
Blockchain, Cryptocurrencies &
Digital Tokens Demystified

Prof. R.A. Farrokhnia
Columbia Business School

Fall 2023 (EMBA)

Welcome & Agenda

About the Course Faculty

● Prof. R.A. Farrokhnia (far.oak.nia)
● Teaching at Columbia Business & Engineering Schools
● Recipient of Dean’s Award for Teaching Excellence

About the Course Faculty

● Prof. R.A. Farrokhnia (far.oak.nia)
● Teaching at Columbia Business & Engineering Schools
● Recipient of Dean’s Award for Teaching Excellence
● Executive Director (Dean’s Office) of “Advanced Projects and Applied

Research in Fintech” at Columbia Business School
● Board Member & Senior Lecturer: Columbia Journalism School KB Program
● Building a next-gen DevLab

fintech.gsb.columbia.edu

Before we begin …

farrokhnia@gsb.columbia.edu

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9
Class Plan
Nov 4 08:30 am to 6:45 pm (K-440)Module 1 + 2
Nov 18 08:30 am to 6:45 pm (K-440)Module 3 + 4
Dec 2 08:30 am to 6:45 pm (K-440)Midterm Project + 5 & 6 + Guest Speaker
Dec 9 08:30 am to 6:45 pm (K-440)Module 7 & 8 + Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am Lecture
9:45-10:00 am Break
10:00-11:15 pm Lecture
11:15 am-12:30 pm Lunch (1h15min) - Kravis 2nd floor (Smith Dining)
12:30-2:00 pm Lecture
2:00-2:15 pm Break
2:15-3:30 pm Lecture
3:30-3:45 pm Break
3:45-5:00 pm Lecture
5:00-5:15 pm Break
5:15-6:45 pm Lecture

Curriculum Roadmap

Nov 4 Nov 18 Dec 2 Dec 9

Morning

Networks &
Protocols

Hashing, Hashing
Tables & One- Way
Functions & a few
more tech

Bitcoin + other forms of
crypto payments and
store of value
mechanisms and
media

DeFi & Other
Applications (Digital
Tokens, CBDC, etc.) +
Speaker: Future of
Finance + Discussion
Forum

Lunch Lunch Lunch Lunch

Afternoon

Encryption &
Cryptography
(plus some
math!)

Bring it All
Together: Let’s
build a blockchain
& discuss variety of
cases

Ethereum & Other
Digital Tokens +
Speaker: Regulatory &
Legal Considerations in
Blockchain & Digital
Assets

Governance,
Marketplaces, NFTs &
More; Final Lecture on
How the Future May Play
Out + Final
Presentations

Administrative Requirements
● Please be on time and present for the duration of the class
● Class content is sequential. Don’t miss class sessions (and watch recordings if you do)
● Lots of technical topics, but I won’t use ANY code or much math (only 2-3 parts might be

tough - I’ll give you the heads-up when we reach these points in our curriculum), so don’t
worry :-)

● I can explain it to you, but I cannot understand it for you! So be sure to ask questions
● Your breaks are my breaks too! I’ll provide ample opportunities for Q&A in class though
● Office hours by appointment (just email me)
● Make sure to read the syllabus
● CBS code of conduct, incl. during guest speaker presentations
● Team formations: finalized by Nov 18 no later than 3:30 pm ET (today is even better!)
● Midterm Project
● Final Papers and deliverables: all the details
● Final Papers due on Monday Dec 18 at 5 pm ET
● This is a demanding class, and we are all in it together. Let’s make it the best class we can
● My promise to you all + let’s have a fun, productive course … worthy of a 5 out of 5

DISCLAIMER

One more thing …
Digital Device Policy Recommendation +

Sharing of Class Slides

Also a reminder of a good practice

Also a reminder of a good practice

Also a reminder of a good practice

Class is mostly slides for Day 1 and 2 + we’d switch
to discussions & whiteboarding (no slides) on

subsequent days

All done? Then let’s go … but first, a little fun!

https://www.facebook.com/CryptoCurrencyTM/videos/bitcoin-commercial-what-is-it-and-how-does-it-work/288600998335966/

http://www.youtube.com/watch?v=aeMv9uKpAZg
https://www.facebook.com/CryptoCurrencyTM/videos/bitcoin-commercial-what-is-it-and-how-does-it-work/288600998335966/

I. A Series of Tubes
How does the internet work?
Why do we need to protect it?

An ideal network

An ideal network

An ideal network

An ideal network

An ideal network

An ideal network

An ideal network

The real world

The real world: Routers & Switches

The real world

The real world … as it was!

The real world … with PROTOCOLS!

The real world

The real world

The real world

The real world

A few words on networks … in the context of
order, complexity, and resiliency

Networks: a collection of connected nodes

Networks: a collection of connected nodes

Networks: a collection of connected nodes

Networks: a collection of connected nodes

Centralized (vs. Decentralized vs. Distributed)

Centralized (vs. Decentralized vs. Distributed)

Centralized vs. Decentralized (vs. Distributed)

Centralized vs. Decentralized Networks

If this node is compromised, the
whole network goes down!

Centralized vs. Decentralized Networks

Centralized vs. Decentralized Networks

Decentralized Networks

Decentralized Networks

Real Decentralized Technologies

Internet

Real Decentralized Technologies

Internet

Real Decentralized Technologies

Internet Bitcoin

Centralized vs. Decentralized vs. Distributed

A few words on
how internet works as a network ...

● Billions of connected (computing) hosts/end-systems - mobile devices now
outnumber others by a large margin

A few words on Internet

● Billions of connected (computing) hosts/end-systems (mobile devices now
outnumber others by a large margin)

○ laptops
○ smartphones, tablets
○ TVs
○ Gaming consoles
○ Webcams
○ Automobiles,
○ Environmental sensing devices,
○ Picture frames
○ Home electrical
○ Security systems
○ And more …

A few words on Internet

● Billions of connected (computing) hosts/end-systems - mobile devices now
outnumber others by a large margin

○ laptops, smartphones, tablets, TVs, gaming consoles, Webcams, automobiles, environmental
sensing devices, picture frames, and home electrical, security systems, …

● Other constituents of the network (mobile, enterprise, home, ISPs, etc.):
○ Servers
○ Routers
○ Link-layer Switches
○ Modems
○ Base Stations
○ Cell Towers
○ And more …

A few words on Internet

● Billions of connected (computing) hosts/end-systems + other constituents
(mobile devices now outnumber others by a large margin)

● These devices and hosts/end-systems run network apps
● They are all connected via communication links (fiber, copper, radio,

satellite, etc.) and packet switches with various transmission rates (i.e.
bandwidth)

● Packet Switches such as routers and switches send around and forward data
packets (i.e. chunks of data) throughout the network

● In essence, you have decentralized network of networks (e.g. ISPs) +
protocols + internet standards

A few words on Internet

● TCP/IP
● SMTP
● IMAP
● POP
● FTP
● HTTP
● HTTPS/TLS
● UDP
● WLAN
● DNS …. and many more!

A few words on Protocols

A few words on Protocols

“The Unsung Heros”

“The Unsung Heros”

All Communication needs protocols!

All Communication needs protocols!

All Communication needs protocols!

All Communication needs protocols!

● Protocols are standardized methods that facilitate communication between
and across different “things,” creating a common framework

● In short, Protocols define how data should be “packetized,” addressed,
transmitted, routed, and received → examples to follow

● Let’s use the example of exchanging messages: first with humans (asking for
time, exchanging business cards, mailing a letter), then machines - all
communications are in essence governed by protocols

● Protocols help manage complexity across various building blocks of the
internet (hosts, routers, switches, applications, hardware, software, etc.) …
BUT … how do we organize them and the structure of our network?

● [by the way, it was mostly a volunteer effort, with no possibility for
monetization by the makers]

A few (more) words on Protocols

Sample Computer Network Protocol (signals & msgs)
T0

T2

T4

T1

T3

T5

TCP Connection Request

TCP Connection Reply

Get http://www.columbia.edu

<file>

Get …

case comparison: how do you ask questions in class?

Your
Computer Web Server

How a web page is rendered (put simplistically)

“A protocol defines the format and the order of messages
exchanged between two or more communicating entities,
as well as the actions taken on the transmission and/or
receipt of a message or other event.”

- James Kurose, Keith Ross

Master Definition of a Protocol

Let’s organize a flight … through a series of steps

Organizing a flight … through functionality layers

Organizing a flight … through functionality layers

● Each LAYER implements a service … via its own internally-layer processes …
and relying on the services provided by layer below

Application: support and enable end-user apps

Transport: process data transfer

Network: routing of data from source to destination

Link: data transfer between neighboring network elements
(e.g. WiFi)

Physical: bits “on the wire” (hardware)

Internet Protocol Stack

Why is all this important?!

“Fat Protocols” (by Joel Monegro, USV)

“Fat Protocols & Value Capture ” (Johnson Nakano)

Back to networks … and security

So what do we need to protect?

So what do we need to protect?

So what do we need to protect?

So what do we need to protect?

So what do we need to protect?

II. The Bad Guys
Types of attackers, and the

cryptographic techniques we
can use to circumvent them.

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

The Snooper

How to send messages and information
securely, knowing any info transmitted over
the internet can be stolen and we cannot

trust anyone?

0. Please Don’t Tell
A brief primer on the codes

and ciphers used throughout
history to protect information.

