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1. Introduction 

Expectations about future earnings are an important determinant of security values (e.g., 

Ohlson, 1995; Ohlson and Juettner-Nauroth, 2005). When forming these expectations, investors 

often rely on historical financial statements. However, as financial reporting becomes 

increasingly complex (e.g. Dyer, Lang, and Stice-Lawrence, 2017), investors face more tradeoffs 

whether to simply use the bottom-line earnings or painstakingly decipher through the 

complicated financial statement line items in forecasting future earnings. Even though research 

has shown various accounting items such as book value of equity and accruals are associated 

with future earnings, earnings prediction models incorporating these items fail to produce 

consistently more accurate out-of-sample forecasts than the naïve random walk model (see 

Monahan, 2018; Easton, Kelly, and Neuhierl, 2018).  

Taken at face value, these results suggest that investors do not lose much information by 

completely ignoring the detailed financial statements. However, this conclusion is apparently in 

conflict with the conventional wisdom that data aggregation causes information loss (e.g. Ijiri 

1967). It also contradicts with one of the fundamental tenet of financial statement analysis that 

vis-à-vis bottom-line earnings, financial ratios and financial statement line items are 

incrementally informative about future earnings (p182-183, Monahan, 2018). In this study, we 

aim to shed more light on the decision usefulness of financial statement line items for investors 

by examining the efficacy of machine learning in forecasting corporate earnings using financial 

statement information.   

Machine learning algorithms can potentially overcome several limitations with the extant 

models and process financial statement information more efficiently in forecasting future 
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earnings. First, machine learning algorithms can efficiently handle high dimensional data. The 

generation of corporate earnings (or losses) is a complex process involving numerous business 

transactions. The effects of these transactions, as summarized in financial statement line items, 

often have different implications for future earnings (e.g., cash sales vs. credit sales). However, 

for tractability, extant earnings prediction models focus on highly aggregated measures, such as 

bottom line earnings and book value of equity, and neglect potentially rich information in 

financial statement line items (e.g., Fairfield, Sweeney, and Yohn, 1996; Chen, Miao, and 

Shevlin, 2015). By accommodating a large set of financial statement line items, machine learning 

algorithms can potentially better model the differential effects of these items and generate more 

accurate and informative earnings forecasts. 

Second, in contrast to traditional linear models, machine learning algorithms can 

accommodate more complex and subtle relationships between financial statement line items and 

future earnings. Economic theories and empirical evidence suggest the existence of nonlinear 

relationships between financial statement line items and future earnings. For example, the law of 

diminishing returns predicts a nonlinear relationship between capital investment and future 

earnings. Prior literature also shows that the relationship between current and future earnings is 

nonlinear (e.g., Freeman and Tse, 1992; Chen and Zhang, 2003) and varies with other financial 

metrics, such as firm size and capital intensity (e.g., Lev, 1983; Baginski, Lorek, Willinger, and 

Branson, 1999). Nonlinear machine learning algorithms based on decision trees and neural 

networks are rather flexible in modeling nonlinear relationships and interaction effects, providing 

another advantage in forecasting earnings. 

The advantage associated with the ability to accommodate high dimensional data and 

nonlinearity does come at a cost. More flexible/complex models are also more susceptible to in-
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sample overfitting, which can lead to poor out-of-sample performance. For example, Gerakos 

and Gramacy (2013) find that various complex earnings prediction models, including two sets of 

models based on decision tree (CART) and random forests, fail to outperform the simple random 

walk model. Thus, whether machine learning algorithms can extract more useful information 

from financial statement line items and perform better in earnings prediction tasks remains an 

empirical question. We test this research question by comparing earnings forecasts generated 

using a comprehensive list of machine learning models with those generated using several state-

of-the-art earnings prediction models developed in the finance and accounting literature. 

Specifically, we examine three linear machine learning models, ordinary least squares 

regression (OLS), least absolute shrinkage and selection operator (LASSO), and Ridge 

regression (RIDGE), and three nonlinear machine learning models of which two are based on 

decision trees (i.e., random forest (RF) and gradient boosting regression (GBR)) and one is based 

on artificial neural networks (ANNs). We supply these algorithms with 56 input variables (or 

predictors/features), including 28 major financial statement line items and their respective first-

order differences to predict the target variable future earnings. We compare the out-of-sample 

earnings forecasts generated from the six machine learning models with the forecasts obtained 

from the benchmark random walk (RW) model and five other models developed in the literature, 

which include the (first-order) autoregressive model (AR); two models (HVZ and SO) developed 

by Hou, van Dijk, and Zhang (2012) and So (2013), respectively; and the earnings persistence 

(EP) model and the residual income (RI) model proposed by Li and Mohanram (2014). In 

addition, we examine several composite forecasts, COMP_EXT, COMP_LR, COMP_NL, and 

COMP_ML, which are the mean forecasts of the five extant models, the three linear machine 
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learning models, the three nonlinear machine learning models, and all six machine learning 

models, respectively. 

We compare the accuracy and information content of the above earnings forecasts for 

134,154 firm-year observations over the period from 1975 to 2019. Consistent with the literature, 

we find that the earnings forecasts generated from the extant models are not consistently more 

accurate than that the forecasts of the naïve RW model. For example, although the mean absolute 

forecast error of the most accurate extant model, the RI model, is approximately 3.07% lower 

than that of the RW model, its median absolute forecast error is higher. The earnings forecasts 

generated using the machine learning models are generally more accurate. The three linear 

models are approximately 5.83%–6.31% more accurate than the RW model. The mean absolute 

forecast errors of the three nonlinear machine learning models, ANN, RF, and GBR, are 

approximately 6.67%, 8.64%, and 8.86% lower than that of the RW model, respectively. 

Composite forecasts that combine predictions from individual models are more accurate. 

The mean absolute forecast errors of the composite forecasts COMP_EXT, COMP_LR, and 

COMP_NL are approximately 3.58%, 6.16%, and 9.87% lower than that of the RW model, 

respectively. Moreover, cross-sectional analyses indicate that the nonlinear machine learning 

models lead to even greater improvements in forecast accuracy in the case of firms with more 

difficult-to-forecast earnings. For example, among the top quintiles of firms with the most 

volatile earnings and those with the highest magnitude of total accruals, COMP_NL improves 

the forecast accuracy relative to the RW model by 15.21% and 17.71%, respectively. 

Further analyses suggest that the improvement in the performance of the nonlinear 

machine learning models can be attributed to at least the following reasons. First, the models 
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identify a set of economically sensible predictors, even without explicit theoretical guidance. For 

example, in addition to current earnings and operating cash flows, income tax expenses and their 

first-order differences are among the most important predictors. These items are closely related 

to tax-based earnings and shown to contain important information about earnings quality and 

persistence (e.g., Lev and Nissim, 2004; Hanlon, 2005; Thomas and Zhang, 2014). Second, these 

models detect subtle, yet sensible nonlinear relationships and interaction effects. For example, 

both the RF and GBR models correctly predict that loss is less persistent than profits, which is 

explicitly assumed in most extant models. Furthermore, these models detect and use the 

interaction effects between economically linked variables, such as cost of goods sold and 

inventories, and properties, plants and equipment and depreciation and amortization in 

forecasting future earnings. 

Next, we evaluate the information content of various models by investigating their (out-

of-sample) predictive power with respect to future changes in actual earnings. Our analyses show 

that the machine learning models have greater predictive power than the extant models. Predicted 

earnings changes (FECH) based on COMP_NL explain 18.57% of the variation in future actual 

earnings changes (ECH), which is not only higher than that of COMP_EXT (12.73%), but also 

higher than that of COMP_LR (15.09%). Additional analysis shows that the machine learning 

models subsume the information content of all extant models, except that of the SO model, 

which incorporates forward-looking stock price information. 

The above results suggest that machine learning models, especially nonlinear models, 

help uncover new information from the financial statement line items beyond the extant models. 

We test the economic significance of the results by examining whether the new information 

uncovered by the machine learning models is useful for making investment decisions. We 
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orthogonalize the machine-learning-based forecasts against the current earnings and the forecasts 

generated by the five extant models and use the resulting residuals to measure the new 

information obtained from the machine-learning-based forecasts. Our analyses show that these 

residual forecasts have significant predictive power with respect to future stock returns. For 

example, the top 20% of the stocks with the most favorable new information in COMP_NL 

outperform those with the least favorable new information by approximately 41–77 bps per 

month. Additional analysis also suggests that the new information in machine learning forecasts 

predicts analyst earnings forecast errors, indicating that both investors and analysts underreact to 

the predictable new information uncovered by the machine learning algorithms. 

The overall results documented in this paper have significant implications on the 

extensive literature on financial statement analysis and value relevance of accounting. As 

discussed in Monahan (2018), one of the fundamental tenets of financial statement analysis is 

that financial ratios and financial statement line items should be incrementally informative about 

future earnings beyond bottom line earnings. However, the extant earning prediction models 

mostly adopt linear regression models using highly aggregated historical accounting numbers 

such as book value of equity, net income, and total accruals.  Furthermore, there is also a large 

literature inferring the value relevance of accounting from linear regressions of stock prices or 

returns on aggregate accounting numbers such as earnings and book values (e.g. Collins, 

Maydew, and Weiss, 1997; Francis and Schipper, 1999; Brown, Lo, and Lys, 1999; Srivastava, 

2014). Our results demonstrate that limiting to the linear relationships and aggregated accounting 

numbers may substantially understate the information content of financial statements, and may 

even lead to misleading inference regarding the value relevance of accounting information.  
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Our study also contributes to the burgeoning literature on the application of machine 

learning in finance and accounting research. Several recent studies test the performance of 

machine learning algorithms in asset pricing (e.g., Rapach, Strauss, Tu, and Zhou, 2019; Gu, 

Kelly, and Xiu, 2020), fraud prediction (e.g. Bao, Ke, Li, Yu, and Zhang, 2020), and insurance 

loss prediction (e.g. Ding, Lev, Peng, Sun, and Vasarhelyi, 2020) and show that these algorithms 

outperform the traditional models. We contribute to the literature by providing a comparative 

study on one of the most important research questions in fundamental analysis and equity 

valuation, i.e., earnings forecasting, and documenting significant benefits of adopting machine 

learning technology in this setting. 

Our paper is also of interests to practitioners. Earnings forecasts are critical inputs in 

equity valuation. However, the increasingly complex financial reporting (e.g. Dyer et al. 2017) 

imposes significant costs for investors to decipher financial statements and to form accurate 

earnings forecasts. We show that reasonably accurate and informative earnings forecasts can be 

obtained by processing readily available financial statement information with machine learning 

technology. Such model-based predictions not only reduce the information processing costs of 

investors and allow them to make more informed investment decisions, but also help direct 

capital towards firms with better (predicted) future fundamental performance and therefore 

facilitate the efficient capital allocation in society (Hayek, 1945; Arrow, 1964).  

 

2. Related Literature and Extant Earnings Forecasting Models 

As Monahan (2018) summarizes in his comprehensive survey of the earnings forecasting 

literature, early research mostly adopts the time-series approach to forecast future earnings (e.g., 
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Ball and Watts, 1972; Albrechet, Lookabill, and McKeown, 1977; Watts and Leftwich, 1977). 

Overall, their results suggest that the simple RW model, which predicts that expected future 

earnings are equal to current earnings, generates more accurate out-of-sample forecasts than 

more sophisticated autoregressive integrated moving average (ARIMA) models (e.g., Brown, 

1993; Kothari, 2001). Subsequent research demonstrates that the RW model performs well even 

when compared with analyst forecasts. For example, Bradshaw, Drake, Myers, and Myers (2012) 

find that analysts’ earnings forecasts are not economically more accurate than those obtained 

using the naïve RW model, and those for horizons longer than one year are consistently less 

accurate than those obtained using the naïve RW model. The superiority and simplicity of the 

RW model make it a natural benchmark to evaluate other earnings forecasting models. 

There are several potential reasons for the poor out-of-sample performance of 

sophisticated ARIMA models. First, these models require a long time series to yield reliable 

parameter estimates, but the earnings process may not be stationary over a long period. Second, 

these firm-specific time series models ignore the rich information in other financial statement 

line items. To overcome these limitations, subsequent studies turn to cross-sectional approaches 

(or panel data approaches, as in Monahan, 2018), which use a pooled cross-section of firms to 

estimate forecasting models. Following recent studies, we adopt several state-of-art cross-

sectional models developed in the literature as alternative benchmarks (e.g., Gerakos and 

Gramacy, 2013; Call, Hewitt, Shevlin, and Yohn, 2016). 

The first cross-sectional model that we examine is the first-order AR model, which uses 

only one-year lagged earnings as the predictor: 

𝐸𝑖,𝑡+1 = 𝛼0 + 𝛼1𝐸𝑖,𝑡 + 𝜀𝑖,𝑡+1         (1) 
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where 𝐸𝑖,𝑡 is firm i’s earnings in year t. Gerakos and Gramacy (2013) show that the AR model 

performs well relative to the RW model and that it is more accurate than most of the more 

sophisticated models. 

The second cross-sectional model, the HVZ model, is proposed by Hou, van Dijk, and 

Zhang (2012). The model extends the Fama and French (2000, 2006) models and uses total 

assets, accruals, and dividends to forecast future earnings: 

𝐸𝑖,𝑡+1 = 𝛼0 + 𝛼1𝐴𝑖,𝑡 + 𝛼2𝐷𝑖,𝑡 + 𝛼3𝐷𝐷𝑖,𝑡 + 𝛼4𝐸𝑖,𝑡 + 𝛼5𝑁𝑒𝑔𝐸𝑖,𝑡 + 𝛼6𝐴𝐶𝑖,𝑡 + 𝜀𝑖,𝑡+1  (2) 

where 𝐴𝑖,𝑡 is total assets, 𝐷𝑖,𝑡 is the dividend payment, 𝐷𝐷𝑖,𝑡 is a dummy variable indicating 

dividend payers, 𝐸𝑖,𝑡 is earnings for year t, 𝑁𝑒𝑔𝐸𝑖,𝑡 is a dummy variable indicating negative 

earnings, and 𝐴𝐶𝑖,𝑡 is accruals. Detailed variable definitions are provided in Appendix 1. 

