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You have a point - but a point is not enough: The case for distributional 
forecasts of earnings 

Abstract: Existing forecasts of earnings are typically expressed as point estimates. The future 
earnings number is ex-ante uncertain, however, and is statistically represented by a probability 
distribution over all possible earnings outcomes. We use recent advances in statistical machine 
learning to estimate the distributions of future earnings right before earnings announcements, and 
investigate how these distributions can help managers, analysts, and investors make better 
decisions along three directions. First, we show that our distributional forecasts are well-
calibrated to actual earnings realizations. Second, we document that management and financial 
analyst forecasts are way too narrow, severely underestimating the variability of future earnings. 
Critically, since our distributional estimates are available ex-ante at the firm-quarter level, they 
can be proactively used to identify and correct such miscalibration. Third, we use our 
distributional estimates to model the probability of beating or missing the consensus analyst 
forecasts. Going long (short) on stocks in the extreme decile probabilities of beating (missing) 
the consensus produces hedge returns of about 60 basis points over the three-day earnings 
announcement window. 
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1. Introduction  

In this paper, we explore how to derive and use distributional forecasts of earnings. We 

focus on earnings because existing research shows that earnings is the single most important 

number about firm performance, and forecasts of it play a decisive role in issuing stock 

recommendations. For example, Graham, Harvey, and Rajgopal (2005) find that Chief Financial 

Officers in U.S. public firms consider earnings to be by far the top firm performance measure. 

Brown, Call, Clement, and Sharp (2015) show that financial analysts also consider earnings the 

lynchpin in the evaluation of firm well-being. Given the importance of earnings, it is not 

surprising that there is a massive literature on earnings forecasting, including major strands 

around financial analyst forecasts, management forecasts, the use of time-series and cross-

sectional models of earnings forecasting, and others (Bradshaw 2011; Kothari, So, and Verdi 

2016).  

Our main innovation is based on the observation that people typically use point estimates 

in their earnings forecasting and related decisions. For example, a typical analyst forecast is 

along the lines of “we expect EPS of $3.00 for the quarter ending March 31, 2023.” The 

consensus forecasts, which are the most widely used analyst forecasts of earnings, are also point 

estimates. Extant time-series and cross-sectional models of earnings prediction also produce 

point estimates, e.g., OLS regressions in Abarbanell and Bushee (1997) and Penman and Zhang 

(2002), see also review of this research in Monahan (2018). More recently, several studies use 

machine learning techniques to predict earnings or the sign of earnings changes, e.g., Cao and 

You (2020) and Chen, Cho, Dou, and Lev (2022). Although machine learning offers substantial 

advantages in terms of allowing non-linear relations, complex interactions between predictive 

variables, and nonparametric estimation, the earnings outputs are still oriented toward sign or 

point estimates.  
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On some level, the widespread use of point estimates in earnings forecasting is not 

surprising. Point estimates are essentially compact summaries of a lot of information about future 

earnings, and they are easy to use, remember, and communicate. And yet, by their very nature, 

point estimates are limited because, ex-ante, the future earnings number is unknown and is 

therefore represented by a probability distribution over all possible earnings realizations.1 Thus, 

point estimates of earnings can be useful, but they are insufficient statistics for the relevant 

probability distributions. The implication is that considering the full distributions of possible 

earnings provides more information than point estimates, and therefore allows for better 

forecasting and investing decisions. 

The idea that distributional estimates of future events are better than point estimates has a 

long tradition in the statistical forecasting literature, and this acknowledgement has percolated in 

various guises throughout far-flung settings and literatures, including in accounting, law, and 

economics. For example, Manski (2015) points out that government agencies produce aggregate 

economic statistics like GDP and household income as point estimates, while they are subject to 

transitory and permanent statistical uncertainties. Cunningham (2005) argues that the insertion in 

company GAAP earnings of forward-looking estimates like provisions for bad debt expense 

creates a false impression of precision and certainty, and recommends using ranges for reported 

numbers as compared to single amounts. The dominant practice of using ranges in management 

forecasts of earnings is also an acknowledgment of this issue, and represents a crude attempt at 

addressing it. Most of these efforts, however, fall rather short of the ideal of producing viable full 

 
1 The same core intuition appears in a number of settings. For example, the famous Schrödinger’s cat paradox from 
physics can be thought of as an illustration of the inherent probabilistic nature of an outcome that has not yet been 
observed. In this thought experiment, a cat is put inside an opaque sealed box, and a random amount of poisonous 
gas is injected inside. Before opening the box to reveal whether the cat is dead or alive, the cat is probabilistically 
both dead and alive.  
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distributional forecasts of earnings. Cunningham (2005) provides only a high-level argument, 

with no technology to implement his suggestions. Ranges in management forecasts are a step in 

the right direction, but they fall short of operationalizing the key point that some outcomes in 

these ranges are a lot more likely than others. 

We use recent advances in statistical machine learning to produce sound distributional 

forecasts of earnings. Specifically, we use a distributional machine learning approach developed 

in Lee, Chen, and Ishwaran (2021) to estimate the earnings distribution right before earnings 

announcement, conditional on observable inputs like company fundamentals. We use these 

estimates to provide evidence on the utility of the distributional forecast approach in three 

directions. 

First, we provide calibration evidence on the validity of our approach. Simply put, if our 

empirical estimation is good, the properties of the distributional forecasts will map snugly into 

the properties of actual realized earnings. This is exactly what we document, with the percentiles 

of the estimated distributions mapping tightly into the percentiles of the realizations. In addition, 

we find that our distributional forecasts of earnings are a much better predictor of earnings 

realizations than OLS with the same predictive variables.  Such evidence confirms the promise 

of the distributional forecast approach, and provides a solid footing for the remainder of the 

applications.  

Second, we show how the distributional forecasts of earnings can be used to diagnose and 

improve management and financial analyst forecasts. As mentioned above, management 

forecasts are primarily expressed in ranges, which correctly reflects the idea that ex-ante earnings 

represents a probability distribution over possible outcomes. These range forecasts, however, 

appear to be way too narrow, grossly underestimating the variability of earnings. Building on the 
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preceding evidence that our distributional forecasts are well-calibrated, we estimate that the 

typical management forecast range has only a 30% chance of covering actual earnings. In 

addition, there is considerable variation in miscalibration across managers. The key point here is 

that our distributional estimates are well-calibrated and available ex-ante at the firm-quarter 

level, providing a systematic way for managers and others to identify and correct the 

miscalibration in these forecasts. Turning to analyst forecasts, we use the availability of multiple 

analyst forecasts per company to produce an analyst-implied range forecast of earnings. We find 

that such analyst range forecasts are also too narrow, although less so than the range forecasts for 

managers.  

Third, we use the announcement of actual earnings and the corresponding stock market 

reaction to test the utility of our distributional earnings forecasts for investors. Based on our 

distributional forecasts, we construct a measure of the differential probability of beating/missing 

the consensus analyst forecasts. Our results indicate that a hedge position in firms belonging to 

the top (bottom) decile of this measure yields an average return of about 60 basis points (bps) 

during the three-day earnings announcement window over the period 2011–2021, which 

corresponds to about 50% annualized abnormal returns. These findings are fairly consistent over 

time, and are robust to reasonable research design permutations. In addition, we show that the 

superior stock returns earned at earnings announcements are due to the ability of our differential 

probability measure to predict consensus-defined earnings surprises, i.e., our differential 

probability measure is able to identify predictable errors in analyst forecasts.  Overall, these 

results suggest that using distributional forecasts of earnings yields superior stock returns. More 

broadly, the totality of our findings illustrates the utility of using distributional forecasts of 

earnings vs. point estimates. 
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2. Estimating the distributional forecasts of earnings 

2.1. The uncertainty about future earnings is completely characterized by a distribution 

We start with a brief theoretical grounding, showing that the uncertainty about future 

earnings is completely characterized by the distribution of future earnings.  Therefore, producing 

a distributional forecast of earnings completely characterizes and captures the uncertainty about 

future earnings.   

Consider the following question - given a set of predictors X, what can a researcher say 

about future earnings  of a firm in quarter q? Here,  is defined as the earnings per 

share divided by stock price at the beginning of the quarter: 

 

and X is a set of variables observed by the researcher before the earnings number is announced. 

To explain how uncertainty arises in future earnings, we employ a simple statistical framework. 

 depends on X and possibly also on variables  that are not observed by the researcher at 

the time of the analysis. The unobserved variables  include things like insider information or 

events that have not yet occurred, for example a future pandemic that affects the firm’s supply 

chain and hence earnings. Therefore, the actual earnings number is a function of both the 

observed and unobserved variables: 

 

A simple example of Equation (2.2) is the linear regression framework 

, with  being normally distributed with mean 0 and variance . Note that 

 is not a fixed deterministic number, due to the inherent uncertainty in the realized value of 
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. To be specific, the uncertainty that remains in , after conditioning on the information 

conveyed by X, is the normal distribution  in this example. 

Returning to the general case of Equation (2.2) where we do not assume a normal 

distribution for  or a linear functional form for , the uncertainty remaining in  after 

conditioning on X is completely characterized by the predictive distribution: 

 

In this expression, the right-hand side represents the probability that  takes on the set of values 

that satisfy the inequality .  