Plaintext vs. Ciphertext

Plaintext I love the sun

Ciphertext w jd7h bmg vns

Cipher Shift (or substitution), aka Caesar Cipher

Plaintext I love the sun

Ciphertext ? ???? ??? ???

Cipher Shift (zero or no shift)

Cipher Shift (zero or no shift)

Cipher Shift (shift of one)

Cipher Shift (shift of one)

Cipher Shift (+1)

Plaintext i love the sun

Ciphertext ??????????????

Cipher Shift (+1)

Plaintext i love the sun

Ciphertext

Cipher Shift (+1)

Plaintext i love the sun

Ciphertext j

Cipher Shift (+1)

Plaintext i love the sun

Ciphertext j mpwf uif tvo

Cipher Shift Wheel

A brief history of how Caesar Cipher
was broken … and rest is history

Cipher Shift Decoded (or rather, decrypted!)

Cipher Shift Decoded (or rather, decrypted!)

An in-class exercise … time to become
Code Breakers

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B __ __ __ __ __

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B E __ __ __ __

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B E R __ __ __

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B E R L __ __

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B E R L I __

Cipher Shift Decoded (or rather, decrypted!)

Can you guess? B E R L I N .

Another Cipher Shift Decoded (with numbers)

Can you guess? 2 __ __ __ __ __

Can you guess? 2 5 __ __ __ __

Another Cipher Shift Decoded (with numbers)

Can you guess? 2 5 8 __ __ __

Another Cipher Shift Decoded (with numbers)

But wait a minute!?

Another exercise …
time to become REAL Code Breakers!

Let’s try to break a coded message

MPQZCP HP NLY ELWV LMZFE ESP DAPNTQTND ZQ
XZOPCY NCJAEZRCLASJ, MWZNVNSLTYD, ZC
MTENZTY, HP XFDE QTCDE ELWV LMZFE ESP CZWP
ZQ XLESPXLETND, FYOPCDELYOTYR SZH TE TD
LAAWTPO LYO SZH TE TD QFYOLXPYELW EZ LWW
ESLE EPNSYZWZRJ LTXD EZ LNSTPGP.

Let’s try to break a code by hand (you have 10 mins)

E: 21
L: 18
Z: 17
P: 16
T: 15
Y: 11
N: 10
S: 10

D: 10
W: 9
C: 8
Q: 6
X: 6
O: 6
M: 5
F: 5

A: 5
H: 4
V: 3
J: 3
R: 3
G: 1

Let’s try to break a coded message (key=11)

Before we can talk about the specifics of
modern cryptography, blockchains, or
bitcoin, we must first talk about the role
of mathematics, understanding how it is
applied and how it is fundamental to all
that technology aims to achieve.

Let’s talk about DATA …

A little “bit” of data
Unit Size Comments

Bit (b) 1 or 0 Short for Binary Digit, after the binary code

Byte (B) 8 bits WHY 8?

American Standard Code for Information Interchange

ASCII (character encoding standard/protocol)

Binary Decoding (8-bit)

A little “bit” of data
Unit Size Comments

Bit (b) 1 or 0 Short for Binary Digit, after the binary code

Byte (B) 8 bits Enough info to create letters and numbers
(basic unit of computing)

Kilobyte (KB) 1,000 B or 210 bytes “thousands” in Greek

Megabyte (MB) 1,000 KB or 220 bytes “large” in Greek

Gigabyte (GB) 1,000 MB or 230 bytes “giant” in Greek

A little “bit” of data (cont’d)
Unit Size Comments

Terabyte (TB) 1,000 GB or 240 bytes “monster” in Greek, about 2 billion credit card
transactions

Petabyte (PB) 1,000 TB or 250 bytes Google process more than 1 PB per hour

Exabyte (EB) 1,000 PB or 260 bytes In 2009, the entire internet was estimated at ~500
EB. In 2013, annual internet traffic flow surpassed
667 EB (Cisco)

AWS Snowball (up to 80 TB, 72 TB usable)

A little “bit” of data (cont’d)
Unit Size Comments

Terabyte (TB) 1,000 GB or 240 bytes “monster” in Greek, about 2 billion credit card
transactions

Petabyte (PB) 1,000 TB or 250 bytes Google process more than 1 PB per hour

Exabyte (EB) 1,000 PB or 260 bytes In 2009, the entire internet was estimated at ~500
EB. In 2013, annual internet traffic flow surpassed
667 EB (Cisco)

AWS Snowmobile!

http://www.youtube.com/watch?v=8vQmTZTq7nw&t=121

A little “bit” of data (cont’d)
Unit Size Comments

Zettayte (ZB) 1,000 EB or 270 bytes About 615 billion newspapers (88 copies for
every human being)

Yottabyte (YB) 1,000 ZB or 280 bytes Waaaay too big! Currently, all the combined
hard-drives and storage capacity in the world
are estimated at <0.0004 YB!

Plaintext vs. Binary Ciphertext (in “old” ASCII)

Plaintext H E L L O

Binary 1001000 1000101 1001100 1001100 1001111

Key = ?

Plaintext vs. Binary Ciphertext (in “old” ASCII)

Plaintext H E L L O

Binary 1001000 1000101 1001100 1001100 1001111

Key = David 1000100 1000001 1010110 1001001 1000100

Plaintext vs. Binary Ciphertext (in “old” ASCII)

Plaintext H E L L O

Binary 1001000 1000101 1001100 1001100 1001111

Key = David 1000100 1000001 1010110 1001001 1000100

Ciphertext (xor)

Boolean Logic & Logic Gates
AND

OR

NOT

NOR

NAND

XNOR

XOR

Conjunction (AND), a logical operation

Conjunction (AND), a logical operation

Conjunction (AND), a logical operation

Conjunction (AND), a logical operation

Conjunction (AND), a logical operation

Disjunction (OR), a logical operation

Exclusive Disjunction (XOR), a logical operation

Exclusive Disjunction (XOR), a logical operation

Input Output

A B (A ⊕ B)

0 0 0

1 1 0

1 0 1

0 1 1

Plaintext vs. Binary Ciphertext (in “old” ASCII)

Plaintext H E L L O

Binary 1001000 1000101 1001100 1001100 1001111

Key = David 1000100 1000001 1010110 1001001 1000100

Ciphertext (xor) 0001100 0000100 0011010 0000101 0001011

Plaintext vs. Binary Ciphertext (in “old” ASCII)

Plaintext H E L L O

Binary 1001000 1000101 1001100 1001100 1001111

Key = Dave 1000100 1000001 1010110 0110010 1000100

D a v e D

Let’s discuss in the context of
a case model …

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Some “Key” Definitions!

Key
Closed padlock (locked)
OR encrypted

Open padlock (unlocked)
OR decrypted

OR

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Securing a connection

Remember these?!

Key
Closed padlock (locked) Open padlock (unlocked)

OR

But how to safely and securely transmit the
cipher-shift “key”?

A clever thought-experiment to transmit
key, esp to those you haven’t met before!

How it works? Well, …

Isn’t that cool? We exchanged a secret
(encrypted) message without having to

agree to and exchange keys beforehand!

Digital Cryptography

Key

Plaintext

Algorithm
Ciphertext

One encryption on top of another! Remember LIFO?

A clever way to transmit key, in particular to
those you haven’t met before!

How we do this in practice?

A clever way to transmit key, in particular to
those you haven’t met before!

“irreversible” solution = Public + Private Key Pairs

+

Main Key Pair Attributes:
● Related, but separate (each unique on its own)
● They are unique to each person/user
● When one locks, only the other one can unlock
● Do NOT share private key … ever!

“irreversible” solution = Public + Private Key Pairs

+

Let’s see how it all work ...

Alice

Eve

BobMe

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Isn’t that super cool?
But how about the following scenario …

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Who can decrypt this message?
What do you need to do it?

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Eve

BobMe

+

Alice

+

Sending an Encrypted Message with Key Pairs

Who can decrypt this message? EVERYONE
What do you need to do it? MY PUBLIC KEY

Wouldn’t that be stupid?

Who can decrypt this message? EVERYONE
What do you need to do it? MY PUBLIC KEY

Wouldn’t that be stupid?
OR WOULD IT?!

Digital Signatures …
Proving Authorship

Do you know these gentlemen?

Hellman says of Merkle:

"Ralph, like us, was willing to be a fool, and the way to get to the top of the heap in
terms of developing original [thought] is to be a fool, because only fools keep trying. You
have idea number 1, you get excited and it flops. Then you have idea number 2, you get
excited and it flops. Then you have idea number 99, you get excited and it flops. Only a
fool would be excited by the 100th idea, but it might take 100 ideas before one really
pays off. Unless you're foolish enough to be continually excited, you won't have the
motivation and the energy to carry it through. And God rewards fools.“

Pioneers in Cryptography

Remember safe deposit boxes?

Remember safe deposit boxes?

How to encrypt, sign, transmit, and decrypt a msg
ReceiverSender

1. Compose & Encrypt using Receiver Public Key

2. Sign the Msg using Sender Private Key

TRANSMIT THE MESSAGE

3. Verify Signature by using Sender Public Key

4. Decrypt & Read using Receiver’s Private Key

Sender

 Receiver

An in-class exercise …
some simple math ;-)

Multiplying

294 * 992 = ? (by hand)

You have 5 minutes!

Multiplying

294 * 992 = 291,648

Multiplying vs. Factoring

294 * 992 = 291,648

Now factor 938,081 (by hand)
You have 10 minutes!

