply the sum of the individual values. To see this, note 
that, with independent payoffs in the F vector, the determinants of V(F|Y,Z) and V(F|Z) are just the product of the 
diagonal elements (i.e., the trace of each matrix). The ratio of these products can be rearranged to be the product of 
the ratio of each firm’s relative values, and taking the log gives the sum of values of information over the N assets. 
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the maximum likelihood estimator of the posterior variance (MSE). Define a firm’s date 1 annual 

return (RET1) as the 12-month stock return ending 4 months after the date 1 fiscal year end. For 

the single asset setting we run two regressions, one that regresses RET1 on the date 0 and date 1 

values of the accounting statistic of interest – call this the full model - and one that regresses 

RET1 on only the date 0 value of the same statistic – call this the reduced model. We then take 

the log of the ratio of the estimated MSEs and plug this into Φ  to get the value of knowing the 

date 1 realization of the accounting statistic, given that you already know the date 0 value. 

In the case of multiple assets, we also need estimates of the off-diagonal elements in the 

posterior matrices. We estimate these covariances directly from the vectors of residuals. For 

example, with two risky assets Var(F|Y,Z) and Var(F|Z) are both 2x2 symmetric matrices. The 

first diagonal element of Var(F|Y,Z) is estimated by regressing the first asset’s return on Y and Z, 

the second diagonal element is estimated by regressing the second asset’s return on Y and Z, and 

the off-diagonal element is estimated by computing the covariance between the residuals from 

the two regressions. This results in a 2x2 variance-covariance matrix for the full model based on 

Y and Z.  Var(F|Z) is estimated the same way, but only using Z as the regressor in the reduced 

model. With the two 2x2 posterior variance matrices in hand, taking the determinant of each 

yields the necessary ratio of scalars to compute Φ. 

The final unknown in equation Φ is the risk tolerance parameter ρ. This parameter 

follows from the constant absolute risk aversion assumption that is standard in these models. 

However, it is generally believed that constant relative risk aversion is more behaviourally 

descriptive; the general function for utility with a constant relative risk aversion is given as 
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𝑈𝑈(𝑐𝑐) = 𝑐𝑐1−𝜎𝜎 1 − 𝜎𝜎⁄ , where σ is the parameter of relative risk aversion.5 To back into a 

reasonable value of absolute risk tolerance ρ we follow Farboodi, Singal, Veldkamp, and 

Venkateswara (2022) and assume a specific level of wealth and relative risk aversion, and then 

back into the level of absolute risk aversion that equates with this. In particular, we assume the 

investor has a relative risk aversion parameter of 2 and either $1M or $100M of wealth to invest.  

We label the $1M investor as a retail investor and the $100M as an institutional investor. For the 

$1M investor, this implies an absolute risk aversion parameter of 1/72359, or risk tolerance 

parameter of ρ equal to 72,359; for the $100M investor this implies ρ equals 5,428,881.6 Higher 

levels of wealth imply greater risk tolerance, consistent with relative risk aversion.7 While this is 

clearly arbitrary – other risk tolerance parameters would produce different dollar value estimates 

of the value of a signal - all of our results are based on the value of one type of information 

relative to another type, so changing the estimated value of ρ does not impact these conclusions.   

We estimate the regressions needed to produce the variance estimates at two different 

levels of aggregation: 1) the pool of all firms, as in Chattopadhyay, Lyle, and Wang (2022), 

Lewellen (2015), and Lyle, Callen, and Elliott (2013); and 2) the pool of all firms in an industry 

for each of the Fama/French 38 industries, as in Lyle and Wang (2015). Smaller, more 

                                                 

5 Harel, Francis and Harpaz (2018, section 12.1) compare all the major utility functions used in economics, 
finance, and accounting, concluding that “The attractiveness of the power utility function is increased by the fact it 
has constant relative risk aversion (CRRA) over all outcomes.” And going back to some of the original work in this 
area, Friend and Blume (1975) conduct a large survey of house wealth and risk-taking behaviour and conclude “The 
empirical results in Section III indicate that the assumption of constant proportional risk aversion for households is a 
fairly accurate description of the market place.” 

6 With a relative risk aversion parameter of two, a utility function with constant relative risk aversion is 
given by the function u(c)=-1/c. Equate this with the absolute risk aversion utility function -exp(-α*c) and solve for 
the absolute risk aversion parameter α=ln(c)/c. Insert c=$1,000,000 and invert to get risk tolerance of 72,359.  The 
assumption that relative risk aversion is two is supported by Gandelman and Hernández-Murillo (2015), who assert 
that the literature generally finds a relative risk aversion parameter between one and three. 

7 For intuition, the $1M investor with a risk tolerance of ρ = 72,359, if offered a gamble between winning 
$0 or winning $1M, has a certainty equivalent is $50,651.  For the $100M investor with risk tolerance of ρ = 
5,428,881, the same 0/$1M gamble has a certainty equivalent of $475,000. 
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homogeneous pools of data may yield better specified regression estimates, but at the expense of 

having fewer observations to estimate the parameters. In addition, research has found that 

industry-level models can lead to worse predictions than fully pooled models (Fairfield, 

Ramnath, and Yohn 2009). Note that the level of aggregation for estimation purposes does not 

correspond to the number of assets the investor can trade in or learn about. Using the full cross-

section of data to estimate the value of information does not imply that the investor learns about 

or can trade all these assets; rather, each firm-year is assumed to be an iid draw from the 

distribution of errors used to estimate the posterior variances. 

For example, we can use the fully pooled time-series cross section of data to estimate the 

value of information about a single firm, or we could restrict the sample to only firms in the 

same industry. Similarly, we could estimate the value of information when then investor can 

trade the firm and an industry ETF using the fully pooled sample, or we could restrict the sample 

to only firms in the same industry.  

To be abundantly clear, consider the case where there are two tradable assets – the firm 

and the firm’s ETF – and we want to use the full panel of data to estimate the value of the firm-

specific accounting statistics in the Y vector given the Z vector of control variables. The script 

would be 1) using the full panel of data, regress the firm’s return on vectors Y and Z, and record 

the MSE, 2) regress the ETF’s return on the same set of firm-specific variables in Y and Z, and 

record the MSE, 3) from the residual vectors in steps 1 and 2, compute the covariance, 4) 

construct the estimated variance-covariance matrix consisting of the two diagonal variances and 

the off-diagonal covariance and take the determinant, label this as DetYZ,  5) repeat steps 1-4 but 

using only the Z vector as regressors, labeling the determinant as DetZ, and finally 6) compute Φ 

using ρ/2 times log(DetZ/DetYZ). 
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4. The Data 
  

The sample for the pooled and industry level results is constructed from all firm-years 

between 1973 and 2021 in the COMPUSTAT database with the financial information given 

below. These are then matched with the CRSP database to get each firm-year’s annual returns. 

The intersection of these two databases yields our final pooled sample consisting of 44,146 firm-

year observations. 

The sample that includes the ETF returns is considerably smaller because ETFs did not 

come into existence until the end of 1998. We intersect the pooled sample with the CRSP mutual 

fund database and Thomson Reuters Mutual Fund Holdings (S12) database to identify whether a 

firm is held by any equity ETF that year. We then manually identify which ETFs have an 

industry focus and eliminate all others (see Lundholm and Zheng 2021 for details). If a firm is 

included in multiple ETFs, we select the ETF that has the most concentrated holdings in the firm. 