 The third cross-sectional model, the SO model, is developed by So (2013). So modifies 

the profitability forecasting model proposed by Fama and French (2006) to forecast future 

earnings per share (EPS), 𝐸𝑃𝑆𝑖,𝑡+1, using the following regression: 

𝐸𝑃𝑆𝑖,𝑡+1 = 𝛼0 + 𝛼1𝐸𝑃𝑆𝑖,𝑡
+ + 𝛼2𝑁𝑒𝑔𝐸𝑖,𝑡 + 𝛼3𝐴𝐶𝑖,𝑡

− + 𝛼4𝐴𝐶𝑖,𝑡
+ + 𝛼5𝐴𝐺𝑖,𝑡 + 𝛼6𝑁𝐷𝐷𝑖,𝑡 +

𝛼7𝐷𝐼𝑉𝑖,𝑡 + 𝛼8𝐵𝑇𝑀𝑖,𝑡 + 𝛼9𝑃𝑟𝑖𝑐𝑒𝑖,𝑡 + 𝜀𝑖,𝑡+1        (3) 

where 𝐸𝑃𝑆𝑖,𝑡
+  is EPS for positive earnings, and is zero otherwise; 𝑁𝑒𝑔𝐸𝑖,𝑡 is an indicator variable 

for negative earnings; 𝐴𝐶𝑖,𝑡
− is accruals per share for negative accruals, and is zero otherwise; 

𝐴𝐶𝑖,𝑡
+  is accruals per share for positive accruals, and is zero otherwise; 𝐴𝐺𝑖,𝑡 is the percentage 

change in total assets; 𝑁𝐷𝐷𝑖,𝑡 indicates zero dividend; 𝐷𝐼𝑉𝑖,𝑡 is dividends per share; 𝐵𝑇𝑀𝑖,𝑡 is 

the book-to-market ratio; and 𝑃𝑟𝑖𝑐𝑒𝑖,𝑡 is the stock price at the end of the third month after the 
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end of fiscal year t. In addition to financial statement items, the SO model uses stock price and 

book-to-market ratio, potentially allowing it to capture more forward-looking information. 

 The final two cross-sectional models, namely, the EP and RI models, are proposed by Li 

and Mohanram (2014). Specifically, the EP model allows loss firms to have different earnings 

persistence from profitable firms and predicts earnings with the following regression: 

𝐸𝑖,𝑡+1 = 𝛼0 + 𝛼1𝑁𝑒𝑔𝐸𝑖,𝑡 + α2𝐸𝑖,𝑡 + 𝛼3𝑁𝑒𝑔𝐸𝑖,𝑡 ∗ 𝐸𝑖,𝑡 + 𝜀𝑖,𝑡+1    (4) 

The RI model, which is based on the residual income model proposed by Feltham and Ohlson 

(1996), further augments the EP model with the book value of equity (𝐵𝑉𝐸𝑖,𝑡) and total accruals 

(𝑇𝐴𝐶𝐶𝑖,𝑡) from Richardson, Sloan, Soliman, and Tuna (2005): 

𝐸𝑖,𝑡+1 = 𝛼0 + 𝛼1𝑁𝑒𝑔𝐸𝑖,𝑡 + 𝛼2𝐸𝑖,𝑡 + 𝛼3𝑁𝑒𝑔𝐸𝑖,𝑡 ∗ 𝐸𝑖,𝑡 + 𝛼4𝐵𝑉𝐸𝑖,𝑡 + 𝛼5𝑇𝐴𝐶𝐶𝑖,𝑡 + 𝜀𝑖,𝑡+1 (5) 

Although the above models represent state-of-art earnings forecasting models in the 

literature (Call et al., 2016), prior studies conclude that these models fail to consistently 

outperform the RW model (e.g., Monahan, 2018; Easton, Kelly, and Neuhierl, 2018).1 As 

Monahan (2018) suggests, the extant models are too inaccurate, and the extant results lead to 

seemingly absurd conclusions regarding best practice. Taken at face value, these results seem to 

suggest that there is not much incremental information in financial statement line items beyond 

the bottom-line earnings, which contradicts with both the conventional wisdom and the 

fundamental tenet of financial statement analysis. Given that “the question of whether historical 

accounting numbers are useful for forecasting earnings is central to accounting research” (p. 

                                                      
1 For example, Monahan (2018) concludes that the forecasts obtained using these models “are not substantially 

more accurate than forecasts obtained from the random-walk model” (p. 182). Easton et al. (2018) also suggest that 

“all these models offer forecasts of earnings that are less accurate than a random walk” (p. 2). 



11 

 

183, Monahan, 2018), both Monahan (2018) and Easton et al. (2018) call for further research in 

this area. We contend that, rather than an indication of a lack of information content in financial 

statements, the failure of the extant models is due to their reliance on the linear regression 

models using only a few highly aggregated accounting numbers. Machine learning offers several 

important advantages in earnings forecasting, and a study on the efficacy of machine learning 

algorithms can not only help us better understand the limitations of the extant models, but also 

shed light on the important research question pertaining to the usefulness of financial statement 

information for earnings forecasting and equity valuation. 

 

3. Machine-Learning-Based Earnings Forecasting Models 

 The extant models do not make the best use of information in financial statements to 

forecast future earnings. First, the extant models focus on a small number of aggregate financial 

statement items, such as bottom line earnings and total assets, and fail to fully consider many 

other financial statement line items that could be highly valuable for earnings prediction (e.g., 

Fairfield et al., 1996; Chen et al., 2015). Second, even though economic theories and empirical 

evidence suggest the prevalence of nonlinear relationships between historical accounting 

information and future earnings, these models mostly adopt linear functional forms (some with 

simple interactions) and are therefore unlikely to be able to capture these subtle yet important 

relationships. Machine learning algorithms are designed to handle high dimensional data and are 

rather flexible with respect to the functional forms of the underlying relationships. Therefore, 

they can potentially overcome the above limitations and generate better earnings forecasts. In the 

following, we describe the development of machine learning models for earnings forecasting. 
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Specifically, we first discuss our choice of financial statement line items as the input 

variables/predictors and then introduce the six machine learning algorithms, followed by a 

description of the model estimation procedure. 

3.1. Financial statement line items as predictors 

Although machine learning algorithms are designed to handle high dimensional data, the 

inclusion of many irrelevant features increases the risk of overfitting. Thus, we need to select a 

set of sufficiently disaggregated financial statement line items without overwhelming the 

algorithms with excessive irrelevant noise. Following Chen et al. (2015), we construct our 

predictor variables based on the “Balancing Model” for the balance sheet and income statement 

provided by the Compustat Fundamental Annual database (Compustat database hereinafter). 

Specifically, we select 28 major financial statement line items from the Compustat database. 

Except for operating cash flow, which is obtained from the cash flow statement, the other 27 line 

items are obtained from the balance sheet and income statement. A detailed list of these items is 

provided in Appendix 1. In addition to the 28 financial statement line items, we also include their 

respective first-order differences as the input features for machine learning. We add these 

variables because the literature demonstrates that changes in financial statement items often 

contain incremental information beyond the levels of these items (e.g., Kothari, 1992; Ohlson 

and Shroff, 1992; Richardson, Sloan, Soliman, and Tuna, 2005). We use the same set of 56 

predictors for the 6 machine learning algorithms, as follows, to forecast future earnings.2 

                                                      
2 We limit the input variables to financial statement data because we are interested in understanding the efficacy of 

machine learning in extracting information from financial statements. Furthermore, we compare the machine 

learning models with the extant models, most of which also only use financial statement items (with the exception of 

the So model). Because stock prices incorporate forward-looking information, the inclusion of stock prices likely 

improves the predictive power of the models. However, earnings forecasts inferred from stock prices are unlikely to 

be useful in identifying mispriced stocks through equity valuation. 
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3.2. Machine learning algorithms 

We study a fairly comprehensive set of machine learning algorithms, including three 

linear machine learning algorithms and three machine learning algorithms that accommodate 

nonlinear relationships. The mathematical details of these algorithms can be found in Appendix 

B of Gu et al. (2020). In the following two subsections, we discuss these algorithms briefly. 

3.2.1 Linear machine learning algorithms (OLS, LASSO, and Ridge models) 

 The first model we estimate uses OLS, the least complex algorithm. In this algorithm, the 

parameters are estimated by minimizing the following objective/loss function: 

ℒ(𝜽) =
1

𝑁𝑇
∑ ∑ (𝐸𝑖,𝑡+1 − 𝑓(𝑥𝑖,𝑡; 𝜽))

2
𝑇
𝑡=1

𝑁
𝑖=1        (6) 

where 𝑓 is a linear function of the predictor variables 𝑥𝑖,𝑡, which include the aforementioned 56 

predictors and the parameter vector 𝜽. 𝐸𝑖,𝑡+1 denotes the earnings of firm i in year t + 1. 

 When forecasting future earnings using a large number of historical financial statement 

line items, the abundance of predictors makes OLS prone to overfitting. To alleviate this 

problem, we adopt two penalized linear models: LASSO and Ridge regressions. 

 The LASSO regression adds a convex penalty term (i.e., 𝐿1 regularization) to the 

objective function of OLS: 

ℒ(𝜽;  𝜆) =
1

𝑁𝑇
∑ ∑ (𝐸𝑖,𝑡+1 − 𝑓(𝑥𝑖,𝑡; 𝜽))

2

+ 𝜆 ∑ |𝜃𝑗|𝑃
𝑗=1

𝑇
𝑡=1

𝑁
𝑖=1     (7) 

where 𝜃𝑗  is the jth element of parameter vector 𝜽, λ is the regularization parameter, and all other 

variables are the same as defined previously. With an appropriate parameter value of λ, the 

LASSO model sets the coefficients of some predictors to zero and uses only the remaining 
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predictors for forecasting. The optimal value of the regularization parameter is determined using 

the cross-validation technique, as will be discussed in greater detail in section 3.2.3. 

 Ridge regression differs from LASSO regression in that it uses a 𝐿2 regularization term: 

ℒ(𝜽;  𝜆) =
1

𝑁𝑇
∑ ∑ (𝐸𝑖,𝑡+1 − 𝑓(𝑥𝑖,𝑡; 𝜽))

2

+ 𝜆 ∑ 𝜃𝑗
2𝑃

𝑗=1
𝑇
𝑡=1

𝑁
𝑖=1      (8) 

Unlike LASSO, Ridge regression pushes all regression coefficients closer to zero instead of 

setting some to exactly zero. By shrinking the regression coefficients toward zero, the Ridge 

model mitigates the risk that the regression coefficients are unduly affected by in-sample noise 

and collinearity. 

3.2.2 Nonlinear machine learning algorithms (RF, GBR, and ANN models) 

We further investigate three more complex models that accommodate nonlinearity. Two 

of these models are based on decision trees and one is based on artificial neural networks. The 

detailed theory of decision tree models can be found in Breiman, Friedman, Stone, and Olshen 

(1984). In decision-tree-based earnings prediction models, the algorithm attempts to separate (the 

training) samples into relatively homogenous groups (i.e., with similar earnings levels) by 

making a sequence of binary decisions based on the given lists of predictors (e.g., historical 

earnings and cash flows). In each step, the algorithm looks for the binary split (i.e., splitting 

predictor and threshold) that reduces the sum of the squared residuals of all of the resulting 

subgroups at the fastest rate (i.e., largest information/purity gain), and this process is repeated 

recursively until all data are processed or a pre-specified stopping criterion is reached. The 

predicted earnings for an observation equal the average future earnings of all observations in the 

same leaf node. 
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Due to the flexible structure, an individual decision tree can easily overfit the data, 

especially when the number of input features or the depth of the tree is large. To mitigate this 

problem, we use two decision-tree-based ensemble learning models: the RF model and the GBR 

model to forecast future earnings. Specifically, the RF model draws a number of different 

bootstrap samples from the original training set, trains a decision tree for each sample by using a 

random subset of predictors, and averages their forecasts to generate predictions. Because 

bootstrap sampling and predictor dropout weaken the correlation between individual decision 

trees, the RF model tends to have lower variance and better out-of-sample generalizability than 

individual decision trees. Boosting is another ensemble technique that enhances the predictive 

power of (weak) decision tree regression models. The GBR model starts with a simple decision 

tree regression model and then recursively boosts the model by adding a new decision tree 

regression model that fits the residuals of the prior model (multiplied by a learning rate), until a 

certain stopping criterion is fulfilled. Predictions for new observations are then generated using 

the combined model. 

Our final model, that is, the ANN model, is based on Artificial Neural Networks. A 

simple neural network is illustrated in the following figure: 

 

The basic element in a neural network is the neuron. The neural network in the above figure 

consists of one hidden layer with Q neurons. Each neuron in the hidden layer receives signals 
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from P connected neurons in the previous layer, aggregates them linearly by using a set of 

weight parameters and a bias term, transforms the resulting value with a nonlinear activation 

function, and outputs a signal that is used as an input feature for the neurons in the next layer. 

Neural networks with multiple hidden layers and a large number of neurons are also prone to 

overfitting. Therefore, we adopt the bootstrap aggregating (i.e., bagging) technique by 

constructing 10 bootstrap samples with each sample randomly drawing 60% of the observations 

from the training set. Thereafter, we train an ANN model for each bootstrapped sample and then 

average the 10 models to generate predictions. 

