Blockchain, Cryptocurrencies \& Digital Tokens Demystified

Prof. R.A. Farrokhnia
Columbia Business School
Fall 2023 (EMBA)

Welcome \& Agenda

About the Course Faculty

- Prof. R.A. Farrokhnia (far.oak.nia)
- Teaching at Columbia Business \& Engineering Schools
- Recipient of Dean's Award for Teaching Excellence

About the Course Faculty

- Prof. R.A. Farrokhnia (far.oak.nia)
- Teaching at Columbia Business \& Engineering Schools
- Recipient of Dean's Award for Teaching Excellence
- Executive Director (Dean's Office) of "Advanced Projects and Applied Research in Fintech" at Columbia Business School
- Board Member \& Senior Lecturer: Columbia Journalism School KB Program
- Building a next-gen DevLab

fintech.gsb.columbia.edu

Columbia Business School

AT THE VERY CENTER OF BUSINESS"*

Advanced Projects and Applied Research in Fintech

```
About Projects \& Research Courses Fellowship Events Contact
```


The Future of Financial Services

```
Advanced Projects and Applied Research in Fintech ("APAR") is a multidisciplinary initiative at the intersection of business and engineering. Its two primary goals are:
1. to research the innovative forms and functions of new enterprise and consumer financial services products, and
2. to explore the development of novel technological solutions and oversee their industry implementation.
```

Before we begin ...

farrokhnia@gsb.columbia.edu

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9

Class Plan

Nov 4
Nov 18
Dec 2
Dec 9

08:30 am to 6:45 pm (K-440)Module $1+2$
08:30 am to 6:45 pm (K-440)Module $3+4$
08:30 am to 6:45 pm (K-440)Midterm Project + 5 \& $6+$ Guest Speaker
08:30 am to 6:45 pm (K-440)Module 7 \& $8+$ Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am
9:45-10:00 am
10:00-11:15 pm
11:15 am-12:30 pm
12:30-2:00 pm 2:00-2:15 pm
2:15-3:30 pm
3:30-3:45 pm
3:45-5:00 pm
5:00-5:15 pm
5:15-6:45 pm

Lecture

Break
Lecture
Lunch (1h15min) - Kravis 2nd floor (Smith Dining)

Lecture

Break

Lecture

Break
Lecture
Break
Lecture

Curriculum Roadmap

Morning	Nov 4	Nov 18	Dec 2	Dec 9
	Networks \& Protocols	Hashing, Hashing Tables \& One- Way Functions \& a few more tech	Bitcoin + other forms of crypto payments and store of value mechanisms and media	DeFi \& Other Applications (Digital Tokens, CBDC, etc.) + Speaker: Future of Finance + Discussion Forum
	Lunch	Lunch	Lunch	Lunch
Afternoon	Encryption \& Cryptography (plus some math!)	Bring it All Together: Let's build a blockchain \& discuss variety of cases	Ethereum \& Other Digital Tokens + Speaker: Regulatory \& Legal Considerations in Blockchain \& Digital Assets	Governance, More; Final Lecture on How the Future May Play Out + Final Presentations

Administrative Requirements

- Please be on time and present for the duration of the class
- Class content is sequential. Don't miss class sessions (and watch recordings if you do)
- Lots of technical topics, but I won't use ANY code or much math (only 2-3 parts might be tough - l'll give you the heads-up when we reach these points in our curriculum), so don't worry :-)
- I can explain it to you, but I cannot understand it for you! So be sure to ask questions
- Your breaks are my breaks too! l'll provide ample opportunities for Q\&A in class though
- Office hours by appointment (just email me)
- Make sure to read the syllabus
- CBS code of conduct, incl. during guest speaker presentations
- Team formations: finalized by Nov 18 no later than 3:30 pm ET (today is even better!)
- Midterm Project
- Final Papers and deliverables: all the details
- Final Papers due on Monday Dec 18 at 5 pm ET
- This is a demanding class, and we are all in it together. Let's make it the best class we can
- My promise to you all + let's have a fun, productive course ... worthy of a 5 out of 5

DISCLAIMER

One more thing ...
 Digital Device Policy Recommendation + Sharing of Class Slides

Also a reminder of a good practice

The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over Laptop Note Taking

Psychological Science

2014, Vol. 25(6) 1159-1168
© The Author(s) 2014
Reprints and permissions:
sagepub.com/journalsPermissions.nav DOI: $10.1177 / 0956797614524581$
pss.sagepub.com
(\$SAGE

Pam A. Mueller ${ }^{1}$ and Daniel M. Oppenheimer ${ }^{2}$

${ }^{1}$ Princeton University and ${ }^{2}$ University of California, Los Angeles

Abstract

Taking notes on laptops rather than in longhand is increasingly common. Many researchers have suggested that laptop note taking is less effective than longhand note taking for learning. Prior studies have primarily focused on students' capacity for multitasking and distraction when using laptops. The present research suggests that even when laptops are used solely to take notes, they may still be impairing learning because their use results in shallower processing. In three studies, we found that students who took notes on laptops performed worse on conceptual questions than students who took notes longhand. We show that whereas taking more notes can be beneficial, laptop note takers' tendency to transcribe lectures verbatim rather than processing information and reframing it in their own words is detrimental to learning.

Also a reminder of a good practice

Abstract

Taking notes on laptops rather than in longhand is increasingly common. Many researchers have suggested that laptop note taking is less effective than longhand note taking for learning. Prior studies have primarily focused on students' capacity for multitasking and distraction when using laptops. The present research suggests that even when laptops are used solely to take notes, they may still be impairing learning because their use results in shallower processing. In three studies, we found that students who took notes on laptops performed worse on conceptual questions than students who took notes longhand. We show that whereas taking more notes can be beneficial, laptop note takers' tendency to transcribe lectures verbatim rather than processing information and reframing it in their own words is detrimental to learning.

Also a reminder of a good practice

n Pr WNYCRADIO news arts \& life music programs

Class is mostly slides for Day 1 and $2+$ we'd switch to discussions \& whiteboarding (no slides) on subsequent days

All done? Then let's go ... but first, a little fun!

I. A Series of Tubes

How does the internet work? Why do we need to protect it?

An ideal network

The real world

The real world: Routers \& Switches

The real world ... as it was!

The real world ... with PROTOCOLS!

The real world

The real world

The real world

The real world

A few words on networks ... in the context of order, complexity, and resiliency

Networks: a collection of connected nodes

Networks: a collection of connected nodes

Networks: a collection of connected nodes

-
\bullet

Networks: a collection of connected nodes

-
-

Centralized (vs. Decentralized vs. Distributed)

Centralized (vs. Decentralized vs. Distributed)

Centralized vs. Decentralized (vs. Distributed)

Centralized vs. Decentralized Networks

Centralized vs. Decentralized Networks

If this node is compromised, the whole network goes down!

Centralized vs. Decentralized Networks

A

Decentralized Networks

A

B

Decentralized Networks

A

B

Real Decentralized Technologies

Internet

Real Decentralized Technologies

Internet

Real Decentralized Technologies

Internet

Bitcoin

Centralized vs. Decentralized vs. Distributed

A few words on how internet works as a network ...

A few words on Internet

- Billions of connected (computing) hosts/end-systems - mobile devices now outnumber others by a large margin

A few words on Internet

- Billions of connected (computing) hosts/end-systems (mobile devices now outnumber others by a large margin)
- laptops
- smartphones, tablets
- TVs
- Gaming consoles
- Webcams
- Automobiles,
- Environmental sensing devices,
- Picture frames
- Home electrical
- Security systems
- And more ...

A few words on Internet

- Billions of connected (computing) hosts/end-systems - mobile devices now outnumber others by a large margin
- laptops, smartphones, tablets, TVs, gaming consoles, Webcams, automobiles, environmental sensing devices, picture frames, and home electrical, security systems, ...
- Other constituents of the network (mobile, enterprise, home, ISPs, etc.):
- Servers
- Routers
- Link-layer Switches
- Modems
- Base Stations
- Cell Towers
- And more ...

A few words on Internet

- Billions of connected (computing) hosts/end-systems + other constituents (mobile devices now outnumber others by a large margin)
- These devices and hosts/end-systems run network apps
- They are all connected via communication links (fiber, copper, radio, satellite, etc.) and packet switches with various transmission rates (i.e. bandwidth)
- Packet Switches such as routers and switches send around and forward data packets (i.e. chunks of data) throughout the network
- In essence, you have decentralized network of networks (e.g. ISPs) + protocols + internet standards

A few words on Protocols

- TCP/IP
- SMTP
- IMAP
- POP
- FTP
- HTTP
- HTTPS/TLS
- UDP
- WLAN
- DNS and many more!

A few words on Protocols

```
    Internet protocol suite
    Application layer
    BGP DHCP - DNS FTP - HTTP ·IMAP .
    LDAP - MGCP - NNTP - NTP • POP .
ONC/RPC · RTP · RTSP · RIP · SIP · SMTP .
    SNMP}\cdot\mathrm{ SSH · Telnet · TLS/SSL ·MPP .
                more...
            Transport layer
TCP - UDP - DCCP - SCTP · RSVP - more...
                    Internet layer
    IP (IPv4 - IPv6) - ICMP | ICMPv6 - ECN -
            IGMP}\cdot|Psec · more...
            Link layer
ARP - NDP - OSPF · Tunnels (L2TP) · PPP ·
MAC (Ethernet · DSL · ISDN · FDDI) - more...
```


"The Unsung Heros"

"The Unsung Heros"

Ebye Aew Hillocimes

Daniel Kaminsky, Internet Security Savior, Dies at 42

If you are reading this obituary online, you owe your digital safety to him.

All Communication needs protocols!

All Communication needs protocols!

All Communication needs protocols!

All Communication needs protocols!

A few (more) words on Protocols

- Protocols are standardized methods that facilitate communication between and across different "things," creating a common framework
- In short, Protocols define how data should be "packetized," addressed, transmitted, routed, and received \rightarrow examples to follow
- Let's use the example of exchanging messages: first with humans (asking for time, exchanging business cards, mailing a letter), then machines - all communications are in essence governed by protocols
- Protocols help manage complexity across various building blocks of the internet (hosts, routers, switches, applications, hardware, software, etc.) ... BUT ... how do we organize them and the structure of our network?
- [by the way, it was mostly a volunteer effort, with no possibility for monetization by the makers]

Sample Computer Network Protocol (signals \& msgs)

case comparison: how do you ask questions in class?

How a web page is rendered (put simplistically)

Meanwhile, it's instructive that now that we're all locked up at home, video calls have become a huge consumer phenomenon, but VR has been not. This should have been a VR moment, and it isn't.

Master Definition of a Protocol

"A protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of a message or other event."

- James Kurose, Keith Ross

Let's organize a flight ... through a series of steps

ticket (purchase)
baggage (check)
gates (load)
runway takeoff
airplane routing
airplane routing
ticket (complain)
baggage (claim)
gates (unload)
runway landing
airplane routing
airplane routing

Organizing a flight ... through functionality layers

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeofflanding
airplane routing	airplane routing airplane routing	airplane routing	airplane routing
departure airport	intermediate air-traffic control centers	arrival airport	

Organizing a flight ... through functionality layers

ticket (purchase)			ticket (complain)	ticket
baggage (check)			baggage (claim	baggage
gates (load)			gates (unload)	gate
runway (takeoff)			runway (land)	takeofflanding
airplane routing				

departure
airport
intermediate air-traffic
control centers
arrival
airport

- Each LAYER implements a service ... via its own internally-layer processes ... and relying on the services provided by layer below

Internet Protocol Stack

Application: support and enable end-user apps
Transport: process data transfer
Network: routing of data from source to destination
Link: data transfer between neighboring network elements (e.g. WiFi)

Physical: bits "on the wire" (hardware)

application
transport
network
link
physical

Why is all this important?!

"Fat Protocols" (by Joel Monegro, USV)

The Web

Blockchain

"Fat Protocols \& Value Capture " (Johnson Nakano)

Proportional Value Capture in the Blockchain Ecosystem over time

BLOCKCHAIN TECHNOLOGY STACK

Application Layer

Acts as the User Interface that combines
business logic and customer interactions.
dApp Browsers

Decentralized Applications

Application Hosting

Programming Languages

Services and Optional Components
Serves to enable application operations with a view to connecting with other technologies and platforms.

Oracles

Protocol Layer
Decides the methods of consensus
network participation.

Consensus Algorithms

Permissioned and
Permissionless

EVMs

Network Layer
Acts as a transportation medium and
interface for the Peer-to-Peer interface for the Peer-to-Peer
network and decides how data is packetized, addressed, transmitted, routed and received.

RPLX

Roll Your Own

$\square: \square$
Block Delivery Networks

Irusted Execution Environment

Peer-to-Peer

Infrastructure Layer In-house infrastructure or Blockchain as a Service (BaaS) to control the nodes.

Mining
Network

101 Blockchains

Back to networks ... and security

So what do we need to protect?

II. The Bad Guys

Types of attackers, and the cryptographic techniques we can use to circumvent them.