Multiplying vs. Factoring

294 * 992 = 291,648

Now factor 938,081
1087 * 863 (two primes)

Use of Prime Numbers and Modular Arithmetics

There are

1,925,320,391,606,803,968,923

prime numbers below 1023 alone

Largest prime number discovered yet …

If two plus three equals five (2+3=5) and
two plus eleven equals one (2+11=1),

then what is five plus eleven? (5+11=??)

Hint …

If two plus three equals five (2+3=5) and
two plus eleven equals one (2+11=1),

then what is five plus eleven? (5+11=??)

Let’s review some (simple) math … sorry!!

A few words on (math) functions

f(x) =x2+8

Functions in Math
● Simply put, a function is a (mathematical) operation …
● … one input equals to one output
● f(x) where x is the input value
● Example:

○ our function is “Doubling” →
○ f(x) = 2x →
○ Take an input, then double it (or multiply by 2)
○ For x=4 (i.e. input is 4), then the output is 8

● But then a funny thing happens …

Functions in Math
● But then a funny thing happens …
● … our function is still “Doubling” →
● So what if I give you the output only? Can you figure out the input?
● OF COURSE … we’ll just reverse the function
● Example:

○ our function is “Doubling” →
○ f(x) = 2x →
○ If the output is 44, then the input is …
○ 22 ;-)

● Most functions in math are Two-way Functions (reversible)
● But then …

Modular (or clock) Arithmetics

Start at 5, then jump 11 units …

Start Here

If (2+3=5) and (2+11=1),
then (5+11=4)

2+3 = 5(mod 12)
2+11 = 1(mod 12)

5+11= 4 (mod 12)

Let’s calculate 11x9 (mod 13)=?

Let’s calculate 11x9 (mod 13)=?
First, let’s use “regular” math: 11x9=99

Then, let’s divide: 99÷13 = 7, with remainder 8
…
So

11x9 = 8 (mod 13)

In-Class Exercise (you can use calculators only)

for x = 1 2 3 4 5 6

3x

3x(mod 7)

Homework for Next Class (can use calculator

for x = 1 2 3 4 5 6

3x 3 9 27 81 243 729

3x(mod 7) 3 2 6 4 5 1

Let’s consider this special one-way function …

Y x (mod P) … with Y<P as two prime numbers

Y and P are NOT secrets and can be shared

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Plug 3 as X into our function to get 𝞪, so 73
(mod 11) → 343 (mod 11) = 2

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Plug 6 as X into our function to get 𝝱, so 76
(mod 11) → 117,649 (mod 11) = 4

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Plug 3 as X into our function to get 𝞪, so 73
(mod 11) → 343 (mod 11) = 2

Send 𝞪 (or 2) to Bob

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Plug 6 as X into our function to get 𝝱, so 76
(mod 11) → 117,649 (mod 11) = 4

Send 𝝱 (or 4) to Alice

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Plug 3 as X into our function to get 𝞪, so 73
(mod 11) → 343 (mod 11) = 2

Send 𝞪 to Bob

Plug 𝝱 into 𝝱A (mod 11) → 43 (mod 11) → 64
(mod 11) = 9

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Plug 6 as X into our function to get 𝝱, so 76
(mod 11) → 117,649 (mod 11) = 4

Send 𝝱 to Alice

Plug 𝞪 into 𝞪B (mod 11) → 26 (mod 11) → 64
(mod 11) = 9

Our function is Y x (mod P) … with Y<P
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Plug 3 as X into our function to get 𝞪, so 73
(mod 11) → 343 (mod 11) = 2

Send 𝞪 to Bob

Plug 𝝱 into 𝝱A (mod 11) → 43 (mod 11) → 64
(mod 11) = 9

How cool! Alice has the same KEY as Bob
without exchange of the actual key!

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Plug 6 as X into our function to get 𝝱, so 76
(mod 11) → 117,649 (mod 11) = 4

Send 𝝱 to Alice

Plug 𝞪 into 𝞪B (mod 11) → 26 (mod 11) → 64
(mod 11) = 9

How cool! Bob has the same KEY as Alice
without exchange of the actual key!

If you are Eve (snooper), can you figure out the key?
Alice

Agree & share on Y & P (e.g. Y=7 & P=11)

Alice picks a secret number A (e.g. 3)

Plug 3 as X into our function to get 𝞪, so 73
(mod 11) = 2

Send 𝞪 to Bob

Plug 𝝱 into 𝝱A (mod 11) → 43 (mod 11) = 9

What is the KEY? Eve knows the function, Y, P
[7x (mod 11)] and both 𝞪 and 𝝱, but neither A
nor B!

Bob

Agree & share on Y & P (e.g. Y=7 & P=11)

Bob picks a secret number B (e.g. 6)

Plug 6 as X into our function to get 𝝱, so 76
(mod 11) = 4

Send 𝝱 to Alice

Plug 𝞪 into 𝞪B (mod 11) → 26 (mod 11) = 9

What is the KEY? Even knows the function, Y,
P [7x (mod 11)] and both 𝞪 and 𝝱, but neither
A nor B!

We’ll come back to one-way functions later on,
… so stay tuned ;-)

Now back to our Public-Private Key Pair model

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption: Ease Computational Reqs.

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

Public Key Encryption

TLS Handshake

Public Key Encryption

TLS Handshake

HTTPS Adoption (link)

https://transparencyreport.google.com/https/overview?hl=en

A little fun learning … with movies!

One of the greatest movies of all time …
if not THE greatest is …

http://www.youtube.com/watch?v=IRELLH86Edo

Aren’t movies fun?!
Back to our impostor …

The Impostor (or Impersonator)

The Impostor

Alice

Bob

The Impostor

Alice

Bob

The Impostor

Alice

Bob

“From: The Bank”

Eve

A Real-Life Impostor

John Podesta,
Hillary Clinton

Campaign Chairman

Hackers

“From: Gmail”

Images: Wikimedia

> Someone just used your password to try to sign in to your Google
Account
> john.podesta@gmail.com.
>
> Details:
> Saturday, 19 March, 8:34:30 UTC
> IP Address: 134.249.139.239
> Location: Ukraine
>
> Google stopped this sign-in attempt. You should change your password
> immediately.
>
> CHANGE PASSWORD <https://bit.ly/1PibSU0>
>
> Best,
> The Gmail Team
> You received this mandatory email service announcement to update you
about
> important changes to your Google product or account.
>

> Someone just used your password to try to sign in to your Google
Account
> john.podesta@gmail.com.
>
> Details:
> Saturday, 19 March, 8:34:30 UTC
> IP Address: 134.249.139.239
> Location: Ukraine
>
> Google stopped this sign-in attempt. You should change your password
> immediately.
>
> CHANGE PASSWORD <https://bit.ly/1PibSU0>
>
> Best,
> The Gmail Team
> You received this mandatory email service announcement to update you
about
> important changes to your Google product or account.
>

Digital Signatures

“From: Gmail”

Images: Wikimedia

Digital Signatures

“From: Gmail”

Images: Wikimedia

Digital Signatures

“From: Gmail”
Images: Wikimedia

Digital Signatures

Sending Side

Digital Signatures

Sending Side

Private Key

Digital Signatures

Sending Side

Private Key

+

Message

Digital Signatures

Sending Side

Private Key

+

Message

=

Digital Signatures

Sending Side

Private Key

+

Message

=

Unique Digital Signature

10101100101010101...

Digital Signatures

“From: Gmail”
Images: Wikimedia

Digital Signatures

“From: Gmail”

Images: Wikimedia

Digital Signatures

Receiving Side

Digital Signatures

Receiving Side

Public Key
of Sender

Digital Signatures

Receiving Side

+

MessagePublic Key
of Sender

Digital Signatures

Receiving Side

+

Message

+

Unique Digital SignaturePublic Key
of Sender

10101100101010101...

Digital Signatures

Receiving Side

+

Message

+

Public Key
of Sender

Unique Digital Signature

10101100101010101...

Digital Signatures

Receiving Side

+
Fraudulent
Message

+

Public Key
of Sender

Unique Digital Signature

10101100101010101...

Digital Signatures

Receiving Side

+
Fraudulent
Message

+

Public Key
of Sender

Unique Digital Signature

10101100101010101...

Digital Signatures

“From: Gmail”

Images: Wikimedia

Digital Signatures

“From: Gmail”

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

“From: Gmail”

Digital Signatures & Certificates

“From: Gmail”

Digital Signatures & Certificates: An Analogy

Certificates Authorities

Digital Signatures & Certificates

Images: Wikimedia

“From: Gmail”

Digital Signatures & Certificates

Images: Wikimedia

“From: Gmail”

TLS Handshake

Digital Signatures & Certificates

?

Digital Signatures & Certificates

Digital Signatures & Certificates: A Bar Analogy

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

Digital Signatures & Certificates

“From: Gmail”

Images: Wikimedia

Digital Signatures & Certificates

“From: Gmail”

Images: Wikimedia

Trustworthy
Certificates, Inc.

Digital Signatures & Certificates

“From: Gmail”

Images: Wikimedia

Trustworthy
Certificates, Inc.

One more thing … best password?

GMw89#hUPn_d>k

horse_correct_bat

One more thing … best password?

GMw89#hUPn_d>k

horse_correct_bat

One more thing … best password?