3.2.3 Cross-validation and hyperparameter tuning 

In machine learning tasks, it is imperative to select a model with an appropriate level of 

complexity because overly simple models tend to underfit the data while overly complex models 

tend to have the overfitting problem, and both lead to poor out-of-sample predictability. The 

level of model complexity is largely determined by the value of certain hyperparameters, which 

must be set before estimating other parameters such as regression coefficients and neural 

network weights.3 We search for the “optimal” hyperparameter values through hyperparameter 

tuning by using cross-validation. Specifically, for each of the machine learning models (except 

for OLS), we provide a set of reasonable candidate values for the key hyperparameters. We use 

five-fold cross-validation to identify the optimal hyperparameter values that generate the most 

accurate forecasts on the validation samples. Then, we estimate the model by using the optimal 

hyperparameter values obtained from cross-validation and apply the model to the prediction set 

                                                      
3 For example, larger values of the regularization hyperparameter in LASSO tend to lead to a relatively less complex 

model that effectively uses fewer input features for prediction. Similarly, different values of the hyperparameters, 

such as the maximum depth of decision trees in the RF and GBR models and the number of hidden layers in the 

ANN model, may also lead to models with drastically different structures and complexities.   
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to generate out-of-sample forecasts. The key hyperparameters and the corresponding candidate 

values for each of the five algorithms are provided in Appendix 2 of this paper.4 

 

4. Data, Sample Selection, and Model Estimation Procedure 

Our initial sample comprises 267,777 firm-year observations obtained from the 

intersection of the Compustat fundamentals annual file and the Center for Research in Security 

Prices (CRSP) data up to fiscal year 2019. We further impose the following data requirements: 1) 

the following financial statement items must be non-missing: total assets, sales revenue, income 

before extraordinary items, and common shares outstanding; 2) the stocks must be ordinary 

common shares listed on the NYSE, AMEX, or NASDAQ; 3) the firms cannot be in the financial 

(SIC 6000-6999) and regulated utilities (SIC 4900-4999) industries; and 4) the stock prices at the 

end of the third month after the end of the fiscal year must be greater than US$1. Among the 

remaining firm-year observations, we first set the missing values of some line items5 to zero 

before computing the first-order differences of the 28 items in Appendix 1. We then delete all 

firm-year observations with missing values for the 56 input features. This leaves us with a final 

sample of 156,256 observations from 1965 to 2019. Because we need data from the past 10 years 

                                                      
4 The use of cross-validation and hyperparameter tuning marks an important distinction between our work and that 

of Gerakos and Gramacy (2013). As discussed earlier, randomly selected hyperparameter values likely result in 

either overfitted or underfitted models. Gerakos and Gramacy (2013) do not explain clearly how they determine the 

structure of their models, but the software packages they use (lars, MASS, and randomForest packages in R) do not 

seem to implement cross-validation. Our paper also differs from that paper in several other dimensions. First, we use 

a more comprehensive list of financial statement items and include their first-order differences in model training. 

Our analyses show that the change variables are often among the top 10 most important input features. Furthermore, 

we investigate a more comprehensive set of advanced machine learning algorithms, such as GBR and ANNs. These 

models are not examined in Gerakos and Gramacy (2013). 
5 The list of items includes special items; accounts payable; income taxes payable; interest and related expenses; 

investments and advances-other; selling, general, and administrative expenses; intangible assets; short-term 

investments; research and development (R&D) expense; advertising expenses; current liabilities; current assets; and 

dividends per share. Cash flow from operating activities, if missing, is computed using the balance sheet approach 

(Sloan, 1996). 
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to estimate the models, our testing sample (i.e., prediction set) starts from 1975 and consists of 

142,592 firm-year observations. Table 1 presents the number of firms in the final testing sample 

by year, where the number of annual observations ranges from 2,299 in 2019 to 4,976 in 1997. 

We generate out-of-sample forecasts of one-year-forward earnings 𝐸𝑡+1 for the above 

testing sample using the 6 machine learning algorithms and the 56 predictors, as discussed 

above. We scale both the predictors and the target variable by the common shares outstanding at 

the fiscal year end to ensure that the estimation procedure (or the loss function) is not dominated 

by a small number of extremely large firms. Following the prior literature (e.g., Hou et al., 2012, 

Li and Mohanram, 2014), for each year t between 1975 and 2019, we use all observations from 

the previous 10 years (i.e., year t - 10, t - 9, …, t - 1) as the training sample to estimate the 

models, then apply the models to the predictors of year t to generate earnings forecasts for year 

t+1.6 For consistency, all of the extant models are also estimated using the data of the same 

previous 10 years, and the resulting linear models are applied to their respective predictors in 

year t to generate earnings forecast for year t + 1. 

 

5. Empirical Analysis 

In this section, we compare the quality of the earnings forecasts generated using the six 

machine learning models (namely OLS, LASSO, Ridge, RF, GBR, and ANN) against the 

forecasts obtained using the benchmark RW model and the other extant models (AR, HVZ, SO, 

                                                      
6 Following the literature, we assume that financial statement data are available at the end of the third month after 

the end of the previous fiscal year.  
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EP, and RI). In particular, we investigate the accuracy and information content of these forecasts 

and analyze the economic significance of the findings. 

5.1. Comparison of forecast accuracy 

To evaluate the forecast accuracy of the different models, we first compare the mean and 

median absolute forecast errors. Following the literature, we define forecast error as the 

difference between the predicted earnings and the actual earnings deflated by the market value of 

equity at the end of three months after the fiscal year end. A larger absolute forecast error 

indicates less accurate earnings forecasts. Table 2 reports the time series average of the out-of-

sample annual mean and median absolute forecast errors of all models. The benchmark RW 

model has an average mean absolute forecast error of 0.0764 and an average median absolute 

forecast error of 0.0309. Consistent with the literature, we find that the extant models struggle to 

generate significantly more accurate forecasts than the naïve RW model. Even two of the most 

accurate traditional models, namely EP and RI, fail to consistently beat the RW model. For 

example, although the mean absolute forecast error of the RI model (0.0741) is approximately 

3.07% lower than that of the RW model, its median absolute forecast error is higher. Among the 

other extant models, HVZ is slightly less accurate than EP and RI,7 followed by the AR model 

and the SO model. 

The machine learning models, especially those that accommodate nonlinear relationships, 

tend to generate more accurate earnings forecasts. The average mean absolute forecast errors of 

the three linear machine learning models are 0.720, 0.716, and 0.718, which are 5.83%, 6.31%, 

                                                      
7 If we estimate the HVZ model at the dollar level with unscaled data, as in Hou et al. (2012) and Li and Mohanram 

(2014), the results are similar to those of Li and Mohanram (2014), which demonstrates that the HVZ model is 

significantly less accurate than the EP and RI models, which are estimated at the per-share level.  
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and 6.11% lower than those of the RW model, respectively. The average median absolute 

forecast errors of the three linear machine learning models are also lower than that of the RW 

model, but the differences are not statistically significant. The machine learning models that 

accommodate nonlinear relationships further improve forecast accuracy. The average mean 

absolute forecast errors of the RF and GBR models are 0.0698 and 0.0697, which are 

approximately 8.64% and 8.86% lower than that of the RW model, respectively, and the 

differences are statistically significant. The average median absolute forecast errors of the RF 

and GBR models are also significantly lower than that of the RW model. While the average 

mean absolute forecast error of the ANN model is lower than that of the RW and the other extant 

models, its median absolute forecast error is slightly higher. 

For the four composite models, the results at the bottom of Table 2 show that composite 

forecasts obtained by combining predictions from individual models help increase forecast 

accuracy, especially when the individual models are not strongly correlated. In terms of the time 

series average, the average mean absolute forecast errors of the composite forecasts generated by 

combining the extant models (COMP_EXT), the linear machine models (COMP_LR), and the 

nonlinear machine models (COMP_NL) are 0.0737, 0.0717, and 0.0689, representing 

improvements of 3.58%, 6.16%, and 9.87% relative to the RW model, respectively. The average 

median absolute forecast error of COMP_NL is also approximately 5.55% lower than that of the 

RW model, and the difference is statistically significant. The results suggest that the ability to 

handle high dimensional financial statement data and accommodate nonlinear subtle 

relationships allows the machine learning models to produce significantly more accurate out-of-

sample earnings forecasts. The results also show that both the mean and median absolute forecast 

errors of COMP_ML, which combines the six machine learning algorithms, are greater than 
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those of COMP_NL, suggesting that much of the information in the linear models may have 

already been incorporated in the nonlinear models. 

5.2. Cross-sectional analysis 

The above results suggest that the machine learning models generate significantly more 

accurate earnings forecasts than the RW model. We posit that the benefit of considering more 

financial statement line items and more complex forms of relationships would be more important 

for firms with more difficult-to-forecast earnings. We partition our sample along the following 

dimensions, ROA volatility, magnitude of accruals, R&D expense, and an indicator variable of 

loss firms, and report the percentage improvement in the forecast accuracy of COMP_LR and 

COMP_NL relative to the benchmark RW model for each subgroup. The results are presented in 

Table 3. 

Panel A presents the results for the subsamples partitioned on ROA volatility. ROA 

volatility is calculated as the standard deviation of earnings scaled by total assets (ROA) over the 

past five years with non-missing values for at least three years. The benefits of both considering 

more financial statement line items and accommodating nonlinear relationships increase with 

earnings volatility. For the highest ROA volatility quintile, COMP_LR improves forecast 

accuracy by 10.26%, whereas COMP_NL improves forecast accuracy by 15.21%. For the lowest 

ROA volatility quintile, COMP_LR reduces forecast accuracy by approximately 2% compared 

with the RW forecasts, but COMP_NL improves forecast accuracy by 4.44% compared with the 

RW forecasts. The results suggest that when earnings are stable, the addition of other financial 

statement line items to a linear model does not improve its predictive power. However, 

considering nonlinear relationships still leads to substantial improvements in forecast accuracy. 
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Panel B and Panel C report the results for the subsamples partitioned on the magnitude of 

total and working capital accruals, respectively. Both panels show the greater benefits of using 

machine learning models for firms with higher accruals. COMP_NL is 17.71% and 13.68% more 

accurate than the RW model for firms with the highest magnitude of total accruals and firms with 

the highest magnitude of working capital accruals, respectively. Among these firms, the linear 

machine learning models improve forecast accuracy by 10%–12%. For firms with the lowest 

magnitude of accruals, the linear machine learning models do not seem to improve forecast 

accuracy significantly, although they consider a large number of financial statement line items. 

However, there is still a significant benefit in accommodating nonlinear relationships in these 

firms. Panel D shows that although the linear machine learning models improve the accuracy of 

earnings forecasts in most quartiles of R&D expense scaled by total assets, there are no 

consistent cross-sectional variations. However, it is more important to accommodate nonlinear 

relationships for firms with higher R&D expense. Finally, Panel E shows that the benefits of 

considering more financial statement line items and accommodating nonlinear relationships are 

greater among loss firms. 

5.3. A peek into the “black box” 

We conduct several additional analyses to better understand the underlying reasons for 

the superiority of the nonlinear machine learning models. As discussed earlier, the ability to 

handle high dimensional data and accommodate more complex relationships are two important 

advantages of nonlinear machine learning models. We first plot the feature importance charts of 

the two tree-based machine learning models (i.e., RF and GBR) to check whether these models 

use economically sensible features to generate predictions. Figure 1 shows the top 10 features 

that on average make the largest contributions to the model predictions over the entire sampling 
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period. The results indicate that past earnings and operating cash flows are important predictors 

of future earnings in both algorithms, ranked 1st and 3rd on the top 10 lists, respectively. 

Interestingly, total income tax and its first-order difference are the 2nd and 4th most important 

features, respectively, which is consistent with the recent literature on the important role of tax 

income or expenses in capturing the quality of earnings and predicting future fundamentals and 

stock returns (e.g., Lev and Nissim, 2004; Hanlon, 2005; Hanlon, Laplante, and Shevlin, 2005; 

Thomas and Zhang, 2011, 2014). Other influential predictors include common equity and its 

change and changes in total assets and receivables. 

Panels A–E of Figure 2 present the accumulated local effects (ALE) plots, which provide 

a visualization of the effects of the predictors (Apley and Zhu, 2020), of the top five most 

important features of the RF prediction models for 1975, 1985, 1995, 2005, and 2015, 

respectively.8 A few observations stand out from the plots. First, current earnings are the single 

most important feature across all years, and the RF models uncover a lower persistence for loss 

than for profits, a feature that is explicitly assumed by most extant models. Second, cash flow 

from operating activities is in the top five lists in all five years. Although future earnings increase 

with current operating cash flow, the predicted relationship exhibits an obvious nonlinear pattern. 

Third, although the book value of equity (CEQ) is in the top five lists in 1975 and 1985, it 

disappears from the lists in subsequent years. Fourth, both the level and changes in tax expenses 

are among the top five most important features in almost all years. They both share an increasing 

                                                      
8 Partial dependence plot (PDP) is another commonly used method to depict the functional relationship between a 

particular predictor and the predicted value of the target variables. PDP looks at a particular predictor across a 

specified range. At each value of the predictor, the model is evaluated for all observations of the other model inputs, 

and the output is then averaged. Thus, the plotted relationship is only valid if the variable of interest does not 

correlate strongly with other model inputs.  In contrast, ALE plots estimate the local effects of a predictor of 

interests over a number of small intervals using only observations falling into that intervals and then accumulate 

them. Thus, the ALE plot is an unbiased alternative to PDP.   
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but nonlinear relationship with future earnings. Panels F–J of Figure 2 report similar results for 

the GBR models, except that the figures of some of the change variables are more irregular. 