The key point here is that the predictive distribution distills both sources of uncertainty 

(knowledge of  and the variability in ) into a single uncertainty measure that tells the 

researcher everything they need to know about future earnings, such as its mean, variance, 

skewness, probability of meeting or beating certain thresholds, probability of earnings being 

confined to a certain range, etc. To link to the existing literature, and to emphasize our main 

interest in forecasting, we use the term distributional forecasts as an alternative for predictive 

distributions as we move to the more practical applications.   

2.2. Obtaining practical distributional forecasts of earnings 

Since  in Equation (2.3) is unknown in practice, an estimate of it 

 

is needed, and this constitutes our distributional forecast for future earnings. (From  it is 

also straightforward to obtain a distributional forecast in terms of , because  is known 

at the time of forecast, so  is a simple rescaling of .) One approach to obtain 

 is to assume that it belongs to some class of parametric family (e.g., normal 

distribution), and then fit the parameters of this distribution to data. Such an approach is rather 
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restrictive, however, given existing evidence that earnings distributions tend to be ill-behaved 

(Burgstahler and Dichev 1997; Givoly and Hayn 2000; Gu and Wu 2003), e.g., they are typically 

left-skewed and heavy-tailed. We avoid restrictive assumptions that can lead to model 

misspecification by using a distributional machine learning approach called BoXHED (Wang, 

Pakbin, Mortazavi, Zhao, and Lee 2020; Pakbin, Wang, Mortazavi, and Lee 2021) to directly 

estimate Equation (2.3) nonparametrically. BoXHED is an open-source implementation of the 

method established mathematically in Lee, Chen, and Ishwaran (2021), originally used to 

estimate hazard functions from time-to-event data.2 We describe the details of BoXHED in 

Appendix A. 

2.3. Predictor variables 

In this paper, we aim to estimate the predictive distribution of future earnings right before 

earnings announcements. Relying on the voluminous prior literature on the prediction of 

earnings (e.g., Hou, van Dijk, and Zhang 2012; So 2013; Call, Hewitt, Shevlin, and Yohn 2016; 

Monahan 2018; Chen et al. 2022), the set of plausible predictors include the last consensus 

(median) analysts forecast before earnings announcement divided by stock price at the beginning 

of the quarter, Consensus; analyst forecast dispersion divided by stock price at the beginning of 

the quarter, Dispersion; the number of analysts following the firm, Analyst; quarterly revenue 

divided by market capitalization, Revenue; book-to-market ratio, BTM; net operating cash flow 

divided by beginning market capitalization, CFO; gross profit divided by market capitalization, 

GrossProfit; research and development expenses divided by market capitalization, R&D; selling, 

general and administrative expenses divided by market capitalization, SG&A; the natural log of 

market capitalization, Size; quarterly changes in non-cash working capital accounts plus 

 
2 The BoXHED package is available from https://github.com/BoXHED.  

https://github.com/BoXHED
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depreciation expense divided by market capitalization, WC Accruals; median analyst cash flow 

forecast before earnings announcements divided by beginning stock price, CPS. All variables are 

measured at the beginning of the quarter except those related to analyst forecasts. Please see 

Appendix B for a full list of variables used in this study, and their definition and source. 

While there may be additional variables that can improve the model’s accuracy, we 

emphasize that the pursuit of the “best” possible model is not the primary thrust of our 

investigation, and we make no claims in this regard. Rather, our main goal is to provide a direct 

and uncluttered illustration of the utility of the distributional forecast approach. Hence, the 

method used to estimate the predictive earnings distribution, and the variables used in the model, 

may or may not be the best possible. We leave the refinement of these components for future 

research. 

2.4. Data and sample 

We obtain earnings and analyst forecast data from IBES, accounting information from 

Compustat, and stock information from CRSP. To be included in the sample, each firm-quarter 

observation must have non-missing data about the earnings announcement date, actual EPS, 

consensus analyst earnings forecast, and beginning stock prices for 2001 through 2021.3 Our test 

period is 2011-2021. For each year in the test period, we use the preceding ten years as the 

training period to fit Equation (2.3).4 The fitted distribution is then used to compute the 

probabilities for the test year. To remove the effects of outliers and/or problematic data entries, 

we delete observations with (1) a stock price of less than $1 or with a market capitalization of 

 
3 Observations with missing values in the other variables are included in our sample because our machine learning 
technique is able to handle missing values. 
4 We also used the preceding five years as the training period. Our main inferences remain unchanged using this 
alternative training period. We chose to use a long training period because forecasting the entire distribution of 
earnings is more data-intensive when we do not require any model assumptions. 
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less than $5 million at the beginning of the quarter; (2) earnings announcement dates in IBES 

and Compustat that are more than one day apart; or (3) Earn larger than 0.5 in absolute value. 

The final sample includes 283,356 firm-quarter observations between 2001-2021.  

Table 1 presents the summary statistics for the sample. The average cumulative abnormal 

returns over the 3-day earning announcement window are close to zero, which is consistent with 

existing evidence that short-horizon consensus forecasts are close to unbiased. The average firm 

in our sample is covered by 7 analysts, and the average log of market capitalization is 6.83 

(corresponding to a market capitalization of $925 million). Thus, the average firm in our sample 

is sizable, and likely enjoys a more transparent information environment than the average firm in 

the Compustat population. The statistics on the other variables are also generally in line with 

existing evidence from these widely used data sources.  

2.5. Validating the estimated distributional forecasts of earnings 

Panels A and B in Appendix C present some examples of the estimated predictive 

distributions for a subset of firms. Panel A presents distributional forecasts of EPS for 9 

prominent firms, including Apple, Boeing, Coca Cola, and Chevron, all in the same quarter (Q3 

2021). All distributions are single-peaked, but there is considerable variation in the shape, slope, 

and girth of the tails. Panel B presents distributional forecasts for Apple EPS over 8 consecutive 

quarters (2019-2020). While the graphs seem to share a family resemblance, there are also 

visible differences over time, e.g., entries in the middle have noticeably more subdued peaks. 

Overall, while the evidence in Appendix C is purely for illustrative purposes, it does provide 

some ground-level feel that the outputs of the BoXHED estimator seem “reasonable”.  

Next, we turn to more formal evaluation of the quality of the estimated distributional 

forecasts, using actual realized earnings as the benchmark. Note that some commonly used 
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goodness-of-fit statistics like mean squared error (MSE) are not directly applicable for our 

purposes because they are designed for the evaluation of point estimates.  Instead, we turn to the 

statistical literature for two approaches that fit our distributional setting. 

2.5.1 Probability calibration plot 

The probability calibration plot is an intuitive way to visualize goodness-of-fit (Rice 

2006). We plot the empirical probability of Earn being less than or equal to some value y against 

the corresponding probability from the predictive distribution. If the predictive distribution 

agrees with the actual data, the plot should line up close to the 45-degree diagonal line, i.e., the 

predicted probabilities equal the actual probabilities. 

Specifically, the probability plot in Figure 1 is produced in the following way. For each 

firm-quarter earnings announcement in the test period, we determine the 5th percentile of the 

predictive distribution . We then compute the fraction of all firm-quarters whose 

realized earnings were less than or equal to their corresponding 5th percentile estimates. We plot 

this fraction on the vertical axis against 0.05 on the horizontal axis.5 Intuitively, if the estimate of 

the 5th percentile of the forecast distribution is “good”, realized earnings will fall at or below this 

estimated 5th percentile in about 5% of the cases, so a “good” 5th-percentile estimate will appear 

as a dot on or close to the plotted 45-degree line. The rest of the plot is produced by repeating 

this procedure for the 10th, 15th, …, 95th percentiles. Thus, the probability plot provides an 

intuitive graphical device for assessing the accuracy of our distributional forecasts. 

 
5 The percentiles are computed to a numerical precision of 0.001. That is, we seek a value y that is the smallest 
multiple of 0.001 for which . As a result, the value on the horizontal axis is not exactly 0.05, 
but the average of the cumulative probabilities of being less than or equal to the approximate percentiles, across all 
firm-quarters. 
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Figure 1 shows that the percentile dots adhere very closely to the 45-degree diagonal line, 

which suggests that the predictive distributions are well-calibrated to actual earnings in the test 

period. We also regress the actual probabilities (values on the vertical axis) onto the predicted 

probabilities (values on the horizontal axis). The regression coefficient is 0.973 and significant 

(t-statistic = 136.04), and the estimated intercept is 0.003 and insignificant, which again validates 

the calibration of our fitted distribution. 

2.5.2 Continuous ranked probability score (CRPS) 

 Next, we use the CRPS as the criterion for evaluating the accuracy of our distributional 

forecasts. The CRPS directly extends the mean squared error (MSE) accuracy measure for point 

forecasts to distributional forecasts (Gneiting and Raftery 2007). 

As a brief primer, suppose we have a point forecast  for an observation whose realized 

outcome is . The squared error of the point prediction is , and the MSE for a set of 

observations is the average of the squared errors over the set. In the distributional setting, we 

forecast a cumulative distribution function (CDF)  instead of a point . Note that the realized 

outcome , while being a deterministic point, is also a special type of probability distribution that 

can only have one value. Its corresponding CDF  equals 

 

Appendix D provides a graphical representation of . In words, it says that the probability 

mass is 100% concentrated at the value , and has zero probability of being anywhere else. In 

terms of the cumulative distribution, there is zero chance of the realized value of the distribution 

being less than , but 100% chance that it is less than or equal to , i.e., the realized value is 

always . 
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The integrated squared error between the CDF associated with the realized outcome and 

the forecasted CDF is 

 

and the CRPS for a set of observations is the average of the integrated squared errors over the 

set. In other words, the CRPS is the mean integrated squared error (MISE) between the CDFs for 

the realized outcomes and the forecasted CDFs. Just like the MSE, the CRPS is always non-

negative, and a smaller value indicates a more accurate distributional forecast. Please see 

Appendix D for a visualization of CRPS.  