GMw89#hUPn_d>k (72.0 bits of entropy)

horse_correct_bat (74.3 bits of entropy)

Horse_correct_bat (82.6 bits of entropy)

III. Too Big to Fail
What happens when the

attacker is someone we’re
supposed to trust?

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Can’t Trust the Banks

Can’t Trust the Banks

Can’t Trust the Banks

Can’t Trust the Banks

Can’t Trust the Banks

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files
with friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Can’t Trust the Tech Companies

Can’t Trust the Tech Companies

Can’t Trust the Tech Companies

Can’t Trust the Tech Companies

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files
with friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Can’t Trust the Stores

Can’t Trust the Stores

Can’t Trust the Stores

Can’t Trust the Stores

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Can’t Trust the CAs

Can’t Trust the CAs

Can’t Trust the CAs

Can’t Trust the CAs

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Things We’ve Been Trusting
● The banks with which we store our money.

● The tech companies with which we send messages and share files with
friends/family.

● The stores we shop from.

● The list of trusted certificate authorities from our web browser.

Decentralized Networks

Real Decentralized Technologies

Internet Bitcoin

End of First Session (yay 🥳!)

Thank you for your attention and
participation

Get some rest, review the material, and
we’ll see you in our next class 👋

Blockchain, Cryptocurrencies &
Digital Tokens Demystified

Fall 2023 (EMBA)
Columbia Business School

Welcome Back to Session 2 🎉

Curriculum Roadmap

Nov 4 Nov 18 Dec 2 Dec 9

Morning

Networks &
Protocols

Hashing, Hashing
Tables & One- Way
Functions & a few
more tech

Bitcoin + other forms of
crypto payments and
store of value
mechanisms and
media

DeFi & Other
Applications (Digital
Tokens, CBDC, etc.) +
Speaker: Future of
Finance + Discussion
Forum

Lunch Lunch Lunch Lunch

Afternoon

Encryption &
Cryptography
(plus some
math!)

Bring it All
Together: Let’s
build a blockchain
& discuss variety of
cases

Ethereum & Other
Digital Tokens +
Speaker: Regulatory &
Legal Considerations in
Blockchain & Digital
Assets

Governance,
Marketplaces, NFTs &
More; Final Lecture on
How the Future May Play
Out + Final
Presentations

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9
Class Plan
Nov 4 08:30 am to 6:45 pm (K-440)Module 1 + 2
Nov 18 08:30 am to 6:45 pm (K-440)Module 3 + 4
Dec 2 08:30 am to 6:45 pm (K-440)Midterm Project + 5 & 6 + Guest Speaker
Dec 9 08:30 am to 6:45 pm (K-440)Module 7 & 8 + Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am Lecture
9:45-10:00 am Break
10:00-11:15 pm Lecture
11:15 am-12:30 pm Lunch (1h15min) - Kravis 2nd floor (Smith Dining)
12:30-2:00 pm Lecture
2:00-2:15 pm Break
2:15-3:30 pm Lecture
3:30-3:45 pm Break
3:45-5:00 pm Lecture
5:00-5:15 pm Break
5:15-6:45 pm Lecture

Important Admin Items for the Day
● Team formations finalized today, ideally by 3:30 pm and no later

than end of day today
● Details on your midterm project
● Thoughts on “Blockchain Killer App” for Sessions 3 and/or 4
● Make sure not to fall behind as Sessions 1 & 2 are foundational
● Watch lecture recordings and email me for office hours
● I REALLY enjoyed our first session, and thank you VERY much for

the amazing level of participation and engagement. Let’s hope
today would be equally fun, if not more 😃

● … btw, did you watch The Simpsons episode right after our first
class session? It was about blockchain & NFTs!! Check out S35E5.

THE MOST Important Admin Item for the Day

THE MOST Important Admin Item for the Day
Catering today is by Dinosaur BBQ:

● Mac & cheese
● Turkey
● Beef brisket
● BBQ Salmon
● Portabella Mushrooms w/ peppers & onions
● Simmered Greens
● Sweet Potatoes

Before we begin, any interesting points or
lessons from our first session you’d like to share?

Let’s start our Session 2

History of Cryptographically-based e-Currencies:
It’s nothing new:

● Remember Error 402?

History of Cryptographically-based e-Currencies:
It’s nothing new:
● Remember Error 402?
● DigiCash: proposed in 1983 by David Chaum, set up eCash, launched in

1989, declared bankruptcy in 1998
● CyberCash: payment service founded in 1994, IPO in 1996, set up CyberCoin

for micro-payments (through NetBill at CMU), went bankrupt in 2001
● Hashcash: proposed in 1997 by Adam Back,
● BitGold: proposed by Nick Szabo in 1998 (he coined “Smart Contracts.”)

Although never implemented, it has many similarities to Bitcoin!
● … and others (Hashcash, B-Money, First Virtual, etc.)

Why did these early forms of digital currencies fail?

Double-Spending, Trust, and Consensus are
amongst the top reasons …

Speaking of consensus …

Byzantine Generals Problem &
the question of Byzantine Fault Tolerance

A seminal CS paper (1982)

In a distributed network, how many node failures
can the system tolerate and still function as

intended in delivering consensus?

IV. Building the
Blockchain

Using cryptography to build
decentralized technologies.

Blockchains

Alice Bob

Carol

Dave

Edith

Central Ledger Ledger

Alice Bob

Carol

Dave

Edith

Central Ledger Ledger

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

Central Ledger Ledger

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
To: Bob

From: Alice

Central Ledger Ledger

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
To: Bob

From: Alice

Central Ledger Ledger

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
To: Bob

From: Alice

Ledger

Alice Bob

Carol

Dave

Edith

$95

$100

$100

$105

$100

– +
Central Ledger

Ledger

Alice Bob

Carol

Dave

Edith

$95

$100

$100

$105

$100

– +
Central Ledger

Blockchains Ledger

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains: everyone updates on their own asap!

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains: stay in sync with code and NO trust

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains: store in blocks chained together

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchain: a cryptographically-verifiable Tx chain
Everyone gets $100

Everyone gets $100

Alice gives Bob $5

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $100

Alice gives Bob $5

Edith gives Carol $25

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $100

Alice gives Bob $5

Edith gives Carol $25

Bob gives Edith $10

Blockchain: a cryptographically-verifiable Tx chain

Everyone gets $100

Alice gives Bob $5

Edith gives Carol $25

Bob gives Edith $10

Blockchain: a cryptographically-verifiable Tx chain

How to Verify? How to Encrypt?

Once again, we need some simple math
(don’t we love math by now?!)

Remember functions?

f(x) =x2+8

Functions in Math
● Simply put, a function is a (mathematical) operation …
● … one input equals to one output
● f(x) where x is the input value
● Example:

○ our function is “Doubling” →
○ f(x) = 2x →
○ Take an input, then double it (or multiply by 2)
○ For x=4 (i.e. input is 4), then the output is 8

● But then a funny thing happens …

Functions in Math
● But then a funny thing happens …
● … our function is still “Doubling” →
● So what if I give you the output only? Can you figure out the input?
● OF COURSE … we’ll just reverse the function
● Example:

○ our function is “Doubling” →
○ f(x) = 2x →
○ If the output is 44, then the input is …
○ 22 ;-)

● Most functions in math are Two-way Functions (reversible)
● But then …

Hashing (One Way Functions)

Hash
Function

Hashing (One Way Functions)

Some Input Hash
Function

Hashing (One Way Functions)

Some Input Hash
Function Output

Hashing (One Way Functions)

Some Input Hash
Function Output

Output

Hashing (One Way Functions)

Some Input Hash
Function Output

Hash
ReverserOutput

Hashing (One Way Functions)

Some Input Hash
Function Output

Hash
ReverserOutput Doesn’t

Exist

A great example of a One-way Function ...

Another great example of a One-way Function
...

Real-World One-Way Function (Hashing Function)

Real-World One-Way Function (Hashing Function)

Real-World One-Way Function (Hashing Function)

Our Function is =
for a given input, find the output

Our Function is =
for a given input (name) →

find the output (corresponding phone number)

A Real-World Hashing Function

A Real-World Hashing Function

A Real-World Hashing Function

Name

A Real-World Hashing Function

Name Phone
No.

A Real-World Hashing Function

Columbia
Business

School
(212) 854-1100

A Real-World Hashing Function

(212) 854-5553

A Real-World Hashing Function

(212) 854-5553

So that you know what one-way functions are,
let’s continue to learn more about hashing and

hashing tables ...

Imagine we have a database of over 50 million
phone numbers of our customers in the United
States. My database does not allow sorting, so
how do I find the name of a business associated
with a phone number in our database?