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

-rax
-
-
-
-
-

The Snooper

The Snooper

The Snooper

-
回胃
-

The Snooper

The Snooper

The Snooper

-
-
-
-
-
-

The Snooper

带

-
-
-

The Snooper

-ara
-
-

terit en tillomanie

Moar:
Sally Leoy

210 West 101 ot. Itrect

$$
\frac{N_{\text {ew }}-M_{o+k}}{u \rho_{A}} \frac{b i t y}{}
$$

The Snooper

The Snooper

\rightarrow ~ traceroute google.com	
traceroute to google.com (216.58.219.206), 64 hops max, 52 byte packets	
1	cc-wlan-1-vlan3562-1.net.columbia.edu (160.39.252.2) 2.698 ms 2.311 ms 1.555 ms
2	phi-core-1-x-cc-wlan-1.net.columbia.edu (128.59.255.225) 1.683 ms 1.698 ms 1.653 ms
3	nyser111-gw-1-x-phi-core-1.net.columbia.edu (128.59.255.14) 2.106 ms 2.007 ms 1.816 ms
4	nyser32-gw-1-x-nyser111-gw-1.net.columbia.edu (128.59.255.9) 8.161 ms 2.492 ms 3.124 ms
5	be4222.rcr24.jfk01.atlas.cogentco.com (38.122.8.209) 2.472 ms 2.381 ms 2.582 ms
6	be2897.ccr42.jfk02.atlas.cogentco.com (154.54.84.213) 2.725 ms 2.260 ms 2.754 ms
7	be2061.ccr21.jfk05.atlas.cogentco.com (154.54.3.70) 2.898 ms 4.139 ms 2.952 ms
8	tata.jfk05.atlas.cogentco.com (154.54.12.18) 3.705 ms 2.854 ms 2.881 ms
9	if-ae-12-2.tcore1.n75-new-york.as6453.net (66.110.96.5) 2.821 ms 2.897 ms 3.346 ms
10	72.14 .214 .68 (72.14 .214 .68$) 3.015 \mathrm{~ms}$
	$72.14 .195 .232(72.14 .195 .232) 3.461 \mathrm{~ms}$
	$72.14 .218 .224(72.14 .218 .224) 3.865 \mathrm{~ms}$
11	209.85 .248 .242 (209.85.248.242) 3.952 ms 3.901 ms
	216.239.50.106 (216.239.50.106) 4.658 ms
12	209.85 .253 .111 (209.85.253.111) 3.984 ms 4.066 ms 4.171 ms
13	lga25s40-in-f206.1e100.net (216.58.219.206) 3.642 ms 3.851 ms 3.591 ms

\rightarrow ~ traceroute www.columbia.edu
traceroute to www-ltm.cc.columbia.edu (128.59.105.24), 64 hops max, 52 byte packets 1 cc-wlan-1-vlan3562-1.net.columbia.edu (160.39.252.2) 14.735 ms 2.005 ms 1.733 ms 2 phi-core-1-x-cc-wlan-1.net.columbia.edu (128.59.255.225) 2.264 ms 1.882 ms 3.439 ms 3 cc-conc-1-x-phi-core-1.net.columbia.edu (128.59.255.214) $1.956 \mathrm{~ms} \quad 1.706 \mathrm{~ms} \quad 2.532 \mathrm{~ms}$ 4 columbia.university (128.59.105.24) 1.833 ms 34.477 ms 2.024 ms
\rightarrow ~ traceroute cam.ac.uk
traceroute to cam.ac.uk (131.111.150.25), 64 hops max, 52 byte packets
1 cc-wlan-1-vlan3562-1.net.columbia.edu (160.39.252.2) 31.050 ms 3.855 ms 7.104 ms
2 phi-core-1-x-cc-wlan-1.net.columbia.edu (128.59.255.225) 6.714 ms 8.490 ms 3.632 ms
3 nyser111-gw-1-x-phi-core-1.net.columbia.edu (128.59.255.14) 434.333 ms 314.247 ms 6.011 ms
4 nyser32-gw-1-x-nyser111-gw-1.net.columbia.edu (128.59.255.9) 13.434 ms 3.637 ms 5.680 ms
5 nyc-9208-columbia.nysernet.net (199.109.4.13) 38.134 ms 2.071 ms 1.959 ms
6 i2-newy-nyc-9208.nysernet.net (199.109.5.2) 2.150 ms 2.233 ms 2.052 ms
7 internet2.mx1.ams.nl.geant.net (62.40 .124 .46) 80.376 ms 85.414 ms 85.330 ms
8 ae2.mx1.lon.uk.geant.net (62.40.98.80) 86.359 ms 84.861 ms 89.197 ms
9 janet-gw.mx1.lon.uk.geant.net (62.40.124.198) 88.979 ms 101.630 ms 90.211 ms
10 ae28.lowdss-sbr1.ja.net (146.97.33.18) 101.747 ms 88.167 ms 105.850 ms
$11 \quad 146.97 .38 .10(146.97 .38 .10) \quad 110.981 \mathrm{~ms} 93.755 \mathrm{~ms} 98.262 \mathrm{~ms}$
12146.97 .65 .106 (146.97.65.106) $92.656 \mathrm{~ms} 91.787 \mathrm{~ms} \quad 131.232 \mathrm{~ms}$

13 university-of-cambridge.cambab-rbr1.eastern.ja.net (146.97.130.2) 90.627 ms 96.497 ms 98.185 ms
14 d-dw.s-dw.net.cam.ac.uk (193.60.88.2) 91.853 ms 102.465 ms 163.091 ms
15 d-dw.s-dw.net.cam.ac.uk (193.60.88.2) 91.447 ms 91.686 ms 92.272 ms
16 outside.fw-srv.net.cam.ac.uk (128.232.128.6) 90.952 ms 92.305 ms 127.274 ms
17 link-srv.uis.fw-srv.net.cam.ac.uk (128.232.129.2) 94.121 ms 90.736 ms 91.246 ms
18 primary.admin.cam.ac.uk (131.111.150.25) $91.621 \mathrm{~ms} \quad 101.475 \mathrm{~ms} 93.549 \mathrm{~ms}$

\rightarrow ~ traceroute cam.ac.uk
traceroute to cam.ac.uk (131.111.150.25), 64 hops max, 52 byte packets
1 cc-wlan-1-vlan3562-1.net.columbia.edu (160.39.252.2) 31.050 ms 3.855 ms 7.104 ms
2 phi-core-1-x-cc-wlan-1.net.columbia.edu (128.59.255.225) 6.714 ms 8.490 ms 3.632 ms
3 nyser111-gw-1-x-phi-core-1.net.columbia.edu (128.59.255.14) 434.333 ms 314.247 ms 6.011 ms
4 nyser32-gw-1-x-nyser111-gw-1.net.columbia.edu (128.59.255.9) 13.434 ms 3.637 ms 5.680 ms
5 nyc-9208-columbia.nysernet.net (199.109.4.13) 38.134 ms 2.071 ms 1.959 ms
6 i2-newy-nyc-9208.nysernet.net (199.109.5.2) 2.150 ms 2.233 ms 2.052 ms
7 internet2.mx1.ams.nl.geant.net (62.40.124.46) 80.376 ms 85.414 ms 85.330 ms
8 ae2.mx1.lon.uk.geant.net (62.40 .98 .80) 86.359 ms 84.861 ms 89.197 ms
9 janet-gw.mx1.lon.uk.geant.net (62.40.124.198) 88.979 ms 101.630 ms 90.211 ms
10 ae28.lowdss-sbr1.ja.net (146.97.33.18) 101.747 ms 88.167 ms 105.850 ms
11 146.97.38.10 (146.97.38.10) 110.981 ms 93.755 ms 98.262 ms
12 146.97.65.106 (146.97.65.106) $92.656 \mathrm{~ms} 91.787 \mathrm{~ms} \quad 131.232 \mathrm{~ms}$
13 university-of-cambridge.cambab-rbr1.eastern.ja.net (146.97.130.2) 90.627 ms 96.497 ms 98.185 ms
14 d-dw.s-dw.net.cam.ac.uk (193.60.88.2) 91.853 ms 102.465 ms 163.091 ms
15 d-dw.s-dw.net.cam.ac.uk (193.60.88.2) 91.447 ms 91.686 ms 92.272 ms
16 outside.fw-srv.net.cam.ac.uk (128.232.128.6) 90.952 ms 92.305 ms 127.274 ms
17 link-srv.uis.fw-srv.net.cam.ac.uk (128.232.129.2) 94.121 ms 90.736 ms 91.246 ms
18 primary.admin.cam.ac.uk (131.111.150.25) 91.621 ms 101.475 ms 93.549 ms

The Snooper

How to send messages and information securely, knowing any info transmitted over the internet can be stolen and we cannot trust anyone?

0. Please Don't Tell

A brief primer on the codes and ciphers used throughout history to protect information.

Plaintext vs. Ciphertext

Plaintext
Ciphertext

I love the sun
w jd7h bmg vns

Cipher Shift (or substitution), aka Caesar Cipher

Plaintext	I love the sun
Ciphertext	? ???? ??? ???

Cipher Shift (zero or no shift)

Plaintext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	N

Plaintext Alphabet	N	O	P	Q	R	S	T	U	V	W	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Ciphertext Alphabet	N	C	P	Q	R	S	T	U	V	W	X	Y	Z

Cipher Shift (zero or no shift)

Plaintext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	N
Plaintext Alphabet	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Ciphertext Alphabet	N	C	P	Q	R	S	T	U	V	V	X	Y	Z

Cipher Shift (shift of one)

Plaintext Alphabet			C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	A	B	c	D	E	F	G	H	1	J	K	L	N

Plaintext Alphabet	N	O	P	Q	R	S	T	U	V	W	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Ciphertext Alphabet	N	C	P	Q	R	S	T	U	V	W	X	Y	Z

Cipher Shift (shift of one)

Plaintext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	B	C	D	E	F	G	H	I	J	K	L	N	

Cipher Shift (+1)

Plaintext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	B	C	D	E	F	G	H	I	J	K	L	N	N

Plaintext Alphabet	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Ciphertext Alphabet	C	P	G	R	S	T	U	V	W	X	Y	Z	A

Plaintext
i love the sun
Ciphertext
??????????????

Cipher Shift (+1)

Plaintext Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Ciphertext Alphabet	B	c	D	E	F	G	H	1	J	K	L	N	N

Plaintext Alphabet	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Ciphertext Alphabet	C	P	G	R	S	T	U	V	W	X	Y	Z	A

Plaintext i love the sun

Ciphertext

Cipher Shift (+1)

Cipher Shift (+1)

Plaintext Alphabet	A	B	c	D	E	G	H	I	J	K	L	M
Ciphertext Alphabet	в	c	-	E	F	H	1	J	k	L	N	N
Plaintext Alphabet	N	0	P	Q	R	T	u	v	w	x	Y	z
Ciphertext Alphabet	-	P	G	R	s	u	v	n	x	Y	z	A
Plaintext				V								
Ciphertext												

Cipher Shift Wheel

A brief history of how Caesar Cipher was broken ... and rest is history

Cipher Shift Decoded (or rather, decrypted!)

Cipher Shift Decoded (or rather, decrypted!)

An in-class exercise ... time to become Code Breakers

Cipher Shift Decoded (or rather, decrypted!)

Can you guess?

$$
\underline{B}
$$

Cipher Shift Decoded (or rather, decrypted!)

Can you guess?
$B \quad \mathrm{E}$

Cipher Shift Decoded (or rather, decrypted!)

Can you guess?
$B \quad \mathrm{E} \quad \mathrm{R}$

Cipher Shift Decoded (or rather, decrypted!)

Can you guess?
$B \quad \mathrm{E} \quad \mathrm{L}$

Cipher Shift Decoded (or rather, decrypted!)

Can you guess?
$\begin{array}{lll}\mathrm{B} & \mathrm{R} \quad \mathrm{L} \quad \mathrm{I}\end{array}$

Cipher Shift Decoded (or rather, decrypted!)

Another Cipher Shift Decoded (with numbers)

Can you guess?
2

Another Cipher Shift Decoded (with numbers)

Can you guess?
$2 \quad 5$

Another Cipher Shift Decoded (with numbers)

Can you guess?

But wait a minute!?

Another exercise ... time to become REAL Code Breakers!

Let's try to break a coded message

MPQZCP HP NLY ELWV LMZFE ESP DAPNTQTND ZQ XZOPCY NCJAEZRCLASJ, MWZNVNSLTYD, ZC MTENZTY, HP XFDE QTCDE ELWV LMZFE ESP CZWP ZQ XLESPXLETND, FYOPCDELYOTYR SZH TE TD LAAWTPO LYO SZH TE TD QFYOLXPYELW EZ LWW ESLE EPNSYZWZRJ LTXD EZ LNSTPGP.

Let's try to break a code by hand (you have 10 mins)

E: 21	D: 10	A: 5
L: 18	W: 9	H: 4
Z: 17	C: 8	V: 3
P: 16	Q: 6	J: 3
T: 15	X: 6	R: 3
Y: 11	O: 6	G: 1
N: 10	M: 5	
S: 10	F: 5	

Let's try to break a coded message (key=11)

Before we can talk about the specifics of modern cryptography, blockchains, or bitcoin, we must first talk about the role of mathematics, understanding how it is applied and how it is fundamental to all that technology aims to achieve.

Let's talk about DATA ...

A little "bit" of data

Unit

Bit (b) $\quad 1$ or 0
Byte (B) 8 bits

Comments

Short for Binary Digit, after the binary code
WHY 8?