A major advantage of the CRPS metric is that it allows us to compare the performance of 

our distributional forecasts to some commonly-used alternatives. Specifically, we compute the 

CRPSs for three types of distributional forecasts: 

i) The forecasted mean of earnings based on an OLS regression model, . OLS 

regression model is perhaps the most common existing technology for predicting 

earnings, and thus it provides a natural benchmark for our distributional forecasts. Note 

that while an OLS regression model produces a point forecast, recall from the discussion 

for Equation (2.4) that a point is a special type of probability distribution. We therefore 

set the forecasted CDF in Equation (2.5) as . 

ii) The mean of the estimated distributional forecast using BoXHED, . While this 

is also a point forecast, it potentially improves upon i) because it is derived 

nonparametrically. Per i), we set . 

iii) The estimated distributional forecast using BoXHED. The forecasted CDF  is the 

predictive distribution . Note that a comparison of the results between ii) 
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and iii) helps to distinguish whether the predictive gains between i) and iii) are due to the 

use of BoXHED, to the use of the distributional approach in forecasting, or both. 

All forecasts use the same set of predictors as described in Section 2.3.6 Table 2 presents the 

CRPS results for each year in the test period. Column 1 reports the CRPS for the OLS mean 

forecasts , which serves as the baseline for comparison. Column 2 reports the percentage 

reduction in CRPS when switching over to the nonparametric mean forecasts . This 

switch results in a strict improvement in each year, with an average reduction of 18%. When 

switching from point forecasts to the full distributional forecasts produced by BoXHED, the 

average reduction doubles to 36%, and strictly improves upon its own mean forecasts in every 

year (Column 3). The improvements are all statistically significant. Perhaps most importantly, 

the magnitude of the improvements points to the potential of utilizing distributional forecasts to 

enhance accuracy in earnings forecasting.   

Overall, using the CRPS metric for goodness-of-fit shows that our distributional forecasts 

lead to significant improvements over an OLS-based model.  These gains are due to both using 

nonparametric machine learning, and to the distributional approach to forecasting. 

 

3. Evaluating the quality of management and analyst forecast ranges 

 In this section, we demonstrate how to use the estimated distributional forecasts to create 

prediction ranges for future earnings, and to diagnose and improve management and analyst 

earnings forecasts.  

3.1. Prediction ranges for future earnings 

 
6 When estimating the OLS regression models, for each year in our test period, we use data from past ten years to 
estimate the regressions and then use the estimated coefficients to project earnings next period.  
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Distributional forecasts can be used to provide investors and financial analysts with a 

prediction range within which an upcoming earnings number would fall. More importantly, we 

can attach a degree of certainty to this interval based on statistical theory. For example, we can 

provide a prediction range that has an 80% or 95% chance of covering Earn.7 To illustrate, 

assume that the point estimate of EPS for Company A is $1.90, which corresponds to the mean 

of the true distribution of future earnings. This, however, tells us nothing about the spread of the 

range of possible earnings outcomes around the mean. It would be clearly valuable for an 

investor to also know that there is 80% chance that EPS will be between $1.70 and $2.10, and/or 

there is 95% chance that EPS will be between $1.50 and $2.30. While management often provide 

forecasts in a range format, they rarely tie a degree of certainty to these range forecasts, resulting 

in a significant loss of information to investors.  

We can construct prediction ranges for any level of coverage probabilities from our 

distributional forecasts, be it 80% or 95% or otherwise. Since users probably desire a range with 

a high degree of coverage, we construct (100 × 𝛼𝛼)% prediction ranges for 𝛼𝛼 ∈

{0.8, 0.85, 0.9, 0.95, 0.99}. Of course, the larger the desired coverage 𝛼𝛼, the wider the prediction 

range will be. To obtain a (100 × 𝛼𝛼)% prediction range [𝑙𝑙,𝑢𝑢] such that8 

 

 
7 Note that what we define here as a prediction range is technically known as a prediction interval in statistics. We 
use the term prediction range to remain consistent with the management forecast literature. The concept of a 
prediction interval is similar to that of a confidence interval. However, with a prediction interval, we are concerned 
with estimating the likely range of a future draw from the distribution, whereas a confidence interval provides a 
range within which the true parameter of a distribution (e.g., the mean) might fall. 
8 Here, we present earnings in the form of EPS instead of Earn to be consistent with the format used by investors, 
financial analysts, and managers. Recall that the stock price at the beginning of the quarter is known at the time of 
forecast. 
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we need to find the value 𝑙𝑙 corresponding to , and the value 𝑢𝑢 

corresponding to . Thus, there is a (100 × 𝛼𝛼)% chance that the 

range [𝑙𝑙,𝑢𝑢] will contain the actual earnings number, given the observed data 𝑋𝑋. In practice, 

Equation (3.1) may not have an exact coverage of 𝛼𝛼 due to the computational cost of finding the 

exact values of 𝑙𝑙 and 𝑢𝑢 for every firm-quarter. Instead, it suffices to seek approximate values of 𝑙𝑙 

and 𝑢𝑢 so that the coverage is at least 𝛼𝛼. 

Figure 2 displays the probability plot for our prediction ranges. The plot is constructed as 

follows. The horizontal axis represents the desired coverage levels 𝛼𝛼 for our prediction ranges.9 

For each value of 𝛼𝛼, we compute the fraction of all firm-quarters whose realized earnings fell 

within their associated (100 × 𝛼𝛼)% prediction range, and we plot this empirical coverage rate on 

the vertical axis. For example, for the 80% coverage point on Figure 2, we compute 80% 

coverage prediction ranges for every firm-quarter in our sample. Then, we compute the 

percentage of actual earnings realizations, which fall within these 80% ranges, which gives us 

the y-axis for the 80% coverage point. If our prediction ranges are “good”, the y-axis for the 80% 

coverage will be close to 80%, which implies that the point will fall close to the diagonal on 

Figure 2. We repeat the same procedure for the 85% coverage, for the 90% coverage, etc. An 

inspection of the resulting plot in Figure 2 reveals that the derived points adhere closely to the 

45-degree diagonal line. This is further validation evidence for our distributional approach, 

showing that our prediction ranges perform quite well when compared to actual earnings 

realizations.   

 
9 As noted above, the prediction ranges are computed to some level of numerical precision, so the values on the 
horizontal axis are not exactly 𝛼𝛼. Instead, they are the average of the coverage probabilities for the approximate 
intervals across all firm-quarters. For example, when we compute the 80% prediction ranges, we achieve a slightly 
higher coverage of 83% on average.  
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3.2. Imputing the coverage probabilities of management forecasts  

Having validated the accuracy of our distributional forecasts, we now use them to impute 

the coverage probabilities implied by the ranges of management forecasts. During our sample 

period 2001-2021, more than 83% of individual management forecasts are issued in the form of 

ranges, which include a minimum value (lower bound) and a maximum value (upper bound). 

Rather than take a given coverage level 𝛼𝛼 as input in order to produce a prediction range (as in 

Figure 2), we now go in the reverse direction by taking the management earnings forecast range 

as input in order to calculate the probability that the range will contain the actual earnings 

number, i.e., the coverage level 𝛼𝛼 implied by a given management forecast range.   

The coverage probability implied by a management forecast range is given by: 

 

Bear in mind that a wide earnings forecast range does not necessarily imply a high coverage 

probability because coverage depends not only on the width of the raw range but also on the 

variability of earnings.10  

3.2.1. Delta Airlines example 

Before applying our coverage probability approach to the full sample of management 

forecasts, we first use the Delta Airlines 2018 Q1 management forecast as an illustrative 

example. Figure 3, Panel A depicts the BoXHED-derived distributional forecast of earnings for 

Delta for that quarter, showing an unimodal distribution where most of the probability mass is 

bound between $0.50 and $1 in EPS. Panel A also includes the Delta management forecast range 

for that quarter, and its corresponding coverage probability. Notice that the management forecast 

 
10 For example, for a normal distribution with zero mean and a standard deviation of 1, the range [−1, +1] has a 
68% coverage. On the other hand, for a normal distribution with a standard deviation of 0.25, the range [−0.5, +0.5] 
will have a 95% coverage. 
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range of $0.65-$0.75 EPS seems quite narrow as compared to the spread of the BoXHED 

distribution, and that the estimated coverage probability is only 28%.  

These impressions can be made more precise using the prediction ranges discussed 

above. Figure 3, Panel B extends the Delta example by taking the baseline graph in Panel A, and 

adding the 80% and 95% prediction ranges derived from our corresponding distributional 

forecast. As expected, these two ranges span most of the probability mass in the BoXHED-

derived distribution, with the range stretching from $0.57 to $0.96 EPS to achieve 80% coverage, 

and stretching $0.46-$1.08 for 95% coverage.   