The final sample has 8714 firm-years with the necessary financial statement data, firm stock 

returns, and ETF returns. 

 
4.1 Dependent variable 
 

Our estimate of value compares the mean squared errors from regressions with and 

without the variable (or variables) being valued. The dependent variable in these regressions is 

the firm’s future annual stock return, ending four months after the next year’s fiscal end (RET1). 

When we are estimating the value of a variable in the economy with the ETF available, we also 

estimate regressions using the ETF return over the same period as the dependent variable. Table 

1 gives the descriptive statistics for the firm returns and the ETF returns (ETFRET1). The mean 

firm annual return is 15.3 percent. This might appear high, but the data cleaning process 
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described below removes many unusual and poorly preforming firms. The annual return is 

skewed upward, with a median value of 7.91 percent. The ETF sample is for a later period of 

time, and so isn’t directly comparable, but note that the ETF return has considerably less 

variation than the firm returns. 

 
4.2 Variables of Interest 
 

We estimate the value of 10 different accounting statistics derived from the Dupont 

model, as presented in standard financial statement analysis textbooks. These variables make up 

the Y vector in the model. 

We require the financial statement data necessary to deconstruct a firm’s return on equity 

into its constituent parts as defined by the Dupont model. To map from raw financial statement 

data to the Dupont model elements we follow Esplin et al (2014).8 We also replicate their rules 

for screening out unusual data item values. While these screens might appear extreme, it has 

been shown repeatedly in the financial statement analysis literature that without these screens, 

the Dupont model produces results that offer little predictive value.  

For each item the COMPUSTAT codes are given in lower case. The first step is to delete 

observations with negative common equity (ceq), negative revenue (revt), negative total assets 

(ta), missing income before extraordinary items income (ib), or missing pre-tax income (pi).   

Next, we set to zero some unusual items if they are missing.  In particular, we change to 

zero any missing values for cash and short-term investments (che), debt in current liablities (dlc), 

long term debt (dltt), discontinued operations (do), preferred dividends (dvp), preferred 

                                                 

8 We diverge from Esplin et al (2014) in one respect.  They compute ROE using net income before taxes as 
the numerator, while we use an after-tax number.  We believe that one of the benefits of the advanced Dupont model 
that we use is its allocation of tax expense between operating and financing activities. 
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dividends in arrears (dvpa), interest and related income (idit), other income and advances (ivao), 

preferred stock (pstk), special items (spi), preferred treasury stock (tstkp), income tax (txt), 

advertising expense (xad), extraordinary items (xi), interest and related expenses (xint), and 

research and development expenses (xrd).  

From this partially-cleaned data we construct the aggregated financial statement items 

necessary for the Dupont decomposition.  These are given as 

 
Common shareholders’ equity cse=ceq+tstkp-dvpa;  
Financial assets fa=che+ivao; 
Financial expense fe=xint+dvp; 
Financial Obligations fo=dlc+dltt+pstk-tstkp+dvpa; 
Financial revenue fr=idit; 
Net financial obligations nfo=fo-fa; 
Net operating assets noa=nfo+cse; 
Effective tax rate eft=txt/pi; 
Net operating income noi=ib-dvp +nfe; 
Net financial expense nfe=(xint-idit)*(1-eft)+dvp; and 
Net income available to common naic = ib - dvp ;9 
 
We compute ratios based on average balance sheet items. Denoting the prior year’s value 

with an ‘l’ proceeding the name, we get the Dupont model objects: 

Return on equity ROE= naic/((cse+lcse)/2); 
Return on net operating assets RNOA=noi/((noa+lnoa)/2); 
Leverage LEV=(nfo+lnfo)/(cse+lcse); 
Net borrowing costs NBC=nfe/((nfo+lnfo)/2); 
Spread SPD=rnoa-nbc; 
Financing FIN=roe-rnoa; 
Operating profit margin OPM=noi/revt; and 
Operating asset turnover OAT=revt/((noa+lnoa)/2). 
 

                                                 

9 We delete the five observations where net operating assets equals zero.  In addition, there are 15 
observations with pretax income of zero; for these we set their effective tax rate (eft) to zero. Finally, there are 24 
observations with net financial obligation of zero; for these we set net financial expense to zero.  
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To be precise, we compute the decomposition of Return on Average Common Equity 

before Extraordinary Items and Preferred Dividends. 

At the level of the Dupont elements, Esplin et al (2104) then apply two last screens on the 

data. They delete any observation where noa<10, cse<1, |nfo|<5, |rnoa|>1, |roe|>1, nbc<0, or 

nbc>1. 

Recall that SPD = RNOA – NBC. We can now express the decomposition of ROE as  

 
ROE  =      RNOA      +       FIN 
 = OPM * OAT +  LEV*SPD  
 
These are the seven performance statistics that we measure the value of.  In addition, we 

assess three growth variables: 

Sales growth Sg=revt/lrevt – 1, 
Total asset growth TAg=at/lat – 1, and 
Common Shareholders’ Equity growth CSEg = cse/lcse – 1. 
 
Finally, we winsorize the current and lagged values of the 10 accounting statistics at 1 

percent and 99 percent. 

Table 1 gives descriptive statistics. The median ROE is 10.92 percent, composed of 

RNOA of 9.15 percent and FIN = 0.7 percent. The median OPM is 5.23 percent and the median 

OAT is 1.79. Note that the 25th percentile of SPD is negative; in these cases FIN has a negative 

impact on ROE. Median Sales growth is 8.38 percent which might appear large, but recall that 

the data cleaning process above removed firms with unusually poor performance.  

4.3 Control Variables 
 

These are the Z variables from the model. In all cases we include the lagged value(s) of 

the variable(s) whose value is being estimated.  We are assuming the investor knows the current 

value of the accounting statistic when assessing the value of knowing its future value. In 
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addition, we include three control variables in all the regressions, measured at the end of the 

current fiscal year (date 0): the value of common shareholders’ equity (CSE0), the book-to-

market ratio (BM0) and the annual stock return (RET0). These variables are intended to capture 

basic firm characteristics – size, value, and momentum - that affect the firm’s expected annual 

return, but are not driven by information that arrives during the upcoming year. These variables 

are commonly used in models of expected returns. 

Table 1 shows that, at the beginning of the return window, the median firm has $164M in 

common shareholders’ equity (CSE) and a book-to-market (BM) of 0.5833.  

 
4.4 Correlations 
 

Table 2 gives the correlations between all the variables of interest.  Looking down the 

first column we see that RET1 is positively correlated with the ROE1 that is reported during the 

period.  It is also positively correlated with every profitability and growth statistic.  RET1 is 

negatively related to the prior period’s return RET0, showing a modest reversal in momentum.  

RET1 is negatively related to CSE0 and positively related to BM0, consistent with the size and 

value factors.  