In addition to the nonlinear relationships between individual predictors and the target 

variable, the nonlinear machine learning models accommodate the interaction effects between 

predictors. Our untabulated analyses show that the interaction effects between the following 

pairs are the top five contributors to the explanatory power of the GBR model9: change in sales 

revenue and change in cost of goods sold, change in debts in current liabilities and change in 

total current liabilities, sales revenue and accounts payable, cost of goods sold and inventories, 

depreciation and amortization expense and net property, plant, and equipment. The first two pairs 

identify the interaction effects between two closely related accounts on the income statement and 

balance sheet items, separately. The other three pairs pick up the interactions between income 

statement items and their closely related balance sheet gross accrual items. The finding that the 

machine learning models pick up the interaction between income statement items and the 

corresponding gross rather than net accrual items echoes remarkably well with the recent call for 

research by Dichev (2020) on the role of gross accruals in determining the quality of earnings. 

5.4. Information content analysis 

Forecast accuracy is not a sufficient statistic for the decision usefulness of earnings 

forecasts. For example, although the RW forecast is relatively more accurate than other forecasts, 

it provides no information with respect to future earnings changes. In this section, we evaluate 

the information content of various models by investigating their (out-of-sample) predictive 

                                                      
9 We use Friedman’s H-statistic to measure the pairwise feature interaction strength (Friedman and Popescu, 2008). 

To implement the calculation in Python, we use sklearn-gbmi (for details, refer to https://pypi.org/project/sklearn-

gbmi/). For the GBR model we build each year, we first calculate the H-statistic for each pair and average the H-

statistic of the 45 models to determine the top five interaction terms in general. 
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power with respect to future earnings change, ECH. ECH is computed as the difference between 

earnings in year t + 1 and those in year t, scaled by market capitalization at the end of the third 

month after the end of fiscal year t. We calculate forecasted earnings change, or FECH, as the 

predicted earnings for year t + 1 minus the actual earnings for year t, scaled by market 

capitalization at the third month end after the end of fiscal year t. 

We first compare the mean Pearson and Spearman correlation coefficients between 

FECH calculated from various models and ECH in the 45 years. Table 4 Panel A shows that the 

Pearson correlation coefficients between the forecasted earnings changes derived from the extant 

models and ECH range from 0.199 to 0.321, whereas the correlation coefficients for the three 

linear and three nonlinear machine learning models increase to approximately 0.37 and 0.40, 

respectively. For the composite forecasts, the Pearson correlation coefficients increase from 

0.333 for COMP_EXT, to 0.372 for COMP_LR, and 0.413 for COMP_NL. Consistent with 

earlier results, further combining linear models with COMP_NL does not increase the 

information content because the correlation coefficient for COMP_ML is smaller than that for 

COMP_NL. We find a similar pattern for the Spearman correlation coefficients, with 

COMP_EXT, COMP_LR, COMP_NL, and COMP_ML having correlation coefficients of 0.188, 

0.247, 0.300, and 0.286, respectively. 

We also run the univariate Fama–MacBeth regression of ECH on FECH calculated using 

different models. To facilitate the comparison of the coefficients, we follow the literature to 

standardize the forecasted earnings changes so that they have zero mean and unit variance each 

year. The three columns on the right in Panel A of Table 4 present the regression results. The 

coefficients on FECH computed using the extant models range from 0.0304 to 0.048, explaining 

between 8.07% and 12.22% of the cross-sectional variation in realized earnings changes. The 
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coefficients increase to about 0.055 and the explanatory power improves between 14.87% and 

15.12% for the three linear machine learning models. For the three nonlinear machine learning 

models, the coefficients further increase to about 0.058 and the adjusted R-squares increase to a 

level between 16.95% and 17.36%. Among the composite forecasts, FECH based on COMP_NL 

has the largest regression coefficient of 0.0605 and explanatory power of 18.57%, which are not 

only higher than those of COMP_EXT (0.0497 and 12.73%), but also higher than those of 

COMP_LR (0.0550 and 15.09%) and COMP_ML (0.0601 and 18.09%). 

Next, we run a multivariate Fama–MacBeth regression of ECH on FECH based on the 

six machine learning models and the composite models by controlling for FECH predicted using 

all extant models. Panel B of Table 4 shows the results. All FECH coefficients determined using 

the machine learning models are significantly positive, with Newey–West t-statistic greater than 

10. The nonlinear machine models in general yield more incremental information content than 

the linear machine learning models. When the machine learning models are in presence, the 

FECH coefficients based on all extant models become not significant, except for that of the SO 

model, which uses forward-looking non-financial statement predictors, such as stock price and 

book-to-market ratio.  

5.5. Earnings response coefficient 

 Following the prior literature (e.g., Hou et al., 2012; Li and Mohanram, 2014; Easton et 

al., 2018), we examine the earnings response coefficients (ERCs) by using the above forecasts. 

As prior studies argue, a higher ERC indicates that the market reacts more strongly to 

unexpected earnings generated using that model, which implies that the earnings forecasts 

obtained using that model resemble the market expectations (of future earnings) more closely. 
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Following Hou et al. (2012), we estimate the ERC of the various models in two ways. First, we 

estimate the ERC by running annual cross-sectional regressions of the sum of future quarterly 

earnings announcement window market-adjusted stock returns on standardized unexpected 

earnings. This type of ERC is defined as “announcement ERC.” Unexpected earnings are 

calculated as the difference between future actual earnings and the forecasts obtained using the 

above models, deflated by market capitalization three months after the end of the previous fiscal 

year. Then, we standardize these unexpected earnings to have zero mean and unit variance each 

year to facilitate comparisons across different models. 

 The left panel of Table 5 presents the announcement ERCs of the various models. 

Consistent with Li and Mohanram (2014), we find that the announcement ERCs based on the EP 

and RI forecasts are higher than that based on the RW and HVZ models. In contrast, the 

announcement ERCs based on the forecasts generated using the AR and SO models are lower 

than that based on the RW model. The announcement ERCs obtained using the machine-

learning-based forecasts are also higher than that based on the RW model, but are not reliably 

higher than those of the extant models. The announcement ERCs of the three linear machine 

learning models (approximately 0.041) are similar to those of the EP and RI models (0.0410 and 

0.0411, respectively). Although the announcement ERC of the RF model is slightly higher at 

0.0412, the announcement ERC of the GBR model is lower than those of the extant models. The 

ERCs based on the composite machine learning models (COMP_LR, COMP_NL, and 

COMP_ML) are not significantly higher than that of COMP_EXT. 

 Second, we estimate the ERC by regressing the buy-and-hold returns over the next one 

year starting from the fourth month after the end of fiscal year t on standardized unexpected 

earnings over the same period, which is denoted as “annual ERC.” The right panel of Table 5 
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presents the results. None of the individual models have significantly higher annual ERCs than 

that of the RW model. Only the RF and ANN models generate annual ERCs higher than that of 

the RW model, but the difference is not statistically significant. Moreover, none of the composite 

forecasts have a significantly higher annual ERC than that of the RW model. 

 The overall results suggest that although the machine-learning-based forecasts are more 

accurate and informative about future earnings changes, the market does not seem to give them 

more weight when forming expectations about future earnings. This suggests that the market 

may underreact to the information content of machine-learning-based forecasts, and we provide 

more evidence of this phenomenon in the following section. 

5.6. Economic significance analysis 

In this section, we examine whether the new information uncovered by the machine 

learning models is economically significant for investors. To capture this new information, we 

orthogonalize the machine-learning-based forecasts against the forecasts generated using the RW 

model and the extant models. Specifically, we run a cross-sectional regression of the machine-

learning-based forecasts on the RW model and the five extant models each year and use the 

resulting residual forecasts to measure the new information uncovered by the machine learning 

models. Then, we estimate the following regression models and examine whether the residual 

forecasts are associated with future stock returns: 

𝐸𝑋𝑅𝐸𝑇12𝑀𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷𝑖,𝑡 + 𝛽2𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝛽3𝐵𝑀𝑖,𝑡 + 𝛽4𝑀𝑂𝑀𝑖,𝑡 + 𝛽5𝑅𝑂𝐸𝑖,𝑡 +

𝛽6𝐼𝑁𝑉𝑖,𝑡 + 𝛽7𝐴𝐶𝐶𝑖,𝑡 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝐹𝐸 + 𝜀𝑖,𝑡+1      (9) 

where 𝐸𝑋𝑅𝐸𝑇12𝑀𝑖,𝑡+1 is the one-year ahead excess return over 12 months starting from the 

fourth month after the end of fiscal year t for firm i. 𝑀𝐿_𝑅𝐸𝑆𝐷𝑖,𝑡 is the residual from the 
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aforementioned regression that orthogonalizes the machine-learning-based forecasts against the 

RW model and the five extant models; 𝑆𝐼𝑍𝐸𝑖,𝑡 is the logarithm of market capitalization at the end 

of the third month after the end of fiscal year t; 𝐵𝑀𝑖,𝑡 is the book-to-market ratio; 𝑀𝑂𝑀𝑖,𝑡 is the 

momentum calculated as the cumulative return of firm i’s stock during the 11-month period 

starting 12 months ago; 𝑅𝑂𝐸𝑖,𝑡 is profitability, defined as earnings divided by the book value of 

common equity; 𝐼𝑁𝑉𝑖,𝑡 is the growth rate of total assets; and 𝐴𝐶𝐶𝑖,𝑡 is accruals scaled by total 

assets. We also include the three-digit SIC as industry fixed effects in the regression. 

  Table 6 presents the Fama–MacBeth regression results of Model (9). All of the residual 

machine learning forecasts have significant positive associations with future stock returns, even 

after controlling for various return-predicting factors. The coefficients of the other return-

predicting factors mostly bear signs that are consistent with those in the literature. For example, 

future stock returns are negatively associated with firm size, total asset growth, and accruals, and 

are positively associated with book-to-market ratio and profitability. 

Next, we conduct portfolio analysis on the return predictive power of the new 

information component. Specifically, at the beginning of each month, we estimate the new 

information component as the residual from the regression of the machine-learning-based 

forecasts on the forecasts generated using the RW model and the five extant models. We then 

sort all stocks into quintiles based on the resulting residual forecasts for each three-digit SIC 

industry. We construct a hedge portfolio that takes long positions in quintiles with the most 

favorable new information and short positions in quintiles with the least favorable new 

information. Table 7 reports the average return, CAPM alpha, Fama–French three-factor alpha, 

Carhart four-factor alpha, and Fama–French five-factor alpha for the equal-weighted and value-
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weighed hedge portfolios. The results in Panel A of Table 7 indicate that all residual forecasts 

(linear or nonlinear, individual or composite) based on the machine learning models generate 

significantly positive alphas for the equal-weighted portfolios. In particular, the hedge portfolios 

created using the three composite forecasts, COMP_LR, COMP_NL, and COMP_ML, generate 

monthly returns of approximately 64, 72, and 77 bps, respectively. The monthly alphas of the 

three portfolios computed using the Fama–French five-factor model remain statistically 

significant and are above 50 bps per month. 

Panel B of Table 7 reports the mean monthly returns and alpha of the value-weighted 

hedge portfolios. The overall results are weaker compared to the equal-weighted portfolios, 

especially when using the linear machine learning models. All Fama–French five-factor alphas 

of the residual forecasts obtained using the linear machine learning models are not statistically 

significant. However, the residual forecasts obtained using all nonlinear machine learning 

models generate significant risk-adjusted returns. For example, the Fama–French five-factor 

alpha of the residual forecast based on COMP_NL still amounts to 41 bps, which is significant 

both statistically and economically. 

5.7. Predicting analyst forecast errors 

The above results show that investors appear to underreact to the new information about 

future earnings uncovered by the machine learning models. A natural question is whether this 

information is well understood by sophisticated sell-side analysts. We answer this question by 

examining whether the new information component helps predict errors in consensus analyst 

earnings forecasts made after the availability of financial statement information. Specifically, we 



31 

 

examine the errors in analyst consensus forecasts made in the fourth month after the end of fiscal 

year t. Following So (2013), we estimate the following models: 

𝐹𝐸𝑅𝑅𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷𝑖,𝑡 + 𝛽2𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝛽3𝐵𝑀𝑖,𝑡 + 𝛽4𝑀𝑂𝑀𝑖,𝑡 + 𝛽5𝐴𝐶𝐶𝑖,𝑡 + 𝛽6𝐿𝑇𝐺𝑖,𝑡 +

𝜀𝑖,𝑡+1             (10) 

where 𝐹𝐸𝑅𝑅𝑖,𝑡+1 is the analyst forecast error defined as the realized difference between EPS as 

reported in IBES and the consensus EPS forecast made in the fourth month after the end of fiscal 

year t, scaled by the stock price of firm i on the day the consensus forecast is formed (i.e., 

statpers); 𝑀𝐿_𝑅𝐸𝑆𝐷𝑖,𝑡, 𝑆𝐼𝑍𝐸𝑖,𝑡, 𝐵𝑀𝑖,𝑡, 𝑀𝑂𝑀𝑖,𝑡, 𝐴𝐶𝐶𝑖,𝑡 have the same definitions as those in 

Model (9); and 𝐿𝑇𝐺𝑖,𝑡 is the consensus long-term growth forecast in IBES. If analysts perfectly 

incorporate the new information extracted by the machine learning models into their forecasts, 

their forecast errors will be uncorrelated with the proxy for the new information component. 

However, the results in Table 8 indicate that the proxies of all machine learning models are 

significantly correlated with analyst forecast errors, suggesting that analysts do not fully 

understand the new information uncovered by the machine learning algorithms. 

5.8. Improving extant models using insights from the machine learning models 

The overall results show that even without the explicit guidance of economic theories, the 

nonlinear machine learning models extract information from a set of economically sensible 

predictors and capture the interaction effects between some economically linked pairs of 

predictors. In this section, we examine whether the insights from the nonlinear machine learning 

models can be used to enhance the performance of the extant models. 