Business Name Phone Number

Stone Rock Capital LLC 212-854-3487

Simple Basic Partners LLP 213-718-1696

Blue Pebble Capital LLC 212-376-3900

Navy Rock Ventures LLC 323-839-1748

Sky Limit Venture Partners LLP 650-337-6291

Business Name Phone Number

Stone Rock Capital LLC 212-854-3487

Simple Basic Partners LLP 213-718-1696

Blue Pebble Capital LLC 212-376-3900

Navy Rock Ventures LLC 323-839-1748

Sky Limit Venture Partners LLP 650-337-6291

Let’s develop a method (Protocol or Algorithm)
to simplify these phone numbers and be able to

create sub-categories for storing in our
database …

212-854-3487 (take a number from our directory)

21 28 54 34 87 (separate into two-digit numbers)

2+1 2+8 5+4 3+4 8+7 (add up the digits of each tw-digit pair until you get a single-digit
number)

3 10 9 7 15
3 1+0 9 7 1+5
3 1 9 7 6 (Done! Then combine to form a 5-digit category number for storing)
31976

Business Name Phone Number Category

Stone Rock Capital LLC 212-854-3487 31976

Simple Basic Partners LLP 213-718-1696

Blue Pebble Capital LLC 212-376-3900

Navy Rock Ventures LLC 323-839-1748

Sky Limit Venture Partners LLP 650-337-6291

213-718-1696 (take a number from our directory)

21 37 18 16 96 (separate into two-digit numbers)

2+1 3+7 1+8 1+6 9+6 (add up the digits of each tw-digit pair until you get a single-digit
number)

3 10 9 7 15
3 1+0 9 7 1+5
3 1 9 7 6 (Done! Then combine to form a 5-digit category number for storing)
31976

Business Name Phone Number Category

Stone Rock Capital LLC 212-854-3487 31976

Simple Basic Partners LLP 213-718-1696 31976 (is this a problem?!)

Blue Pebble Capital LLC 212-376-3900

Navy Rock Ventures LLC 323-839-1748

Sky Limit Venture Partners LLP 650-337-6291

78742938817753999196055303459477291037892373684068

78 74 29 38 81 77 53 99 91 96 05 53 03 45 94 77 29 10 37 89 23 73 68 40 68

7+8 7+4 2+9 3+8 …

15 13 11 11 ...

1+5 1+3 1+1 1+1 ...

6 4 2 2 ...

Let’s continue to learn more about hashing and
hashing tables ...

Name ID Codes

Dara 330i

Cara X7

Bea X3

Alice M4

Ella 128i

Name ID Codes

Alice M4

Bea X3

Cara X7

Dara 330i

Ella 128i

Name ID Codes

Ella 128i

Dara 330i

Alice M4

Bea X3

Cara X7

Again, imagine no sorting is allowed …
or the table has tens of thousands of rows and

hundred of columns (big data)

Name Codes

Stadtverordnetenversammlung 2840

KraftfahrzeugHaftpflichtversicherung 9508

Siebentausendzweihundertvierundfünfzig 7254

Rechtsschutzversicherungsgesellschaften 3126

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz 5434

Donaudampfschifffahrtselektrizitätenhauptbetriebswerkbauunterbeamtengesellschaft 8923

Item Number Tariff Code

78742938817753999196055303459477291037892373684068 z9m0

76539710192327255231902237652982747470592661143566 0h23

88984727710651739231245830019043173775547558023984 3f26

77603278128172851537873810966507560948211829756526 787y

46527684654614009996682441601858375203324083908888 8nc6

Item Number Tariff Code

78742938817753999196055303459477291037892373684068 z9m0

76539710192327255231902237652982747470592661143566 0h23

88984727710651739231245830019043173775547558023984 3f26

77603278128172851537873810966507560948211829756526 787y

46527684654614009996682441601858375203324083908888 8nc6

78742938817753999196055303459477291037892373684068

78 74 29 38 81 77 53 99 91 96 05 53 03 45 94 77 29 10 37 89 23 73 68 40 68

7+8 7+4 2+9 3+8 …

15 13 11 11 ...

1+5 1+3 1+1 1+1 ...

6 4 2 2 ...

Hash Item Number Tariff
Code

1458 78742938817753999196055303459477291037892373684068 z9m0

5624 76539710192327255231902237652982747470592661143566 0h23

4548 88984727710651739231245830019043173775547558023984 3f26

4465 77603278128172851537873810966507560948211829756526 787y

2677 46527684654614009996682441601858375203324083908888 8nc6

We need to REALLY minimize the chance of two
items having the same hash …

SHA to the rescue!

Bitcoin’s Hashing Function

SHA-256

Bitcoin’s Hashing Function

SHA-256Arbitrary
Data

Bitcoin’s Hashing Function

SHA-256Arbitrary
Data

256-bit
number

Bitcoin’s Hashing Function

SHA-256Arbitrary
Data

256-bit
number

0 → 2^256

SHA-256

SHA-256 hash: a number with the range:

0 → 2256

SHA-256

2^256 equals to:
115792089237316195423570985008687907853269984665640564039457584007913129639936

SHA-256

SHA-256 hash: a number with the range:

0 → 2256

2^256 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936

SHA-256: Using an unimaginably large number!

Note that 2256 is approximately 1077

The sum of all the atoms in the universe are
estimated to be 1080 (or between 1078 and 1082)

SHA-256 Hash: a continuous number line

0 2^256

2^256 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936

SHA-256 Hash: a continuous number line

0 2^256

2^256 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936

SHA-256: points on the long line
Each point would be consisting of many digits:
0
1
2
3
4
8
25
9387
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639

Numerical Encoding

Example Digits Used

Binary Number 11011000 01

Decimal Number 2128541100 0123456789

Hexadecimal Number 7edef5ac 0123456789abcdef

Odometer (mileage count)

Odometer (mileage count)

Odometer (mileage count)

Numerical Encoding

Example Digits Used

Binary Number 11011000 01

Decimal Number 2128541100 0123456789

Hexadecimal Number 7edef5ac 0123456789abcdef

SHA-256 Hash

000

0 2^256

0

Decimal HexaDecimal

SHA-256 Hash

000
001

0 2^256

0
1

Decimal HexaDecimal

SHA-256 Hash

000
001
002

0 2^256

0
1
2

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009

0 2^256

0
1
2
9

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00 a

0 2^256

0
1
2
9
10

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00 a
00 b
00 f

0 2^256

0
1
2
9
10
11
15

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00a
00b
00f
000 10

0 2^256

0
1
2
9
10
11
15
16

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00a
00b
00f
00010
00011

0 2^256

0
1
2
9
10
11
15
16
17

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00a
00b
00f
00010
00011
003e8
00 f4240

0 2^256

0
1
2
9
10
11
15
16
17

1,000
1,000,000

Decimal HexaDecimal

Numerical Encoding

Example Digits Used

Binary Number 11011000 01

Decimal Number 2128541100 0123456789

Hexadecimal Number 7edef5ac 0123456789abcdef

http://www.youtube.com/watch?v=NttUBB98zg4

A few thoughts on “Collisions” …

Remember these?

Brute force the unlocking of this briefcase …

Brute force the unlocking of this briefcase …
… it will take you 3 seconds per each try.

How long will it take to “hack” the briefcase
open without knowing the secret lock code?

Combination Lock (3 rotary dials)

0
1
2
3
4
5
6
7
8
9

Digits

1
0
1
2
3
4
5
6
7
8
9

Digits

4
0
1
2
3
4
5
6
7
8
9

Digits

8

10 x 10 x 10 = 1,000 = 103

Combination Lock (3 rotary dials)
10 x 10 x 10 = 1,000 = 103 total possible combinations

With 3 seconds per each combination, we will need:
3 x 103 second (or 3,000 seconds)

There are 60 seconds in each minutes, so:

(3 x 103) ➗ 60 = 50 minutes max to open each lock
OR

3,000 ➗ 60 = 50 minutes max to open each lock

Combination Lock (3 rotary dials)

10 x 10 x 10 = 1,000 = 103 total possible combinations

3 seconds per each combination
1 min = 60 seconds

So 60 ➗ 3 = 20 combinations per minute
1,000 ➗ 20 = 50 minutes to open each lock

Combination Lock (3 rotary dials)

0
1
2
3
4
5
6
7
8
9

Digits

1
0
1
2
3
4
5
6
7
8
9

Digits

4
0
1
2
3
4
5
6
7
8
9

Digits

8

10 x 10 x 10 = 1,000 = 103

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

3
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

d
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

e
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

7
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

6
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

b
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

e
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

1
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

8
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

c
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

Digits

5…

16 16 16 16 16 16 16 16 16 16 … 16

SHA-256 Hash: Why 64 characters?

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

0 2^256

hello

Text SHA-256 Hash (HexaDecimal)

16x16x16x16x16x16x16x16x16x... [16 multiplied by itself 64 times]

SHA-256 Hash: Why 64 characters?

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

0 2^256

hello

Text SHA-256 Hash (HexaDecimal)

1664 = (24)64 = 24x64 =
2256

16x16x16x16x16x16x16x16x16x... [16 multiplied by itself 64 times]

SHA-256

SHA-256 hash: a number with the range:

0 → 2256

2^256 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936

SHA-256: Using an unimaginably large number!

Note that 2256 is approximately 1077

The sum of all the atoms in the universe are
estimated to be 1080 (or between 1078 and 1082)

Let’s brute-force a SHA-256 collision by using
state-of-the-art machine:

Some of the Fastest Machines

Some of the Fastest Machines

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second = 1012 h/s
SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second = 1012 h/s
SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

(1077) ➗ (255 x 1012) = 3.92 x 1062 seconds

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second = 1012 h/s
SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

(1077) ➗ (255 x 1012) = 3.92 x 1062 seconds

How many years will that be?

Well, there are appx (365 days x 24 hrs x 60 mins x 60 secs) seconds per year, so
there are appx 31,536,000 seconds per year, OR 3.15 x 107 secs/year

Let’s find a SHA-256 collision
1 Terahash = 1 trillion hashes per second = 1012 h/s

SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

(1077) ➗ (255 x 1012) = 3.92 x 1062 seconds

How many years will that be?
With 31,536,000 seconds per year, OR 3.15 x 107 secs/year →

(3.92 x 1062 seconds) ➗ (3.15 x 107 secs/year) = 1.24 x 1055 years

Let’s get 1 billion (109) of these machines, so:
(1.24 x 1055 years) ➗ 109 = 1.24 x 1046 years

Let’s find a SHA-256 collision
So, how long will it take with one billion machines at 255 Th/s to run through all

numbers between 0 and 1077?