Not surprisingly, the second column of Table 2 shows that ROE1 is positively correlated 

with the concurrent operating statistics RNOA1, OPM1, and OAT1, and with FIN1 and SPD1. It is 

negatively related to LEV1. The Dupont model shows that leverage contributes to ROE only 

when the spread is positive and we saw in the descriptive statistics that the spread is negative 

more than 25 percent of the time. ROE1 is also positively correlated with the three growth 

measures. Note in particular the 0.4158 correlation between ROE1 and CSEg1.  As discussed 

earlier, one of the main reasons for a change in CSE is net income, causing the strong positive 
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correlation between these variables. For this reason, even though growth in CSE is a driver of the 

valuation, sales growth is the more commonly used measure of growth.   

Column 4 of Table 2 shows the trade-off between OPM and OAT, as is often discussed in 

financial statement analysis textbooks.  Similarly, column 7 shows the negative relationship 

between leverage and the spread.  Finally, columns 9-11 show high correlations between the 

three growth statistics.  

 
5. Results 

5.1 Pooled Results 
 

We begin by discussing the value estimates for a single accounting statistic in the context 

of a one firm investment opportunity set. We estimate these values by pooling the cross-section 

and time-series data. Later we report results estimated by industry. We label the realized and 

publicly known values of the accounting statistics as the date 0 values, and we measure of value 

of having perfect foresight of the date 1 upcoming realization of the same statistic.  

Table 3 gives the results from the pooled data. Panel A presents three important results 

that provide context for the more detailed analysis that follows. The first row of Panel A 

estimates the value of perfect foresight of ROE1, given that the investor already knows the 

realized value of ROE0 and the three control variables listed above. The ratio of the full model R-

squared to the reduced model R-squared is 10.126 (=0.0740/0.0073). We report this ratio 

because R-squared is a common measure of fit, but the statistic that actually goes into the value 

of information estimate is the ratio of MSEs, given in the next column. The result is that our 

hypothetical retail investor (with $1M of wealth) values next year’s ROE1 at $2,515 and the 

hypothetical institutional investor (with $100M of wealth) values it at $188,680. Given that 

forecasting next year’s ROE1 (or net income) is a ubiquitous task in equity valuation and 
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analysis, these value estimates give us a baseline to compare other more focused statistics. We 

will return to this base model repeatedly. Finally, we do not rely heavily on the level of these 

value estimates; rather, we discuss the relative value of one statistic over another, effectively 

eliminating the dependence on the risk tolerance parameter for a given level of wealth. 

The second row of Panel A in Table 3 estimates the value of foreknowledge of sales 

growth Sg1 given that the investor knows last year’s sales growth Sg0 and the three control 

variables. The value of this foresight is only $447 for the retail investor and $33,540 for the 

institutional investor. It is roughly six times more valuable to know next year’s ROE1 than it is to 

know next year’s sales growth Sg1. This is a surprising result given the attention that forecasting 

sales growth gets in financial statement analysis textbooks (e.g. Lundholm and Sloan 2023).  

The final row in Panel A of Table 3 considers the value of knowing the whole collection 

of accounting statistics identified from the Dupont decomposition and three different measures of 

growth. The estimate of perfect foresight of all these variables together, given their date 0 values 

and the three control variables, represents the most value we could possibly get out of the 

Dupont framework. The value estimate for the whole collection of date 1 statistics is $3,478 for 

the retail investor and $260,975 for the institutional investor. Comparing these estimates with the 

value of knowing ROE1 illustrates how useful ROE is as a summary measure of value creation.  

Simply knowing the future ROE1 is worth 72 percent of the value of knowing the future values 

of all the Dupont statistics and growth variables.  

Panel B of Table 3 investigates which measure of growth is the most valuable.  

Comparing the first three rows shows that knowing the future sales growth Sg1 or total asset 

growth TAg1 have roughly the same value, but knowing the growth in Common Shareholders’ 

Equity CSEg1 is much higher. However, as previously discussed, one common reason CSE 
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grows is because the firm earns positive net income. Thus, foreknowledge of the growth in CSE1 

is partly driven by future ROE1, and we have already shown ROE1 to be quite valuable. Further, 

the other main reasons for changes in CSE are capital transactions by the firm, and these have 

known and immediate impact on the firm’s return (for instance, large special dividends reduce 

the market value of equity by almost exactly the same amount). For this reason, we focus most of 

our attention on sales growth, as it is a measure of growth that is less confounded with 

profitability. 

Note also that the number of observations available for the growth estimations in Panels 

A and B are lower than for the ROE estimations in the first row. This is because the lagged 

growth variables require data from two prior years. To be sure that our conclusion that foresight 

about ROE is much more valuable than foresight about growth is correct, and not due to a 

change in the sample, in Panel B we estimate the value of the three growth variables without 

requiring the lagged value. In all three cases the value of the growth variable is even lower when 

its date 0 value is not included in the reduced model. 

As derived in the previous section, ROE has two parts – the value of operations, as 

measured by RNOA, and the value of financing activities, as measures by FIN. Table 3 Panel C 

shows that the value of knowing RNOA1 is roughly three times higher than the value of knowing 

FIN1. This conclusion holds whether or not we control for the date 0 values of the other variables 

being measured. Note, however, that FIN1 still has value. For instance, the value of knowing 

RNOA1 is 76 percent of the value of knowing ROE1 (1909/2515). While RNOA1 is more valuable 

than FIN1, FIN1 still contributes 24 percent of the value in ROE1. 

Panel D further decomposes RNOA into the product of operating profit margin (OPM) 

and operating asset turnover (OAT). The results show that knowing the future OPM1 is roughly 
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four times more valuable than knowing the future OAT1. This conclusion holds whether the 

reduced model controls for the variable’s own date 0 value or if it controls for the date 0 values 

of both variables. Finally, note that in the Dupont decomposition, OPM and OAT have an 

interactive effect.  We explore this in the next section. 

Table 3 Panel E completes the analysis of the individual Dupont statistics. FIN is the 

product of leverage (LEV) and spread (SPD). The results show that foreknowledge of the spread 

is roughly 10 times more valuable than foreknowledge of leverage. This is unsurprising given 

that RNOA1 is part of SPD1. The most surprising result in this panel is the observation that 

knowing the future leverage LEV1, with or without controlling for knowledge of the date 0 

value, is almost worthless. 

In sum, where should an investor with limited time and resources invest their forecasting 

energy? In general, knowing the future value of operating statistics is more valuable than 

knowing the future value of financing statistics. In particular, the links from operating profit 

margin to the return on net operating assets, and then to the return on equity, captures an 

increasing amount of value. Compared to these profitability statistics, the value of knowing sales 

growth is much smaller, although not insignificant, while the value of knowing leverage is 

almost zero.  

 
5.2 Interaction Effects in the Value of Information 
 

The valuation model in the appendix shows that ROE and growth are multiplicative – the 

higher the value of ROE, the greater the impact of growth (assuming ROE is greater than the cost 

of capital), and visa-versa. In addition, the Dupont decomposition on ROE includes two 

interactive terms – the product of operating profit margin and operating asset turnover equals 
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RNOA and the product of leverage and spread equals FIN.  In this section we investigate 

whether the value of these items exhibit the interactions predicted by theory. 

Recall from Table 3 that the unconditional value of knowing Sg1 is $447 for the retail 

investor and $33,540 for the institutional investor. Table 4 Panel A estimates the value of 

knowing future sales growth Sg1 (given Sg0 and the controls) for different quintiles of ROE0. For 

the retail investor, the value of knowing next year’s sales growth is $248 in the first quintile of 

ROE, increases steadily across the quintiles, and reaches $903 in the fifth quintile. The value to 

institutional investors has a similar pattern. This is more than a three-fold increase.  Clearly there 

is an interactive relationship between growth and profitability that impacts the value of knowing 

future sales growth. 