American Standard Code for Information Interchange

ASCII (character encoding standard/protocol)

Binary Decoding (8-bit)

0	00110000	C	0100	0011	P	0101	0000	c	0110	0011	p	0111	0000
1	00110001	D	0100	0100	Q	0101	0001	d	0110	0100	a	0111	0001
2	00110010	E	0100	0101	R	0101	0010	e	0110	0101	r	0111	010
3	00110011	F	0100	0110	S	0101	0011	f	0110	0110			
	0	G	0100	0111	T	0101	0100	g	0110	0111	5	111	001
4	00110100	H	0100	1000	U	0101	0101	h	0110	1000	t	0111	10
5	00110101	I	0100	1001	v	0101	0110	I	0110	1001	u	0111	010
6	00110110	J	0100	1010	W	0101	0111	j	0110	1010	v	0111	
7	00110111	K	0100	1011	x	0101	1000	k	0110	1011	w		
8	00111000	L	0100	1100	Y	0101	1001	1	0110	1100			
9	00111001	M	0100	1101	z	0101	1010	m	0110	1101	x	0111	
A	01000001	N	0100	1110	a	0110	0001	n	0110	1110	Y	0111	
	01000010	\bigcirc	0100	1111	b	0110	0010	\bigcirc	011	1111	z	0111	101

Decimal - Binary - Octal - Hex - ASCII
Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	-
1	00000001	001	01	SOH	33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
2	00000010	002	02	STX	34	00100010	042	22	*	66	01000010	102	42	B	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	\#	67	01000011	103	43	C	99	01100011	143	63	c
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	\%	69	01000101	105	45	E	101	01100101	145	65	e
6	00000110	006	06	ACK	38	00100110	046	26	\&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27		71	01000111	107	47	G	103	01100111	147	67	9
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	OA	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	OB	VT	43	00101011	053	2 B	+	75	01001011	113	4B	K	107	01101011	153	6 B	k
12	00001100	014	0 C	FF	44	00101100	054	2 C	,	76	01001100	114	4C	L	108	01101100	154	6 C	1
13	00001101	015	OD	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6 D	m
14	00001110	016	OE	SO	46	00101110	056	2 E	.	78	01001110	116	4 E	N	110	01101110	156	6 E	n
15	00001111	017	OF	SI	47	00101111	057	2 F	1	79	01001111	117	4 F	0	111	01101111	157	6 F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	v	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	X	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
26	00011010	032	1A	SUB	58	00111010	072	3A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3 B	,	91	01011011	133	5B	[123	01111011	173	7 B	\{
28	00011100	034	1 C	FS	60	00111100	074	3 C	<	92	01011100	134	5C	1	124	01111100	174	7 C	1
29	00011101	035	1D	GS	61	00111101	075	3D	$=$	93	01011101	135	5D]	125	01111101	175	7D	\}
30	00011110	036	1E	RS	62	00111110	076	3 E	>	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
31	00011111	037	1F	US	63	00111111	077	3 F	?	95	01011111	137	5 F	-	127	01111111	177	7 F	DEL

A little "bit" of data

Unit

Bit (b)	1 or 0
Byte (B)	8 bits

Kilobyte (KB) $\quad 1,000$ B or 2^{10} bytes
Megabyte (MB) $\quad 1,000 \mathrm{~KB}$ or 2^{20} bytes
Gigabyte (GB) $\quad 1,000 \mathrm{MB}$ or 2^{30} bytes

Size

1 or 0
Byte (B)
8 bits

Comments

Short for Binary Digit, after the binary code
Enough info to create letters and numbers (basic unit of computing)
"thousands" in Greek
"large" in Greek
"giant" in Greek

A little "bit" of data (cont'd)

Unit
 Size

Terabyte (TB) $\quad 1,000$ GB or 2^{40} bytes
"monster" in Greek, about 2 billion credit card transactions

AWS Snowball (up to 80 TB, 72 TB usable)

A little "bit" of data (cont'd)

Unit
Size
Terabyte (TB) $\quad 1,000 \mathrm{~GB}$ or 2^{40} bytes

Petabyte (PB) 1,000 TB or 2^{50} bytes
Exabyte (EB) 1,000 PB or 2^{60} bytes In 2009, the entire internet was estimated at ~ 500 EB. In 2013, annual internet traffic flow surpassed 667 EB (Cisco)

AWS Snowmobile!

A little "bit" of data (cont'd)

Unit
Size
Zettayte (ZB) $1,000 \mathrm{~EB}$ or 2^{70} bytes

Yottabyte (YB) $\quad 1,000 \mathrm{ZB}$ or 2^{80} bytes

Comments
About 615 billion newspapers (88 copies for every human being)

Waaaay too big! Currently, all the combined hard-drives and storage capacity in the world are estimated at <0.0004 YB!

Plaintext vs. Binary Ciphertext (in "old"ASCII)

Plaintext
Binary

$K e y=$?

Plaintext vs. Binary Ciphertext (in "old"ASCII)

Plaintext	$\overbrace{1001000}^{H E E L E O}$	1000101	1001100	1001100
Binary	1001111			

Plaintext vs. Binary Ciphertext (in "old"ASCII)

Plaintext
Binary
Key = David
Ciphertext (xor)

```
H E L L O
```

1	1001000	1000101	1001100	1001100	1001111
1000100	1000001	1010110	1001001	1000100	

Boolean Logic \& Logic Gates

AND

OR

NOT

NOR

NAND

XNOR

XOR

Conjunction (AND), a logical operation

Disjunction (OR), a logical operation

OR	$A \longrightarrow Q$	$B-\geq 1-Q$	$A+B$ or $A \vee B$	Input		Output
				A	B	Q
				0	0	0
				0	1	1
				1	0	1
				1	1	1

Exclusive Disjunction (XOR), a logical operation

XOR	$B \rightarrow Q$	$B-=1-Q$	$A \oplus B$ or $A \bigvee B$	Input		Output
				A	B	Q
				0	0	0
				0	1	1
				1	0	1
				1	1	0

Exclusive Disjunction (XOR), a logical operation

Input		Output
	B	$(\mathrm{A} \oplus \mathrm{B})$
0	0	0
1	1	0
1	0	1
0	1	1

Plaintext vs. Binary Ciphertext (in "old"ASCII)

Plaintext
Binary
Key = David
Ciphertext (xor)

```
H E L L O
```

```
1001000 1000101 10011001001100 1001111
1000100 1000001 10101101001001 1000100
0 0 0 1 1 0 0 ~ 0 0 0 0 1 0 0 ~ 0 0 1 1 0 1 0 ~ 0 0 0 0 1 0 1 ~ 0 0 0 1 0 1 1
```


Plaintext vs. Binary Ciphertext (in "old"ASCII)

| Plaintext | $\overbrace{1001000}^{H E E L E O}$ | 1000101 | 1001100 | 1001100 | 1001111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Binary | 1000100 | 1000001 | 1010110 | 0110010 | 1000100 |

Let's discuss in the context of a case model...

Securing a connection

Securing a connection

$\stackrel{\ominus}{-1}$

Securing a connection

Securing a connection

Some "Key" Definitions!

OR

Open padlock (unlocked) OR decrypted

Securing a connection

$\stackrel{\ominus}{-1}$

Securing a connection

Remember these?!

Key
 OR

Closed padlock (locked)
Open padlock (unlocked)

But how to safely and securely transmit the cipher-shift "key"?

A clever thought-experiment to transmit key, esp to those you haven't met before!

How it works? Well, ...

\square

Isn't that cool? We exchanged a secret (encrypted) message without having to agree to and exchange keys beforehand!

Digital Cryptography

One encryption on top of another! Remember LIFO?

A clever way to transmit key, in particular to those you haven't met before!

How we do this in practice?

A clever way to transmit key, in particular to those you haven't met before!

"irreversible" solution = Public + Private Key Pairs

"irreversible" solution = Public + Private Key Pairs

Main Key Pair Attributes:

- Related, but separate (each unique on its own)
- They are unique to each person/user
- When one locks, only the other one can unlock
- Do NOT share private key ... ever!

Let's see how it all work ...

Sending an Encrypted Message with Key Pairs

Isn't that super cool?
 But how about the following scenario ...

Sending an Encrypted Message with Key Pairs

Who can decrypt this message? What do you need to do it?

Sending an Encrypted Message with Key Pairs

Sending an Encrypted Message with Key Pairs

Who can decrypt this message? EVERYONE What do you need to do it? MY PUBLIC KEY

Wouldn't that be stupid?

Who can decrypt this message? EVERYONE What do you need to do it? MY PUBLIC KEY

Wouldn't that be stupid? OR WOULD IT?!

Digital Signatures ... Proving Authorship

Do you know these gentlemen?

Pioneers in Cryptography

Hellman says of Merkle:

Whitfield Diffie Martin Hellman Ralph Merkle
"Ralph, like us, was willing to be a fool, and the way to get to the top of the heap in terms of developing original [thought] is to be a fool, because only fools keep trying. You have idea number 1 , you get excited and it flops. Then you have idea number 2, you get excited and it flops. Then you have idea number 99, you get excited and it flops. Only a fool would be excited by the 100th idea, but it might take 100 ideas before one really pays off. Unless you're foolish enough to be continually excited, you won't have the motivation and the energy to carry it through. And God rewards fools."

Remember safe deposit boxes?

Remember safe deposit boxes?

How to encrypt, sign, transmit, and decrypt a msg

An in-class exercise ... some simple math ;-)

Multiplying

294 * 992 = ? (by hand)

You have 5 minutes!

Multiplying

294 * $992=291,648$

Multiplying vs. Factoring

$$
294 * 992=291,648
$$

Now factor 938,081 (by hand)
You have 10 minutes!

Multiplying vs. Factoring

$$
294 * 992=291,648
$$

Now factor 938,081 1087 * 863 (two primes)

Use of Prime Numbers and Modular Arithmetics

There are
1,925,320,391,606,803,968,923
prime numbers below 10^{23} alone

Largest prime number discovered yet ...

INDEPENDEN'T News Voices Sports Culture Indy/Life Video Daily E Q = = =

News Science

Largest known prime number discovered with over 23 million digits

Discovery made on computer belonging to electrical engineer who searched for the elusive number for 14 years

Josh Gabbatiss Science Correspondent | @josh_gabbatiss |Friday 5 January 2018 18:00| 2 comments

If two plus three equals five $(2+3=5)$ and two plus eleven equals one ($2+11=1$), then what is five plus eleven? ($5+11=$??)

Hint ...

If two plus three equals five $(2+3=5)$ and two plus eleven equals one ($2+11=1$), then what is five plus eleven? ($5+11=$??)

Let's review some (simple) math ... sorry!!

A few words on (math) functions

$$
f(x)=x^{2}+8
$$

Functions in Math

- Simply put, a function is a (mathematical) operation ...
- ... one input equals to one output
- $f(x)$ where x is the input value
- Example:
- our function is "Doubling" \rightarrow
- $f(x)=2 x \rightarrow$
- Take an input, then double it (or multiply by 2)
- For $x=4$ (i.e. input is 4), then the output is 8
- But then a funny thing happens ...

Functions in Math

- But then a funny thing happens ...
- ... our function is still "Doubling" \rightarrow
- So what if I give you the output only? Can you figure out the input?
- OF COURSE ... we'll just reverse the function
- Example:
- our function is "Doubling" \rightarrow
- $f(x)=2 x \rightarrow$
- If the output is $\mathbf{4 4}$, then the input is ...
- 22 ;-)
- Most functions in math are Two-way Functions (reversible)
- But then ...

Modular (or clock) Arithmetics

Start at 5, then jump 11 units ...

If $(2+3=5)$ and $(2+11=1)$,
 then ($5+11=\underline{4}$)

$2+3=5(\bmod 12)$
 $2+11=1(\bmod 12)$

$5+11=4(\bmod 12)$

Let's calculate $11 \times 9(\bmod 13)=$?

Let's calculate $11 x 9(\bmod 13)=$?
 First, let's use "regular" math: 11x9=99
 Then, let's divide: $99 \div 13=7$, with remainder 8

> So
> $11 \mathrm{x} 9=8(\bmod 13)$

In-Class Exercise (you can use calculators only)

for $\mathrm{x}=$	1	2	3	4	5	6
3^{x}						
$3^{x}(\bmod 7)$						

Homework for Next Class (can use calculator

for $x=$	1	2	3	4	5	6
3^{x}	3	9	27	81	243	729
$3^{x}(\bmod 7)$	3	2	6	4	5	1

Let's consider this special one-way function ...

$Y^{x}(\bmod P) \ldots$ with $Y<P$ as two prime numbers
Y and P are NOT secrets and can be shared

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice
Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)

Bob
Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice

Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Alice picks a secret number \mathbf{A} (e.g. 3)

Bob
Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Bob picks a secret number \mathbf{B} (e.g. 6)

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice

Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Alice picks a secret number \mathbf{A} (e.g. 3)
Plug 3 as X into our function to get \boldsymbol{a}, so 7^{3} $(\bmod 11) \rightarrow 343(\bmod 11)=2$

Bob

Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Bob picks a secret number \mathbf{B} (e.g. 6)
Plug 6 as X into our function to get $\boldsymbol{\beta}$, so 7^{6} $(\bmod 11) \rightarrow 117,649(\bmod 11)=4$

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice

Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Alice picks a secret number \mathbf{A} (e.g. 3)
Plug 3 as X into our function to get \boldsymbol{a}, so 7^{3} $(\bmod 11) \rightarrow 343(\bmod 11)=2$

Send a (or 2) to Bob

Bob

Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Bob picks a secret number B (e.g. 6)
Plug 6 as X into our function to get $\boldsymbol{\beta}$, so 7^{6}
$(\bmod 11) \rightarrow 117,649(\bmod 11)=4$
Send $\boldsymbol{\beta}$ (or 4) to Alice

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice

Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Alice picks a secret number \mathbf{A} (e.g. 3)
Plug 3 as X into our function to get \boldsymbol{a}, so 7^{3} $(\bmod 11) \rightarrow 343(\bmod 11)=2$

Send \boldsymbol{a} to Bob
Plug $\boldsymbol{\beta}$ into $\boldsymbol{\beta}^{A}(\bmod 11) \rightarrow 4^{3}(\bmod 11) \rightarrow 64$ $(\bmod 11)=9$

Bob

Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Bob picks a secret number \boldsymbol{B} (e.g. 6)
Plug 6 as X into our function to get $\boldsymbol{\beta}$, so 7^{6} $(\bmod 11) \rightarrow 117,649(\bmod 11)=4$

Send $\boldsymbol{\beta}$ to Alice
Plug \boldsymbol{a} into $\boldsymbol{a}^{\mathrm{B}}(\bmod 11) \rightarrow 2^{6}(\bmod 11) \rightarrow 64$ $(\bmod 11)=9$

Our function is $Y^{x}(\bmod P) \ldots$ with $Y<P$

Alice

Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Alice picks a secret number \mathbf{A} (e.g. 3)
Plug 3 as X into our function to get \boldsymbol{a}, so 7^{3} $(\bmod 11) \rightarrow 343(\bmod 11)=2$

Send \boldsymbol{a} to Bob
Plug β into $\beta^{A}(\bmod 11) \rightarrow 4^{3}(\bmod 11) \rightarrow 64$ $(\bmod 11)=9$

How cool! Alice has the same KEY as Bob without exchange of the actual key!