Summing up, assessing the Delta 2018 Q1 management forecast range through the 

BoXHED distributional forecast brings sharp and actionable insights. The management forecast 

range spanning only 10 cents seems way too narrow given the projected variability of earnings, 

and needs to be stretched almost four-fold to achieve 80% coverage, and more than six-fold to 

achieve 95% coverage.  Most importantly, these insights can be made available in real time to 

Delta managers and other users interested in proactive follow-up.   

3.2.2.Results for the full sample 

The insights from the Delta example are extended to the full sample in the results in 

Figure 4. The upper box plot in Figure 4 summarizes the coverage probabilities imputed from 

about 15,000 available management earnings forecast ranges in the test period 2011-2021. As 

usual, the box plot illustrates the spread of the coverage probabilities through the spacing of the 

interquartile range; we also include and label the median and the 5th and the 95th percentiles of 

the distribution of coverage probabilities across firm-quarters. An inspection of Figure 4 reveals 

a stark message: management forecast ranges appear quite narrow, where the median value of 
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coverage probabilities is only 30%, and the coverage probability even at the 95th percentile is far 

from 100%.  

In fact, this coverage seems so low that it warrants some further clarification and 

comments. Simply put, the evidence in Figure 4 implies that only about 30% of earnings 

realizations are projected to fall within the range of management forecasts, which seems “too 

low” on some common-sense level. While this estimate is based on our ex-ante distributional 

forecasts, it is almost identical to the proportion of ex-post earnings realizations falling within 

their respective management forecast ranges, which is 30.2% in our sample. For additional 

validation, in the Call, Hribar, Skinner, and Volant (2023) survey of corporate managers 31.2% 

of ex-post earnings realizations fall within their management forecast ranges. Thus, our ex-ante 

estimate that on average only about 30% of earnings will fall within the management forecast 

ranges is quite close to actual ex-post results. 

With coverage probability this low, a natural question is what coverage level managers 

have in mind in producing their range forecasts. Note that managers likely act motivated by a 

number of incentives beyond accurate forecasting. For example, existing research finds that 

manager forecasts tend to be pessimistic, aiming to avoid negative earnings surprises with 

respect to their forecasts (Ciconte, Kirk, and Tucker 2014). Perhaps managers aim to project 

confidence and expertise by using narrow forecast ranges, and more generally it is a question of 

whether their ranges reflect real miscalibration and/or some sort of strategic intent. While 

questions about intent are often difficult to answer, in this case we have some specific evidence.  

The Call et al. (2023) survey documents that on average managers believe that they have 

a 78% likelihood of reporting earnings within their guidance range. Together with the preceding 

results, the combined impression is that indeed managers seem to be substantially miscalibrated 
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with respect to the variability of earnings outcomes, and that their forecast ranges are too narrow. 

In the language of our paper, on average managers seem to believe that their forecast ranges have 

a coverage probability of about 80%, while their actual coverage probability is only about 30%.  

Finally, circling back to the evidence in Figure 4 - and perhaps most importantly - note 

that the degree of miscalibration by managers exhibits great cross-sectional variation. The 

5/25/75/95 percentile of coverage probability is 6%/18%/45%/67%, respectively.  Since our 

distributional forecasts are available ex-ante, and can be tailored to the firm-quarter level, they 

can serve as a powerful real-time feedback and corrective mechanism for managers, along with 

other interested parties like financial analysts and investors. Indeed, the illustrative Delta 

example above already provides an outline for how such a corrective intervention might look like 

on the ground level.  

To be clear, advocating for the use of our distributional forecasts as a corrective 

mechanism for management range forecasts does not imply that managers need a wholesale 

adoption of our distributional forecasts. Recall that our distributional forecasts are based on 

public information, while managers have access to private information, and may also be subject 

to forecast incentives beyond strictly accurate forecasting (e.g., existing evidence shows that 

managers have much stronger incentives to avoid negative earnings surprises as compared to 

positive earnings surprises, Ciconte, Kirk, and Tucker 2014). Thus, we advocate for using our 

distributional forecasts as one input in producing better management range forecasts rather than 

as providing the complete solution. 

These findings also open up new research opportunities. For example, future research can 

delve deeper into understanding the factors that contribute to these cross-sectional variations in 
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miscalibration, and their implications for investment decision-making, firm performance, and 

financial outcomes. 

3.3. Imputing the coverage probabilities of analyst forecasts  

Next, we utilize our distributional forecasts to analyze the likelihood of the actual 

earnings number falling within the range of analyst earnings forecasts. Unlike management 

earnings forecasts, analyst earnings forecasts are typically in the form of point estimates. 

However, firms are typically covered by multiple analysts; thus, the minimum and maximum 

values of these earnings forecasts establish a range. We impute the coverage probability of the 

range for a group of analyst earnings forecasts using the same procedure employed for 

management earnings forecast ranges. As is probably clear, individual analysts typically do not 

produce earnings forecast ranges, and so our measure of analyst forecast ranges, and the 

corresponding results, have a somewhat different interpretation as compared to those for 

management range forecasts.   

The lower box plot in Figure 4 summarizes the imputed coverage probabilities for analyst 

forecast ranges. Compared to the upper box plot, it is clear that the coverages here are 

considerably better than that for management range forecasts, but are still low in absolute terms. 

For example, the median coverage probability is 46%, and the 75th percentile is 58%.11 We also 

see substantial cross-sectional variation in coverage, ranging from approximately 15% 

probability of coverage for the 5th percentile to almost 74% for the 95th percentile. This variation 

 
11 Note that for many firms there are both management and analyst forecasts, so user expectations of earnings 
variability possibly reflect the combined information from these two sources of information. To accommodate this 
possibility, we also calculate coverage probabilities by combining management forecast ranges and analyst forecast 
ranges for a subsample of firm-quarters with both ranges available. That is, we use the widest possible range that 
contains the extreme endpoints of both management and analyst forecast ranges. We find that the median coverage 
probability for such widest ranges is 45%; in comparison, the median coverage probability for this same sample is 
30% based on management forecast ranges only, and 37% based on analyst forecast ranges only.  Thus, while the 
joint consideration of analyst and management forecast ranges brings modest increases in coverage, the main finding 
of low coverage probability in forecasts is still valid.   
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underscores the importance of knowing the distributional forecasts. Similar to the management 

forecast setting, the ex-ante availability of our firm-quarter distributional forecasts enables them 

to serve various interested parties as a powerful correction mechanism for the miscalibration in 

analyst forecasts. 

In summary, Figure 4 suggests that both management and analyst forecast ranges are way 

too narrow as compared to the variability of the actual earnings numbers. Both also display 

substantial cross-sectional variation in their ability to reflect future earnings variability. By 

shifting the focus away from point estimates, and toward considering the full distributions of 

possible earnings outcomes, users can quantify the coverage associated with either management 

or analyst earnings forecasts, and take corrective action. 

 

4. The application of distributional forecasts to stock trading 

As another application of our distributional forecasts, we develop a stock trading strategy 

that exploits the information conveyed by the probability distribution of future earnings. Note 

that the consideration of the full distribution of future earnings opens the possibility for 

employing a wide variety of trading strategies, e.g., investors can capitalize on forecasts of 

pronounced left skews by buying put options, and forecasts of heavy tails can be used to take 

positions in option straddles. In this paper, we aim to keep things simple by examining returns 

from plain-vanilla trading strategies, basically short-window Buys and Sells in publicly traded 

U.S.-listed common stocks. We emphasize that maximizing abnormal returns is not a major goal 

of our investigation. We view the abnormal return evidence as more of an illustration of the 

utility of the distributional approach rather than as an exercise in seeking optimal trading rules.12  

 
12 Hence, the trading strategy we propose may or may not be the best possible. We leave the refinement of this 
strategy to future academic research, and possibly efforts in practice. 



 

22 
 

Prior research suggests that stock investors penalize firms if their earnings miss analyst 

expectations but reward them for meeting or beating analyst expectations (e.g., Barth, Elliot, and 

Finn 1999; Defond and Park 2000; Bartov, Givoly, and Hayn 2002; Kasznik and McNichols 

2002; Skinner and Sloan 2002). Motivated by these findings, we create a measure from our 

distributional forecasts that reflects the differential probability of beating (missing) analyst 

expectations by N cents per share at earnings announcements. Larger values of this differential 

probability measure indicate that a firm’s earnings have a higher probability of beating analyst 

expectations by N cents relative to the probability of missing by N cents.  

We use the latest consensus (median) analyst forecasts as a proxy for analyst 

expectations. Specifically, for a given N and a given firm-quarter q, we use our distributional 

forecast to calculate the probability of beating the consensus forecast by N cents conditional on 

our set of predictive variables X that are publicly available before the earnings announcement: 

 

and we also calculate the probability of missing the consensus forecast by N cents: 

 

The former is probability mass from the right tail of our predictive distribution, and the latter is 

probability mass from the left tail. We then compute the differential probability 

 

A larger value of ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 indicates that the firm has a higher chance of beating the consensus 

forecast by N cents relative to the chance of missing by N cents. Note that our differential 

probability measure is based on the tails of our predictive distribution rather than the mean of 

earnings (surprises), which is the focus of prior research. This distinction is probably 
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consequential because, as discussed above, the distributions of realized earnings tend to be ill-

behaved, with pronounced skewness and heavy tails. In any case, in Section 4.2 later in the 

paper, we provide specific evidence that the differential probability measure captures 

information beyond what is conveyed by the mean of the distribution.  