(1.24 x 1055 years) ➗ 109 = 1.24 x 1046 years

Age of the Universe: 13.8 x 109 years
Age of Earth: 4.5 x 109 years

We would need these many universe lifetimes to make it:
 (1.24 x 1046 yrs) ➗ (13.8 x 109 yrs) = 8.99 x 1035

898,550,724,637,681,159,420,289,855,072,463,768

899,000,000,000,000,000,000,000,000,000,000,000 😱🤯

Let’s find a SHA-256 collision

1 Terahash = 1 trillion hashes per second = 1012 h/s
SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

(1077) ➗ (255 x 1012) = 3.92 x 1062 seconds

(3.92 x 1062 seconds) ➗ (3.15 x 107 secs/year) = 1.24 x 1055 years

Let’s get 1 billion (109) of these machines, so:
(1.24 x 1055 years) ➗ 109 = 1.24 x 1046 years

Let’s find a SHA-256 collision
1 Terahash = 1 trillion hashes per second = 1012 h/s

SHA-256 is appx. 1077 total possible numbers (i.e. hashes)

So, how long will it take with one machine at 255 Th/s to run through all
numbers between 0 and 1077?

(1077) ➗ (255 x 1012) = 3.92 x 1062 seconds

(3.92 x 1062 seconds) ➗ (3.15 x 107 secs/year) = 1.24 x 1055 years

Let’s get 1 billion (109) of these machines, so:
(1.24 x 1055 years) ➗ 109 = 1.24 x 1046 years

At $3,000 a machine, we’d need $3,000,000,000,000 just to buy them
(3 trillion dollars … annual GDP of France!)

SHA-256 Hash

000
001
002
009
00a
00b
00f
00010
00011
003e8

0 2^256

0
1
2
9
10
11
15
16
17

1000
(2^256)-1

2^256

Decimal HexaDecimal

SHA-256 Hash

000
001
002
009
00a
00b
00f
00010
00011
003e8
fff
100 0

0 2^256

0
1
2
9
10
11
15
16
17

1000
(2^256)-1

2^256

Decimal HexaDecimal

SHA-256 Hex Encoding
Instead of a long hash consisting of many digits:
0
1
2
3
4
8
25
9387
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639

SHA-256 Hex Encoding
Instead of a long hash consisting of many digits:
0
1
25
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
115792089237316195423570985008687907853269984665640564039457584007913129639

SHA-256 Hex Encoding
Instead of a long hash consisting of many digits:
0
1
25
23430174432
57098500868790785
7316195423570985008687907853269984665640
4853269984665907859895748813748971384798546645240492
1157920892373161954235709850086879078532699846656405640394575840079131296399

We have (a fixed string of 64 characters … always):
fd04788626e5f87b3b22b2b855bddaae2f1ee43956232d2fa57c5afa7d3f09b9
4faa640f3077ded9d2b7fc6f429050defc5d26e08e5b241edadd39a49e56af51
933e1c934309c9d942921fcebcd8fc398553f2c39ccb162cb53bd998149b042b

SHA-256
“hi” “This is a

sentence.”

8f434346648f6b96df89dda901c5176b10a6d83961dd3c1ac88b59b2dc327aa4

79f5c65fe815417fe2dc3fdbfbda9dbff7e0ecf63dea6162d4339546e7aa4d49

fd04788626e5f87b3b22b2b855bddaae2f1ee43956232d2fa57c5afa7d3f09b9

d38b38a2dd476e045c299e8ee5d6466834456d97bd592a71746b423a6a05f386

SHA-256

DEMO: Hash (SHA-256)

SHA-256 Hash: Remember why 64 characters?

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

0 2^256

hello

Text SHA-256 Hash (HexaDecimal)

SHA-256 Hash: setting thresholds

0 2^256

Numbers with one leading zero

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros 2 2 0.0018%

3 Leading Zeros 18 25 0.0160%

2 Leading Zeros 415 406 0.3740%

1 Leading Zero 6,663 6,503 6.0044%

No Leading Zeros 103,870 104,033 93.603%

Calculate the expected number of
lines from no leading zero to 4 leading

zeros. You have 5 minutes.

Approx 110,968 lines of Shakespeare written (all works)

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros 0.0018%

3 Leading Zeros 0.0160%

2 Leading Zeros 0.3740%

1 Leading Zero 6.0044%

No Leading Zeros 104,033 93.603%

Approx 110,968 lines of Shakespeare written (all works)

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros 0.0018%

3 Leading Zeros 0.0160%

2 Leading Zeros 0.3740%

1 Leading Zero ~6,935 6.0044%

No Leading Zeros ~104,033 93.603%

Approx 110,968 lines of Shakespeare written (all works)

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros 0.0018%

3 Leading Zeros 0.0160%

2 Leading Zeros 0.3740%

1 Leading Zero ~6,935 6.0044%

No Leading Zeros ~104,033 93.603%

Approx 110,968 lines of Shakespeare written (all works)

SHA-256 Hash: setting thresholds

0 2^256

Numbers with AT LEAST one leading zero

SHA-256 Hash: setting thresholds

0 2^256

Numbers with AT LEAST
one leading zero

All numbers with NO leading zero

SHA-256 Hash: setting thresholds

0 2^256

Numbers with AT LEAST
one leading zero

110,968 - 104,033 =
6,935.5

All numbers with NO leading zero
110,968 * (15/16) = 104,032.5

SHA-256 Hash: setting thresholds

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros ~2 0.0018%

3 Leading Zeros ~25 0.0160%

2 Leading Zeros ~406 0.3740%

1 Leading Zero ~6,502 6.0044%

No Leading Zeros ~104,033 93.603%

Approx 110,968 lines of Shakespeare written (all works)

SHA-kespeare

Hash Criteria
Lines of
Shakespeare

Expected
Number of Lines

Actual % of lines
(out of ~110,968)

4 Leading Zeros 2 ~2 0.0018%

3 Leading Zeros 18 ~25 0.0160%

2 Leading Zeros 415 ~406 0.3740%

1 Leading Zero 6,663 ~6,502 6.0044%

No Leading Zeros 103,870 ~104,033 93.603%

Approx 110,968 lines of Shakespeare written (all works)

SHA-kespeare

Hamlet, Act I, Scene 2:
King. Have you your father's leave?

What says Polonius?

000055779d9bda7accb203c8256e6106e
2d44d68025b83624af59e31c3527275

Everyone gets $100

Alice gives Bob $5

Edith gives Carol $25

Bob gives Edith $10

How to make the chain secured?

Blockchain: a cryptographically-verifiable Tx chain

IV. Building the
Blockchain

Using all we’ve learned to build
an immutable chain of “digital

assets” (and more)

Parties involved (client wants to use their own legal & accounting)

1.
2.
3.
4.

Exercise: let’s do a (theoretical) deal!

Parties involved (client wants to use their own legal & accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB

Exercise: let’s do a deal!

Parties involved (client wants to use their own legal & accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor

Exercise: let’s do a deal!

Parties involved (client wants to use their own legal & accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor
3. Jeff Dewey (JD); Dewey, Cheatem & Howe (DCH); Law

Exercise: let’s do a deal!

Parties involved (client wants to use their own legal & accounting)

1. Bridget Fonda (BF); Commercial Bank Corp (CBC); IB
2. Robert Farrokhnia (RF); Columbia University (COL); Advisor
3. Jeff Dewey (JD); Dewey, Cheatem & Howe (DCH); Law
4. Alex Runne (AR); Steel, Runne & Hyde (SRH): Accounting

Exercise: let’s do a deal!

We will have lots of documents going back and forth.

Our document naming convention, or protocol:

[type of doc]_[company name]_[author’s
initials]_[author’s employer]_[date:
mm/dd/yy]_[version number: v#]

Exercise: let’s do a deal!

[type of doc]_[company name]_[author’s
initials]_[author’s employer]_[date:
mm/dd/yy]_[version number: v#]

PPM_Newco_RF_COL_041523_v1

[type of doc]_[company name]_[author’s
initials]_[author’s employer]_[date:
mm/dd/yy]_[version number: v#]

PPM_Newco_RF_COL_041523_v1
PPM_Newco_BF_CBC_041623_v2

Exercise: naming protocol sorted by “Name”

Exercise: naming protocol sorted by “Date Modified”

What can do wrong? How to fix the system?

Let’s build a blockchain, connecting and
linking verified digital files in an immutable
way with a shared ledger to keep track of it

all that every party can see.

PPM v1

Let’s Hash!

SHA-256

Sign with author Private
Key to verify authenticity

PPM v1

Let’s Hash!

SHA-256 Hash: 09592b438bfe8ac1fd

Sign with author Private
Key to verify authenticity

PPM v1

Let’s Hash!

SHA-256

PPM v2

Hash: 09592b438bfe8ac1fd

Verified & Recorded on
Distributed Shared Ledger $$ Reward

Sign with author Private
Key to verify authenticity

PPM v1

Let’s Hash!