Bob

Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Bob picks a secret number \boldsymbol{B} (e.g. 6)
Plug 6 as X into our function to get $\boldsymbol{\beta}$, so 7^{6} $(\bmod 11) \rightarrow 117,649(\bmod 11)=4$

Send β to Alice
Plug \boldsymbol{a} into $\boldsymbol{a}^{\mathrm{B}}(\bmod 11) \rightarrow 2^{6}(\bmod 11) \rightarrow 64$ $(\bmod 11)=9$

How cool! Bob has the same KEY as Alice without exchange of the actual key!

If you are Eve (snooper), can you figure out the key?

Alice
Agree \& share on Y \& P (e.g. Y=7 \& P=11)
Alice picks a secret number \mathbf{A} (e.g. $\boldsymbol{\square}$)
Plug as X into our function to get \boldsymbol{a}, so 7] $(\bmod 11)=2$

Send \boldsymbol{a} to Bob
Plug $\boldsymbol{\beta}$ into $\boldsymbol{\beta}^{A}(\bmod 11) \rightarrow 4 \(\bmod 11)=\square$ $\left[7^{\times}(\bmod 11)\right]$ and both \boldsymbol{a} and $\boldsymbol{\beta}$, but neither A nor B!

Bob

Agree \& share on Y \& P (e.g. $Y=7$ \& $P=11$)
Bob picks a secret number \mathbf{B} (e.g.)
Plug as X into our function to get $\boldsymbol{\beta}$, so 7 $(\bmod 11)=4$

Send $\boldsymbol{\beta}$ to Alice
Plug \boldsymbol{a} into $\boldsymbol{a}^{B}(\bmod 11) \rightarrow 2 \|(\bmod 11)=\square$
What is the KEY? Eve knows the function, Y, P What is the KEY? Even knows the function, Y ,
$P\left[7^{\times}(\bmod 11)\right]$ and both \boldsymbol{a} and $\boldsymbol{\beta}$, but neither A nor B!

We'll come back to one-way functions later on, ... so stay tuned ;-)

Now back to our Public-Private Key Pair model

Public Key Encryption

Public Key Encryption: Ease Computational Reqs.

Public Key Encryption

-

$\left.)_{3}\right)_{3}$

Public Key Encryption

-8 気

Q Q

Public Key Encryption

HTTPS Adoption (link)

Percentage of pages loaded over HTTPS in Chrome by platform
——Windows - Android - Chrome - Linux - Mac
100\%

90\%

80\%
70%

60\%
50\%

40\%

Fragment navigations, history push state navigations, and all schemes besides HTTP/HTTPS (including new tab page navigations) are not included.

A little fun learning ... with movies!

One of the greatest movies of all time ... if not THE greatest is ...

BALE CANE LEDGER OLOMMAN ECK゙मART GYLELENHAAL FRREEMAN
THE DARK KNIGH T

The database is null-key encrypted.
\square

It can only be accessed by one person.

Aren't movies fun?! Back to our impostor ...

The Impostor (or Impersonator)

The Impostor

The Impostor

Alice

The Impostor

A Real-Life Impostor

> Someone just used your password to try to sign in to your Google Account

```
> john.podesta@gmail.com.
```

$>$
> Details:
> Saturday, 19 March, 8:34:30 UTC
> IP Address: 134.249.139.239
> Location: Ukraine
$>$
$>$ Google stopped this sign-in attempt. You should change your password
> immediately.
$>$
> CHANGE PASSWORD https://bit.ly/1PibSU0
$>$
$>$ Best,
> The Gmail Team
> You received this mandatory email service announcement to update you
about
> important changes to your Google product or account.
$>$

```
> Someone just used your password to try to sign in to your Google
Account
> john.podesta@gmail.com.
>
> Details:
> Saturday, 19 March, 8:34:30 UTC
> IP Address: 134.249.139.239
> Location: Ukraine
>
> Google stopped this sign-in attempt. You should change your password
> immediately.
>
    CHANGE PASSWORD <https://bit.ly/1PibSUO>
> Best,
> The Gmail Team
> You received this mandatory email service announcement to update you
about
> important changes to your Google product or account.
>
```


Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

Sending Side

Digital Signatures

Private Key

Sending Side

Digital Signatures

Sending Side

Digital Signatures

Digital Signatures

Message

Sending Side

Digital Signatures

Digital Signatures

Images: Wikimedia

Digital Signatures

Receiving Side

Digital Signatures

Public Key
of Sender
Receiving Side

Digital Signatures

Public Key
of Sender

Message

Digital Signatures

Receiving Side

Digital Signatures

Digital Signatures

Receiving Side

Digital Signatures

Receiving Side

Digital Signatures

Images: Wikimedia

Digital Signatures

Digital Signatures \& Certificates

Digital Signatures \& Certificates: An Analogy

Certificates Authorities

Digital Signatures \& Certificates

Digital Signatures \& Certificates

VERISIGN

TLS Handshake

- Secure
https://www.google.com/

Digital Signatures \& Certificates

Digital Signatures \& Certificates

Digital Signatures \& Certificates: A Bar Analogy

Digital Signatures \& Certificates

Digital Signatures \& Certificates

Digital Signatures \& Certificates

Digital Signatures \＆Certificates

\uparrow
\uparrow目。

目。

Digital Signatures \& Certificates

Digital Signatures \& Certificates

Images: Wikimedia

One more thing ... best password?

GMw89\#hUPn_d>k

horse_correct_bat

One more thing ... best password?

GMw89\#hUPn_d>k
horse_correct_bat

One more thing ... best password?

GMw89\#hUPn_d>k (72.0 bits of entropy)
horse_correct_bat (74.3 bits of entropy)

Horse_correct_bat (82.6 bits of entropy)

III. Too Big to Fail

What happens when the attacker is someone we're supposed to trust?

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Can't Trust the Banks

Can't Trust the Banks

$\equiv \quad$ The Alewhork wimes Q
 ASIA PACIFIC
 Bangladesh Bank Chief Resigns After Cyber Theft of $\$ 81$ Million

By RICK GLADSTONE MARCH 15, 2016

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Can't Trust the Tech Companies

Can't Trust the Tech Companies

- $0, \cdots$	theguardian	
home) US	politics world opinion	三 all
US national security Glenn Greenwald on security and liberty		
NSA Prism program taps in to user data of Apple, Google and others		
Top-secret Prism program claims direct access to servers of firms including Google, Apple and Facebook - Companies deny any knowledge of program in operation since 2007		

Can't Trust the Tech Companies

Can't Trust the Tech Companies

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Can't Trust the Stores

Can't Trust the Stores

Target: 40 million credit cards compromised

by CNNMoney Staff @CNNMoney
(L) December 19, 2013: 4:41 PM ET

Can't Trust the Stores

() © (ㅌ) (9)	manimaes smazaz un
Home Depot Hackers	edit cards compromised
Email Addresses	$\square 000{ }^{\circ}$
Hackers Used Password Stolen From Vendor to Gain Access to Retailer's Systems By Shelly banjo	

Can't Trust the Stores

\equiv	THEW W	FOXNEWS Food \& Drink	Q

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Can't Trust the CAs

Can't Trust the CAs

Hacking in the Netherlands Took Aim at Internet Giants

By THE ASSOCIATED PRESS SEPT. 5, 2011

AMSTERDAM (AP) - Attackers who hacked into a Dutch Web security firm have issued hundreds of fraudulent security certificates for intelligence agency Web sites, including the C.I.A., as well as for Internet giants like Google, Microsoft and Twitter, the Dutch government said on Monday.

Can't Trust the CAs

	cs
((cc.e.) The Securit ina serious way ${ }^{\text {Sews }}$	s
Chinese Certificate Authority 'mistakenly' gave out SSL Certs for GitHub Domains	

Can't Trust the CAs

(((

Things We’ve Been Trusting

- The banks with which we store our money.
- The tech companies with which we send messages and share files with friends/family.
- The stores we shop from.
- The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting

- The banks with whir tore our mone
- The tech companies friends/family.
- The stores we shop from.
- The list of trusted

Decentralized Networks

A

B

Real Decentralized Technologies

Internet

Bitcoin

End of First Session (yay

Thank you for your attention and participation

Get some rest, review the material, and we'll see you in our next class

Blockchain, Cryptocurrencies \& Digital Tokens Demystified
 Fall 2023 (EMBA)
 Columbia Business School

Welcome Back to Session 2

Curriculum Roadmap

Morning	Nov 4	Nov 18	Dec 2	Dec 9
	Networks \& Protocols	Hashing, Hashing Tables \& One- Way Functions \& a few more tech	Bitcoin + other forms of crypto payments and store of value mechanisms and media	DeFi \& Other Applications (Digital Tokens, CBDC, etc.) + Speaker: Future of Finance + Discussion Forum
	Lunch	Lunch	Lunch	Lunch
Afternoon	Encryption \& Cryptography (plus some math!)	Bring it All Together: Let's build a blockchain \& discuss variety of cases	Ethereum \& Other Digital Tokens + Speaker: Regulatory \& Legal Considerations in Blockchain \& Digital Assets	Governance, More; Final Lecture on How the Future May Play Out + Final Presentations

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9

Class Plan

Nov 4
Nov 18
Dec 2
Dec 9

08:30 am to 6:45 pm (K-440)Module $1+2$
08:30 am to 6:45 pm (K-440)Module $3+4$
08:30 am to 6:45 pm (K-440)Midterm Project + 5 \& $6+$ Guest Speaker
08:30 am to 6:45 pm (K-440)Module 7 \& $8+$ Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am
9:45-10:00 am
10:00-11:15 pm
11:15 am-12:30 pm
12:30-2:00 pm 2:00-2:15 pm
2:15-3:30 pm
3:30-3:45 pm
3:45-5:00 pm
5:00-5:15 pm
5:15-6:45 pm

Lecture

Break
Lecture
Lunch (1h15min) - Kravis 2nd floor (Smith Dining)

Lecture

Break

Lecture

Break
Lecture
Break
Lecture

Important Admin Items for the Day

- Team formations finalized today, ideally by 3:30 pm and no later than end of day today
- Details on your midterm project
- Thoughts on "Blockchain Killer App" for Sessions 3 and/or 4
- Make sure not to fall behind as Sessions $1 \& 2$ are foundational
- Watch lecture recordings and email me for office hours
- I REALLY enjoyed our first session, and thank you VERY much for the amazing level of participation and engagement. Let's hope today would be equally fun, if not more :)
- ... btw, did you watch The Simpsons episode right after our first class session? It was about blockchain \& NFTs!! Check out S35E5.

THE MOST Important Admin Item for the Day

THE MOST Important Admin Item for the Day

Catering today is by Dinosaur BBQ:

- Mac \& cheese
- Turkey
- Beef brisket
- BBQ Salmon
- Portabella Mushrooms w/ peppers \& onions
- Simmered Greens
- Sweet Potatoes

Before we begin, any interesting points or lessons from our first session you'd like to share?

Let's start our Session 2

History of Cryptographically-based e-Currencies:

It's nothing new:

- Remember Error 402?

History of Cryptographically-based e-Currencies:

It's nothing new:

- Remember Error 402?
- DigiCash: proposed in 1983 by David Chaum, set up eCash, launched in 1989, declared bankruptcy in 1998
- CyberCash: payment service founded in 1994, IPO in 1996, set up CyberCoin for micro-payments (through NetBill at CMU), went bankrupt in 2001
- Hashcash: proposed in 1997 by Adam Back,
- BitGold: proposed by Nick Szabo in 1998 (he coined "Smart Contracts.") Although never implemented, it has many similarities to Bitcoin!
- ... and others (Hashcash, B-Money, First Virtual, etc.)

Why did these early forms of digital currencies fail?

Double-Spending, Trust, and Consensus are amongst the top reasons ...

Speaking of consensus ...

Byzantine Generals Problem \&
 the question of Byzantine Fault Tolerance

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.
Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed Systems—network operating systems; D.4.4 [Operating Systems]: Communications Managementnetwork communication; D.4.5 [Operating Systems]: Reliability-fault tolerance

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 382-401.

In a distributed network, how many node failures can the system tolerate and still function as intended in delivering consensus?

IV. Building the Blockchain

Using cryptography to build decentralized technologies.

Blockchains

Alice

Edith

Central Ledger Ledger

Central Ledger Ledger

Central Ledger Ledger

Central Ledger Ledger

Central Ledger \times Ma Ledger

Central Ledger Ledger

Blockchains x han Ledger

Blockchains

Blockchains

Blockchains: everyone updates on their own asap!

Blockchains

Blockchains: stay in sync with code and NO trust

Blockchains: store in blocks chained together

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $\$ 100$

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $\$ 100$

Alice gives Bob \$5

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $\$ 100$

Blockchain: a cryptographically-verifiable Tx chain

Blockchain: a cryptographically-verifiable Tx chain

Edith gives Carol \$25

How to Verify? How to Encrypt?

> Bob gives Edith \$10

Once again, we need some simple math (don't we love math by now?!)