We sort and bin the differential probabilities into deciles, where the decile cut-offs are 

determined by the deciles of the differential probabilities for the prior year. Panels C and D in 

Appendix C present some examples of predictive distributions for stocks in the top and bottom 

portfolios. As one might expect, the top decile firms in Panel C tend to have heavier right tails, 

and the bottom decile firms in Panel D tend to have heavier left tails.  

We then form a trading strategy that takes a long position in the top decile (those with the 

highest values of ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and a short position in the bottom decile (those with the lowest values 

of ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). Finally, we compute the cumulative abnormal returns (market-adjusted), CAR, for the 

portfolios over the three trading days surrounding the earnings announcement date.  

Table 3 presents the cumulative abnormal returns for the differential probability 

portfolios for each year in our test period. In Panel A, we focus on the probability of beating and 

missing consensus forecasts by 1 cent or more. Columns 1 and 2 present the CAR for firms in the 

top (bottom) group of differential probabilities. Column 3 reports the CAR difference in the 

preceding two columns, which corresponds to returns generated by a hedge portfolio that takes a 

long position in the top decile and a short position in the bottom decile. Column 1 reveals that 

the average CAR for firms in the top portfolio is 7 bps but statistically insignificant, whereas in 

Column 2 the average CAR for firms in the bottom portfolio is –54 bps and significant. Thus, the 

abnormal returns are concentrated in the bottom portfolio, where firms have the highest 

probability of missing the analyst expectation by one cent or more. This finding is consistent 
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with existing research that shows that the penalty for missing the consensus is much greater than 

the premium for beating the consensus. For example, Koh, Matsumoto, and Rajgopal (2008) 

show that in years beyond 2003, the earnings announcement return premium for beating the 

consensus by one cent is close to zero, while the penalty for missing the consensus by one cent is 

about –4%.  

The CAR difference between the top and bottom groups, reported in Column 3, is 61 bps 

and is highly statistically significant. Note that this hedge return is rather substantial 

economically, corresponding to an annualized return of 51% using the convention of 250 trading 

days.  

The extent to which such returns are actually achievable in practice is less clear. Efforts 

in this direction need to consider various trading costs and implementability issues. However, 

such questions are not a major thrust of our investigation for the same reasons that we eschew 

the fine-tuning of trading strategies for the highest returns. Still, there are reasons to believe that 

these results likely have practical importance for traders and investors for two reasons. First, 

trading costs have dramatically declined over the last 20-30 years, and our results are from the 

period 2011-2021, so trading costs are likely on the low side (Frazzini, Israel, and Moskowitz 

2018). Second, our firms are comparatively large and well-followed, as shown in Table 1, which 

again suggests that trading costs are on the low side.  

Note also that systematic risk factors are unlikely to explain the magnitude of the 

abnormal returns given the short horizon of the stock holding window. Even if the firms on the 

two sides of the hedge portfolio are only imperfectly matched on risk, possible variations in 

returns due to hedge portfolio residual risk are unlikely to exceed the average risk premium for 
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unhedged portfolios, about 5% annually.13 This reasoning translates to an upper bound on 

possible risk effects of about 6 bps over three-day windows, an order of magnitude smaller than 

the documented effects.  

Similar considerations apply to the much broader class of “return factor” variables that 

predict realized returns, either because of unmodeled risk or because of mispricing, e.g., size, 

book-to-market, accruals, earnings volatility, gross profitability, default risk, employee growth, 

etc. (Feng, Giglio, and Xiu 2020; Harvey, Liu, and Zhu 2016). The count of such factors has now 

reached into the hundreds, and it has become close to impossible to explicitly control for all such 

potential confounding variables in investigations of abnormal returns. However, the short 

horizon of our returns offers a resolution to this return-factors conundrum.  

The point is that the typical abnormal returns on such variables are 5% to 10% 

annualized, implying 6-12 bps for three-day windows, which is at least 5 times smaller than our 

returns. Thus, even if our hedge portfolios are correlated with such factors, and even if the 

correlation is quite high, the magnitude of our hedge returns practically precludes explanations 

based on existing return factors. Summarizing, the magnitude of the documented abnormal 

returns and the short horizons of the earnings announcement windows make risk-based or factor-

based explanations unlikely.  

Column 3 of Table 3 also suggests that the hedge portfolios are able to generate positive 

abnormal returns in all years in the sample except 2017 and 2020. In particular, 2020 is the 

outlier year in which the hedge return is negative, large, and significant. While it is hard to be 

sure, the COVID-19 pandemic likely has something to do with the breakdown of performance in 

2020. It would not be surprising for any model that is trained on data from the preceding ten 

 
13 Annual returns due to systematic risk are on average equivalent to the equity risk premium, the estimate of which 
typically ranges from 5% to 6%, see Fernandez, García de Santos, and Acin (2022). 
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years to underperform in the unprecedented environment of 2020, which often played out in 

ways completely at odds with how the economy functioned in the preceding decade. For 

example, firms that missed analyst forecasts by a larger margin might be able to receive more 

financial aid from the government, which results in positive stock market reactions. This pattern 

of underperformance in 2020 is repeated in pretty much all other specifications in Table 3, which 

again suggests that there was something systematically amiss in 2020. Excluding 2020, the CAR 

difference between the top and bottom decile jumps from 61 bps to 91 bps. 

Panels B and C in Table 3 display the CAR results based on the probability of 

beating/missing analyst expectations by 2 cents and 3 cents respectively. The hedge portfolios 

earn a 3-day abnormal return of approximately 57 bps in both analyses, and these returns jump 

up to 84-85 bps when we exclude the year 2020. Thus, the results for these more stringent 

earnings surprise thresholds are in line with those for the one-cent specification in Panel A.  

Summing up, the results in Table 3 suggest that forming trading portfolios that exploit the 

information conveyed by the predictive distribution of earnings yields abnormal returns on the 

magnitude of 60 bps over the three-day earnings announcement window. The returns seem 

economically substantial, are fairly robust, and are unlikely to be fully attributable to systematic 

risk or other known return factors. 

4.1. Does the differential probability measure predict beating/missing consensus forecasts? 

 The preceding evidence suggests that the differential probability measure ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 can 

generate abnormal stock returns. We now turn to extending and verifying this evidence by closer 

examination of the possible drivers of these returns. Specifically, we examine whether the 

abnormal returns can be attributed to the power of the differential probability measure to predict 
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the actual beats/misses. We use two approaches to do this: (1) two-way frequency tables, and (2) 

OLS regressions to predict actual beats/misses. 

 Table 4 displays the results for the two-way frequency tables, starting in Panel A for the 

beat/miss by 1 cent specification. The top and bottom rows in Panel A are respectively the top 

(“beat”) and bottom (“miss”) deciles based on ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, while the columns represent the actual 

beats and misses. Thus, the top-left cell of the 2X2 table represents the percentage of 

observations that are in the “miss” decile and also missed the consensus by 1 cent, while the 

bottom-right cell represents the percentage of “beat” observations and also beat the consensus. If 

our differential probability measure is accurate, we expect most of the observations to fall into 

the two cells along the downward-sloping diagonal.  

The results in Table 4 are consistent with our expectations. In Panel A, we observe that 

the majority of the observations in the “miss” decile missed the consensus forecast by 1 cent, 

while most of the observations in the “beat” decile beat the consensus forecast by 1 cent. As a 

summary statistic, while the expectation of the sum along both diagonals is 50% under the null 

of no relation between forecasts and beat/miss realizations, the actual sum of the two cells on the 

downward-sloping diagonal is 71%, and this difference is significant at the 0.1% level in a Chi-

square test. The 2-cent and 3-cent specifications in Panels B and C tell a similar story. Overall, 

the two-way frequency tables show clear evidence that our differential probability measure is 

predictive of beating/missing the analyst consensus, enabling investors to earn the abnormal 

returns documented in Table 3.  

We also test if our differential probability measure is predictive of the likelihood of 

beating/missing consensus forecasts by estimating the following OLS regression: 
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𝐷𝐷𝐷𝐷𝑢𝑢𝑃𝑃𝑝𝑝𝑞𝑞 equals +1 (−1) if the actual earnings beat (miss) the consensus by N cents in quarter q, 

and 0 otherwise. We sort firm-quarters into deciles based on their differential probability values 

∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and then scale the decile ranks down to a value between 0 and 1, creating our key 

independent variable of interest, ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑞𝑞. We estimate the equations with and without the 

predictors mentioned in section 2.1 as control variables. We also include industry and year fixed 

effects, and cluster standard errors by firm and quarter. If our differential probability measure is 

predictive of the probability of beating/missing consensus forecasts, we would expect 𝛽𝛽1 > 0. 

We estimate the equations separately for N = 1, 2, and 3 cents. Table 5 reports the regression 

statistics for the estimations. The key finding is that the coefficient on ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑞𝑞 is 

significantly positive across all columns, which is consistent with our expectation.  

Taken together, the findings in Section 4.1 offer solid evidence that our differential 

probability measure is predictive of actual beats/misses. In other words, since the beats/misses 

are defined with respect to the analyst consensus forecasts, the differential probability measure 

identifies systematic errors in analyst forecasts. The implication is that the documented abnormal 

returns can be attributed to the power of our differential probability measure to exploit such 

predictable errors in analyst forecasts, which are revealed and corrected at the earnings 

announcements. 