SHA-256

PPM v2

Hash: 09592b438bfe8ac1fd

Verified & Recorded on
Distributed Shared Ledger

SHA-256 Hash: fa1960e7a6b57ee967

$$ Reward

Sign with author Private
Key to verify authenticity

PPM v1

Let’s Hash!

SHA-256

PPM v2

Hash: 09592b438bfe8ac1fd

Verified & Recorded on
Distributed Shared Ledger

SHA-256 Hash: fa1960e7a6b57ee967

PPM v3Verified & Recorded on
Distributed Shared Ledger

Sign with author Private
Key to verify authenticity

$$ Reward

$$ Reward

PPM v1

Let’s Hash!

SHA-256

PPM v2

Hash: 09592b438bfe8ac1fd

Verified & Recorded on
Distributed Shared Ledger

SHA-256 Hash: fa1960e7a6b57ee967

PPM v3Verified & Recorded on
Distributed Shared Ledger

SHA-256

Sign etc.

PPM v1 PPM v2 PPM v3

Shared Ledger
0000000000000

SHA-256

PPM v4

SHA-256 SHA-256 SHA-256

Shared Ledger
0000000000000
xxxxxxxxxxxxx

Shared Ledger
0000000000000
xxxxxxxxxxxxx
xxxxxxxxxxxxx

Shared Ledger
0000000000000
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

List of verified
SHA-256 hashes

Sign etc. Sign etc. Sign etc. Sign etc.

One of the earliest papers on “Blockchain”

One of the earliest papers on “Blockchain”

Let’s power on ...

Blockchain
Everyone gets $100

Alice gives Bob $5

Edith gives Carol $25

Bob gives Edith $10

Assume all
transactions here
are signed, and
the creator of the
hash verified that
the sender had
the necessary
funds

Blockchain: hash each block
Everyone gets $100

Hash: 09592b438bfe8ac1fd

Alice gives Bob $5
Hash: fa1960e7a6b57ee967

Edith gives Carol $25
Hash: 7ed2db73b7921eebed

Bob gives Edith $10
Hash: 593fc27383b7181da7

Blockchain (link each block)
Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Block Hash: fa1960e7a6b57ee967

Prev Hash: fa1960e7a6b57ee967
Edith gives Carol $25

Block Hash: 7ed2db73b7921eebed

Prev Hash: 7ed2db73b7921eebed
Bob gives Edith $10

Block Hash: 593fc27383b7181da7

Blockchain: out-of-sync hashes?

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: fa1960e7a6b57ee967

Prev Hash: fa1960e7a6b57ee967
Edith gives Carol $25

Hash: 7ed2db73b7921eebed

Prev Hash: 7ed2db73b7921eebed
Bob gives Edith $10

Hash: 593fc27383b7181da7

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain: re-calculate hashes

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 7ed2db73b7921eebed

Prev Hash: 7ed2db73b7921eebed
Bob gives Edith $10

Hash: 593fc27383b7181da7

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash:
9f6f9cfc699cc4fcbd3375da0e9c

Bob gives Edith $10
Hash: 593fc27383b7181da7

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash:
9f6f9cfc699cc4fcbd3375da0e9c

Bob gives Edith $10
Hash: 9a4ca636c01d47386080cc70944

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash:
9f6f9cfc699cc4fcbd3375da0e9c

Bob gives Edith $10
Hash: 9a4ca636c01d47386080cc70944

“Nasty”
Transaction

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash:
9f6f9cfc699cc4fcbd3375da0e9c

Bob gives Edith $10
Hash: 9a4ca636c01d47386080cc70944

“Nasty”
Transaction

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

Blockchain

Prev Hash: 09592b438bfe8ac1fd
Alice gives Bob $5

Hash: 1a19dbada78ed53aa6b3851

Prev Hash: 1a19dbada78ed53aa6b3851
Edith gives Carol $25

Hash: 9f6f9cfc699cc4fcbd3375da0e9c

Prev Hash:
9f6f9cfc699cc4fcbd3375da0e9c

Bob gives Edith $10
Hash: 9a4ca636c01d47386080cc70944

Prev Hash: 0000000000000
Everyone gets $100

Block Hash: 09592b438bfe8ac1fd

DEMO: Blockchain

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$95

$100

$100

$105

$100

$5
For: Bob

From: Alice

Blockchains

Alice Bob

Carol

Dave

Edith

$95

$100

$100

$105

$100

Blockchain Recap
1. The transaction is broadcasted to the world.
2. Each node that receives the broadcast verifies via the signature and their

copy of the ledger that the sending party has the funds to send that amount of
money, and that the transaction actually came from the sending party.

3. Each updates their ledger in a cryptographically consistent and verifiable way,
forever cementing the transaction as part of the chain.

4. Once the majority of nodes have updated their ledger with the valid
transaction, the recipient of the money effectively “has” the new money
because they now, according to the ledger shared by the majority, have the
funds they need to send a new, valid transaction with the funds they received.

DEMO: Distributed

V. Bitcoin
Leveraging the blockchain to
create a decentralized digital

crypto-currency.

SHA-256 Hash
0 2^256

00
0001
0002
0009
000a
000b
000f
0010
03b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
1000

Bitcoin: a shared Blockchain (cooperative)

Alice Bob

Carol

Dave

Edith

$100

$100

$100

$100

$100

$5
For: Bob

From: Alice

Bitcoin: change USD to Bitcoin

Alice Bob

Carol

Dave

Edith

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: Bob

From: Alice

Bitcoin: no names, just (public) keys

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: Bob

From: Alice

Bitcoin: keys also on the Tx’s, no names

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

From: a519f8

Bitcoin: multiple keys are allowed

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From: a519f8...

Bitcoin: wallets (or keychains)

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From: a519f8...

Wallet

Bitcoin: cryptographic puzzle

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

Bitcoin: “computational puzzle”

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

Sample attributes verified by nodes in each Tx:
1. The transaction’s syntax and data structure must be correct.
2. Neither lists of inputs or outputs are empty.
3. The transaction size in bytes is less than MAX_BLOCK_SIZE.
4. Each output value, as well as the total, must be within the allowed range of values (less than 21m coins, more than 0).
5. None of the inputs have hash=0, N=–1 (coinbase transactions should not be relayed).
6. nLockTime is less than or equal to INT_MAX.
7. The transaction size in bytes is greater than or equal to 100.
8. The number of signature operations contained in the transaction is less than the signature operation limit.
9. The unlocking script (scriptSig) can only push numbers on the stack, and the locking script (scriptPubkey) must match isStandard forms (this

rejects “nonstandard” transactions).
10. A matching transaction in the pool, or in a block in the main branch, must exist.
11. For each input, if the referenced output exists in any other transaction in the pool, the transaction must be rejected.
12. For each input, look in the main branch and the transaction pool to find the referenced output transaction. If the output transaction is missing

for any input, this will be an orphan transaction. Add to the orphan transactions pool, if a matching transaction is not already in the pool.
13. For each input, if the referenced output transaction is a coinbase output, it must have at least COINBASE_MATURITY (100) confirmations.
14. For each input, the referenced output must exist and cannot already be spent.
15. Using the referenced output transactions to get input values, check that each input value, as well as the sum, are in the allowed range of

values (less than 21m coins, more than 0).
16. Reject if the sum of input values is less than sum of output values.
17. Reject if transaction fee would be too low to get into an empty block.
18. The unlocking scripts for each input must validate against the corresponding output locking scripts.

The Bitcoin “Puzzle”

5 BTC
For: b197be
*From: a519f8...

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8...

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…

Hash: --------------------

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce:
Nonce Solver:
Hash: --------------------

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce:
Nonce Solver:
Hash: --------------------

Puzzle
Solution

Puzzle
Solver
(miner)

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce:
Nonce Solver:
Hash: --------------------

Puzzle
Solution

Puzzle
Solver

Must be below
certain value,

say one
leading zero

The Bitcoin “Puzzle”: example of how miners mine

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 0
Nonce Solver: a519f8 (Alice)
Hash: a166137346cd32e73e

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 1
Nonce Solver: b197be (Bob)
Hash: d59910db074b35fa9d

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 2
Nonce Solver: c571c0 (Carol)
Hash: 4c274d79254f259960a

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

The Bitcoin “Puzzle”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 03a419ef573a846f

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

Bitcoin: Tx done

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

5 BTC
For: b197be

*From:
a519f8...

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Bitcoin: Tx distributed

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Bitcoin: funds transferred

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC*

105 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Note: reward went down to 6.25 BTC as
of May 11, 2020. Next halving 5/24

The Bitcoin “Puzzle”: can you steal the nonce?

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 03a419ef573a86f

Puzzle Solution
- nonce

depends on
solver too

Puzzle
Solver

Must be below
certain value

The Bitcoin “Puzzle”: nonce is block-specific

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 03a419ef573a86f

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Bitcoin: one Tx per block? Not really!

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

~ Every
10 min

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

~ Every
10 min

~2,100 transactions
(YTD 2023)

Calibrating The Bitcoin “Puzzle” w/ “Difficulty”

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

Calibrating The Bitcoin “Puzzle” w/ Difficulty

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

(DIFFICULTY)

Calibrating The Bitcoin “Puzzle” w/ Difficulty

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 000a419ef573a86f

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

(DIFFICULTY)

Few computers =
low difficulty, i.e.
blocks can be

solved more easily

Calibrating The Bitcoin “Puzzle” ...