Table 4 Panel B explores the interactive nature of operating profit margin and operating 

asset turnover. Recall that RNOA = OPM*OAT, so that the higher OPM is expected to be, the 

greater the impact of OAT on RNOA, and visa versa. Stated differently, if OPM is expected to 

be around zero, then there is little value in forecasting what OAT might be. The table shows that 

the value of knowing future operating asset turnover increases over the first four quintiles of 

current operating profit margin, but drops in the last quintile. Over the first four quintiles of 

OPM the value of knowing OAT increases almost threefold. However, some other force is at 

work when the current operating margin is very high (i.e. the fifth quintile). One possibility is 

that the extreme quintile of operating profit margin exhibits the fastest mean reversion, so this 

level is not expected to continue into the future, and therefore it’s true multiplicative value is 

smaller. 

Table 4 Panel C explores the interactive nature of leverage and spread.  Recall that FIN = 

LEV*SPD, so that higher levels of leverage are more valuable when the spread is higher.  
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Leverage contributes positively to the overall ROE only if the spread is positive. Recall from 

Table 3 that the value of knowing future LEV was very low - estimated at $144 for the retail 

investor and $10,831 for the institutional investor. Table 4 shows that the value of knowing 

future leverage is weakly increasing over the quintiles of spread.  For the retail investor the value 

goes from $190 in the first quintile to $295 in the fifth quintile; for the institutional investor the 

value goes from $14,218 to $22,163. While this is weak evidence of a multiplicative relationship, 

it also shows that the value of LEV1 is generally low regardless of the value of SPD0. 

The summary of Table 4 is that the predicted interactive effects are generally present.  

The practical advice is that the user shouldn’t bother forecasting sales growth if ROE is expected 

to be low, and the user shouldn’t bother forecasting OAT if OPM is expected to be low. And in 

all cases there is little value in forecasting LEV1. 

 
5.3 Estimations by Industry 
 

The pooled results provide straightforward answers to questions about the value of 

different accounting statistics, but they also assume a homogeneity across many firms that are 

very different. By estimating the value within industry, we improve the specification of our 

estimates, but at the cost of producing a lengthy list of results. Rather than replicate all the 

pooled results, we select only the highlights, and report the distribution of estimates across 

industries. Then, for the ROE results, we present the estimates separately for the Fama/French 12 

industries. 

Table 5 gives the distribution of value estimates over 36 industries of the Fama/French 38 

(two industries have insufficient data) for the most important accounting statistics. Panel A 

estimates, by industry, the value of perfect foresight of ROE1 given ROE0 and the three control 

variables. For comparison, the last column in the table shows the estimate from the Table 3 
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pooled regressions. As seen in the table, the median value is $2,968 for retail investors and 

$222,659 for institution investors. In addition, the maximum value for retail investors, which 

occurs in the XXX industry, is $6,764, more than twice as large as the median. Generally, the 

mean estimate is very close to the median estimate, so the distribution of value estimates is fairly 

symmetric. 

One of the surprising results from the pooled estimates is the relatively low value of 

knowing future sales growth Sg1, especially when compared to the value of knowing ROE1. In 

Table 5 Panel B we see that this conclusion holds up in the distribution of industry level results.  

The median value of Sg1 given Sg0 and the controls, is only $379 for the retail investors and 

$28,431 for the institutional investors. Even at the 75th percentile the values are only $811 and 

$60,837, respectively. Even the 25th percentile of the value of knowing ROE1 is more than 2.5 

times larger than the 75th percentile of the value of knowing Sg1. 

The central tendency of the estimated value of knowing RNOA1, when estimated by 

industry, is similar to the pooled results. As seen in Table 5 Panel C, it makes up about 75 

percent of the value of knowing ROE1. However, in contrast to the pooled results, Panel D shows 

that the median value of knowing FIN1 is $1,495 for retail investors and $112,134 for 

institutional investors; these value estimates are more than twice the estimated values from the 

pooled estimates. While the pooled estimates led to the conclusion that knowing the future value 

of FIN1 was not very valuable, the industry level estimates put financing on the same footing as 

operations.  Indeed, the median value of knowing FIN1 is roughly half the median value of 

knowing ROE1.  

The pooled results showed that the driver of RNOA’s value was the value in knowing the 

future operating profit margin OPM1. Table 5 Panel E shows that the median value of knowing 
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OPM1 is 69 percent of the median value of knowing RNOA1. By comparison, the pooled 

estimate of the value of OPM1 was only 59 percent of the value of knowing RNOA1. The 

industry results confirm the conclusion that the value of knowing RNOA1 is largely due to the 

value of knowing OPM1. 

The final panel in Table 5 confirms the prior result that foreknowledge of leverage is of 

little value. Even at the 75th percentile the value of LEV1 is only $443 for retail investors and 

$33,235 for institutional investors. 

Collectively the industry-level estimates of value confirm many of the conclusions from 

the pooled analysis. Foreknowledge of ROE1 is far more valuable than foreknowledge of sales 

growth. Knowing next year’s leverage is almost worthless. However, at the median, roughly half 

of the value of knowing ROE1 comes from operations – RNOA1 – and half from financing – 

FIN1, whereas the pooled results skew more in favour of RNOA1. 

 
5.4 Detailed Estimated by Fama/French 12 Industries 
 

In this section, we present the value estimates of ROE1, given ROE0 and the three control 

variables, by industry. To keep the list from being too detailed, we switch to the Fama/French 12 

industry classifications. This is largely a descriptive exercise, as we have no ex ante theory for 

which industries will value foreknowledge of ROE1 more than others. Table 6 gives the results 

sorted from highest value estimates to the lowest. Interestingly, the highest values are in 

Consumer Non-durables (e.g. food and clothing) while the lowest values are in Consumer 

Durables (e.g. cars and dishwashers). The value of knowing of ROE1 is about twice as high in 

Consumer Non-durables than in Consumer durables. The central difference between these two 

industries is the level of discretion the consumer has in timing their purchases. The table shows 

that this causes information about ROE1 to be considerably more valuable when consumers have 
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little discretion. This is possibly because, given the lack of discretion in Consumer Non-durables, 

growth is well modeled, but profitability is more uncertain, while the opposite is true for 

Consumer Durables.  

 
5.5 Increasing the investment opportunity set 
 

In this section we consider how enlarging the set of available securities impacts the value 

of information about the firm. We hold the information constant – firm-specific information 

about future ROE1 - but now assume that the investor can also take a position in an industry ETF 

that holds the firm. As discussed earlier, the introduction of the ETF has potentially conflicting 

impacts on the value of information. On the one hand, it allows the investor to hedge out a 

common industry component. All else equal, this makes firm-specific information more 

valuable. On the other hand, the ability to hedge causes investors to take more extreme positions 

and this makes price more informative and, consequently, private information less valuable.  