4.2. Does the differential probability measure capture additional information beyond what is 

conveyed by the mean? 

Our trading strategy demonstrates that using information conveyed by the distributional 

earnings forecast enables investors to earn abnormal returns in the stock market. Note that by 

design our differential probability measure utilizes the tails of the distributional forecasts, 

seeking to accommodate possible skews and heavy tails in building a consensus-beating metric. 
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However, the differential probability measure is just one of many possible summaries of 

the forecast distribution. Another summary statistic is its expected value (i.e., the mean), which 

is the archetypal point estimate of future earnings, and is the focus of most existing research on 

earnings predictability. Recall that the CRPS analyses earlier in the paper suggest that our 

distributional forecasts perform better in predicting future earnings as compared to mean-based 

approaches. In this section, we perform two additional analyses to investigate whether our 

differential probability measure captures relevant information about future earnings beyond what 

is conveyed by the mean.  

Our first analysis studies the returns from hedge portfolios formed based on the means of 

the distributional forecasts. If the returns are below those for the trading strategy based on the 

differential probability measure, the implication is that the distributional forecasts convey 

valuable information beyond the mean (while holding the BoXHED technology constant).    

Specifically, for each firm-quarter, we calculate the expected value of the earnings 

surprise by subtracting the consensus from the mean of the distributional earnings forecast. We 

then follow the same return strategy as before, sorting and binning these expected earnings 

surprises into deciles. Our trading strategy takes a long position in the top group (those with the 

highest expected surprises) and a short position in the bottom one (those with the lowest 

expected surprises). Finally, we calculate the market-adjusted cumulative abnormal returns 

(CAR) for the portfolios over the three trading days around the earnings announcement date. 

Table 6 presents the cumulative abnormal returns for the expected surprise portfolios for 

each year in our test period, using the same format as Table 3. The findings in Columns 1 and 2 

suggest that the average CAR for firms in the top decile is –7 bps but is statistically insignificant, 

whereas the average CAR for firms in the bottom decile is –48 bps and significant. The CAR 



 

30 
 

difference hedge portfolio, reported in Column 3, is 41 bps, and is significant. The magnitude of 

the abnormal return is economically substantial, confirming the intuition that predicting the mean 

captures a lot of the information about the distributional forecasts. The 41 bps return, however, is 

about one-third lower than the hedge return of 61 bps based on the differential probability 

measure. This result suggests that the differential probability measure is indeed more informative 

than the mean-based measure.  

 Our second analysis regresses the returns around earnings announcements (CAR) onto the 

differential probability measure and the expected surprise. Specifically, we estimate the 

following equation: 

 

The variable ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑞𝑞 (𝑀𝑀𝑑𝑑𝑀𝑀𝑀𝑀_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑞𝑞) represents the decile ranks of the differential 

probabilities (expected surprises) within the current year, scaled down to a value between 0 and 

1. We include industry and year fixed effects and also cluster standard errors by firm and quarter. 

If the differential probability measure provides incremental information beyond the expected 

value, we would expect 𝛽𝛽1 > 0. We estimate equation (4.3) separately for N = 1, 2, and 3 cents. 

Table 7 presents the summary statistics for the estimation of Equation (4.3). Columns 1, 

2, 4, and 5 of all panels confirm that both the differential probability measure and the expected 

surprise measure are positively associated with returns around earnings announcements when 

used independently. However, Columns 3 and 6 indicate that while the coefficient for the 

differential probability measure remains positive and statistically significant when both measures 

are included in the regression (e.g., coefficient=63.1 and 59.3, t-statistic=2.77 and 2.62 in Panel 

A), the coefficient for the expected surprise becomes statistically insignificant.  
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The conclusion is that the BoXHED differential probability measure provides 

incremental information beyond the BoXHED mean. More broadly, it suggests that the 

distributional forecast approach dominates mean-based forecast approaches.  

 

5. Conclusion 

 Existing forecasts of earnings are typically expressed as point estimates. However, ex-

ante, the future earnings number is unknown, so it is inherently a probability distribution over all 

possible earnings outcomes. Therefore, the most informative earnings forecast is a distributional 

one. Our findings suggest that modeling the predictive distribution of earnings has substantial 

advantages over point forecasts of earnings. 

We use a statistical machine learning approach called BoXHED to nonparametrically 

estimate the distribution of earnings right before earnings announcements. We examine the 

utility of the distributional forecast approach along three dimensions. First, we verify that our 

distributional forecasts map well into the subsequent earnings realizations. Second, we use the 

distributional forecasts to show that management and financial analyst forecasts are quite 

narrow, vastly underestimating the variability of future earnings outcomes. Since our 

distributional forecasts are available ex-ante at the firm-quarter level, they provide calibrated 

forecast alternatives to managers, analysts, and other users. Finally, we illustrate the utility of our 

distributional forecasts to stock investors. We use the tails of the distributional forecasts to rank 

firms based on the likelihood of beating or missing the consensus analyst forecast. Hedge 

portfolios going long (short) on firms most likely to beat (miss) the consensus earn abnormal 

returns on the magnitude of 60 bps over the three-day earnings announcement window during the 
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2011-2021 test period. Further tests verify that these results are fairly robust, and that the 

superior returns are due to the ability to predict earnings surprises.  

 We see two broad areas for extending and enriching our approach. The first is more 

circumscribed and practice-oriented, essentially fine-tuning our approach to better serve various 

users. For example, investors interested in earning superior returns can use more variables, 

design different predictive summary statistics, consider trading costs explicitly, and possibly use 

other financial instruments such as futures, options, and credit default swaps. The second 

possible area of research is to more broadly seek other areas of application in accounting, 

finance, and economics, where distributional considerations in forecasting are likely to be 

fruitful. Possibilities include the prediction of Gross Domestic Product and its components, 

inflation, capital budgeting, accounting estimates, and others.   
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Appendix A: Estimating distributions with BoXHED  

Given a dependent variable Y and a set of predictors X, the conditional probability of Y 

being larger than y is given by 

 

from which we obtain the conditional CDF 

 

Thus, knowledge of  yields the conditional distribution of Y. For example, in the case 

where Y represents , the probability of beating/missing analyst consensus by N cents per 

share can be expressed in terms of :14 

 

It is a basic result in statistics that  can be derived from the conditional hazard 

function  via15 

 

In other words, having an estimate of the hazard function allows us to obtain a plug-in estimate 

of , and hence (A.3). More generally, this framework can also estimate distributions from 

censored observations. While the earnings forecasting problem is not subject to censoring, it is 

nonetheless a special case of this framework. 

BoXHED is an open-source machine learning package for estimating the conditional 

hazard function nonparametrically (Wang et al. 2020 and Pakbin et al. 2021). It is a scalable 

implementation of a gradient boosting procedure proposed in Lee, Chen, and Ishwaran (2021), 

 
14 Under the assumption that the distribution of Y has a probability density, P(Y ≤ y|X) = P(Y < y|X). 
15 While (B.2) only applies when Y is non-negative, it can be easily extended to the case where Y can be negative but 
is bounded below by some Ymin: Apply (B.2) to the shifted variable Y’ = Y-Ymin ≥ 0, and the distribution for Y can be 
recovered from the one for Y’ by a simple translation. 
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and BoXHED inherits the mathematical consistency guarantees from that paper. We use the 

current version BoXHED2.0 to estimate the conditional hazard function for earnings per share 

divided by stock price at the beginning of the quarter, i.e. 

 

The estimated hazard function is then used to obtain  via (A.4). To calculate (A.3) from 

this, note that 

 

The calculation of  proceeds in a similar manner. 
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Appendix B: Variable definitions 

Variable Definition Source 
Analyst The number of analysts following the firm. IBES 
BTM Book-to-market ratio. Compustat 

CAR 
Cumulative market-adjusted abnormal return over the three-day 
window starting from one trading day before earnings 
announcements.  

CRSP 

CFO Beginning quarterly net operating cash flow divided by beginning 
market capitalization. 

Compustat, 
CRSP 

Consensus The median consensus analyst forecast before earnings 
announcements divided by beginning price. 

IBES, 
CRSP 

CPS The median cash flow forecast before earnings announcements 
divided by beginning price. 

IBES, 
CRSP 

 ΔProb 

The differential probability equals the probability of beating the 
consensus forecast by N cents (Probability of beating)  minus the 
probability of missing the consensus forecast by N cents 
(Probability of  missing).  

N/A 

Dispersion The standard deviation of earnings forecasts before earnings 
announcements divided by beginning price. 

IBES, 
CRSP 

Dsurp 
A category variable that equals 1 if earnings beat analyst 
expectation by at least N cents, −1 if earnings miss analyst 
expectation by at least N cents, and 0 otherwise.  

IBES, 
Compustat 

EPS Actual earnings per share divided by stock price at the beginning of 
the quarter. 

IBES, 
CRSP 

EPSq−4 EPS four quarters ago. IBES, 
CRSP 

Gross Profit Revenue minus cost of goods sold divided by beginning market 
capitalization. 