Remember functions?

$$
f(x)=x^{2}+8
$$

Functions in Math

- Simply put, a function is a (mathematical) operation ...
- ... one input equals to one output
- $f(x)$ where x is the input value
- Example:
- our function is "Doubling" \rightarrow
- $f(x)=2 x \rightarrow$
- Take an input, then double it (or multiply by 2)
- For $\mathbf{x = 4}$ (i.e. input is $\mathbf{4}$), then the output is $\mathbf{8}$
- But then a funny thing happens ...

Functions in Math

- But then a funny thing happens ...
- ... our function is still "Doubling" \rightarrow
- So what if I give you the output only? Can you figure out the input?
- OF COURSE ... we'll just reverse the function
- Example:
- our function is "Doubling" \rightarrow
- $f(x)=2 x \rightarrow$
- If the output is $\mathbf{4 4}$, then the input is ...
- 22 ;-)
- Most functions in math are Two-way Functions (reversible)
- But then ...

Hashing (One Way Functions)

Hashing (One Way Functions)

Hashing (One Way Functions)

Some Input $\rightarrow \begin{gathered}\text { Hash } \\ \text { Function }\end{gathered} \rightarrow$ Output

Hashing (One Way Functions)

Some Input
 Hash
 Function
 Output

Output

Hashing (One Way Functions)

Some Input
 Hash
 Function
 Output

Output

Hash

Reverser

Hashing (One Way Functions)

Some Input
 Hash
 Function
 Output

Doesn't Exist

A great example of a One-way Function ...

Another great example of a One-way Function

Real-World One-Way Function (Hashing Function)

Real-World One-Way Function (Hashing Function)

SuperPages.com	195
Cartage New England Inc 26 Allen In Inswich 01938. 978 356-9960	Carter F 24 Hillock Ros 02131.............. 617 327-1105 Faye \& Ricky
Cartagema Lydia	357 Columbus Av Bos 02116........... 617 437-7331
18 Jewett Ros $02131 ~$ Cartagena Avith	Franklin \& Anne
98 Bancoft Rox 02119................ 617 442-9780	
Hyd 02136........................... $617361-5253$	
Jessica 50 Decatur Cha 02129......... 617 241-0152	Fred 96 Hinckley Rd Mi 02186617 698-1343
Lucilla 174 Harard Cam 02139....... $6174391-5621$	G \& R 8 Verdun Dor 02124.............617 436-8906
M 95 R Rowe Ros 02131................. 617	G T 27 franklin Av Som 02145........... 617 623-7121
Melvin 5016 Green Cam	Gayle 25 frontenac Dor 02224.......... 617825 -0322
arte Nicholas	Geo S 15 Moss Hill R d Jam 02230......617 522-3215
18 Appleton Boston 02116.............617 695-6996	
Cartegena 044 Milford Bos 02118617 338-8219	Carter Halliday Associate
Carten Thos J Sr \& Claire IParadise Rd Mil 02186................ 617 698-6163	Carter Harry F
omas \& Kathl	26 Runng Brik Rd W Rox 02132617 325-5465
50 Thompson LL Mil 02186............617 696-6919	Carter Hide Co Inc
rter A Ros 02131...................... 617 327-2257	146 Summer Bos 02110..................... 617 542-7987
A Roxbury.............................. 617 442-5230	Carter Hilary 61 Harve Cam 02140..... 617 876-2750
A 31 Bethune Wy Rorbury 0219........ 617 442-1219	Horace
A 260 Putuam ar Cambridge 02139.....617 492-4174	Howard Jr 26 Notre Dme Rox 02119.617 445-5552
A M 255 Masclsts Av Bos 02115........617 266-7153	

Real-World One-Way Function (Hashing Function)

SuperPages.com

Cartage New England Inc 26 Allen Ln Ipswich 01938.........	978 356-9960
Cartagema Lydia	
18 Jewett Ros 02131	617 323-7639
Cartagena Avith	
9 Bancroft Rox 02119	617 442-9780
B Hyd 02136.	617 361-5253
Jessica 50 Decatur Cha 0212	617 241-0152
Lucilla 174 Harvard Cam 0213	617 491-5621
M- 95 Rowe Ros 02131.	617 323-9713
Melvin 501 Green Cam 02139	576-1061
Carte Nicholas	
18 Appleton Boston $02116 .$.	617 695-6996
Cartegena 04 Milford Bos 021	8....... 617 338-8219
Carten Thos J Sr \& Claire 1 Paradise Rd Mil 02186.....	617 698-6163
Thomas \& Kathleen	
50 Thompson Ln Mill 02186.	617 696-6919
arter A Ros 02131.	617 327-2257
A Roxbury...	617 442-5230
A 31 Bethune Wy Roxbury 0211 617 442-1219
A 260 Putnam Av Cambridge 02	39..... 617 492-4174
A M 255 Maschsts Ar Bos 0271	617 266-7153

Our Function is =
 for a given input, find the output

Our Function is = for a given input (name) \rightarrow

find the output (corresponding phone number)

A Real-World Hashing Function

SuperPages.com

Cartage New England Inc	
Cartagema Lydia	
18 Jewett Ros 02	
Cartagena Avith	
9 Bancroft Rox 021	
Hyd 02136	617 361-5253
Jessica 50 Decatur Cha $02129 \quad 617$ 241-0152	
Lucilla 174 Harvard Cam 02139........617 491-5621	
M-95 Rowe Ros 02131....................617 323-9713	
Melvin 501 Green Cam	
Carte Nicholas	
18 Appleton Boston 02116.............617 695-6996	
Cartegena 04 Milford Bos 02118........617 338-8219 Carten Thos J Sr \& Claire	
1 Paradise Rd Mil 02186.............. 617 698-6163	
Thomas \& Kathleen	
50 Thompson Ln Milil 02	617 696-6919
arter A Ros 02131....................... 617 327-2257	
A Roxbury................................ 617 442-5230	
A 31 Bethune Wy Roxbury 02119.........617 442-1219	
A 260 Putnam Av Cambridge 02139...... 617 492-4174	
255 Maschsts Av Bos 02115617 266-7	

Carter F 24 Hillock Ros 02131............... 6 Faye \& Ricky
357 Columbus Av Bos 02116..........617 437-7331
Francis S 134 Temple W Rox 02132.. 617 323-6781
Franklin \& Anne
221 Mt Auburn Cam 02138........... 617 354-0798
Fred 42 Haverford Jàm 02130..........6617 524-3078
Fred 96 Hinckley RdMin 02186...........617 698-1343
G \& R 8 Verdun Dor 02124...............617 436-8906
G T 27 Frankin Av Som 02145...........617 623-7121
Gayle 25 Frontenac Dor 02124..........617 825-0322
Geo S 115 Moss Hill Rd Jam 02130.....617 522-3215
George 125 Nashua Bos 02114.......617 367-9548
Carter Halliday Associate
107 S Street Bos 02111.....................617 456-1689
arter Harry F
26 Runng Brk Rd W Rox 02132........617 325-5465
arter Hide Co Inc
146 Summer Bos 02110.....................617 542-7987
Carter Hilary 61 Harvey Cam 02140.....617 876-2750
Horace
241 Walnut Av Roxbury 02119.........617 442-5307
Howard Jr 26 Notre Dme Rox 02119.617 445-5552

357 Columbus Av Bos 02116...........617 437-7331
Francis S 134 Temple W Rox 02132.. 617 323-6781 ranklin \& Anne
221 Mt Auburn Cam 02138.............617 354-0798
Fred 96 Hinckley Rd MiI 02186617 698-1343
G \& R 8 Verdun Dor 02124................617 436-8906
G T 27 Frankin Av Som 02145............ 617 623-7121
Gayle 25 Frontenac Dor 02124.......... 617 825-0322
Geo S 115 Moss Hill Rd Jam 02130..... 617 522-3215
George 125 Nashua Bos 0214......... 617 367-9548
107 S Street Bos 02111........................617 456-1689
26 Runng Brk Rd W Rox 02132........ 617 325-5465
146 Summer Bos 02110........................ 617 542-7987
Carter Hilary 61 Harvey Cam 02140..... 617 876-2750

Howard Jr 26 Notre Dme Rox 02119.617 445-5552

A Real-World Hashing Function

A Real-World Hashing Function

A Real-World Hashing Function

A Real-World Hashing Function

Columbia
Business

(212) 854-1100

A Real-World Hashing Function

(212) 854-5553

A Real-World Hashing Function

(212) 854-5553

So that you know what one-way functions are, let's continue to learn more about hashing and hashing tables ...

Imagine we have a database of over 50 million phone numbers of our customers in the United States. My database does not allow sorting, so how do I find the name of a business associated with a phone number in our database?

Business Name	Phone Number
Stone Rock Capital LLC	$212-854-3487$
Simple Basic Partners LLP	$213-718-1696$
Blue Pebble Capital LLC	$212-376-3900$
Navy Rock Ventures LLC	$323-839-1748$
Sky Limit Venture Partners LLP	$650-337-6291$

Business Name	Phone Number
Stone Rock Capital LLC	$212-854-3487$
Simple Basic Partners LLP	$213-718-1696$
Blue Pebble Capital LLC	$212-376-3900$
Navy Rock Ventures LLC	$323-839-1748$
Sky Limit Venture Partners LLP	$650-337-6291$

Let's develop a method (Protocol or Algorithm) to simplify these phone numbers and be able to create sub-categories for storing in our database ...

212-854-3487 (take a number from our directory)

2128543487 (separate into two-digit numbers)
$2+12+85+43+48+7$ (add up the digits of each tw-digit pair until you get a single-digit number)
$\begin{array}{lllll}3 & 10 & 9 & 7 & 15\end{array}$
$\begin{array}{llll}3 & 1+0 & 9 & 7\end{array}$
$\begin{array}{llll}3 & 1 & 9 & 6 \text { (Done! Then combine to form a } 5 \text {-digit category number for storing) }\end{array}$
31976

Business Name	Phone Number	Category
Stone Rock Capital LLC	$212-854-3487$	31976
Simple Basic Partners LLP	$213-718-1696$	
Blue Pebble Capital LLC	$212-376-3900$	
Navy Rock Ventures LLC	$323-839-1748$	
Sky Limit Venture Partners LLP	$650-337-6291$	

213-718-1696 (take a number from our directory)

2137181696 (separate into two-digit numbers)
$2+13+71+81+69+6$ (add up the digits of each tw-digit pair until you get a single-digit number)

$\begin{array}{lllll}3 & 10 & 9 & 7 & 15\end{array}$

$\begin{array}{llll}3 & 1+0 & 9 & 7\end{array}$
$\begin{array}{llll}3 & 1 & 9 & 6 \text { (Done! Then combine to form a } 5 \text {-digit category number for storing) }\end{array}$
31976

Business Name	Phone Number	Category
Stone Rock Capital LLC	$212-854-3487$	31976
Simple Basic Partners LLP	$213-718-1696$	31976 (is this a problem?!)
Blue Pebble Capital LLC	$212-376-3900$	
Navy Rock Ventures LLC	$323-839-1748$	
Sky Limit Venture Partners LLP	$650-337-6291$	

78742938817753999196055303459477291037892373684068

78742938817753999196055303459477291037892373684068
$7+87+42+9$ 3+8 ...
15131111 ...
$1+51+31+11+1 \ldots$

6422 ...

Let's continue to learn more about hashing and hashing tables ...

Name	ID Codes
Dara	330 i
Cara	X7
Bea	X3
Alice	M4
Ella	128 i

Name	V
Alice	ID Codes
Bea	X3
Cara	X7
Dara	330 i
Ella	128 i

Name	ID Codes
Ella	128 i
Dara	330 i
Alice	M4
Bea	X3
Cara	X7

Again, imagine no sorting is allowed ...

 or the table has tens of thousands of rows and hundred of columns (big data)| Name | Codes |
| :--- | :--- |
| Stadtverordnetenversammlung | 2840 |
| KraftfahrzeugHaftpflichtversicherung | 9508 |
| Siebentausendzweihundertvierundfünfzig | 7254 |
| Rechtsschutzversicherungsgesellschaften | 3126 |
| Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz | 5434 |
| Donaudampfschifffahrtselektrizitätenhauptbetriebswerkbauunterbeamtengesellschaft | 8923 |

Item Number	Tariff Code
78742938817753999196055303459477291037892373684068	z9m0
76539710192327255231902237652982747470592661143566	$0 h 23$
88984727710651739231245830019043173775547558023984	3 f 26
77603278128172851537873810966507560948211829756526	787 y
46527684654614009996682441601858375203324083908888	$8 \mathrm{nc6}$

Item Number	Tariff Code
78742938817753999196055303459477291037892373684068	z9m0
76539710192327255231902237652982747470592661143566	0 h 23
88984727710651739231245830019043173775547558023984	$3 f 26$
77603278128172851537873810966507560948211829756526	787 y
46527684654614009996682441601858375203324083908888	$8 \mathrm{nc6}$

78742938817753999196055303459477291037892373684068

78742938817753999196055303459477291037892373684068
$7+87+42+9$ 3+8 ...
15131111 ...
$1+51+31+11+1 \ldots$

6422 ...

Hash	Item Number	Tariff Code
1458	78742938817753999196055303459477291037892373684068	z9m0
5624	76539710192327255231902237652982747470592661143566	Oh23
4548	88984727710651739231245830019043173775547558023984	$3 f 26$
4465	77603278128172851537873810966507560948211829756526	787 y
2677	46527684654614009996682441601858375203324083908888	8nc6

We need to REALLY minimize the chance of two items having the same hash ...

SHA to the rescue!