The estimation of value is more complicated with multiple assets, as described in section 

2. Instead of estimating posterior variances directly from the residuals, we need to estimate the 

generalized posterior variances, which are the determinants of the posterior variance-covariance 

matrices. Table 7 gives the results, by Fama/French 12 industry, of estimating the value of ROE1 

given ROE0 and the controls, when the investor can also take positions in the industry ETF. For 

comparison we also re-estimate the value from the one-asset case on the same ETF sample. 

Table 7 is sorted by the difference between the two estimates – the one with the ETF present and 

the other without it, as shown in the last column. Consider the first row – Telecom.  The 

estimated value of knowing the future ROE1, in a setting that allows trading in the ETF, is 

$6,158 for retail investors and $461,980 for institutional investors. These estimates are in 

contrast to the estimates produced by valuing ROE1 in the one-asset setting, where they are 
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$3,124 for the retail investor and $234,370 for the institutional investors (as seen in the second-to 

last and next-to-last columns).  In other words, the ability to hedge using in the ETF increases the 

value of knowing ROE1 by $3,034 for retail investors and $227,610 for the institutional 

investors. Overall, 10 of the 12 industries show increases in the value of knowing ROE1 when 

the estimate takes into account that investors can also trade in the ETF. The theoretical reason for 

information being more valuable in these 10 industries is that the ability to hedge out an industry 

component adds more value than is lost by having more informative prices.   

To help understand why the value of information changes so much in Table 7, contrast 

Telecom, which has the biggest improvement when the ETF is added to the investment 

opportunity set, with Utilities, which has the smallest improvement.  The second-to-last column 

in Table 7 shows that the one-asset estimates of the value to a retail investor of knowing future 

ROE1 for these two industries are approximately the same ($3,124 for Telecom and $3,027 for 

Utilities).  So what changes for Telecom, but not for Utilities, when we add the ETF to the 

investment opportunity set?  The difference is that the estimated covariance between the firm 

payoff and the ETF payoff is three times higher in the Telecom industry than in the Utilities 

industry (untabulated). This makes the ETF a much more effective hedging instrument in 

Telecom than in Utilities.10  Consequently, when we add the ETF as a tradeable asset, the value 

of firm-specific information in the Telecom industry increases much more than in the Utilities 

industry. 

 
                                                 

10 To analytically how correlation impacts the value of information, assume that the information vectors Y 
and Z have no impact on the covariance C between the firm payoff Fi and the ETF payoff FETF, or on the posterior 
variance of the ETF payoff.  With this, the value of information is proportional to the ratio of determinants, given as 
𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝑖𝑖|𝑍𝑍)∗𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝐸𝐸𝐸𝐸𝐹𝐹)−𝐶𝐶2

𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝑖𝑖|𝑌𝑌,𝑍𝑍)∗𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝐸𝐸𝐸𝐸𝐹𝐹)−𝐶𝐶2 which is increasing in C because Var(Fi|Z) is always greater than Var(Fi|Y,Z). 
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6.  Conclusion 

 Financial statement analysis offers a long list of items to consider when forecasting a 

firm’s future fundaments, but little advice on where to expend the most energy.  While our 

estimates do not take into account the cost of making the forecast, and go to the limit by 

assuming perfect foresight, they offer a starting place for a more data-driven valuation process. 

Our empirical findings also show stark contrasts between the value of some common statistics 

over others. 

 There are a number of avenues available for future research. Financial statement analysis 

offers another level of more detailed statistics – inventory turnovers, SGA-to-Sales, the quick 

ratio – just to name a few popular ratios.  Our measure could help establish which of these more 

nuanced statistics is the most valuable.  In addition, our results regarding the impact of allowing 

trade in an ETF just scratch the surface of investigating the impact of an investment opportunity 

set with correlated payoffs. In this case it could be that new financial statistics designed to 

differentiate between common and idiosyncratic payoff components could be particularly 

valuable.  
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Appendix 
 
Assume the realized value at time 1 is 
 

𝑃𝑃1 = 𝐶𝐶𝐸𝐸1 + �𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡+1/(1 + 𝑉𝑉)𝑡𝑡|𝑅𝑅1]
∞

𝑡𝑡=1

 𝑤𝑤ℎ𝑒𝑒𝑉𝑉𝑒𝑒, 

 
residual income is RIt+1 = NIt+1 – r*CEt, r is the discount rate, and I1 is the information set 

at time=1. CEt is common equity at time t, and NIt is comprehensive income at time t.  Writing 
the same model at time zero, conditioned on information set I0, gives 

 

𝑃𝑃0 = 𝐶𝐶𝐸𝐸0 + �𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡/(1 + 𝑉𝑉)𝑡𝑡|𝑅𝑅0]
∞

𝑡𝑡=1

. 

 
Taking the difference gives 

𝑃𝑃1 − 𝑃𝑃0 = 𝐶𝐶𝐸𝐸1 − 𝐶𝐶𝐸𝐸0 + �
𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡+1|𝑅𝑅1] − 𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡|𝑅𝑅0]

(1 + 𝑉𝑉)𝑡𝑡

∞

𝑡𝑡=1

. 

 
Denote the net dividend in period 1 as D1, so that clean surplus gives CE1 – CE0 = NI1 - 

D1, which gives   
 

𝑃𝑃1 + 𝐷𝐷1 − 𝑃𝑃0 = 𝑁𝑁𝑅𝑅1 + �
𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡+1|𝑅𝑅1] − 𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡|𝑅𝑅0]

(1 + 𝑉𝑉)𝑡𝑡

∞

𝑡𝑡=1

. 

 
Further, note that NI1 = RI1 + r*CE0 and RI1 = E(RI1|I1) so we can write the return as  
 

𝑃𝑃1 + 𝐷𝐷1 − 𝑃𝑃0 = 𝑉𝑉𝐶𝐶𝐸𝐸0 + ��
𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡+1|𝑅𝑅1]

(1 + 𝑉𝑉)𝑡𝑡

∞

𝑡𝑡=0

 −
𝐸𝐸[𝑅𝑅𝑅𝑅𝑡𝑡+1|𝑅𝑅0]
(1 + 𝑉𝑉)𝑡𝑡+1 �. 

 
The value r*CE0 is the expected return. The realized return is then more or less than this 

amount because of changes in expectations between I0 and I1 about the stream of future residual 
incomes (adjusted for the one-year difference in the cumulative discount rate).  

To get closer to common accounting variables, write 𝑅𝑅𝑅𝑅𝑡𝑡 = 𝐶𝐶𝐸𝐸𝑡𝑡−1(𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡 − 𝑉𝑉) so that the 
equation says that realized returns are driven by changes in expectations about future ROE and 
future CE.  In other words, returns differ from expectations because of changes in beliefs about 
future profitability and future growth. This also highlights that realized returns depend on the 
interactive effect of profitability and growth. 