Compustat, 
CRSP 

M_ Dispersion An indicator variable that equals 1 if Dispersion is missing, and 0 
otherwise. N/A 

M_ EPSq−4 An indicator variable that equals 1 if EPSq−4 is missing, and 0 
otherwise. N/A 

M_ WC Accruals An indicator variable that equals 1 if WC Accruals is missing, and 0 
otherwise. N/A 

M_CPS An indicator variable that equals 1 if CPS is missing, and 0 
otherwise. N/A 

M_SG&A An indicator variable that equals 1 if SG&A is missing, and 0 
otherwise. N/A 

Mean_decile Decile ranks of the expected surprise. This variable is scaled down 
to a range from 0 to 1.  N/A 

ΔProb_decile Decile ranks of the differential probability measure. This variable is 
scaled down to a range from 0 to 1. N/A 
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Probability of missing Probability of missing the consensus forecast by N cents 
conditional on a vector of covariates X. N/A 

Probability of beating Probability of beating the consensus forecast by N cents conditional 
on a vector of covariates X. N/A 

R&D Quarterly research and development expenses divided by beginning 
market capitalization.  

Compustat, 
CRSP 

Revenue Quarterly revenue divided by beginning market capitalization. Compustat, 
CRSP 

SG&A Quarterly selling, general and administrative expenses scaled by 
beginning market capitalization.  

Compustat, 
CRSP 

Size Natural log of beginning market capitalization. CRSP 

WC Accruals Quarterly changes in non-cash working capital accounts plus 
depreciation expense divided by beginning market capitalization.  

Compustat, 
CRSP 
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Appendix C: Examples of Earnings Distribution 

Panel A: 2021 Q3 Distributions for some prominent firms 
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Appendix C: Examples of Earnings Distribution (continued) 

Panel B: Distribution for Apple Inc. from 2019 to 2020 

 

  



 

42 
 

Appendix C: Examples of Earnings Distribution (continued) 

Panel C: 2021 Q3 Distribution for Firms in the Top Differential Probability Decile 
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Appendix C: Examples of Earnings Distribution (continued) 

Panel D: 2021 Q3 Distribution for Firms in the Bottom Differential Probability Decile 

 

This appendix presents earnings distribution examples. Panel A exhibits the 2021 Q3 earnings distribution for big 
firms (identified by IBES tickers). Panel B plots the earnings distributions for Apple Inc. from 2019 to 2020. Panels 
C and D show 2021 Q3 distribution plots for firms randomly selected from the top and bottom differential 
probability deciles (identified by IBES tickers), respectively. The x-axis is earnings per share (EPS) and the y-axis is 
the density. 
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Appendix D: Visualization of the Continuous Ranked Probability Score (CRPS) 

 

 

This appendix presents a visualization of the Continuous Ranked Probability Score (CRPS). The blue solid line is 
the cumulative distribution function (CDF) of the realized outcome , and the red dashed line is the forecasted CDF 

. Squaring the difference  between the two curves and integrating over  yields the CRPS.  
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Figure 1: Predicted vs. actual probabilities of earnings realizations 

 

Fig. 1. This figure plots the empirical cumulative probabilities of earnings against predicted probabilities estimated 
by BoXHED for all observations for test period 2011-2021. 
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Figure 2: Actual vs. predicted coverage for prediction ranges 

 

Fig. 2. Fraction of prediction ranges that contain the actual earnings number, plotted against predicted coverage. For 
test period 2011-2021. 
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Figure 3: Predicted coverage for Delta Air Lines 2018 Q1 earnings per share (EPS) 

Panel A: Coverage probability of the management forecast (MF) range 
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Figure 3 (continued) 

Panel B: Delta management forecast range vs. BoXHED-calibrated predicted ranges 

 

Fig. 3. Predicted coverage for Delta Air Lines 2018 Q1 earnings per share (EPS). Panel A plots the predicted 
coverage probability of the management forecast range. Panel B plots the management forecast range as well as the 
prediction ranges that have an 80% or a 95% chance of covering the actual earnings. 
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Figure 4: Coverage probabilities of management forecasts and analyst forecasts 

 

Fig. 4. Box plots summarizing the probabilities of covering actual earnings for management earnings forecast ranges (upper plot) and analyst forecast ranges 
(lower plot). 
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Table 1  

Descriptive statistics. 
Variables N mean std p25 p50 p75 

       
Analyst   283,356  7.304 6.196 3.000 5.000 10.000 
BTM   280,626  0.557 0.487 0.249 0.458 0.750 
CAR   283,306  0.000 0.098   −0.041   −0.001 0.041 
CFO   283,300  0.023 0.080 0.000 0.017 0.039 
Consensus   283,356  0.003 0.039 0.001 0.011 0.017 
CPS   100,117  0.026 0.035 0.011 0.020 0.035 
Dispersion   248,068  0.003 0.007 0.000 0.001 0.003 
Dsurp (N=1)   151,661  0.221 0.915   −1.000 1.000 1.000 
Dsurp (N=2)   151,661  0.195 0.847   −1.000 0.000 1.000 
Dsurp (N=3)   151,661  0.171 0.801 0.000 0.000 1.000 
EPS   283,356  0.001 0.173 0.000 0.011 0.018 
EPSq−4   247,580  0.005 0.033 0.002 0.012 0.019 
Gross Profit   282,261  0.090 0.131 0.031 0.059 0.103 
M_CPS   283,356  0.647 0.478 0.000 1.000 1.000 
M_Dispersion   283,356  0.125 0.330 0.000 0.000 0.000 
M_EPSq−4   283,356  0.126 0.332 0.000 0.000 0.000 
M_SG&A   283,356  0.179 0.383 0.000 0.000 0.000 
M_WC Accruals   283,356  0.085 0.279 0.000 0.000 0.000 
Mean_decile   151,661  0.500 0.319 0.222 0.444 0.778 
ΔProb_decile (N=1)   151,661  0.500 0.319 0.222 0.444 0.778 
ΔProb_decile (N=2)   151,661  0.500 0.319 0.222 0.444 0.778 
ΔProb_decile (N=3)   151,661  0.500 0.319 0.222 0.444 0.778 
R&D   283,300  0.008 0.020 0.000 0.000 0.008 
Revenue   282,913  0.309 0.506 0.068 0.147 0.323 
SG&A   232,591  0.072 0.102 0.020 0.039 0.078 
Size   283,356  6.829 1.768 5.537 6.715 7.994 
Surprise   283,356    −0.002 0.168   −0.001 0.000 0.003 
WC Accruals   259,330  0.016 0.067   −0.003 0.007 0.024 

This table presents summary statistics for the sample of 283,356 firm-quarter observations between January 2001 
and December 2021. Definitions of all variables are shown in Appendix B.  
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Table 2 

Continuous ranked probability score (CRPS) for earnings forecasts. 
 (1) (2) (3) 

YEAR CRPS for OLS mean 
(baseline) 

Reduction in CRPS for 
BoXHED mean 

Reduction in CRPS for 
BoXHED distribution 

2011 0.013 30%*** 47%*** 
2012 0.013 32%*** 50%*** 
2013 0.010 24%*** 43%*** 
2014 0.009 26%*** 44%*** 
2015 0.012 22%*** 39%*** 
2016 0.013 21%*** 39%*** 
2017 0.011 22%*** 40%*** 
2018 0.012 15%*** 32%*** 
2019 0.014 9.1%*** 27%*** 
2020 0.021 2.6%*** 22%*** 
2021 0.012 4.4%*** 26%*** 
All 0.013 18%*** 36%*** 

This table presents the CRPS for three types of forecasts. Column 1 reports the CRPS for the forecasted mean of 
earnings based on OLS regression models. This is the baseline. Column 2 reports the percentage reduction in CRPS 
(relative to baseline) from using the mean of the predictive earnings distribution estimated using BoXHED. Column 
3 reports the percentage reduction in CRPS (relative to baseline) from using the whole predictive earnings 
distribution estimated using BoXHED. ***, **, * denote significance at the 1 percent, 5 percent, and 10 percent 
levels, respectively.  
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Table 3  

Cumulative abnormal returns (bps) for differential probability portfolios. 
Panel A: Probability of beating/missing by one cent or more 
 Differential Probability 

 (1) (2) (3) 

YEAR High Low Diff  
(High−Low) 

2011 23 −153*** 175*** 
2012 6 −75*** 81** 
2013 42** −48* 90*** 
2014 37* −113*** 150*** 
2015 −13 −54 41 
2016 83** −37 120*** 
2017 −50** −34 −16 
2018 30 −111*** 142*** 
2019 −47** −154*** 107*** 
2020 −23 178*** −202*** 
2021 −11 −49* 38 
All (mean) 7 −54*** 61*** 
All (s.e.) 7 9 6 
Exclude 2020 (mean) 9 −82*** 91*** 
Exclude 2020 (s.e.) 7 9 6 
 

   
Panel B: Probability of beating/missing by two cents or more 
  Differential Probability 

 (1) (2) (3) 

YEAR High Low Diff  
(High−Low) 

2011 22 −150*** 171*** 
2012 13 −69** 82** 
2013 44** −47* 91*** 
2014 37** −106*** 142*** 
2015 −11 −48 37 
2016 72** −34 107** 
2017 −44** −18 −26 
2018 8 −108*** 116*** 
2019 −28 −144*** 116*** 
2020 3 178*** −175*** 
2021 −18 −46 28 
All (mean) 9 −48*** 57*** 
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All (s.e.) 7 9 6 
Exclude 2020 (mean) 9 −76*** 85*** 
Exclude 2020 (s.e.) 7 9 6 
 

   
Panel C: Probability of beating/missing by three cents or more 
  Differential Probability 