Bitcoin's Hashing Function

Bitcoin's Hashing Function

Arbitrary Data

SHA-256

Bitcoin's Hashing Function

Bitcoin's Hashing Function

$0 \rightarrow \mathbf{2}^{\wedge} \mathbf{2 5 6}$

SHA-256

SHA-256 hash: a number with the range:

$$
0 \rightarrow 2^{256}
$$

SHA-256

2^256 equals to:

115792089237316195423570985008687907853269984665640564039457584007913129639936

SHA-256

SHA-256 hash: a number with the range:

$$
0 \rightarrow 2^{256}
$$

SHA-256: Using an unimaginably large number!

Note that 2^{256} is approximately 10^{77}
The sum of all the atoms in the universe are estimated to be 10^{80} (or between 10^{78} and 10^{82})

SHA-256 Hash: a continuous number line

SHA-256 Hash: a continuous number line

$\mathbf{2}^{\wedge} \mathbf{2 5 6}=115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936$

SHA-256: points on the long line

Each point would be consisting of many digits:

```
0
1
2
3
4
8
25
```

9387
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639

Numerical Encoding

	Example	Digits Used
Binary Number	11011000	01
Decimal Number	2128541100	0123456789
Hexadecimal Number	7 edef5ac	$0123456789 a b c d e f$

Odometer (mileage count)

Odometer (mileage count)

Odometer (mileage count)

Numerical Encoding

	Example	Digits Used
Binary Number	11011000	01
Decimal Number	2128541100	0123456789
Hexadecimal Number	7 edef5ac	$0123456789 a b c d e f$

SHA-256 Hash

Decimal HexaDecimal

O 000

SHA-256 Hash

Decimal HexaDecimal

O 000
1001

SHA-256 Hash

Decimal HexaDecimal

O 000
$1 \quad 001$
2002

SHA-256 Hash

Decimal HexaDecimal

0 000
 1001
 2002
 9 009

SHA-256 Hash

Decimal HexaDecimal

(000
$1 \quad 001$ 2002

9 0009
100 a

SHA-256 Hash

Decimal HexaDecimal

0 000
100120029 009
$10 \quad 00$ a
1100 b
1500 f

SHA-256 Hash

Decimal HexaDecimal

> 0 000 1001 2002 9 009 $10 \quad 00$ a

SHA-256 Hash

Decimal HexaDecimal

(000
$1 \quad 001$ 2002
9 009
1000 a
1100 b
1500 £
1600010
1700011

SHA-256 Hash

Decimal HexaDecimal

000000000000
1001 2002 9 009 1000 a
11 00 bb

1600010
1700011
1,0003 e8 $1,000,000 \quad 00$ f4240

Numerical Encoding

	Example	Digits Used
Binary Number	11011000	01
Decimal Number	2128541100	0123456789
Hexadecimal Number	7 edef5ac	$0123456789 a b c d e f$

Decimal - Binary - Octal - Hex - ASCII

Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	-
1	00000001	001	01	SOH	33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
2	00000010	002	02	STX	34	00100010	042	22	*	66	01000010	102	42	B	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	\#	67	01000011	103	43	C	99	01100011	143	63	c
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	\%	69	01000101	105	45	E	101	01100101	145	65	e
6	00000110	006	06	ACK	38	00100110	046	26	\&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	-	71	01000111	107	47	G	103	01100111	147	67	9
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	H	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	0A	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6 A	j
11	00001011	013	OB	VT	43	00101011	053	2 B	+	75	01001011	113	4B	K	107	01101011	153	6 B	k
12	00001100	014	OC	FF	44	00101100	054	2 C	,	76	01001100	114	4 C	L	108	01101100	154	6C	1
13	00001101	015	OD	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6 D	m
14	00001110	016	OE	SO	46	00101110	056	2E	.	78	01001110	116	4E	N	110	01101110	156	6 E	n
15	00001111	017	OF	SI	47	00101111	057	2 F	1	79	01001111	117	4F	0	111	01101111	157	6 F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	v	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	X	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	y
26	00011010	032	1A	SUB	58	00111010	072	3 A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3 B	;	91	01011011	133	5B	[123	01111011	173	7 B	\{
28	00011100	034	1C	FS	60	00111100	074	3 C	<	92	01011100	134	5C	1	124	01111100	174	7 C	1
29	00011101	035	1D	GS	61	00111101	075	3 D	=	93	01011101	135	5D	1	125	01111101	175	7D	\}
30	00011110	036	1E	RS	62	00111110	076	3 E	>	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	-	127	01111111	177	7 F	DEL

Decimal - Binary - Octal - Hex - ASCII
Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decima	Binary	Dctal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	,
1	00000001	001	01	SOH	33	00100001	041	21	!	65	01000001	101	41	A	97	01100001	141	61	a
2	00000010	002	02	STX	34	00100010	042	22	*	66	01000010	02	42	B	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	\#	67	01000011	03	43	C	99	01100011	143	63	c
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	04	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	\%	69	01000101	05	45	E	101	01100101	145	65	e
6	00000110	006	06	ACK	38	00100110	046	26	\&	70	01000110	06	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	'	71	01000111	07	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	10	48	H	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	11	49	1	105	01101001	151	69	i
10	00001010	012	OA	LF	42	00101010	052	2A	*	74	01001010	12	4A	J	106	01101010	152	6A	j
11	00001011	013	OB	VT	43	00101011	053	2 B	+	75	01001011	13	4 B	K	107	01101011	153	6B	k
12	00001100	014	OC	FF	44	00101100	054	2 C	,	76	01001100	14	4 C	L	108	01101100	154	6C	I
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	15	4D	M	109	01101101	155	6D	m
14	00001110	016	OE	So	46	00101110	056	2E	.	78	01001110	16	4 E	N	110	01101110	156	6 E	n
15	00001111	017	OF	SI	47	00101111	057	2 F	1	79	01001111	17	4F	0	111	01101111	157	6 F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	20	50	P	112	01110000	160	70	p
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	21	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	22	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	23	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	24	54	T	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	25	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	26	56	v	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	27	57	w	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	30	58	X	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	31	59	Y	121	01111001	171	79	y
26	00011010	032	1A	SUB	58	00111010	072	3 A	:	90	01011010	32	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3 B	;	91	01011011	133	5B	[123	01111011	173	7B	\{
28	00011100	034	1 C	FS	60	00111100	074	3 C	<	92	01011100	134	5C	1	124	01111100	174	7C	I
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	\}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	\wedge	126	01111110	176	7E	\sim
31	00011111	037	1F	US	63	00111111	077	3 F	?	95	01011111	137	5F	-	127	01111111	177	7F	DEL

A few thoughts on "Collisions"...

Remember these?

Brute force the unlocking of this briefcase ...

Brute force the unlocking of this briefcase it will take you 3 seconds per each try.

How long will it take to "hack" the briefcase open without knowing the secret lock code?

Combination Lock (3 rotary dials)

Combination Lock (3 rotary dials)

$10 \times 10 \times 10=1,000=10^{3}$ total possible combinations
With 3 seconds per each combination, we will need: 3×10^{3} second (or 3,000 seconds)

There are 60 seconds in each minutes, so:
$\left(3 \times 10^{3}\right) \div 60=50$ minutes max to open each lock OR
$3,000 \div 60=50$ minutes max to open each lock

Combination Lock (3 rotary dials)

$10 \times 10 \times 10=1,000=10^{3}$ total possible combinations
3 seconds per each combination
$1 \mathrm{~min}=60$ seconds
So $60 \div 3=20$ combinations per minute $1,000 \div 20=50$ minutes to open each lock

Combination Lock (3 rotary dials)

3	O	\bigcirc	\square	8	0	\bigcirc	1	8	0	5
Digits										
0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9
a	a	a	a	a	a	a	a	a	a	a
b	b	b	b	b	b	b	b	b	b	b
c	c	c	c	c	c	c	c	c	c	c
d	d	d	d	d	d	d	d	d	d	d
e	e	e	e	e	e	e	e	e	e	e
f	f	f	f	f	f	f	f	f	f	f
16	16	16	16	16	16	16	16	16	16	16

SHA-256 Hash: Why 64 characters?

0
$2^{\wedge} 256$

Text SHA-256 Hash (HexaDecimal)
hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824
$16 \times 16 x . . \quad[16$ multiplied by itself 64 times]

SHA-256 Hash: Why 64 characters?

0

Text SHA-256 Hash (HexaDecimal)
hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824 $16 \times 16 x . . \quad[16$ multiplied by itself 64 times]
$16^{64}=\left(2^{4}\right)^{64}=2^{4 \times 64}=$ 2^{256}

SHA-256

SHA-256 hash: a number with the range:

$$
0 \rightarrow 2^{256}
$$

SHA-256: Using an unimaginably large number!

Note that 2^{256} is approximately 10^{77}
The sum of all the atoms in the universe are estimated to be 10^{80} (or between 10^{78} and 10^{82})

Let's brute-force a SHA-256 collision by using state-of-the-art machine:

Some of the Fastest Machines

Bitmain

Antminer S21 Hyd (335Th)

Description

Model Antminer S21 Hyd (335Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of $335 \mathrm{Th} / \mathrm{s}$ for a power consumption of 5360W.

Bitmain
Antminer S19 XP Hyd (255Th)

Description
Model Antminer S19 XP Hyd (255Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of $\mathbf{2 5 5} \mathbf{T h} / \mathbf{s}$ for a power consumption of 5304 W .

Some of the Fastest Machines

Bitmain
Antminer S21 Hyd (335Th)

Description

Model Antminer S21 Hyd (335Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of $\mathbf{3 3 5} \mathbf{T h} / \mathbf{s}$ for a power consumption of 5360 W .

Bitmain
Antminer S19 XP Hyd (255Th)

Description
Model Antminer S19 XP Hyd (255Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of $\mathbf{2 5 5} \mathbf{T h} / \mathbf{s}$ for a power consumption of 5304 W .

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 10 ${ }^{77}$?

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 10 ${ }^{77}$?

$$
\left(10^{77}\right) \div\left(255 \times 10^{12}\right)=3.92 \times 10^{62} \text { seconds }
$$

Let's find a SHA-256 collision

1 Terahash $=1$ trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 1077?

$$
\left(10^{77}\right) \div\left(255 \times 10^{12}\right)=3.92 \times 10^{62} \text { seconds }
$$

How many years will that be?
Well, there are appx (365 days $\times 24$ hrs x 60 mins $\times 60$ secs) seconds per year, so there are appx $31,536,000$ seconds per year, OR 3.15×10^{7} secs/year

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 107?

$$
\left(10^{77}\right) \div\left(255 \times 10^{12}\right)=3.92 \times 10^{62} \text { seconds }
$$

How many years will that be?
With $31,536,000$ seconds per year, OR 3.15×10^{7} secs/year \rightarrow
$\left(3.92 \times 10^{62}\right.$ seconds $) \div\left(3.15 \times 10^{7}\right.$ secs/year $)=1.24 \times 10^{55}$ years
Let's get 1 billion $\left(10^{9}\right)$ of these machines, so:
$\left(1.24 \times 10^{55}\right.$ years $) \div 10^{9}=1.24 \times 10^{46}$ years

Let's find a SHA-256 collision

So, how long will it take with one billion machines at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 10^{77} ?
$\left(1.24 \times 10^{55}\right.$ years $) \div 10^{9}=1.24 \times 10^{46}$ years
Age of the Universe: Age of Earth:
13.8×10^{9} years
4.5×10^{9} years
We would need these many universe lifetimes to make it:
$\left(1.24 \times 10^{46} \mathrm{yrs}\right) \div\left(13.8 \times 10^{9} \mathrm{yrs}\right)=8.99 \times 10^{35}$
898,550,724,637,681,159,420,289,855,072,463,768

899,000,000,000,000,000,000,000,000,000,000,000

Let's find a SHA-256 collision

1 Terahash = 1 trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 10 ${ }^{77}$?

$$
\left(10^{77}\right) \div\left(255 \times 10^{12}\right)=3.92 \times 10^{62} \text { seconds }
$$

$\left(3.92 \times 10^{62}\right.$ seconds $) \div\left(3.15 \times 10^{7}\right.$ secs/year $)=1.24 \times 10^{55}$ years
Let's get 1 billion $\left(10^{9}\right)$ of these machines, so:
$\left(1.24 \times 10^{55}\right.$ years $) \div 10^{9}=1.24 \times 10^{46}$ years

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second $=10^{12} \mathrm{~h} / \mathrm{s}$ SHA-256 is appx. 10^{77} total possible numbers (i.e. hashes)

So, how long will it take with one machine at $255 \mathrm{Th} / \mathrm{s}$ to run through all numbers between 0 and 107?

$$
\left(10^{77}\right) \div\left(255 \times 10^{12}\right)=3.92 \times 10^{62} \text { seconds }
$$

$\left(3.92 \times 10^{62}\right.$ seconds $) \div\left(3.15 \times 10^{7}\right.$ secs/year $)=1.24 \times 10^{55}$ years
Let's get 1 billion $\left(10^{9}\right)$ of these machines, so:
$\left(1.24 \times 10^{55}\right.$ years $) \div 10^{9}=1.24 \times 10^{46}$ years
At $\$ 3,000$ a machine, we'd need $\$ 3,000,000,000,000$ just to buy them (3 trillion dollars ... annual GDP of France!)