First, we test whether augmenting the extant models with the level and change in total 

income tax expenses, which machine learning models identify as one of the most important 
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features, helps improve their performance. Tax expenses are closely related to taxable income, 

which according to prior studies is an important determinant of the quality of earnings and 

earnings persistence (e.g., Lev and Nissim, 2004; Hanlon, 2005). One may justify the inclusion 

of these variables in the earnings prediction model, just like other variables such as accruals. The 

results presented in Panel A of Table 9 show that the augmented models always have 

significantly lower mean absolute forecast errors than the corresponding extant models, with a 

decrease in average mean absolute forecast errors ranging from 2.53% to 4.90%. 

Second, we examine whether the linear models that use the sets of predictors identified 

by the nonlinear machine learning models as the most important features yield better performing 

earnings prediction models. Random forests are frequently used by data scientists for variable 

selection (e.g., Hapfelmeier and Ulm, 2013). Our earlier results show that RF identifies a set of 

economically sensible features for predicting future earnings. For example, if we use the top five 

most influential features identified by the RF algorithm, we can formulate the following model: 

𝐸𝑖,𝑡+1 = 𝛼0 + 𝛼1𝐶𝐸𝑄𝑖,𝑡 + 𝛼2𝐸𝑖,𝑡 + 𝛼3𝐶𝐹𝑂𝑖,𝑡 + 𝛼4𝑇𝑋𝑇𝑖,𝑡 + 𝛼5𝛥𝑇𝑋𝑇𝑖,𝑡 + 𝜀𝑖,𝑡+1  (11) 

where all variables are the same as defined earlier. This model is very intuitive and fits very well 

with economic theory. It uses information about the book value of equity, current earnings and 

operating cash flows, current level, and change in tax expenses to forecast future earnings. We 

estimate the above model using the OLS, LASSO, and Ridge regressions. The results reported in 

Panel B of Table 9 suggest that the three models are not only significantly more accurate than the 

RW model, but also outperform all extant models. For example, the average mean absolute 

errors of the forecasts generated using Model (11) based on OLS is 0.0713, which is lower than 

that of the more accurate extant RI model, which has an average mean absolute forecast error of 
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0.0741, as shown in Table 2. Furthermore, the results show that the earnings predictions 

generated by the three models are more accurate than the predictions generated by the 

corresponding models using all 56 inputs. The results suggest that although supplying the linear 

models with the full set of inputs allow the models to accommodate a considerably richer 

information set, doing so may also exacerbate the overfitting problem. Regularization using 

LASSO and Ridge models does not eliminate the overfitting risk. 

 

6. Additional Analysis and Robustness Check 

6.1. Alternative deflator 

  As a robustness check, we calculate the absolute errors of earnings forecasts using two 

alternative deflators, namely total assets (at) and common shares outstanding (csho). The results 

are presented in Table 10. The left panel reports the results obtained using total assets as the 

deflator. The time series average of the mean absolute errors of the RW model is 0.0593. None 

of the extant models have lower mean absolute forecast errors than that of the RW model. All of 

the linear machine learning models, including the composite forecasts, have lower mean absolute 

forecast errors, but not significantly so. In contrast, all of the nonlinear machine learning models 

yield significantly more accurate earnings forecasts than the RW model, with a decrease in mean 

absolute forecast errors ranging from 3.82% for the ANN model to 8.59% for the COMP_NL 

model. The superior prediction performance of the nonlinear machine learning models remains 

robust when we compare the per share forecast error, which is reported in the right panel of 

Table 10. The results again show that the extant models do not generate significantly more 

accurate forecasts than the RW model. The mean absolute forecast errors of the six machine 
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learning models are significantly lower than that of the RW model. In both cases, the GBR 

model and COMP_NL are still the most accurate individual and composite models. 

6.2. Longer horizon forecasts 

In the main analyses, we focus on the forecast horizon of one year. All our results hold 

and, sometimes, become stronger when we extend the forecast horizon to two or three years 

ahead. Table 11 presents the results for two- and three-year ahead earnings forecasts, 

respectively. The overall results are largely similar, showing that the RF and GBR models are the 

most accurate individual forecast models, while COMP_NL is generally the most accurate 

composite forecast model. Judging from the mean absolute forecast errors, these forecasts are 

approximately 11% more accurate than that of RW model for two-year ahead forecasts. The 

median absolute forecast errors of COMP_NL are also approximately 6% lower than those of the 

RW model over the two forecast horizons. 

6.3. Raw values v.s. financial ratios as input features 

Analysts and investors often conduct ratio analysis to facilitate their forecasting tasks. 

This is a practice recommended by nearly all the financial information analysis textbooks. 

However, in detecting accounting fraud, Bao et al. (2020) find that their machine learning 

algorithms perform better using raw accounting numbers than using financial ratios as the input 

features. We follow them and also use raw values of the financial statement items in our main 

analysis. However, it is an empirical question whether machine learning models using financial 

ratios perform better in predicting future earnings. Building on the systematic forecasting 

framework of Lundholm and Sloan (2007), we identify 16 commonly used financial ratios that 
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capture sales growth, operational efficiency, profit margins, and capital structures.10 Using the 16 

financial ratios and their respective first-order differences as the input features, we estimate the 

six machine learning models predicting future return on assets. Consistent with Bao et al. (2020), 

we find that the ratio based models fail to outperform the models using raw accounting numbers. 

For example, the best performing machine learning models, GBR, only improves the mean 

absolute forecast accuracy relative to the RW model by approximately 3% when using the ratios 

as the input features. All the linear machine learning models are less accurate than the RW model 

when the financial ratios are used as the input features. 

6.4. Other robustness tests 

We also conduct a host of additional analyses to test the robustness of our results. The 

tests are briefly summarized below. For brevity, the results are not tabulated in the paper, but 

they are available upon request: 

1) We conduct model training by deflating both the target variable and the predictors with total 

assets or market capitalization and the results are similar, showing that the machine learning 

models generate more accurate and informative earnings forecasts and that the new 

information in these forecasts predicts both future stock returns and analyst forecast errors. 

2) We rerun all analyses by further excluding all firms with market capitalization in the bottom 

25% of the annual distribution. All results are slightly weaker, but still significant both 

statistically and economically. 

                                                      
10 Specifically, we use the following ratios: annual sales growth, ratios of current debt, long-term debt and minority 

interests to total assets, ratios of pretax income, non-operating income, cost of goods sold, SG&A to sales, 

depreciation rate, effective interest rate, effective tax rate, ratio of minority interests in earnings to minority interests, 

and PP&E, intangible, current assets, and total assets turnover ratios. 
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3) Instead of implementing the ANN with bagging, we attempt to generate earnings forecasts 

using plain vanilla ANN and the results are similar, albeit slightly weaker. 

4) Instead of the key financial statement line items from the Compustat Balancing Model, we 

use the top 100 fundamental signals, which are considered as the economic drivers in Yan 

and Zheng (2017), as the predictors to forecast future earnings, but the resulting earnings 

forecasts are not as accurate or as informative. 

 

7. Conclusions 

As a crucial input for equity valuation, earnings forecasts are of central importance to 

both academics and practitioners. We posit that the ability to handle high dimensional data and 

accommodate more flexible relationships benefits machine learning algorithms to forecast future 

earnings using financial statement information. Consistent with this notion, our analyses show 

that machine learning algorithms, especially those that accommodate nonlinear relationships, 

generate more accurate forecasts than both the RW model and the state-of-the-art earnings 

prediction models developed in the accounting and finance literature. Furthermore, machine-

learning-based earnings forecasts contain significantly more information about future earnings 

changes than the extant models. 

Despite their superiority in terms of accuracy and information content, investors do not 

seem to give more weight to machine-learning-based forecasts when forming expectations about 

future earnings. Earnings response coefficients for earnings surprises based on machine learning 

forecasts are not reliably larger than those based on the extant earnings prediction models. 

Furthermore, we find that the new information uncovered by the machine learning algorithms is 
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economically significant for investors. In particular, the new information component of earnings 

forecasts generated using machine learning models, especially those that accommodate nonlinear 

relationships, are significantly associated with future stock returns. Stocks with the most 

favorable new information outperform those with the most unfavorable new information by 

approximately 41 to 77 bps per month. We also find that the new information component is 

significantly associated with analyst earnings forecast errors. The overall results thus suggest that 

the market appears to underreact to the new information uncovered by machine learning models. 

Finally, we show that the most important features identified by the nonlinear machine learning 

models not only help improve the performance of the extant models, but also can be used to 

construct a simple yet intuitive linear model that outperforms the extant models as well. Our 

paper contributes to the literature by providing robust evidence of the usefulness of machine 

learning algorithms in forecasting corporate earnings, which is one of the most critical tasks in 

fundamental analysis and equity valuation. The results also shed light on the limitations of the 

extant earnings prediction models and provide unambiguous evidence of the usefulness of 

financial statement information in earnings forecasting and equity valuation.
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Appendix 1: Variable definitions 

Variable Definition 

Earnings to be forecasted 

𝐸𝑡+1 Earnings (ib - spi) in year t + 1 

𝐸𝑃𝑆𝑡+1 Earnings (ib - spi) in year t + 1 scaled by shares outstanding (csho) 

Input features for extant models 

𝐸𝑡 Earnings (ib - spi) in year t 

𝐴𝑡 Total assets (at) 

𝐷𝑡  Dividend payment (dvc) 

𝐷𝐷𝑡  Dummy variable indicating dividend payers 

𝑁𝑒𝑔𝐸𝑡 Dummy variable indicating negative earnings 

𝐴𝐶𝑡 Accruals calculated as change in non-cash current assets (act - che) minus change in 

current liabilities excluding short-term debt and taxes payable (lct - dlc - txp) minus 

depreciation and amortization (dp) 

𝐸𝑃𝑆𝑡
+ Earnings per share when earnings are positive, and zero otherwise 

𝐴𝐶𝑡
− Accruals per share when accruals are negative, and zero otherwise 

𝐴𝐶𝑡
+ Accruals per share when accruals are positive, and zero otherwise 

𝐴𝐺𝑡 Percentage change in total assets 

𝑁𝐷𝐷𝑡  Dummy variable indicating zero dividend per share 

𝐷𝐼𝑉𝑡 Dividend per share (dvpsx_f) 

𝐵𝑇𝑀𝑡 Book-to-market ratio, calculated as the book value of equity divided by the market 

equity as of three months after the end of the last fiscal year 

𝑃𝑟𝑖𝑐𝑒𝑡 Stock price as of three months after the end of fiscal year t 

𝐵𝑉𝐸𝑡  Book value of equity (ceq) 

𝑇𝐴𝐶𝐶𝑡 Total accruals defined in Richardson et al. (2005), which is the sum of the change in 

WC (i.e., (act - che) - (lct - dlc)), change in NCO (i.e., (at - act - ivao) - (lt - lct - dltt)), 

and change in FIN (i.e., (ivst + ivao) - (dltt + dlc + pstk)) 

Input features for machine learning models 

Income statement items (# = 12): 

𝑆𝐴𝐿𝐸𝑡 Sales (sale) 

𝐶𝑂𝐺𝑆𝑡 Cost of goods sold (cogs) 

𝑋𝑆𝐺𝐴𝑡 Selling, general, and administrative expenses (xsga) 

𝑋𝐴𝐷𝑡  Advertising expense (xad) 

𝑋𝑅𝐷𝑡  Research and development (R&D) expense (xrd) 

𝐷𝑃𝑡  Depreciation and amortization (dp) 

𝑋𝐼𝑁𝑇𝑡  Interest and related expense (xint) 

𝑁𝑂𝑃𝐼𝑂𝑡 Non-operating income (expense) – other (nopio) 

𝑇𝑋𝑇𝑡 Income taxes (txt) 

𝑋𝐼𝐷𝑂𝑡 Extraordinary items and discontinued operations (xido) 

𝐸𝑡 Earnings (ib - spi) 

𝐷𝑉𝐶𝑡 Common dividend (dvc) 

Balance sheet items (# = 15): 

𝐶𝐻𝐸𝑡 Cash and short-term investments (che) 

𝐼𝑁𝑉𝑇𝑡 Inventories (invt) 

𝑅𝐸𝐶𝑇𝑡  Receivables (rect) 

𝐴𝐶𝑇𝑡  Total current assets (act) 
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𝑃𝑃𝐸𝑁𝑇𝑡  Property, plant, and equipment – Net (ppent) 

𝐼𝑉𝐴𝑂𝑡  Investments and advances – other (ivao) 

𝐼𝑁𝑇𝐴𝑁𝑡 Intangible assets (intan) 

𝐴𝑇𝑡 Total assets (at) 

𝐴𝑃𝑡 Accounts payable (ap) 

𝐷𝐿𝐶𝑡 Debt in current liabilities (dlc) 

𝑇𝑋𝑃𝑡  Income taxes payable (txp) 

𝐿𝐶𝑇𝑡 Total current liabilities (lct) 

𝐷𝐿𝑇𝑇𝑡 Long-term debt (dltt) 

𝐿𝑇𝑡 Total liabilities (lt) 

𝐶𝐸𝑄𝑡 Common/Ordinary equity (ceq) 

Cash flow statement items (# = 1): 

𝐶𝐹𝑂𝑡 Cash flow from operating activities (oancf - xidoc); if missing, it is computed using the 

balance sheet approach (ib - accruals) 

First-order differences of the above 28 items (# = 28): 

Δ𝐶𝐻𝐸𝑡~Δ𝐶𝐹𝑂𝑡 Computed as the corresponding item in year t less the same item in year t - 1 

Dependent variables in the regressions 

𝐸𝑋𝑅𝐸𝑇12𝑀𝑡+1 One-year ahead excess return, computed as the 12-month cumulative return less that of 

the risk-free rate, starting from the fourth month after the end of the last fiscal year 

𝐹𝐸𝑅𝑅𝑡+1 Analyst forecast error, computed as the realized difference between earnings per share 

(EPS) as reported in IBES and the consensus forecast made in the fourth month after 

the end of the last fiscal year, scaled by the stock price on the day of formation of the 

consensus forecast 

Controls   

𝑆𝐼𝑍𝐸𝑡 Logarithm of market capitalization at the end of the third month after the end of the last 

fiscal year 

𝐵𝑀𝑡 Book-to-market ratio, calculated as the book value of equity divided by market equity at 

the end of three months after the end of the last fiscal year 

𝑀𝑂𝑀𝑡 Momentum calculated as the cumulative return during the 11-month period starting 12 

months ago 

𝑅𝑂𝐸𝑡  Earnings (ib - spi) divided by common equity (ceq) 

𝐼𝑁𝑉𝑡 Growth rate of total assets (att/𝑎𝑡𝑡−1 − 1) 

𝐴𝐶𝐶𝑡 Accruals scaled by total assets 

𝐿𝑇𝐺𝑡 Consensus long-term growth forecast in IBES 
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Appendix 2: Tuning of hyperparameters for the machine learning models. 