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 000000a419ef573a

Puzzle
Solution

Puzzle
Solver

Must be below
certain value

(DIFFICULTY)

More computers = high
difficulty, i.e. blocks more
time-consuming to solve,
but balances out because

more computers working to
solve the problem

Blockchain, Cryptocurrencies &
Digital Tokens Demystified

Fall 2023 (EMBA)
Columbia Business School

Welcome Back to Session 3 🎉

Curriculum Roadmap

Nov 4 Nov 18 Dec 2 Dec 9

Morning

Networks &
Protocols

Hashing, Hashing
Tables & One- Way
Functions & a few
more tech

Bitcoin + other forms of
crypto payments and
store of value
mechanisms and
media

DeFi & Other
Applications (Digital
Tokens, CBDC, etc.) +
Speaker: Future of
Finance + Discussion
Forum

Lunch Lunch Lunch Lunch

Afternoon

Encryption &
Cryptography
(plus some
math!)

Bring it All
Together: Let’s
build a blockchain
& discuss variety of
cases

Ethereum & Other
Digital Tokens +
Speaker: Regulatory &
Legal Considerations in
Blockchain & Digital
Assets

Governance,
Marketplaces, NFTs &
More; Final Lecture on
How the Future May Play
Out + Final
Presentations

Class Schedule - Nov 4, Nov 18, Dec 2, Dec 9
Class Plan
Nov 4 08:30 am to 6:45 pm (K-440)Module 1 + 2
Nov 18 08:30 am to 6:45 pm (K-440)Module 3 + 4
Dec 2 08:30 am to 6:45 pm (K-440)Midterm Project + 5 & 6 + Guest Speaker
Dec 9 08:30 am to 6:45 pm (K-440)Module 7 & 8 + Guest Speaker + final presentations

Daily Schedule
8:30-9:45 am Lecture
9:45-10:00 am Break
10:00-11:15 pm Lecture
11:15 am-12:30 pm Lunch (1h15min) - Kravis 2nd floor (Smith Dining)
12:30-2:00 pm Lecture
2:00-2:15 pm Break
2:15-3:30 pm Lecture
3:30-3:45 pm Break
3:45-5:00 pm Lecture
5:00-5:15 pm Break
5:15-6:45 pm Lecture

Important Admin Items for the Day
● Note last class is on Dec 9 (next week, not in two weeks)
● Final projects assigned already
● Details on your final projects (presentation & paper)
● Final presentations next week
● Final papers due on Dec 18
● Thoughts on “Blockchain Killer App” for today and/or 4
● Discussion Forum next class
● Watch lecture recordings and email me for office hours

THE MOST Important Admin Item for the Day

THE MOST Important Admin Item for the Day
Catering today is by Dig Inn:

● Brown Rice
● Lemon & Herb Farro
● Maple Glazed Crispy Tofu
● Herb Roasted Chicken
● Beef & Chicken Meatballs
● Wild Salmon
● Broccoli
● Brussels Sprouts
● Sweet Potatoes

THE MOST Important Admin Item for the Day
Catering today is by Dig Inn:

● Brown Rice
● Lemon & Herb Farro
● Maple Glazed Crispy Tofu
● Herb Roasted Chicken
● Beef & Chicken Meatballs
● Wild Salmon
● Broccoli
● Brussels Sprouts
● Sweet Potatoes

THE MOST Important Admin Item for the Day
Catering today is by Dig Inn:

● Brown Rice
● Lemon & Herb Farro (Farrokhnia!!)
● Maple Glazed Crispy Tofu
● Herb Roasted Chicken
● Beef & Chicken Meatballs
● Wild Salmon
● Broccoli
● Brussels Sprouts
● Sweet Potatoes

Before we begin, any interesting points or
lessons from our prior session you’d like to share?

Let’s start our Session 3

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

Why the Puzzle? Let’s spam!

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx 1 Tx

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx 1 Tx

1 Tx

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx 1 Tx

1 Tx1 Tx

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx 1 Tx

1 Tx1 Tx

Why the Puzzle?

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Normal Miner’s Blockchain:

2000 Txs 2000 Txs 2000 Txs 2000 Txs

Malicious Miner’s Blockchain:

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Pending
Transactions

2000 Txs
(verifying)

1 Tx 1 Tx

1 Tx1 Tx

Lost or Possibly
Reversed

Transactions

Bitcoin: other topics

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs Web Wallets

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs Web Wallets

Paper Wallets

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs Web Wallets

Paper Wallets

Mining Pools

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs Web Wallets

Paper Wallets

Mining Pools

Merkle Trees

Bitcoin

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice
$5

For: Bob
From: Alice

$5
For: Bob

From: Alice

$5
For: Bob

From: Alice

Transaction Fees

Transaction Inputs
& Outputs Web Wallets

Paper Wallets

Mining Pools

Full Nodes vs. Thin
Clients

Funny Story: guard your wallet (Dec 2013)!!

Bitcoin Questions

● Is Bitcoin anonymous?

● Is Bitcoin really invulnerable to
compromise?

Bitcoin Questions

● Is Bitcoin anonymous?

● Is Bitcoin really invulnerable to
compromise?

Bitcoin Questions

● Is Bitcoin anonymous?

● Is Bitcoin really invulnerable to
compromise?

Bitcoin Questions

● Is Bitcoin anonymous?
Yes and No! It is pseudonymous.

● Is Bitcoin really invulnerable to
compromise?

Bitcoin Questions

● Is Bitcoin anonymous?
Yes and No! It is pseudonymous.

● Is Bitcoin really invulnerable to
compromise?

Bitcoin 51% Attack

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Bitcoin 51% Attack

a519f8 b197be

c571c0

d107bb

e10f1b

95 BTC

100 BTC

112.5 BTC

105 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Alice Bob

Carol

Dave

Edith

Bitcoin 51% Attack

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Alice Bob

Carol

Dave

Edith

Bitcoin 51% Attack

a519f8 b197be

c571c0

d107bb

e10f1b

100 BTC

100 BTC

100 BTC

100 BTC

100 BTC

Prev Hash: 8a7b6618e714c6a
5 BTC
For: b197be
*From: a519f8…
Nonce: 3
Nonce Solver: d107bb (Dave)
Hash: 3a419ef573a86f

Alice Bob

Carol

Dave

Edith

Could this actually happen?

Could this actually happen?

Could this actually happen?

Could this actually happen?

Could this actually happen?

Quantum Computing & Cryptography

Quantum Computing & Cryptography

Quantum Computing & Cryptography

Bitcoin Questions

● Is Bitcoin anonymous?
Yes and No! It is pseudonymous.

● Is Bitcoin really invulnerable to
compromise?

Bitcoin Questions

● Is Bitcoin anonymous?
Yes and No! It is pseudonymous.

● Is Bitcoin really invulnerable to
compromise?
Probably not, at least in the short term.

http://www.youtube.com/watch?v=aeMv9uKpAZg

VI. Beyond Bitcoin
What applications does the

blockchain have beyond
cryptocurrencies like Bitcoin?

Other Cryptocurrencies

Other Cryptocurrencies

Other Cryptocurrencies

Other Cryptocurrencies

VI. Beyond Bitcoin
Ethereum

Other Cryptocurrencies

What is Ethereum?

● Simply put, it is an “open-source and globally
decentralized computing infrastructure that
executes programs called Smart Contracts. It
uses blockchain to synchronize and store
system’s state changes, using a cryptocurrency
called Ether (ETH) to meter [or measure] and
constrain execution resource costs.”
*Derived from definition put forth by Antonopoulos & Wood

What is Ethereum?
● It shares many similarities & common elements

with Bitcoin or other cryptocurrencies (P2P
network connecting participants, Byzantine
Fault Tolerant consensus algos, proofs, hashes,
sigs)

● But it’s also different in other aspects, esp in
having Utility Functions (“world computer, virtual
machine”) + “general purpose blockchain” &
Decentralized Applications (dApps or DApps!)

“Smart” Contracts: records of prog. agreements

● Ethereum contracts are programs that control
money, running inside Ethereum VM

● Once created, they have an Ethereum address,
just like wallets (say, belonging to a person)

● Transactions sent to an address may have
ether, data, or both → ethers get “deposited” to
the contract balance; data can specify a named
functions (in the contract) and call it

“Smart” Contracts

“Smart” Contracts

“Smart” Contracts

“Smart” Contracts

“Smart” Contracts

The DAO

The DAO & “Forking”

The DAO & “Forking”

The DAO & “Forking”

The DAO & “Forking”

The DAO & “Forking”

The DAO & “Forking”

The DAO & “Forking” (2016/2017)

$110m
mkt cap

$1.14b
mkt cap

The DAO & “Forking” (4/2023)

$3 billion mkt
cap, up from

$110m

$245 billion,
up from
$1.14b

A quick regulatory lesson

The “Howey Test”

● It is an investment of money
● There is an expectation of profits from the

investment
● The investment of money is in a common

enterprise
● Any profit comes from the efforts of a promoter

or third party

Class Discussion

Easter Egg … for those with a Mac ;-)

Open either 1) Finder OR 2) click on Go, then Computer …
then click on Macintosh HD at the bottom of the window,

then System → Library → Image Capture → Devices.
Once there, right click on VirtualScanner.app and choose "Show Package

Contents." Open Resources, and click on "simpledoc.pdf."
What do you see?!

Congratulations!
You made it to the end of slides … almost!

We still have a few more days to go 😎

Thank You!

End of Slides