SHA-256 Hash

Decimal HexaDecimal

000000000000

SHA-256 Hash

Decimal HexaDecimal

00010
1700011
10003 e 8
(2^256) - $\mathbf{~ (2 f ~}$
2^25 100

SHA-256 Hex Encoding

Instead of a long hash consisting of many digits:

```
0
1
2
3
4
8
25
9387
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639
```


SHA-256 Hex Encoding

Instead of a long hash consisting of many digits:

1
25
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639

SHA-256 Hex Encoding

Instead of a long hash consisting of many digits:

1
25
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
1157920892373161954235709850086879078532699846656405640394575840079131296399

We have (a fixed string of 64 characters ... always):

fd04788626e5f87b3b22b2b855bddaae2f1ee43956232d2fa57c5afa7d3f09b9
4faa640f3077ded9d2b7fc6f429050defc5d26e08e5b241edadd39a49e56af51
933e1c934309c9d942921fcebcd8fc398553f2c39ccb162cb53bd998149b042b

SHA-256

$8 £ 434346648 £ 6 b 96 d f 89 d d a 901 c 5176 b 10 a 6 d 83961 d d 3 c 1 a c 88 b 59 b 2 d c 327 a a 4$
$79 f 5 c 65 f e 815417 f e 2 d c 3 f d b f b d a 9 d b f f 7 e 0 e c f 63 d e a 6162 d 4339546 e 7 a a 4 d 49$
fd04788626e5f87b3b22b2b855bddaae2f1ee43956232d2fa57c5afa7d3f09b9
d38b38a2dd476e045c299e8ee5d6466834456d97bd592a71746b423a6a05f386

DEMO: Hash (SHA-256)

SHA-256 Hash: Remember why 64 characters?

Text SHA-256 Hash (HexaDecimal)

hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

SHA-256 Hash: setting thresholds

Numbers with one leading zero

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of $\sim 110,968$)
4 Leading Zeros	Calculate the expected number of lines from no leading zero to 4 leading zeros. You have 5 minutes.		
3 Leading Zeros			
2 Leading Zeros			
1 Leading Zero			
No Leading Zeros			

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of ~110,968)
4 Leading Zeros			
3 Leading Zeros			
2 Leading Zeros			
1 Leading Zero			
No Leading Zeros			

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of ~110,968)
4 Leading Zeros			
3 Leading Zeros			
2 Leading Zeros			
1 Leading Zero		$\sim 6,935$	
No Leading Zeros		$\sim 104,033$	

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of ~110,968)
4 Leading Zeros			
3 Leading Zeros			
2 Leading Zeros			
1 Leading Zero		$-6,935$	
No Leading Zeros		$\sim 104,033$	

SHA-256 Hash: setting thresholds

Numbers with AT LEAST one leading zero

SHA-256 Hash: setting thresholds

$\left(\frac{1}{16}\right) \times 2^{256}$

Numbers with AT LEAST
one leading zero

SHA-256 Hash: setting thresholds

$\left(\frac{1}{16}\right) \times 2^{256}$

Numbers with AT LEAST
one leading zero
110,968-104,033 = 6,935.5

SHA-256 Hash: setting thresholds

Value Value(15/16) Value-Value $(15 / 16)$

	A	B	c
1	110,968	104,033	6,936
2	6,936	6,502	433
3	433	406	27
4	27	25	2

110,968	=A1*15/16	=A1-B1
=C1	=A2 ${ }^{*} 15 / 16$	=A2-B2
=C2	=A3*15/16	=A3-B3
=C3	=A4*15/16	=A4-B4

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of ~110,968)
4 Leading Zeros		~ 2	0.0018%
3 Leading Zeros		~ 25	0.0160%
2 Leading Zeros		~ 406	0.3740%
1 Leading Zero		$\sim 6,502$	6.0044%
No Leading Zeros		$\sim 104,033$	93.603%

SHA-kespeare

Approx 110,968 lines of Shakespeare written (all works)

Hash Criteria	Lines of Shakespeare	Expected Number of Lines	Actual \% of lines (out of ~110,968)
4 Leading Zeros	2	~ 2	0.0018%
3 Leading Zeros	18	~ 25	0.0160%
2 Leading Zeros	415	~ 406	0.3740%
1 Leading Zero	6,663	$\sim 6,502$	6.0044%
No Leading Zeros	103,870	$\sim 104,033$	93.603%

SHA-kespeare

Hamlet, Act I, Scene 2:

King. Have you your father's leave?

 What says Polonius?

00005779 d9bda7accb203c8256e6106e 2d44d68025b83624af59e31c3527275

Blockchain: a cryptographically-verifiable Tx chain

Edith gives Carol \$25

How to make the chain secured?

> Bob gives Edith \$10

IV. Building the Blockchain

Using all we've learned to build an immutable chain of "digital assets" (and more)

Exercise: let's do a (theoretical) deal!

Parties involved (client wants to use their own legal \& accounting)
1.
2.
3.
4.

Exercise: let's do a deal!

Parties involved (client wants to use their own legal \& accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB

Exercise: let's do a deal!

Parties involved (client wants to use their own legal \& accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor

Exercise: let's do a deal!

Parties involved (client wants to use their own legal \& accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor
3. Jeff Dewey (JD); Dewey, Cheatem \& Howe (DCH); Law

Exercise: let's do a deal!

Parties involved (client wants to use their own legal \& accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor
3. Jeff Dewey (JD); Dewey, Cheatem \& Howe (DCH); Law
4. Alex Runne (AR); Steel, Runne \& Hyde (SRH): Accounting

We will have lots of documents going back and forth.

Exercise: let's do a deal!

Our document naming convention, or protocol:

[type of doc]_[company name]_[author's initials][author's employer]_[date: mm/dd/yy]_[version number: v\#]

[type of doc]_[company name]_[author's initials]_[author's employer]_[date: mm/dd/yy]_[version number: v\#]

PPM_Newco_RF_COL_041523_v1
[type of doc]_[company name]_[author's initials]_[author's employer]_[date: mm/dd/yy]_[version number: v\#]

PPM_Newco_RF_COL_041523_v1 PPM_Newco_BF_CBC_041623_v2

Exercise: naming protocol sorted by "Name"

Name	Date Modified	Size	Kind
(a) PPM_Newco_AR_SRH_072817_v9	Today, 4:20 PM	23 KB	Microsoft Word document
(a) PPM_Newco_BF_CBC_072717_v8	Today, 4:20 PM	23 KB	Microsoft Word document
a PPM_Newco_RF_COL_072717_v5	Today, 4:20 PM	23 KB	Microsoft Word document
(a) PPM_Newco_AR_SRH_072717_V4	Today, 5:44 PM	23 KB	Microsoft Word document
(${ }_{\text {a }}$ PPM_Newco_JD_DCH_072617_v3	Today, 4:19 PM	22 KB	Microsoft Word document
(a) PPM_Newco_BF_CBC_072617_v2	Today, 4:19 PM	22 KB	Microsoft Word document
(a) PPM_Newco_RF_COL_072517_v1	Today, 3:49 PM	22 KB	Microsoft Word document
		3	

Exercise: naming protocol sorted by "Date Modified"

What can do wrong? How to fix the system?

Let's build a blockchain, connecting and linking verified digital files in an immutable way with a shared ledger to keep track of it all that every party can see.

One of the earliest papers on "Blockchain"

How to Time-Stamp a Digital Document*

Stuart Haber
stuart @bellcore.com

W. Scott Stornetta
stornetta@bellcore.com

Bellcore
445 South Street
Morristown, N.J. 07960-1910

Abstract

The prospect of a world in which all text, audio, picture, and video documents are in digital form on easily modifiable media raises the issue of how to certify when a document was created or last changed. The problem is to time-stamp the data, not the medium. We propose computationally practical procedures for digital time-stamping of such documents so that it is infeasible for a user either to back-date or to forward-date his document, even with the collusion of a time-stamping service. Our procedures maintain complete privacy of the documents themselves, and require no record-keeping by the time-stamping service.

[^0]
One of the earliest papers on "Blockchain"

How to Time-Stamp a Digital Document*

Stuart Haber
stuart@bellcore.com

W. Scott Stornetta
stornetta@bellcore.com

Bellcore
445 South Street
Morristown, N.J. 07960-1910

Abstract

The prospect of a world in which all text, audio, picture, and video documents are in digital form on easily modifiable media raises the issue of how to certify when a document was created or last changed. The problem is to time-stamp the data, not the medium. We propose computationally practical procedures for digital time-stamping of such documents so that it is infeasible for a user either to back-date or to forward-date his document, even with the collusion of a time-stamping service. Our procedures maintain complete privacy of the documents themselves, and require no record-keeping by the time-stamping service.

[^1]
Let's power on ...

Blockchain

Assume all

 transactions here are signed, and the creator of the hash verified that the sender had the necessary funds
Edith gives Carol \$25

Blockchain: hash each block

Everyone gets $\$ 100$ Hash: 09592b438bfe8ac1fd

Blockchain (link each block)

Prev Hash: 0000000000000 Everyone gets \$100 Block Hash: 09592b438bfe8ac1fd

Blockchain: out-of-sync hashes?

Prev Hash: 0000000000000
Everyone gets \$100
Block Hash: 09592b438bfe8ac1fd

Prev Hash: fa1960e7a6b57ee967
Edith gives Carol \$25 Hash: 7ed2db73b7921eebed

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5 Hash: fa1960e7a6b57ee967

Blockchain: re-calculate hashes

Prev Hash: 0000000000000
Everyone gets \$100
Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5 Hash: 1a19dbada78ed53aa6b3851

Blockchain

Prev Hash: 0000000000000
Everyone gets \$100
Block Hash: 09592b438bfe8ac1 fd

Prev Hash: 1a19dbada78ed53aa6b3851 Edith gives Carol \$25 Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5
Hash: 1a19dbada78ed53aa6b3851

Blockchain

Prev Hash: 0000000000000 Everyone gets \$100 Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5
Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851 Edith gives Carol \$25
Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Blockchain

Prev Hash: 0000000000000 Everyone gets \$100 Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5
Hash: 1a19dbada78ed53aa6b3851

Blockchain

Prev Hash: 0000000000000 Everyone gets \$100 Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5 Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851 Edith gives Carol \$25 Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Blockchain

Prev Hash: 0000000000000 Everyone gets \$100 Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd Alice gives Bob \$5
Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851 Edith gives Carol \$25
Hash: 9f6f9cfc699cc4fcbd3375da0e9c

DEMO: Blockchain

Blockchains

Blockchain Recap

1. The transaction is broadcasted to the world.
2. Each node that receives the broadcast verifies via the signature and their copy of the ledger that the sending party has the funds to send that amount of money, and that the transaction actually came from the sending party.
3. Each updates their ledger in a cryptographically consistent and verifiable way, forever cementing the transaction as part of the chain.
4. Once the majority of nodes have updated their ledger with the valid transaction, the recipient of the money effectively "has" the new money because they now, according to the ledger shared by the majority, have the funds they need to send a new, valid transaction with the funds they received.

DEMO: Distributed

V. Bitcoin

Leveraging the blockchain to create a decentralized digital crypto-currency.

SHA-256 Hash

0

$\left(\frac{1}{16}\right) \times 2^{256}$

00 0001 0002 0009 000 a a 000 ab 000 f 0010 03b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 1000

Bitcoin: a shared Blockchain (cooperative)

Bitcoin: change USD to Bitcoin

Bitcoin: no names, just (public) keys

Bitcoin: keys also on the Tx's, no names

Bitcoin: multiple keys are allowed

Bitcoin: wallets (or keychains)

Wallet

Bitcoin: cryptographic puzzle

Bitcoin:"computational puzzle"

Sample attributes verified by nodes in each Tx:

1. The transaction's syntax and data structure must be correct.
2. Neither lists of inputs or outputs are empty.
3. The transaction size in bytes is less than MAX_BLOCK_SIZE.
4. Each output value, as well as the total, must be within the allowed range of values (less than 21 m coins, more than 0).
5. None of the inputs have hash=0, $\mathrm{N}=-1$ (coinbase transactions should not be relayed).
6. nLockTime is less than or equal to INT_MAX.
7. The transaction size in bytes is greater than or equal to 100.
8. The number of signature operations contained in the transaction is less than the signature operation limit.
9. The unlocking script (scriptSig) can only push numbers on the stack, and the locking script (scriptPubkey) must match isStandard forms (this rejects "nonstandard" transactions).
10. A matching transaction in the pool, or in a block in the main branch, must exist.
11. For each input, if the referenced output exists in any other transaction in the pool, the transaction must be rejected.
12. For each input, look in the main branch and the transaction pool to find the referenced output transaction. If the output transaction is missing for any input, this will be an orphan transaction. Add to the orphan transactions pool, if a matching transaction is not already in the pool.
13. For each input, if the referenced output transaction is a coinbase output, it must have at least COINBASE_MATURITY (100) confirmations.
14. For each input, the referenced output must exist and cannot already be spent.
15. Using the referenced output transactions to get input values, check that each input value, as well as the sum, are in the allowed range of values (less than 21 m coins, more than 0).
16. Reject if the sum of input values is less than sum of output values.
17. Reject if transaction fee would be too low to get into an empty block.
18. The unlocking scripts for each input must validate against the corresponding output locking scripts.

The Bitcoin "Puzzle"

The Bitcoin "Puzzle"

Prev Hash: 8a7b6618e714c6a 5 BTC
For: b197be
*From: a519f8...

The Bitcoin "Puzzle"

Prev Hash: 8a7b6618e714c6a 5 BTC
For: b197be
*From: a519f8...
Hash:

The Bitcoin "Puzzle"

\times Man
Prev Hash: 8a7b6618e714c6a 5 BTC
For: b197be
*From: a519f8...
Nonce:
Nonce Solver:
Hash:

The Bitcoin "Puzzle"

The Bitcoin "Puzzle"

The Bitcoin "Puzzle": example of how miners mine

The Bitcoin "Puzzle"

The Bitcoin "Puzzle"

The Bitcoin "Puzzle"

Bitcoin

Bitcoin: Tx done

Bitcoin: Tx distributed

Bitcoin: funds transferred

The Bitcoin "Puzzle": can you steal the nonce?

The Bitcoin "Puzzle": nonce is block-specific

Bitcoin

Bitcoin: one Tx per block? Not really!