Model Candidate values Algorithms in sklearn 

LASSO alphas = np.linspace(1e-3,1e-1,1000) LassoCV(alphas=np.linspace(1e-3,1e-

1,1000),fit_intercept=False,max_iter=2500

0,n_jobs=-1) 

Ridge alphas = np.linspace(5e1,1e3,500) RidgeCV(alphas=np.linspace(5e1,1e3,500),f

it_intercept=False,cv=5) 

RF parameters = 

{'max_features':['auto'],'max_depth':[20,25,30,35],'

min_samples_leaf':[15,20,25,50]} 

GridSearchCV(RandomForestRegressor(n_

estimators=500,criterion='mse',oob_score=

True,n_jobs=-1,random_state=10), 

parameters, cv=5, n_jobs=-1, 

scoring='neg_mean_squared_error') 

GBR parameters = 

{'max_features':['auto'],'max_depth':[1,3,5],'min_sa

mples_leaf':[75,100,125,150]} 

GridSearchCV(GradientBoostingRegressor(

learning_rate=0.1,n_estimators=500,loss='

huber',alpha=0.7,subsample=0.9,random_st

ate=10), parameters, cv=5, n_jobs=-1, 

scoring='neg_mean_squared_error') 

ANN parameters = 

{'activation':['relu','tanh'],'hidden_layer_sizes':[(64,3

2,16,8),(32,16,8,4),(16,8,4,2),(64,32,16),(32,16,8),(

16,8,4),(8,4,2),(64,32),(32,16),(16,8),(8,4),(4,2),(64,

),(32,),(16,),(8,),(4,)],'alpha':[1e-3,1e-4,1e-5]} 

BaggingRegressor(regr,random_state=0,n_

estimators=10,max_samples=0.6,n_jobs=-

1),where regr = 

GridSearchCV(MLPRegressor(max_iter=10

00,random_state=10,early_stopping=True,t

ol=1e-6), parameters, cv=5, n_jobs=-1, 

scoring='neg_mean_squared_error') 
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Figure 1: Top 10 influential features of random forest and gradient boosting regression. 

 

 

 

This figure plots the average feature importance extracted from the fitted models of random forest (RF) and gradient 

boosting regression (GBR) that we train with data from the 1975–2019 period. The higher the importance score, the 

more important the feature. To facilitate representation, we set the maximum of the y axis at 0.05, while the average 

feature importance values for earnings (“e”) are 0.8187 and 0.8519 for RF and GBR, respectively. 
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Figure 2: A visualization of the relationships between important features and future 

earnings. 

 

Panel A: Accumulated local effects (ALE) of the top five most influential features of the RF 

model for 1975. 

 

Panel B: Accumulated local effects (ALE) of the top five most influential features of the RF 

model for 1985. 
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Panel C: Accumulated local effects (ALE) of the top five most influential features of the RF 

model for 1995. 

 

Panel D: Accumulated local effects (ALE) of the top five most influential features of the RF 

model for 2005. 

 

Panel E: Accumulated local effects (ALE) of the top five most influential features of the RF 

model for 2015. 
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Panel F: Accumulated local effects (ALE) of the top five most influential features of the GBR 

model for 1975. 

 

Panel G: Accumulated local effects (ALE) of the top five most influential features of the GBR 

model for 1985. 

 

Panel H: Accumulated local effects (ALE) of the top five most influential features of the GBR 

model for 1995. 
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Panel I: Accumulated local effects (ALE) of the top five most influential features of the GBR 

model for 2005. 

 

Panel J: Accumulated local effects (ALE) of the top five most influential features of the GBR 

model for 2015. 
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Table 1: Sample distribution by year. 

 

year # obs   year # obs   year # obs 

1975          2,550   1990          3,029   2005          3,303  

1976          2,558   1991          3,140   2006          3,259  

1977          2,578   1992          3,484   2007          3,166  

1978          2,593   1993          3,816   2008          2,945  

1979          2,679   1994          4,236   2009          2,583  

1980          2,694   1995          4,373   2010          2,747  

1981          2,685   1996          4,690   2011          2,673  

1982          2,689   1997          4,976   2012          2,538  

1983          2,830   1998          4,930   2013          2,499  

1984          2,892   1999          4,620   2014          2,522  

1985          3,047   2000          4,540   2015          2,497  

1986          3,087   2001          3,969   2016          2,419  

1987          3,083   2002          3,595   2017          2,383  

1988          3,219   2003          3,310   2018          2,349  

1989          3,140    2004          3,378    2019          2,299  
This table reports the number of firms with non-missing input features for all of the models from 1975 to 2019. 
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Table 2: Comparison of forecast accuracy. 

 

  Mean absolute forecast errors   Median absolute forecast errors 

 Average 
Comparison with RW  

Average 
Comparison with RW 

DIFF t-stat %DIFF   DIFF t-stat %DIFF 

Benchmark model 

RW 0.0764     0.0309    

Extant models 

AR 0.0755 -0.0009 -2.51 -1.15%  0.0308 -0.0001 -0.22 -0.24% 

HVZ 0.0743 -0.0022 -3.63 -2.82%  0.0311 0.0002 0.64 0.76% 

EP 0.0742 -0.0022 -2.79 -2.85%  0.0313 0.0004 1.02 1.42% 

RI 0.0741 -0.0023 -3.15 -3.07%  0.0311 0.0002 0.66 0.74% 

SO 0.0870 0.0105 5.19 13.78%   0.0347 0.0039 5.50 12.56% 

Linear machine learning models 

OLS 0.0720 -0.0045 -5.04 -5.83%  0.0306 -0.0002 -0.60 -0.73% 

LASSO 0.0716 -0.0048 -5.32 -6.31%  0.0304 -0.0004 -1.11 -1.43% 

Ridge 0.0718 -0.0047 -5.19 -6.11%   0.0305 -0.0003 -0.87 -1.08% 

Nonlinear machine learning models 

RF 0.0698 -0.0066 -6.44 -8.64%  0.0296 -0.0012 -3.10 -3.97% 

GBR 0.0697 -0.0068 -6.08 -8.86%  0.0292 -0.0016 -4.23 -5.34% 

ANN 0.0713 -0.0051 -5.38 -6.67%   0.0310 0.0001 0.24 0.38% 

Composite models 

COMP_EXT 0.0737 -0.0027 -3.89 -3.58%  0.0311 0.0002 0.56 0.66% 

COMP_LR 0.0717 -0.0047 -5.25 -6.16%  0.0305 -0.0004 -1.02 -1.33% 

COMP_NL 0.0689 -0.0075 -6.99 -9.87%  0.0292 -0.0017 -3.92 -5.55% 

COMP_ML 0.0693 -0.0071 -7.12 -9.35%   0.0294 -0.0015 -3.75 -4.81% 

This table reports the time series average of the mean and median absolute forecast errors for the 12 individual 

models and the 4 composite models and their comparisons with the benchmark model (i.e., the RW model). The 

absolute forecast error is calculated as the absolute value of the difference between the actual one-year ahead 

earnings and the model-based earnings forecasts, scaled by market equity at the end of three months after the end of 

the last fiscal year. DIFF is the time series average of the difference calculated as the mean (median) absolute 

forecast error of each model minus that of the benchmark model. A negative DIFF value indicates an improvement 

in the forecast accuracy of the specific model relative to the benchmark model, and vice versa. The Newey–West t-

statistic of DIFF is adjusted using three lags and reported accordingly. The percentage difference (%DIFF) is DIFF 

divided by the time series average of the mean (median) absolute forecast error of the benchmark model. 
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Table 3: Cross-sectional analysis of improvement in forecast accuracy (in percentage). 

 

Panel A: Partition variable – ROA volatility 

 Low 2 3 4 High 

COMP_LR vs. RW -1.97 2.32 3.24 6.83 10.26 

 (-1.96) (2.98) (4.84) (6.78) (8.53) 

COMP_NL vs. RW 4.44 5.68 5.70 8.99 15.21 

  (5.81) (6.20) (7.17) (7.64) (9.54) 

Panel B: Partition variable – |Total accruals|/Total assets 

 Low 2 3 4 High 

COMP_LR vs. RW 0.19 1.45 3.11 6.77 11.47 

 (0.21) (1.51) (3.72) (7.60) (7.52) 

COMP_NL vs. RW 3.25 4.32 6.00 10.07 17.71 

  (4.71) (6.13) (7.47) (8.43) (9.52) 

Panel C: Partition variable – |Working capital accruals|/Total assets 

 Low 2 3 4 High 

COMP_LR vs. RW 1.47 2.56 4.02 4.99 10.34 

 (1.18) (2.94) (4.62) (5.74) (8.73) 

COMP_NL vs. RW 6.59 7.44 7.69 8.34 13.68 

  (5.69) (6.16) (6.96) (8.60) (8.90) 

Panel D: Partition variable – R&D expense/Total assets 

 MISSING Low 2 3 High 

COMP_LR vs. RW 6.09 4.95 7.24 6.67 3.52 

 (6.38) (5.03) (8.24) (6.21) (1.56) 

COMP_NL vs. RW 8.90 8.54 10.17 10.51 11.27 

  (7.07) (6.89) (10.92) (9.02) (8.43) 

Panel E: Partition variable – Loss dummy 

 Non-loss   Loss 

COMP_LR vs. RW 3.19  8.41 

 (3.61)  (5.29) 

COMP_NL vs. RW 6.41  12.89 

  (5.38)   (7.93) 
This table presents a cross-sectional analysis of the percentage improvement in the forecast accuracy of COMP_LR 

and COMP_NL compared with that of the RW model. The percentage improvement is defined as the time series 

average of the difference in the mean absolute forecast errors between the pairs (i.e., the composite model versus the 

RW model) divided by the mean absolute forecast error of the RW model. A positive number indicates an 

improvement in the accuracy of the composite model. In panels A, B, and C, we sort all firms into quintiles for each 

year based on the magnitude of the partition variable (ROA volatility, absolute value of total accruals divided by 

total assets, and absolute value of working capital accruals divided by total assets, respectively). In Panel D, we 

classify all firms with missing R&D expense into a separate group and sort the remaining firms into quartiles for 

each year based on their R&D expense divided by total assets. In Panel E, we divide all firms into two groups for 

each year depending on whether their earnings are negative. Then, we calculate the percentage improvement for 

each subgroup along with the Newey–West t-statistics (in brackets) with three lags.  
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Table 4: Information content analysis. 

 

Panel A: Relative information content of the earnings prediction models. 

  Correlation analysis 
  Univariate regression 
 𝐸𝐶𝐻 = 𝛽0 + 𝛽1𝐹𝐸𝐶𝐻. + 𝜀 

  Pearson  Spearman   β1 t-stat (β1) Avg. R2 (%) 

Extant models 

AR 0.199 0.117   0.0304 3.43 8.07 

HVZ 0.283 0.179  0.0422 8.21 9.98 

EP 0.321 0.154  0.0480 9.14 12.22 

RI 0.313 0.148  0.0467 9.34 11.68 

SO 0.291 0.153   0.0440 9.60 9.66 

Linear machine learning models 

OLS 0.369 0.245  0.0546 10.25 14.87 

LASSO 0.372 0.247  0.0550 10.18 15.12 

Ridge 0.372 0.247   0.0550 10.27 15.12 

Nonlinear machine learning models 

RF 0.396 0.279  0.0581 11.02 17.36 

GBR 0.395 0.283  0.0582 10.99 17.15 

ANN 0.396 0.276   0.0580 12.01 16.95 

Composite models 

COMP_EXT 0.333 0.188  0.0497 9.44 12.73 

COMP_LR 0.372 0.247  0.0550 10.28 15.09 

COMP_NL 0.413 0.300  0.0605 11.45 18.57 

COMP_ML 0.408 0.286   0.0601 10.94 18.09 
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Panel B: Incremental information content of the machine learning models 

Multivariate regression: 𝐸𝐶𝐻 = 

𝛽0 + 𝛽1𝐹𝐸𝐶𝐻𝑀𝐿 + 𝛽2𝐹𝐸𝐶𝐻𝐴𝑅 + 𝛽3𝐹𝐸𝐶𝐻𝐻𝑉𝑍 + 𝛽4𝐹𝐸𝐶𝐻𝐸𝑃 + 𝛽5𝐹𝐸𝐶𝐻𝑅𝐼 + 𝛽6𝐹𝐸𝐶𝐻𝑆𝑂 + 𝜀 

  𝛽0 𝜷𝟏 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 Avg. R2 (%) 

Linear machine learning models 

OLS 0.0016 0.0432 0.0107 -0.0058 0.0004 -0.0098 0.0251 18.99 
 (0.57) (11.90) (1.56) (-1.42) (0.03) (-0.82) (8.82)  