 As a simple example, suppose 𝐸𝐸(𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡|𝑅𝑅1) = 𝑅𝑅𝑅𝑅𝐸𝐸1 𝑉𝑉𝑎𝑎𝑎𝑎 𝐸𝐸(𝐶𝐶𝐸𝐸𝑡𝑡|𝑅𝑅1) =
𝐶𝐶𝐸𝐸1 for 𝑡𝑡 ≥ 1, and 𝐸𝐸(𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡|𝑅𝑅0) = 𝑉𝑉 𝑉𝑉𝑎𝑎𝑎𝑎 𝐸𝐸(𝐶𝐶𝐸𝐸𝑡𝑡|𝑅𝑅0) = 𝐶𝐶𝐸𝐸0,𝑓𝑓𝑙𝑙𝑉𝑉 𝑉𝑉𝑙𝑙𝑙𝑙 𝑡𝑡. In other words, at time 0 
the investor believes ROEt and CEt will remain at the date 0 values forever, and at time 1 she 
believes they will remain at the date 1 values forever. In this case the return is 
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𝑅𝑅𝐸𝐸𝐸𝐸1 = 𝑉𝑉𝐶𝐶𝐸𝐸0 + (𝑅𝑅𝑅𝑅𝐸𝐸1 − 𝑉𝑉) �𝐶𝐶𝐸𝐸0 +
𝐶𝐶𝐸𝐸1

𝑉𝑉(1 + 𝑉𝑉)�. 

 
Again, realized returns depend on the expected return, changes in expectations about 

profitability and changes in expectations about growth in CE, and profitability and growth are 
multiplicative. 
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Table 1: Descriptive Statistics for Financial Statement and Market Data 
Dependent Variable N Mean Minimum 25th percentile 50th percentile 75th percentile Maximum 
Future Annual Return (RET(1)) 44,146 0.1530 -0.9965 -0.1667 0.0791 0.3483 15.9114 

        
Variables from the Dupont model        
Return on Equity ROE(1) 44,146 0.0805 -0.6740 0.0318 0.1092 0.1712 0.5182 
Return on Net Operating Assets RNOA(1) 44,146 0.0928 -0.4313 0.0464 0.0915 0.1429 0.5622 
Operating Profit Margin OPM(1) 44,146 0.0578 -0.4860 0.0221 0.0523 0.0965 0.4388 
Operating Asset Turnover OAT(1) 44,146 2.1716 0.1400 1.0546 1.7957 2.7055 10.1366 
Financing Contribution FIN(1) 44,146 -0.0115 -0.5350 -0.0333 0.0074 0.0376 0.3480 
Leverage LEV(1) 44,146 0.8640 -0.7181 0.1722 0.5524 1.1164 9.0691 
Spread SPD(1) 44,146 0.0236 -0.5766 -0.0209 0.0289 0.0816 0.5292 
Sales Growth Sg(1) 44,146 0.1236 -0.4387 -0.0013 0.0838 0.1973 1.3069 
Total Asset Growth TAg(1) 44,146 0.1241 -0.3134 -0.0080 0.0672 0.1753 1.5187 
Common Equity Growth CSEg(1) 44,146 0.1230 -0.5700 -0.0069 0.0817 0.1807 1.8981 

        
Control Variables        
Current year Annual Return RET(0) 44,146 0.1497 -0.9851 -0.1661 0.0729 0.3382 22.8745 
Current year Common Equity CSE(0) 44,146 1070.640 5.0730 47.0900 164.2630 682.2720 21409 
Current year Book-to-Market BM(0) 44,146 0.8018 0.0061 0.3420 0.5833 0.9632 48.9308 

        
Other Variables        
RET(1) in ETF sample 8,714 0.1315 -0.9438 -0.1152 0.0993 0.3083 15.9114 
ETFRET(1) in ETF sample 8,714 0.0883 -0.8171 -0.0442 0.1058 0.2208 1.9872 

 
 
Table 1 notes: The perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). Variable definitions 
and constructions are in Section 3.
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Table 2: Pearson Correlations  
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

(1) RET(1) 1             
              

(2) ROE(1) 0.1687 1            
 <.0001             

(3) RNOA(1) 0.1401 0.7634 1           
 <.0001 <.0001            

(4) OPM(1) 0.0991 0.6096 0.6341 1          
 <.0001 <.0001 <.0001           

(5) OAT(1) 0.0483 0.1529 0.2578 -0.1643 1         
 <.0001 <.0001 <.0001 <.0001          

(6) FIN(1) 0.0875 0.6018 -0.0330 0.1607 -0.0731 1        
 <.0001 <.0001 <.0001 <.0001 <.0001         

(7) LEV(1) 0.0014 -0.0958 -0.1366 0.1983 -0.2350 0.0204 1       
 0.7755 <.0001 <.0001 <.0001 <.0001 <.0001        

(8) SPD(1) 0.1248 0.7411 0.9019 0.5699 0.2295 0.0393 -0.1418 1      
 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001       

(9) Sg(1) 0.0595 0.1925 0.2050 0.1519 0.0515 0.0478 0.0132 0.1781 1     
 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0055 <.0001      

(10) TAg(1) 0.0712 0.2324 0.2379 0.1793 0.0261 0.0665 -0.0071 0.2189 0.5847 1    
 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.1374 <.0001 <.0001     

(11) CSEg(1) 0.1494 0.4158 0.3288 0.2499 0.0520 0.2411 -0.0103 0.2943 0.4310 0.6210 1   
 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0307 <.0001 <.0001 <.0001    

(12) RET(0) -0.0536 0.2493 0.2350 0.1549 0.0746 0.0972 -0.0335 0.2097 0.2637 0.2620 0.3036 1  
 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001   

(13)  CSE(0) -0.0174 0.0948 0.0675 0.1566 -0.1278 0.0638 0.0275 0.0714 -0.0742 -0.0575 -0.0591 -0.0127 1 
 0.0003 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0076  

(14)  BM(0) 0.0737 -0.3089 -0.2688 -0.1921 -0.0476 -0.1570 0.0645 -0.2700 -0.1823 -0.2161 -0.2420 -0.2293 -0.1076 
  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Table 2 notes: Variable definitions and constructions are in Section 3. The perfect foresight date 1 value is shown as variable(1); the known date 0 
value is shown as variable(0).
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Table 3: Value of Information Estimated with Pooled Time Series and Cross Section 
  
Panel A               

Variables being Valued N 

R-squared 
from Full 

Model 

R-squared 
from Reduced 

Model 
R-squared 

Ratio 
MSE 
Ratio Φ-Retail 

Φ-
Institutional 

ROE(1), given ROE(0) and controls 44,146 0.0740 0.0073 10.1260 1.0720 2,515 188,680 
Sales Growth Sg(1), given Sg(0) and controls 34,255 0.0230 0.0108 2.1211 1.0124 447 33,540 
ROE(1), RNOA(1), OPM(1), OAT(1), LEV(1), 
SPD(1), Sg(1), CSEg(1) and TAg(1), given their 
date 0 values and controls 34,255 0.1050 0.0147 7.1403 1.1009 3,478 260,975 
                
Panel B               

Detailed Analysis of Growth Variables N 

R-squared 
from Full 

Model 

R-squared 
from Reduced 

Model 
R-squared 

Ratio 
MSE 
Ratio Φ-Retail 

Φ-
Institutional 

Sales Growth Sg(1), given Sg(0) and controls 34,255 0.0230 0.0108 2.1211 1.0124 447 33,540 
Total Asset growth TAg(1), given TAg(0) and 
controls 34,255 0.0247 0.0122 2.0208 1.0128 461 34,564 
Common Shareholders' Equity Growth 
CSEg(1), given  CSEg(0) and controls 34,255 0.0571 0.0117 4.8777 1.0482 1,702 127,703 
Sales Growth Sg(1), given controls (no lagged 
values) 44,146 0.0141 0.0070 2.0262 1.0073 261 19,616 
Total Asset growth TAg(1), given controls (no 
lagged values) 44,146 0.0169 0.0070 2.4236 1.0101 363 27,251 
Common Shareholders' Equity Growth 
CSEg(1), given controls (no lagged value) 44,146 0.0425 0.0070 6.1043 1.0372 1,320 99,003 
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Panel C               