 (1) (2) (3) 

YEAR High Low Diff  
(High−Low) 

2011 23 −148*** 171*** 
2012 4 −54** 59* 
2013 38** −52* 90*** 
2014 21 −106*** 128*** 
2015 8 −45 54 
2016 56* −33 89** 
2017 −25 −13 −13 
2018 1 −94*** 96*** 
2019 −6 −138*** 132*** 
2020 −1 169*** −170*** 
2021 −7 −49* 42 
All (mean) 10 −46*** 57*** 
All (s.e.) 7 9 6 
Exclude 2020 (mean) 11 −73*** 84*** 
Exclude 2020 (s.e.) 7 9 6 

Table 3 reports the market-adjusted cumulative abnormal returns (CAR) for differential probabilities portfolios. 
Panels A, B, and C report portfolio returns corresponding to the probabilities of beating and missing analyst 
expectations by at least one cent, two cents, and three cents. All the returns are reported in basis points. ***, **, * 
denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively.  
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Table 4  

Two-way frequency tables for the performance of differential probability measures 
Panel A: Probabilities of beating/missing by one cent or more 
  

 
 Actual   

  Miss Beat   

Pr
ed

ic
te

d "Miss" 29% 21% 
p-value<0.001 

"Beat"  8% 42% 

   

Panel B: Probabilities of beating/missing by two cents or more 
 
 

 Actual   
  Miss Beat   

Pr
ed

ic
te

d "Miss" 29% 20% 
p-value<0.001 

"Beat"  8% 43% 

 

 

Panel C: Probabilities of beating/missing by three cents or more 
 
 

 Actual   
  Miss Beat   

Pr
ed

ic
te

d "Miss" 29% 20% 
p-value<0.001 

"Beat"  9% 42% 

 

 
Table 4 reports the performance of the top and bottom deciles of differential probability measures in classifying 
firms into beating/missing consensus forecasts by N cents. Panels A, B, and C report the results when N equals one 
cent, two cents, and three cents, respectively. The predicted differential probability measures are calculated as the 
probability of beating minus the probability of missing. p-values for row and column independence are presented.  
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Table 5  

The prediction of beating/missing consensus forecasts using differential probabilities. 
  (1) (2) (3) (4) (5) (6) 

 Dsurp Dsurp Dsurp Dsurp Dsurp Dsurp 
Variables N=1 N =1 N =2 N =2 N =3 N =3 

       

ΔProb_decile 0.679*** 0.564*** 0.610*** 0.500*** 0.549*** 0.445***  
(0.016) (0.018) (0.016) (0.017) (0.017) (0.017) 

Consensus  −0.232*  −0.252*  −0.283**  
 (0.138)  (0.137)  (0.135) 

M_Dispersion  −0.006  −0.004  −0.010  
 (0.015)  (0.013)  (0.013) 

Dispersion  −1.384**  −1.636***  −1.825***  
 (0.598)  (0.574)  (0.577) 

Analyst  0.002**  0.002**  0.002**  
 (0.001)  (0.001)  (0.001) 

M_CPS  −0.000  0.001  0.001  
 (0.009)  (0.008)  (0.008) 

CPS  0.128  0.194  0.190  
 (0.155)  (0.146)  (0.131) 

Size  0.014***  0.012***  0.011***  
 (0.005)  (0.004)  (0.004) 

Revenue  −0.028*  −0.025*  −0.027*  
 (0.014)  (0.014)  (0.014) 

CFO  0.172*  0.210**  0.223***  
 (0.086)  (0.082)  (0.079) 

Gross Profit  0.136**  0.145**  0.156**  
 (0.063)  (0.061)  (0.061) 

R&D  0.290  0.364  0.405*  
 (0.244)  (0.225)  (0.208) 

M_SG&A  −0.024*  −0.025*  −0.023*  
 (0.014)  (0.013)  (0.012) 

SG&A  −0.228***  −0.246***  −0.234***  
 (0.083)  (0.078)  (0.078) 

M_ WC Accruals  −0.010  −0.004  −0.004  
 (0.017)  (0.016)  (0.016) 

WC Accruals  −0.211*  −0.242**  −0.248**  
 (0.116)  (0.111)  (0.106) 

BTM  0.017*  0.015  0.014  
 (0.010)  (0.010)  (0.009) 

M_EPSq−4  −0.031**  −0.038***  −0.035*** 
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 (0.014)  (0.013)  (0.012) 

EPSq−4  0.440**  0.503***  0.548***  
 (0.167)  (0.178)  (0.170)        

Observations 147,119 146,046 147,119 146,046 147,119 146,046 
R-squared 0.072 0.074 0.069 0.072 0.065 0.068 
Industry FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 

This table reports the finding from estimation of equation (4.2). Each observation in the analysis corresponds to a 
firm quarter. The dependent variable in Columns (1) through (6) is Dsurp, a category variable that equals 1 if 
earnings beat analyst expectation by at least N cents, −1 if earnings miss analyst expectation by at least N cents, and 
0 otherwise. The variable of interest in Columns (1) through (6) is ΔProb_decile, the decile of the differential 
probability of beating/missing consensus by N cents. Columns (1) and (2), Columns (3) and (4), and Columns (5) 
and (6) present the results regarding the likelihood of beating/missing consensus forecasts by one, two, and three 
cents, respectively. Appendix B presents a description of the variables. Standard errors clustered by firm and quarter 
are presented in parentheses. ***, **, * denote significance at the 1 percent, 5 percent, and 10 percent levels, 
respectively.  
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Table 6  

Cumulative abnormal returns (bps) for expected surprise portfolios. 
  Expected surprise 

 (1) (2) (3) 

YEAR High Low Diff  
(High−Low) 

2011 0 −145*** 145*** 
2012 −1 −20 18 
2013 −17 −56* 39 
2014 −43 −131*** 88** 
2015 1 −15 17 
2016 59* −51* 110** 
2017 −2 −29 27 
2018 22 −120*** 142*** 
2019 −143*** −175*** 32 
2020 67* 214*** −147*** 
2021 −28 −117*** 89 
All (mean) −7 −48*** 41*** 
All (s.e.) 10 10 7 
Exclude 2020 (mean) −15 −85*** 69*** 
Exclude 2020 (s.e.) 10 10 7 

This table presents the market-adjusted cumulative abnormal returns (CAR) for expected surprise portfolios. All the 
returns are reported in basis points. ***, **, * denote significance at the 1 percent, 5 percent, and 10 percent levels, 
respectively.  
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Table 7  

Differential probabilities versus expected surprise in predicting cumulative abnormal returns. 
Panel A: Probabilities of beating/missing by one cent or more, and expected surprise 
  (1) (2) (3) (4) (5) (6) 
Variables CAR  CAR CAR CAR CAR CAR 

 
      

ΔProb_decile 58.4*** 
 

63.1*** 63.4***  59.3**  
(16.7) 

 
(22.8) (17.4)  (22.6) 

Mean_decile  42.6*** −5.7  40.0** 4.8  
 (14.8) (19.1)  (15.5) (20.1)       

 

Observations 147,119 147,119 147,119 146,046 146,046 146,046 
R-squared 0.003 0.003 0.003 0.004 0.004 0.004 
Controls No No No Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
 

      
Panel B: Probabilities of beating/missing by two cents or more, and expected surprise 
  (1) (2) (3) (4) (5) (6) 
Variables CAR  CAR CAR CAR CAR CAR 

 
      

ΔProb_decile 55.1*** 
 

55.4** 57.4***  48.8**  
(16.3) 

 
(22.3) (16.3)  (21.0) 

Mean_decile  42.6*** −0.361  40.0** 10.3  
 (14.8) (19.345)  (15.5) (20.1)       

 

Observations 147,119 147,119 147,119 146,046 146,046 146,046 
R-squared 0.003 0.003 0.003 0.004 0.004 0.004 
Controls No No No Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
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Table 7 (continued) 
Panel C: Probabilities of beating/missing by three cents or more, and expected surprise 
  (1) (2) (3) (4) (5) (6) 
Variables CAR  CAR CAR CAR CAR CAR 

 
      

ΔProb_decile 52.7*** 
 

49.4** 52.5***  40.5**  
(15.5) 

 
(20.2) (15.2)  (19.0) 

Mean_decile  42.6*** 4.1  40.0** 14.8  
 (14.8) (18.8)  (15.5) (19.9)       

 

Observations 147,119 147,119 147,119 146,046 146,046 146,046 
R-squared 0.003 0.003 0.003 0.004 0.004 0.004 
Controls No No No Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 

This table reports the findings from estimation of equation (4.3). Panel A, B, and C reports the prediction of 
cumulative abnormal returns using decile ranks of the differential probability of beating/missing consensus by one 
cent, two, and three cents, respectively, and the decile ranks of expected surprise. Each observation in the analysis 
corresponds to one quarterly earnings announcement. The dependent variable in Columns (1) through (6) is the 
market-adjusted cumulative abnormal returns (CAR). The independent variables of interest are ΔProb_decile, the 
decile ranks of the differential probability of beating/missing consensus by N cents (N=1,2, and 3), and 
Mean_decile, the decile ranks of the expected surprises. Appendix B presents a description of the variables. 
Standard errors clustered by firm and quarter are presented in parentheses. ***, **, * denote significance at the 1 
percent, 5 percent, and 10 percent levels, respectively.  

 