LASSO 0.0016 0.0458 0.0085 -0.0072 0.0017 -0.0111 0.0251 19.09 
 (0.57) (15.45) (1.28) (-1.72) (0.13) (-0.87) (8.72)  

Ridge 0.0016 0.0453 0.009 -0.0068 0.0019 -0.0113 0.0251 19.09 

  (0.57) (12.19) (1.36) (-1.66) (0.14) (-0.89) (8.71)   

Nonlinear machine learning models 

RF 0.0016 0.049 0.0105 -0.0072 -0.0043 -0.0014 0.0146 19.53 
 (0.57) (16.83) (1.60) (-1.71) (-0.30) (-0.12) (3.89)  

GBR 0.0016 0.0497 0.0086 -0.0079 -0.0005 -0.006 0.0183 19.63 
 (0.57) (16.40) (1.42) (-1.91) (-0.03) (-0.54) (5.54)  

ANN 0.0016 0.0466 0.0078 -0.0047 0.0111 -0.0137 0.0176 20.20 

  (0.57) (16.24) (1.29) (-1.17) (0.78) (-1.17) (5.15)   

Composite models 

COMP_LR 0.0016 0.045 0.0094 -0.0068 0.0016 -0.011 0.025 19.08 
 (0.57) (12.27) (1.41) (-1.64) (0.12) (-0.88) (8.82)  

COMP_NL 0.0016 0.059 0.0075 -0.0087 0.0053 -0.0144 0.0132 20.84 
 (0.57) (17.91) (1.30) (-2.11) (0.36) (-1.25) (3.92)  

COMP_ML 0.0016 0.0593 0.0071 -0.0104 0.0081 -0.0199 0.0175 20.80 

  (0.57) (16.22) (1.20) (-2.44) (0.63) (-1.71) (6.24)   

Panel A reports the average Person and Spearman correlation coefficients between the forecasted earnings changes 

calculated using various models and the actual earnings changes over 45 years from 1975 to 2019, as well as the 

univariate Fama–MacBeth regression results. In the regression, all forecasted earnings changes are standardized to 

have zero mean and unit variance each year. Panel B reports the multivariate Fama–MacBeth regression results. 

Specifically, we regress ECH on FECH using the six machine learning models and the three composite models and 

controlling for all earnings changes predicted using the extant models. All independent variables are standardized to 

have zero mean and unit variance each year. All earnings changes are scaled by market equity at the end of three 

months after the end of the last fiscal year. The table presents the average coefficients along with the Newey–West t-

statistics (in brackets) with three lags and the average adjusted R-square. The subscripts are omitted for brevity. 
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Table 5: ERC analysis. 

 

  

Announcement ERC   Annual ERC 

  Comparison with 

RW 
   Comparison with 

RW 

ERC t-stat DIFF t-stat   ERC t-stat DIFF t-stat 

Benchmark model 

RW 0.0399 28.70       0.1479 9.92     

Extant models 

AR 0.0398 27.32 -0.0001 -0.18  0.1456 10.10 -0.0023 -1.98 

HVZ 0.0399 26.15 0.0000 0.05  0.1429 9.37 -0.0050 -1.89 

EP 0.0410 25.12 0.0011 1.52  0.1443 9.64 -0.0036 -0.97 

RI 0.0411 26.64 0.0012 1.85  0.1450 9.66 -0.0029 -0.75 

SO 0.0372 19.82 -0.0027 -2.42   0.1385 9.03 -0.0094 -2.04 

Linear machine learning models 

OLS 0.0410 26.43 0.0011 1.56  0.1415 10.40 -0.0064 -1.55 

LASSO 0.0412 26.76 0.0013 1.91  0.1430 10.41 -0.0049 -1.29 

Ridge 0.0411 26.88 0.0012 1.76  0.1422 10.33 -0.0057 -1.44 

Nonlinear machine learning models 

RF 0.0412 24.49 0.0013 1.71  0.1494 10.60 0.0015 0.55 

GBR 0.0404 26.05 0.0005 0.73  0.1447 10.77 -0.0032 -0.82 

ANN 0.0410 29.56 0.0011 1.74  0.1511 12.25 0.0032 0.68 

Composite models 

COMP_EXT 0.0416 25.43 0.0017 2.81  0.1510 10.19 0.0031 1.16 

COMP_LR 0.0411 26.80 0.0012 1.80  0.1422 10.39 -0.0056 -1.41 

COMP_NL 0.0415 26.03 0.0016 2.34  0.1508 11.13 0.0029 0.91 

COMP_ML 0.0418 26.96 0.0019 2.81   0.1488 11.14 0.0009 0.26 

This table reports the time series average of the announcement ERC and the annual ERC computed using the 12 

individual models and the 4 composite models and compares them with the values obtained using the benchmark 

RW model) along with Newey–West t-statistics with 3 lags. The announcement ERC is estimated by regressing the 

sum of the quarterly earnings announcement returns (market-adjusted, from day -1 to day +1) over the next fiscal 

year on standardized unexpected earnings. Standardized unexpected earnings are calculated as the difference 

between future actual earnings and the model forecasts, deflated by market capitalization at the end of three months 

after the end of the last fiscal year and then standardized to have zero mean and unit variance each year. The annual 

ERC is estimated by regressing the buy-and-hold returns over the next year starting from the fourth month after the 

end of the last fiscal year on standardized unexpected earnings over the same period. The pairwise difference (DIFF) 

is calculated as the time series average of the difference between the ERC values of various models and that of the 

RW model each year from 1975 to 2019.
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Table 6: Regression analysis of future excess stock returns on the new information 

uncovered using the machine learning models. 

 

Multivariate regression: 𝐸𝑋𝑅𝐸𝑇12𝑀 = 𝛽0 + 𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷 + 𝛽2𝑆𝐼𝑍𝐸 + 𝛽3𝐵𝑀 + 𝛽4𝑀𝑂𝑀 +
𝛽5𝑅𝑂𝐸 + 𝛽6𝐼𝑁𝑉 + 𝛽7𝐴𝐶𝐶 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝐹𝐸 + 𝜀. 

  𝛽0 𝜷𝟏 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 Avg. R2 

Linear machine learning models 

OLS 0.077 0.821 -0.005 0.068 -0.026 0.104 -0.056 -0.113 4.35 
 (0.62) (7.21) (-0.88) (6.97) (-1.29) (3.18) (-8.68) (-2.01)  

LASSO 0.107 0.908 -0.005 0.068 -0.027 0.105 -0.057 -0.108 4.36 
 (0.80) (6.67) (-0.88) (6.96) (-1.31) (3.17) (-8.79) (-1.91)  

Ridge 0.141 0.890 -0.005 0.068 -0.027 0.105 -0.057 -0.110 4.37 

  (1.10) (7.11) (-0.88) (6.92) (-1.32) (3.18) (-8.77) (-1.96)   

Nonlinear machine learning models 

RF 0.227 0.721 -0.006 0.068 -0.028 0.101 -0.050 -0.111 4.30 
 (1.32) (5.22) (-1.00) (7.01) (-1.40) (3.23) (-7.80) (-1.86)  

GBR 0.085 0.790 -0.006 0.067 -0.028 0.099 -0.054 -0.106 4.35 
 (0.53) (6.08) (-1.02) (6.89) (-1.38) (3.18) (-7.89) (-1.79)  

ANN 0.172 0.679 -0.006 0.067 -0.027 0.104 -0.055 -0.108 4.40 

  (1.33) (5.24) (-1.00) (6.91) (-1.37) (3.18) (-8.85) (-1.87)   

Composite models 

COMP_LR 0.112 0.887 -0.005 0.068 -0.027 0.104 -0.057 -0.110 4.36 
 (0.96) (7.03) (-0.88) (6.94) (-1.31) (3.18) (-8.81) (-1.95)  

COMP_NL 0.226 0.958 -0.006 0.067 -0.029 0.100 -0.053 -0.100 4.42 
 (1.32) (5.33) (-1.04) (6.90) (-1.49) (3.21) (-8.22) (-1.67)  

COMP_ML 0.106 1.072 -0.006 0.067 -0.029 0.103 -0.056 -0.100 4.42 

  (0.86) (6.43) (-0.98) (6.86) (-1.44) (3.18) (-8.52) (-1.72)   

This table reports the Fama–MacBeth regression results that regress one-year ahead excess returns starting from the 

fourth month after the end of fiscal year t on the new information uncovered using the machine learning models 

(ML_RESD), controlling for various known return-predicting factors and industry fixed effects (3-digit SIC): 

𝐸𝑋𝑅𝐸𝑇12𝑀 = 𝛽0 + 𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷 + 𝛽2𝑆𝐼𝑍𝐸 + 𝛽3𝐵𝑀 + 𝛽4𝑀𝑂𝑀 + 𝛽5𝑅𝑂𝐸 + 𝛽6𝐼𝑁𝑉 + 𝛽7𝐴𝐶𝐶 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝐹𝐸 +
𝜀. ML_RESD is estimated as the residual by regressing the machine-learning-based forecasts on the RW model and 

the five extant models each year. The definitions of the control variables are given in Appendix 1. All independent 

variables are winsorized at 1% and 99% each year. The table presents the average coefficients with the Newey–West 

t-statistics (in brackets) with three lags and the average adjusted R-square. The subscripts are omitted for brevity. 
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Table 7: Portfolio analysis of the new information uncovered using the machine learning models. 

 

Panel A: Equal-weighted portfolios 

  OLS LASSO Ridge RF GBR ANN COMP_LR COMP_NL COMP_ML 

Mean Return 0.6185 0.6262 0.6346 0.5962 0.6795 0.7185 0.6402 0.7203 0.7720 

 (8.65) (8.89) (8.85) (7.49) (8.73) (8.12) (9.29) (8.05) (9.50) 

CAPM Alpha 0.6817 0.6856 0.6989 0.6328 0.7110 0.7784 0.7022 0.7695 0.8372 

 (9.96) (10.46) (10.48) (7.82) (9.07) (8.89) (10.87) (8.78) (10.73) 

FF3 Alpha 0.6538 0.6597 0.6758 0.6062 0.6733 0.7247 0.6761 0.7279 0.8033 

 (9.71) (9.88) (10.18) (8.54) (9.90) (9.63) (10.46) (9.61) (11.39) 

Carhart4 Alpha 0.5938 0.5921 0.6178 0.5166 0.5934 0.6558 0.6137 0.6448 0.7134 

 (9.08) (9.03) (9.49) (7.29) (8.57) (8.50) (9.66) (8.35) (10.23) 

FF5 Alpha 0.5371 0.5488 0.5655 0.4312 0.4828 0.5286 0.5613 0.5143 0.6096 

 (7.96) (8.21) (8.48) (5.97) (7.08) (7.18) (8.64) (6.63) (8.59) 

Panel B: Value-weighted portfolios 

  OLS LASSO Ridge RF GBR ANN COMP_LR COMP_NL COMP_ML 

Mean Return 0.2239 0.2484 0.2674 0.3177 0.4163 0.4747 0.2677 0.4568 0.3831 

 (1.99) (2.19) (2.27) (2.74) (3.50) (4.08) (2.29) (3.74) (3.60) 

CAPM Alpha 0.3571 0.3778 0.3969 0.3775 0.4797 0.5914 0.3954 0.5490 0.4884 

 (3.30) (3.57) (3.53) (3.05) (4.01) (5.07) (3.58) (4.34) (4.66) 

FF3 Alpha 0.3237 0.3552 0.3667 0.4478 0.5505 0.6325 0.3663 0.6217 0.5289 

 (3.34) (3.53) (3.54) (3.75) (4.60) (5.52) (3.65) (5.19) (5.15) 

Carhart4 Alpha 0.2829 0.2999 0.3320 0.3081 0.4316 0.5605 0.3247 0.4768 0.4558 

 (3.08) (3.06) (3.41) (3.07) (3.70) (4.70) (3.37) (4.49) (4.23) 

FF5 Alpha 0.1222 0.1205 0.1634 0.2810 0.4142 0.4358 0.1575 0.4119 0.3715 

 (1.42) (1.40) (1.90) (2.57) (3.80) (4.40) (1.85) (3.54) (3.89) 
This table summarizes the return spread between the extreme quintiles sorted based on the new information uncovered using the machine learning models. At the 

beginning of each month, we estimate the new information component as the residual from the regression of the machine-learning-based forecasts on the 

forecasts generated using the RW model and the five extant models across all firms. We sort the stocks into quintiles based on the resulting residual forecasts for 

each 3-digit SIC industry and report the return performance of the hedge portfolio, which takes long positions in quintiles with the most favorable new 

information and short positions in quintiles with the least favorable new information. Panel A reports the results for the equal-weighted portfolios. Panel B 

reports the results for the value-weighted hedge portfolios. 
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Table 8: Regression of analyst forecast errors on the new information uncovered using the 

machine learning models. 

 

Multivariate regression: 𝐹𝐸𝑅𝑅𝑖,𝑡+1 = 𝛽0 + 𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷𝑖,𝑡 + 𝛽2𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝛽3𝐵𝑀𝑖,𝑡 +
𝛽4𝑀𝑂𝑀𝑖,𝑡 + 𝛽5𝐴𝐶𝐶𝑖,𝑡 + 𝛽6𝐿𝑇𝐺𝑖,𝑡 + 𝜀𝑖,𝑡+1 

  𝛽0 𝜷𝟏 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 
Avg. 