Detailed Analysis of Operating versus Financial 
contributions to ROE (ROE = RNOA + FIN) N 

R-squared 
from Full 

Model 

R-squared 
from Reduced 

Model 
R-squared 

Ratio 
MSE 
Ratio Φ-Retail 

Φ-
Institutional 

RNOA(1), given RNOA(0) and controls 44,146 0.0584 0.0071 8.2467 1.0545 1,920 144,020 
FIN(1), given FIN(0) and controls 44,146 0.0250 0.0072 3.4747 1.0182 653 48,987 
RNOA(1), given RNOA(0) and  FIN(0) and 
controls 44,146 0.0584 0.0074 7.9267 1.0542 1,909 143,248 
FIN(1), given FIN(0), RNOA(0) and controls 44,146 0.0251 0.0074 3.3996 1.0181 650 48,732 

        
Panel D               
Detailed Analysis of Return on Net Operating 
Assets and its Components (RNOA = OPM * 
OAT) N 

R-squared 
from Full 

Model 

R-squared 
from Reduced 

Model 
R-squared 

Ratio 
MSE 
Ratio Φ-Retail 

Φ-
Institutional 

Operating Profit Margin OPM(1), given 
OPM(0) and controls 44,146 0.0380 0.0074 5.1638 1.0319 1,135 85,129 
Operating Asset Turnover OAT(1), given 
OAT(0) and controls 44,146 0.0153 0.0074 2.0683 1.0080 288 21,575 
Operating Profit Margin OPM(1), given 
OPM(0), OAT(0) and controls 44,146 0.0389 0.0076 5.0883 1.0325 1,158 86,857 
Operating Asset Turnover OAT(1), given 
OAT(0), OPM(0) and controls 44,146 0.0153 0.0076 1.9988 1.0077 279 20,918 
                
Panel E               

Detailed Analysis of FIN = LEV * SPD and its 
components N 

R-squared 
from Full 

Model 

R-squared 
from Reduced 

Model 
R-squared 

Ratio 
MSE 
Ratio Φ-Retail 

Φ-
Institutional 

Spread SPD(1), given SPD(0) and controls 44,146 0.0483 0.0070 6.8686 1.0433 1,534 115,071 
Leverage LEV(1), given LEV(0) and controls 44,146 0.0117 0.0077 1.5144 1.0040 144 10,831 
Spread SPD(1), given its SPD(0), LEV(0) and 
controls 44,146 0.0493 0.0077 6.3660 1.0437 1,546 116,022 
Leverage LEV(1), given LEV(0), SPD(0) and 
controls 44,146 0.0118 0.0077 1.5246 1.0041 148 11,072 
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Table 3 notes: The perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). Variable definitions 
and constructions are in Section 3. All models have three control variables measured at the beginning of the year: Common Shareholders 
Equity (CSE(0)), Book-to-Market (BM(0)), and the previous year's Momentum (RET(0)). Φ-Retail is the value of information to a 
hypothetical investor with $1M in wealth; Φ-Institutional is the value of information to a hypothetical investor with $100M in wealth. The 
MSE Ratio is the ratio of the maximum likelihood estimator (MLE) of the posterior variance of the reduced model to the MLE of the 
posterior variance of the full model. 
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Table 4: Interaction Effects in the Value of Information 
Panel A               

Variables being Valued N 
R-squared from 

Full Model 
R-squared from 
Reduced Model R-squared Ratio MSE Ratio 

Φ-
Retail 

Φ-
Institutional 

Sales growth Sg(1), given its Sg(0) and 
controls        
      1st Quintile of  ROE(0) 6,851 0.0202 0.0135 1.4996 1.0069 248 18,594 
     2nd Quintile of  ROE(0) 6,851 0.0228 0.0099 2.2975 1.0132 475 35,610 
     3rh Quintile of  ROE(0) 6,851 0.0241 0.0082 2.9396 1.0163 584 43,798 
     4th Quintile of  ROE(0) 6,851 0.0298 0.0136 2.1917 1.0167 599 44,908 
     5th Quintile of  ROE(0) 6,851 0.0334 0.0090 3.7279 1.0253 903 67,746 

        
Panel B               
Operating Asset Turnover OAT(1), given 
OAT(0) and controls N 

R-squared from 
Full Model 

R-squared from 
Reduced Model R-squared Ratio MSE Ratio 

Φ-
Retail 

Φ-
Institutional 

      1st Quintile of OPM(0) 8,830 0.0166 0.0114 1.4514 1.0053 190 14,218 
     2nd Quintile of OPM(0) 8,829 0.0107 0.0039 2.7062 1.0068 245 18,392 
     3rh Quintile of OPM(0) 8,829 0.0192 0.0047 4.1037 1.0148 532 39,936 
     4th Quintile of OPM(0) 8,829 0.0171 0.0025 6.8042 1.0148 532 39,913 
     5th Quintile of OPM(0) 8,829 0.0107 0.0032 3.3059 1.0075 271 20,358 

        
Panel C               

Leverage LEV(1) given LEV(0) and controls N 
R-squared from 

Full Model 
R-squared from 
Reduced Model R-squared Ratio MSE Ratio 

Φ-
Retail 

Φ-
Institutional 

      1st Quintile of SPD(0) 8,830 0.0166 0.0114 1.4514 1.0053 190 14,218 
     2nd Quintile of SPD(0) 8,829 0.0086 0.0068 1.2579 1.0018 64 4,811 
     3rh Quintile of SPD(0) 8,829 0.0136 0.0064 2.1096 1.0073 261 19,595 
     4th Quintile of SPD(0) 8,829 0.0152 0.0084 1.8176 1.0070 251 18,822 
     5th Quintile of SPD(0) 8,829 0.0113 0.0032 3.5509 1.0082 295 22,163 

Table 4 notes: The perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). All models have three control variables 
measured at the beginning of the year: Common Shareholders Equity (CSE(0)), Book-to-Market (BM(0)), and the previous year's Momentum (RET(0)). Φ-Retail 
is the value of information to a hypothetical investor with $1M in wealth; Φ-Institutional is the value of information to a hypothetical investor with $100M in 
wealth. The MSE Ratio is the ratio of the maximum likelihood estimator (MLE) of the posterior variance of the reduced model to the MLE of the posterior 
variance of the full model. Variable definitions and constructions are in Section 3.
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Table 5: Distribution of Value Estimates over Fama/French 38 Industries  
Panel A: ROE(1) given ROE(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates from 

Table 3 
R-squared Ratio 36 8.5945 1.0870 3.2475 5.6626 10.7035 47.2629 10.1260 
Φ-Retail 36 3,091 132 2,101 2,968 4,338 6,764 2,515 
Φ-Institutional 36 231,897 9,878 157,617 222,659 325,468 507,506 188,680 

         
Panel B: Sg(1) given Sg(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates from 