Bitcoin

Bitcoin

Bitcoin

Bitcoin

Bitcoin

Bitcoin

~ Every

Bitcoin

~ Every

10 min

Calibrating The Bitcoin "Puzzle" w/ "Difficulty"

Calibrating The Bitcoin "Puzzle" w/ Difficulty

Calibrating The Bitcoin "Puzzle" w/ Difficulty

Calibrating The Bitcoin "Puzzle"...

Blockchain, Cryptocurrencies \& Digital Tokens Demystified
 Fall 2023 (EMBA)
 Columbia Business School

Welcome Back to Session 3

Curriculum Roadmap

Morning	Nov 4	Nov 18	Dec 2	Dec 9
	Networks \& Protocols	Hashing, Hashing Tables \& One- Way Functions \& a few more tech	Bitcoin + other forms of crypto payments and store of value mechanisms and media	DeFi \& Other Applications (Digital Tokens, CBDC, etc.) + Speaker: Future of Finance + Discussion Forum
	Lunch	Lunch	Lunch	Lunch
Afternoon	Encryption \& Cryptography (plus some math!)	Bring it All Together: Let's build a blockchain \& discuss variety of cases	Ethereum \& Other Digital Tokens + Speaker: Regulatory \& Legal Considerations in Blockchain \& Digital Assets	Governance, More; Final Lecture on How the Future May Play Out + Final Presentations

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9

Class Plan

Nov 4
Nov 18
Dec 2
Dec 9

08:30 am to 6:45 pm (K-440)Module $1+2$
08:30 am to 6:45 pm (K-440)Module $3+4$
08:30 am to 6:45 pm (K-440)Midterm Project + 5 \& $6+$ Guest Speaker
08:30 am to 6:45 pm (K-440)Module 7 \& $8+$ Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am
9:45-10:00 am
10:00-11:15 pm
11:15 am-12:30 pm
12:30-2:00 pm 2:00-2:15 pm
2:15-3:30 pm
3:30-3:45 pm
3:45-5:00 pm
5:00-5:15 pm
5:15-6:45 pm

Lecture

Break
Lecture
Lunch (1h15min) - Kravis 2nd floor (Smith Dining)

Lecture

Break

Lecture

Break
Lecture
Break
Lecture

Important Admin Items for the Day

- Note last class is on Dec 9 (next week, not in two weeks)
- Final projects assigned already
- Details on your final projects (presentation \& paper)
- Final presentations next week
- Final papers due on Dec 18
- Thoughts on "Blockchain Killer App" for today and/or 4
- Discussion Forum next class
- Watch lecture recordings and email me for office hours

THE MOST Important Admin Item for the Day

THE MOST Important Admin Item for the Day

Catering today is by Dig Inn:

- Brown Rice
- Lemon \& Herb Farro
- Maple Glazed Crispy Tofu
- Herb Roasted Chicken
- Beef \& Chicken Meatballs
- Wild Salmon
- Broccoli
- Brussels Sprouts
- Sweet Potatoes

THE MOST Important Admin Item for the Day

Catering today is by Dig Inn:

- Brown Rice
- Lemon \& Herb Farro
- Maple Glazed Crispy Tofu
- Herb Roasted Chicken
- Beef \& Chicken Meatballs
- Wild Salmon
- Broccoli
- Brussels Sprouts
- Sweet Potatoes

THE MOST Important Admin Item for the Day

Catering today is by Dig Inn:

- Brown Rice
- Lemon \& Herb Farro (Farrokhnia!!)
- Maple Glazed Crispy Tofu
- Herb Roasted Chicken
- Beef \& Chicken Meatballs
- Wild Salmon
- Broccoli
- Brussels Sprouts
- Sweet Potatoes

Before we begin, any interesting points or lessons from our prior session you'd like to share?

Let's start our Session 3

Why the Puzzle?

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle? Let's spam!

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle?

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle?

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle?

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle?

Normal Miner's Blockchain:

Malicious Miner's Blockchain:

Why the Puzzle?

Normal Miner's Blockchain:

Bitcoin: other topics

Bitcoin

Bitcoin

Bitcoin

Bitcoin

Funny Story: guard your wallet (Dec 2013)!!

Bitcoin Questions

- Is Bitcoin anonymous?
- Is Bitcoin really invulnerable to compromise?

Bitcoin Questions

- Is Bitcoin anonymous?
- Is Bitcoin really invulnerable to compromise?

Home Welcome to Blockchain

Height	Age	Transactions	Total Sent	Relayed By	Size (kB)	
453057	10 minutes	1884	$15,911.31$ BTC	Bitcoin.com	998.11	
453056	16 minutes	1834	$27,998.50$ BTC	ViaBTC	999.16	
453055	38 minutes	2331	$17,512.90$ BTC	BitFury	998.18	
453054	48 minutes	2524	$17,116.92$ BTC	F2Pool	999.91	
453053	59 minutes	2321	2096	$15,615.56$ BTC	AntPool	998.09
453052	1 hour 15 minutes	$9,727.30$ BTC	BTCC Pool	998.12		

Latest Transactions

9d92666f7028abe9860f7235f.
<1 minute

Search

You may enter a block height, address, block hash, transaction hash, hash160, or ipv4 address...
Address / ip / SHA hash Search

Block \#453054

Summary	
Number Of Transactions	2524
Output Total	$17,116.9190252$ BTC
Estimated Transaction Volume	$3,595.87663859$ BTC
Transaction Fees	1.24502972 BTC
Height	453054 (Main Chain)
Timestamp	$2017-02-14$ 17:06:39
Received Time	$2017-02-14$ 17:06:39
Relayed By	F2Pool
Difficulty	$422,170,566,883.84$
Bits	402823865
Size	999.913 KB

Hashes

Hash 000000000000000001a13b341900b61b36ad8664ceae30da3cc0c52d9faa0b99

Previous 000000000000000000734158f091f9918677ccdc9e50281794c5f4f433ec582a Block

Next

Block(s)
$000000000000000000 e e 1 b 60 d 8 f d e 428589 e 7 a c 37 e c 35 b 3 c 7 d e 9119040047043$

Merkle
759f9e4d7c7266410e5b 40a7f245e757b9eb69873ecdf7f0e3f45a25b2467467
Root

Network Propagation

Block \#453054

Block \#453054

Block \#453054

432b41f520dd8806531db5bcd1 bc418e9cfdbe9653f16d6579fa9f26962f6215

1LzqQ7oj49pwr6pDbNUT4usxt9C4qxAr7v 1NfC2rPsdMUfabCZ7D1VjfYJp5crqt1F6f
0.01017799 BTC
0.29887622 BTC

Protecting the integrity of digital assets.

OVER \$15 BILLION WORTH OF BITCOIN TRANSACTIONS CHECKED BY CHAINALYSIS ON BEHALF OF OUR CUSTOMERS

01017799 BTC 29887622 BTC

Bitcoin Nodes Log List of bitcoin nodes blockchain.info has connected to in the past.

Total Unique Ip Addresses: 16,043

Bitcoin Questions

- Is Bitcoin anonymous?
- Is Bitcoin really invulnerable to compromise?

Bitcoin Questions

- Is Bitcoin anonymous?

Yes and No! It is pseudonymous.

- Is Bitcoin really invulnerable to compromise?

Bitcoin Questions

- Is Bitcoin anonymous?

Yes and No! It is pseudonymous.

- Is Bitcoin really invulnerable to compromise?

Bitcoin 51\% Attack

Bitcoin 51\% Attack

Bitcoin 51\% Attack

Bitcoin 51\% Attack

Could this actually happen?

Could this actually happen?

ars TECHNICA \quad ミ scill.

RISK ASSESSMENT -

After reaching 51\% network power, Bitcoin mining pool says "trust us"

GHash notes it has never attacked, double-spent against Bitcoin.
CYRUS FARIVAR - 6/16/2014, 4:50 PM

Could this actually happen?

(ars TECHNICA a E SIGNIN•

Topic: GHASH.IO IS NEARING 51\% - LEAVE THE POOL (Read 2078 times)

GHASH.IO IS NEARING 51\% - LEAVE THE POOL

January 09, 2014, 10:39:25 AM

GHash notes it has never attacked, double-spent against Bitcoin.
CYRUS FARIVAR - 6/16/2014, 4:50 PM

Could this actually happen?

Could this actually happen?

Quantum Computing \& Cryptography

Newsweek

TECH \& SCIENCE IS BITCOIN DOOMED?

BY ANTHONY CUTHBERTSON ON 10/12/16 AT 10:08 AM

Quantum Computing \& Cryptography

Quantum Computing \& Cryptography

NSA working on quantum computer to break any encryption

The spy agency is reportedly in a race to build its own quantum computer to stay ahead of others seeking to own the mother of all decryption machines.

Bitcoin Questions

- Is Bitcoin anonymous?

Yes and No! It is pseudonymous.

- Is Bitcoin really invulnerable to compromise?

Bitcoin Questions

- Is Bitcoin anonymous?

Yes and No! It is pseudonymous. Is Bitcoin really invulnerable to compromise?
Probably not, at least in the short term.

Latest blocks

Height	Hash Mined	Miner	Size
588944	0000000000000000001be255f513d686d195ebf... 17:30 PM	BTC.com	1,274,162 bytes
588943	00000000000000000017db20ea351d2d0e425fb... 17:18 PM	BTC.com	1,104,880 bytes
588942	00000000000000000008208c98e373a2db0542... 17:14 PM	AntPool	1,335,648 bytes
588941	000000000000000000051c28e6ec6e1b7b30920...17:04 PM	F2Pool	1,249,497 bytes
588940	00000000000000000004ca36580eaee738367d... 16:59 PM	F2Pool	1,366,541 bytes
588939	000000000000000000067173d7fe7c2ba7bcdec... 16:37 PM	Unknown	1,076,107 bytes
588938	00000000000000000003ea92f022801fce2965d... 16:37 PM	SlushPool	1,223,835 bytes
588937	00000000000000000015aaaef25cd813d574781e...16:24 PM	AntPool	1,212,669 bytes
588936	0000000000000000000f793419624af43f22c9d... 16:24 PM	Unknown	1,237,063 bytes
588935	00000000000000000004349f5e9d4140247cae6...16:22 PM	AntPool	1,268,144 bytes
588934	0000000000000000000ea4d6189877fe9048da7... 16:18 PM	Unknown	1,242,545 bytes
588933	00000000000000000004092599b25e760c74b6... 16:08 PM	Unknown	1,179,208 bytes
588932	00000000000000000003011df1e9bc109685206... 16:05 PM	Unknown	1,188,151 bytes
588931	00000000000000000000e066ff0d28f32d86478... 16:02 PM	Unknown	1,248,546 bytes
588930	000000000000000000090eObef88087be6b787a...15:58 PM	BTC.TOP	1,181,402 bytes

VI. Beyond Bitcoin

What applications does the blockchain have beyond cryptocurrencies like Bitcoin?

Other Cryptocurrencies

Other Cryptocurrencies

逢 litecoin

Other Cryptocurrencies

祭 litecoin

(4) Primecoin

Other Cryptocurrencies

楿) litecoin

 (4) PrimecoinNnamecoin

VI. Beyond Bitcoin

Ethereum

Other Cryptocurrencies

What is Ethereum?

- Simply put, it is an "open-source and globally decentralized computing infrastructure that executes programs called Smart Contracts. It uses blockchain to synchronize and store system's state changes, using a cryptocurrency called Ether (ETH) to meter [or measure] and constrain execution resource costs."

What is Ethereum?

- It shares many similarities \& common elements with Bitcoin or other cryptocurrencies (P2P network connecting participants, Byzantine Fault Tolerant consensus algos, proofs, hashes, sigs)
- But it's also different in other aspects, esp in having Utility Functions ("world computer, virtual machine") + "general purpose blockchain" \& Decentralized Applications (dApps or DApps!)

"Smart" Contracts: records of prog. agreements

- Ethereum contracts are programs that control money, running inside Ethereum VM
- Once created, they have an Ethereum address, just like wallets (say, belonging to a person)
- Transactions sent to an address may have ether, data, or both \rightarrow ethers get "deposited" to the contract balance; data can specify a named functions (in the contract) and call it

"Smart" Contracts

"Smart" Contracts

"Smart" Contracts

ethereum

"Smart" Contracts

ϑ
 ethereum

"Smart" Contracts

○, - 三

IBM Blockchain

Quickly run a blockchain network in a secure Cloud environment

Spin up a blockchain network on a private, virtualized environment; create and secure digital assets in test applications to trade over a permissioned network

$$
\dot{z}^{2}-\frac{0}{2}=
$$

$$
\dot{z}^{2} \frac{2}{2}
$$

The DAO \& "Forking"

The DAO \& "Forking"

The DAO \& "Forking"

The DAO \& "Forking"

The DAO \& "Forking"

The DAO \& "Forking"

The DAO \& "Forking" (2016/2017)

The DAO \& "Forking" (4/2023)

 cap, up from
 \$110m

A quick regulatory lesson

The "Howey Test"

- It is an investment of money
- There is an expectation of profits from the investment
- The investment of money is in a common enterprise
- Any profit comes from the efforts of a promoter or third party

Class Discussion

Easter Egg ... for those with a Mac ;-)

> Open either 1) Finder OR 2) click on Go, then Computer ... then click on Macintosh HD at the bottom of the window, then System \rightarrow Library \rightarrow Image Capture \rightarrow Devices. Once there, right click on VirtualScanner.app and choose "Show Package Contents." Open Resources, and click on "simpledoc.pdf." What do you see?!

Congratulations!
 You made it to the end of slides ... almost! We still have a few more days to go

Thank You!

End of Slides

[^0]: *Appeared, with minor editorial changes, in Journal of Cryptology, Vol. 3, No. 2, pp. 99-111, 1991.

[^1]: ${ }^{*}$ Appeared, with minor editorial changes, in Josrnal of Cryptology, Vol. 3, No. 2, pp. 99-111, 1991.