R2(%) 

Linear machine learning models 

OLS -0.053 0.242 0.008 -0.028 0.030 0.014 -0.031 13.20 
 (-6.03) (4.00) (5.68) (-4.91) (3.76) (1.47) (-2.98)  

LASSO -0.053 0.272 0.008 -0.028 0.029 0.014 -0.032 13.25 
 (-6.03) (3.84) (5.68) (-4.89) (3.77) (1.46) (-2.94)  

Ridge -0.053 0.258 0.008 -0.028 0.030 0.014 -0.032 13.19 

  (-6.04) (4.16) (5.68) (-4.90) (3.76) (1.47) (-2.95)   

Nonlinear machine learning models 

RF -0.053 0.248 0.008 -0.028 0.029 0.018 -0.030 12.93 
 (-5.96) (3.34) (5.69) (-4.86) (3.84) (1.79) (-3.03)  

GBR -0.053 0.184 0.008 -0.028 0.030 0.017 -0.030 12.91 
 (-5.97) (3.11) (5.67) (-4.83) (3.86) (1.72) (-3.12)  

ANN -0.053 0.204 0.008 -0.028 0.030 0.017 -0.029 13.12 

  (-6.03) (3.44) (5.71) (-4.84) (3.83) (1.76) (-2.87)   

Composite models 

COMP_LR -0.053 0.259 0.008 -0.028 0.030 0.014 -0.031 13.21 
 (-6.03) (4.01) (5.68) (-4.90) (3.77) (1.47) (-2.95)  

COMP_NL -0.053 0.251 0.008 -0.028 0.029 0.018 -0.029 13.04 
 (-5.99) (3.27) (5.68) (-4.85) (3.86) (1.81) (-2.97)  

COMP_ML -0.053 0.282 0.008 -0.028 0.029 0.017 -0.030 13.15 

  (-6.01) (3.55) (5.68) (-4.88) (3.82) (1.71) (-2.92)   

This table reports the Fama–MacBeth regression results that regress the analyst forecast error (FERR) on the new 

information uncovered using the machine learning models (ML_RESD) with firm-specific controls: 𝐹𝐸𝑅𝑅 = β0 +
𝛽1𝑀𝐿_𝑅𝐸𝑆𝐷 + 𝛽2𝑆𝐼𝑍𝐸 + 𝛽3𝐵𝑀 + 𝛽4𝑀𝑂𝑀 + 𝛽5𝐴𝐶𝐶 + 𝛽6𝐿𝑇𝐺 + 𝜀. FERR is estimated as the realized difference 

between earnings per share (EPS) as reported in IBES and the consensus EPS forecast made fourth months after the 

end of the fiscal year, scaled by the stock price on the day of generation of the consensus forecast. ML_RESD is 

estimated as the residual by regressing the machine-learning-based forecasts on that of the RW model and the five 

extant models each year. The definitions of the control variables can be found in Appendix 1. All independent 

variables are winsorized at 1% and 99% each year. The table presents the average coefficients and the Newey–West 

t-statistics (in brackets) with three lags and the average adjusted R-square. The subscripts are omitted for brevity. 
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Table 9: Improving the extant models with insights from the nonlinear machine learning 

models. 

 

Panel A: Effect of augmenting the extant models with TXT and ΔTXT 

 Original model Augmented model Difference t-stat % Difference 

RW 0.0764     

AR 0.0755 0.0719 -0.0037 -6.47 -4.90% 

HVZ 0.0743 0.0719 -0.0024 -5.37 -3.23% 

EP 0.0742 0.0723 -0.0019 -4.00 -2.56% 

RI 0.0741 0.0720 -0.0020 -4.59 -2.70% 

SO 0.0870 0.0848 -0.0022 -6.32 -2.53% 

 

Panel B: Linear models using the top five most important features 

  Mean absolute forecast errors   Median absolute forecast errors 

 Average 
Comparison with RW  

Average 
Comparison with RW 

DIFF t-stat %DIFF   DIFF t-stat %DIFF 

Benchmark model 

RW 0.0764     0.0309    

Updated models 

OLS (Top 5) 0.0713 -0.0052 -6.69 -6.81%  0.0302 -0.0006 -2.02 -1.94% 

LASSO (Top 5) 0.0714 -0.0051 -6.49 -6.68%  0.0303 -0.0006 -2.20 -1.94% 

Ridge (Top 5) 0.0713 -0.0051 -6.44 -6.68%  0.0303 -0.0006 -1.98 -1.94% 

Panel A reports the time series average of the mean absolute forecast errors of the five extant models and their 

counterparts augmented with TXT and change of TXT. Difference is calculated as the time series average of the 

mean absolute forecast error difference between the augmented model and its corresponding original model. The 

Newey–West t-statistic of Difference is adjusted using three lags and reported accordingly. %Difference is 

Difference divided by the time series average of the mean absolute forecast error of the original model. Panel B 

reports the time series average of the mean and median absolute forecast errors of the updated models and their 

comparisons with the benchmark model (i.e., the RW model). DIFF is the time series average of the difference 

calculated as the mean (median) absolute forecast error of each model minus that of the benchmark model. The 

Newey–West t-statistic of DIFF is adjusted using three lags and reported accordingly. %DIFF is DIFF divided by 

the time series average of the mean (median) absolute forecast error of the benchmark model. In both panels, the 

absolute forecast error is defined as the absolute difference between the actual one-year ahead earnings and the 

corresponding model-based earnings forecasts scaled by market equity at the end of three months after the end of the 

last fiscal year. 
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Table 10: Comparison of forecast accuracy with alternative deflators. 

 

  Forecast errors deflated by total assets   Per share forecast errors 

 Average 
Comparison with RW  

Average 
Comparison with RW 

DIFF t-stat %DIFF   DIFF t-stat %DIFF 

Benchmark model 

RW 0.0593     0.7378    

Extant models 

AR 0.0595 0.0002 1.03 0.38%  0.7436 0.0058 1.25 0.79% 

HVZ 0.0597 0.0005 1.02 0.77%  0.7350 -0.0028 -0.52 -0.38% 

EP 0.0612 0.0020 1.78 3.30%  0.7283 -0.0095 -1.50 -1.28% 

RI 0.0609 0.0016 1.67 2.78%  0.7272 -0.0106 -1.73 -1.44% 

SO 0.0773 0.0180 6.11 30.34%   0.7594 0.0216 1.82 2.93% 

Linear machine learning models 

OLS 0.0590 -0.0003 -0.35 -0.49%  0.7077 -0.0301 -4.92 -4.08% 

LASSO 0.0588 -0.0005 -0.56 -0.79%  0.7045 -0.0333 -5.46 -4.52% 

Ridge 0.0589 -0.0004 -0.42 -0.60%   0.7060 -0.0318 -5.28 -4.31% 

Nonlinear machine learning models 

RF 0.0546 -0.0047 -7.74 -7.90%  0.6815 -0.0563 -8.54 -7.63% 

GBR 0.0543 -0.0050 -6.80 -8.40%  0.6712 -0.0666 -8.62 -9.02% 

ANN 0.0570 -0.0023 -3.08 -3.82%   0.7048 -0.0330 -5.09 -4.48% 

Composite models 

COMP_EXT 0.0597 0.0005 0.73 0.79%  0.7198 -0.0180 -3.12 -2.44% 

COMP_LR 0.0588 -0.0004 -0.50 -0.71%  0.7055 -0.0323 -5.25 -4.38% 

COMP_NL 0.0542 -0.0051 -7.22 -8.59%  0.6701 -0.0677 -8.92 -9.17% 

COMP_ML 0.0553 -0.0040 -5.50 -6.68%   0.6770 -0.0608 -8.23 -8.24% 

This table reports the time series average of the mean absolute forecast errors for the 12 individual models and the 4 

composite models and compares them with the values of the benchmark RW model. In the four columns on the left, 

the absolute forecast error is calculated as the absolute value of the difference between the actual one-year ahead 

earnings and the model-based earnings forecasts scaled by total assets. In the four columns on the right, the absolute 

forecast error is calculated as the absolute value of the difference between the actual one-year ahead earnings and 

the model-based earnings forecasts scaled by shares outstanding at the end of the fiscal year (i.e., per share forecast 

errors). DIFF is the time series average of the difference calculated as the mean absolute forecast error of each 

model minus that of the benchmark model. A negative DIFF value indicates an improvement in the forecast 

accuracy of the specific model relative to that of the benchmark model, and vice versa. The Newey–West t-statistic 

of DIFF is adjusted using three lags and reported accordingly. The percentage difference (%DIFF) is DIFF divided 

by the time series average of the mean (median) absolute forecast error of the benchmark model. 
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Table 11: Comparison of forecast accuracy of longer horizon forecasts. 

 

Panel A: Accuracy of two-year ahead earnings forecasts 

  Mean absolute forecast errors   Median absolute forecast errors 

 Average 
Comparison with RW  

Average 
Comparison with RW 

DIFF t-stat %DIFF   DIFF t-stat %DIFF 

Benchmark model 

RW 0.1028     0.0473    

Extant models 

AR 0.1018 -0.0010 -1.21 -0.95%  0.0470 -0.0002 -0.36 -0.48% 

HVZ 0.0971 -0.0057 -4.80 -5.50%  0.0462 -0.0011 -1.60 -2.36% 

EP 0.0964 -0.0064 -3.94 -6.20%  0.0466 -0.0007 -0.83 -1.52% 

RI 0.0956 -0.0071 -4.55 -6.94%  0.0460 -0.0012 -1.53 -2.61% 

SO 0.1031 0.0003 0.18 0.32%   0.0491 0.0018 1.86 3.82% 

Linear machine learning models 

OLS 0.0954 -0.0074 -4.66 -7.19%  0.0463 -0.0009 -1.07 -2.01% 

LASSO 0.0944 -0.0084 -5.49 -8.15%  0.0459 -0.0014 -1.64 -2.96% 

Ridge 0.0946 -0.0082 -5.08 -7.94%   0.0460 -0.0012 -1.34 -2.60% 

Nonlinear machine learning models 

RF 0.0917 -0.0110 -6.81 -10.75%  0.0448 -0.0024 -2.81 -5.15% 

GBR 0.0921 -0.0107 -6.13 -10.39%  0.0449 -0.0024 -2.88 -4.99% 

ANN 0.0942 -0.0086 -5.63 -8.35%   0.0463 -0.0009 -1.06 -1.98% 

Composite models 

COMP_EXT 0.0954 -0.0074 -5.52 -7.20%  0.0457 -0.0016 -1.99 -3.29% 

COMP_LR 0.0947 -0.0081 -5.14 -7.88%  0.0460 -0.0013 -1.43 -2.69% 

COMP_NL 0.0911 -0.0116 -7.04 -11.33%  0.0444 -0.0029 -3.49 -6.12% 

COMP_ML 0.0915 -0.0112 -6.80 -10.93%   0.0445 -0.0028 -3.22 -5.83% 

 

 

 

 

 

 

 

 

  



62 

 

Panel B: Accuracy of three-year ahead earnings forecasts 

  Mean absolute forecast errors   Median absolute forecast errors 

 Average 
Comparison with RW  

Average 
Comparison with RW 

DIFF t-stat %DIFF   DIFF t-stat %DIFF 

Benchmark model 

RW 0.1225     0.0592    

Extant models 

AR 0.1227 0.0002 0.12 0.13%  0.0593 0.0001 0.06 0.11% 

HVZ 0.1142 -0.0083 -4.46 -6.81%  0.0573 -0.0020 -1.75 -3.32% 

EP 0.1138 -0.0087 -3.59 -7.09%  0.0579 -0.0014 -1.13 -2.29% 

RI 0.1121 -0.0104 -4.51 -8.45%  0.0570 -0.0022 -1.77 -3.73% 

SO 0.1203 -0.0022 -1.13 -1.82%   0.0611 0.0018 1.27 3.11% 

Linear machine learning models 

OLS 0.1134 -0.0091 -3.83 -7.39%  0.0580 -0.0012 -0.86 -2.10% 

LASSO 0.1125 -0.0100 -4.38 -8.20%  0.0575 -0.0018 -1.25 -2.96% 

Ridge 0.1127 -0.0098 -4.25 -8.04%   0.0576 -0.0017 -1.19 -2.82% 

Nonlinear machine learning models 

RF 0.1102 -0.0123 -5.19 -10.06%  0.0568 -0.0025 -1.68 -4.19% 

GBR 0.1104 -0.0121 -4.85 -9.90%  0.0570 -0.0023 -1.59 -3.85% 

ANN 0.1135 -0.0090 -4.16 -7.38%   0.0582 -0.0010 -0.63 -1.67% 

Composite models 

COMP_EXT 0.1123 -0.0102 -5.02 -8.32%  0.0568 -0.0024 -2.02 -4.09% 

COMP_LR 0.1127 -0.0098 -4.21 -7.98%  0.0577 -0.0016 -1.13 -2.67% 

COMP_NL 0.1092 -0.0133 -5.51 -10.84%  0.0560 -0.0033 -2.22 -5.53% 

COMP_ML 0.1093 -0.0132 -5.49 -10.76%   0.0558 -0.0035 -2.43 -5.85% 

This table reports the time series average of the mean and median absolute forecast errors for the 12 individual 

models and the 4 composite models and compares them with the corresponding values of the benchmark RW model. 

In Panel A, the absolute forecast error is calculated as the absolute difference between the actual two-year ahead 

earnings and the corresponding model-based earnings forecasts scaled by market equity at the end of three months 

after the end of the last fiscal year. In Panel B, the absolute forecast error is calculated as the absolute difference 

between the actual three-year ahead earnings and the corresponding model-based earnings forecasts scaled by 

market equity at the end of three months after the end of the last fiscal year. DIFF is the time series average of the 

difference calculated as the mean (median) absolute forecast error of each model minus that of the benchmark 

model. A negative DIFF value represents an improvement in the forecast accuracy of the specific model relative to 

that of the benchmark model, and vice versa. The Newey–West t-statistic of DIFF is adjusted using three lags and 

reported accordingly. The percentage difference (%DIFF) is DIFF divided by the time series average of the mean 

(median) absolute forecast error of the benchmark model. 

 

 

 