Table 3 
R-squared Ratio 36 2.2569 1.0000 1.1854 1.5337 2.6516 7.9884 2.1211 
Φ-Retail 36 702 0 227 379 811 4,036 447 
Φ-Institutional 36 52,652 18 17,065 28,431 60,837 302,777 33,540 

         
Panel C: RNOA(1) given RNOA(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates from 

Table 3 
R-squared Ratio 36 7.0160 1.0012 2.7094 4.9753 8.1265 39.7274 8.2467 
Φ-Retail 36 2,462 1 1,592 2,220 3,287 5,467 1,920 
Φ-Institutional 36 184,712 99 119,470 166,590 246,622 410,144 144,020 
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Panel D: FIN(1) given FIN(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates 

from Table 3 
R-squared Ratio 36 4.1500 1.0065 1.3961 3.2578 7.2011 14.3183 3.4747 
Φ-Retail 36 1,460 3 486 1,495 2,036 3,548 653 
Φ-Institutional 36 109,561 207 36,483 112,134 152,778 266,170 48,987 

         
Panel E: OPM(1) given OPM(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates 

from Table 3 
R-squared Ratio 36 4.5939 1.1298 2.1577 3.2440 5.9443 17.8202 5.1638 
Φ-Retail 36 1,589 508 800 1,536 2,092 4,306 1,135 
Φ-Institutional 36 119,228 38,109 60,031 115,208 156,924 323,086 85,129 

         
Panel F: LEV(1) given LEV(0) and controls             

  N Mean Minimum 25th 50th 75th Maximum 
Pooled estimates 

from Table 3 
R-squared Ratio 36 1.9451 1.0011 1.0949 1.3759 1.9797 11.9209 1.5144 
Φ-Retail 36 380 4 81 207 443 3,548 144 
Φ-Institutional 36 28,525 310 6,074 15,522 33,253 266,191 10,831 

 
Table 5 notes: This table presents the distribution of value estimates over 36 industries of the Fama-French 38 (two industries have insufficient data). The 
perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). All models have three control variables measured at 
the beginning of the year: Common Shareholders Equity (CSE(0)), Book-to-Market (BM(0)), and the previous year's Momentum (RET(0)). Φ-Retail is the 
value of information to a hypothetical investor with $1M in wealth; Φ-Institutional is the value of information to a hypothetical investor with $100M in 
wealth. The MSE Ratio is the ratio of the maximum likelihood estimator (MLE) of the posterior variance of the reduced model to the MLE of the posterior 
variance of the full model. Variable definitions and constructions are in Section 3.
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Table 6: Value of ROE(1) Given ROE(0) and Controls by Fama/French 12 industry 

FF12 Code FF12 Industry Name N 

R-squared 
from Full 

Model 

R-squared 
from 

Reduced 
Model 

R-
squared 
Ratio 

MSE 
Ratio 

Φ-
Retail Φ-Institutional 

1 Consumer Nondurables 3,778 0.1069 0.0075 14.1942 1.1112 3,815 286,237 
11 Finance 2,499 0.0943 0.0062 15.3147 1.0973 3,358 251,976 
9 Wholesale/Retail 5,985 0.0921 0.0105 8.7560 1.0899 3,114 233,650 
7 Telecom 1,109 0.2230 0.1688 1.3211 1.0698 2,439 183,023 
12 Other 6,617 0.0659 0.0016 41.1004 1.0689 2,409 180,763 
8 Utilities 2,280 0.1365 0.0771 1.7706 1.0688 2,408 180,640 
3 Manufacturing 7,653 0.0740 0.0105 7.0446 1.0685 2,398 179,947 
6 Business Equipment 6,076 0.0738 0.0110 6.6981 1.0678 2,374 178,091 
5 Chemicals 1,574 0.0752 0.0143 5.2467 1.0658 2,306 172,993 
10 Healthcare 2,965 0.0650 0.0046 14.2798 1.0647 2,267 170,079 
4 Energy 2,073 0.0667 0.0069 9.7147 1.0641 2,248 168,665 
2 Consumer Durables 1,537 0.0994 0.0500 1.9883 1.0548 1,931 144,908 

 
 
Table 6 notes: The perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). All models have three control 
variables measured at the beginning of the year: Common Shareholders Equity (CSE(0)), Book-to-Market (BM(0)), and the previous year's Momentum 
(RET(0)). Φ-Retail is the value of information to a hypothetical investor with $1M in wealth; Φ-Institutional is the value of information to a hypothetical 
investor with $100M in wealth. The MSE Ratio is the ratio of the maximum likelihood estimator (MLE) of the posterior variance of the reduced model to 
the MLE of the posterior variance of the full model. Variable definitions and constructions are in Section 3.
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Table 7: Value of ROE(1) Given ROE(0) and Controls by Fama-French 12 Industry on ETF Sample 

  Two-Asset Investment Set  One-Asset Investment Set    

FF12 
Code FF12 Industry Name N 

Determinant 
from Full 
Models 

Determinant 
from 

Reduced 
Models 

Phi-
Retail 

Phi-
Institutional   N 

MSE 
Ratio 

Phi-
Retail 

Phi-
Institutional   

Phi-Retail 
Two-Asset 
minus Phi-
Retail One-

Asset 
7 Telecom 251 0.0064 0.0075 6,158 461,980  251 1.09 3,124 234,370  3,034 
11 Finance 558 0.0101 0.0121 6,345 476,021  558 1.148 5,004 375,458  1,341 
6 Business Equipment 1,530 0.0162 0.0174 2,685 201,450  1,530 1.046 1,626 121,973  1,059 
9 Wholesale/Retail 938 0.0049 0.0053 2,903 217,832  938 1.068 2,389 179,217  514 
4 Energy 589 0.0555 0.0572 1,070 80,245  589 1.017 592 44,446  478 
1 Consumer Nondurables 545 0.0023 0.0025 2,569 192,760  545 1.067 2,329 174,772  240 
12 Other 1,106 0.0154 0.0157 636 47,697  1,106 1.011 399 29,916  237 
5 Chemicals 405 0.0100 0.0111 3,676 275,834  405 1.1 3,451 258,903  225 
3 Manufacturing 1,224 0.0120 0.0123 857 64,317  1,224 1.022 775 58,123  83 
2 Consumer Durables 199 0.0238 0.0260 3,247 243,602  199 1.093 3,217 241,364  30 
10 Healthcare 841 0.0099 0.0105 1,897 142,309  841 1.056 1,956 146,756  -59 
8 Utilities 528 0.0019 0.0020 2,961 222,134   528 1.087 3,027 227,133   -66 

 
The perfect foresight date 1 value is shown as variable(1); the known date 0 value is shown as variable(0). All models have three control 
variables measured at the beginning of the year: Common Shareholders Equity (CSE(0)), Book-to-Market (BM(0)), and the previous year's 
Momentum (RET(0)). Φ-Retail is the value of information to a hypothetical investor with $1M in wealth; Φ-Institutional is the value of 
information to a hypothetical investor with $100M in wealth. The MSE Ratio is the ratio of the maximum likelihood estimator (MLE) of the 
posterior variance of the reduced model to the MLE of the posterior variance of the full model. Variable definitions and constructions are in 
Section 3. Estimated on the industry ETF sample. The last column gives the value from two-asset estimation less the value from the one-asset 
estimation on the industry ETF sample. 
 


