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Forecasting Earnings Using k-Nearest Neighbors 

ABSTRACT 

We use a simple k-nearest neighbors (k-NN) model to forecast a subject firm’s annual earnings by 

matching its recent earnings history to earnings histories of comparable firms, and then 

extrapolating the forecast from the comparable firms’ lead earnings. Out-of-sample forecasts 

generated by our model are more accurate than forecasts generated by the random walk; more 

complicated k-NN models; the matching approach developed by Blouin, Core, and Guay (2010); 

and popular regression models. These results are robust. Our model’s superiority holds for 

different error metrics, for firms that are followed by analysts and firms that are not, and for 

different forecast horizons. Our model also generates a novel ex ante indicator of forecast 

inaccuracy. This indicator, which equals the interquartile range of the comparable firms’ lead 

earnings, is reliable and useful. It predicts forecast accuracy and it identifies situations when our 

forecasts are strong (weak) predictors of future stock returns. 

 

Keywords: earnings, forecasting, machine learning. 

JEL Classifications: C21, C53, G17, M41. 
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I. INTRODUCTION 

Earnings forecasting is important. It is at the heart of equity valuation. Lenders evaluate 

earnings forecasts when assessing creditworthiness and negotiating covenants. Managers form 

earnings expectations when making investment decisions, developing budgets, and writing 

contracts. Et cetera. Consequently, earnings forecasts are a key variable of interest in many 

accounting and finance studies; and a number of studies propose and evaluate different forecasting 

models. Nonetheless, several fundamental issues are not well understood. In this study, we 

consider one of these issues: The use and usefulness of comparable-firm-based forecasts. 

Most extant studies of earnings forecasting sweep aside issues relating to the choice and use of 

comparable firms. In fact, we are aware of only three studies that center the analysis around these 

issues: Fairfield, Ramnath, and Yohn (2009; hereafter, FRY); Vorst and Yohn (2018; hereafter, 

VY); and Blouin, Core, and Guay (2010; hereafter, BCG). VY (FRY) show that regression-based 

forecasts are more (less) accurate when the in-sample training data are restricted to firms in the 

same lifecycle (industry) group. BCG, who build on the study by Barber and Lyon (1996), show 

that forecasts implied by groups of firms that are matched to the subject firm on the basis of 

profitability and size are more accurate than forecasts generated by the random walk. These studies 

are important but they leave key questions unanswered such as: How do forecasts based on 

comparable firms perform relative to one another and to alternative models? Are forecasts based 

on comparable firms useful in the context of security analysis? 

We use k-nearest neighbors (i.e., k-NN) to study the questions described above. k-NN is a 

simple, effective, and longstanding forecasting approach.1 It involves matching the subject firm-

 
1 The practice of finding similar histories, or “k-nearest neighbors,” on which to base predictions appears in texts 

dating back as early as the 11th century (Chen and Shah 2018). Modern applications include forecasting a baseball 

player’s future performance by comparison to similar players (Silver 2003) and forecasting a state’s election results 

by incorporating polling trends from similar states (Silver 2008). 
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year to a set of nearest neighbors, and then basing the forecast of the subject firm-year’s earnings 

on these neighbors’ earnings. Matches are formed on the basis of one or more firm characteristics 

(or, in the parlance of machine learning, features). Hence, k-NN is a natural and objective way of 

integrating comparable firms into the earnings forecasting process: Select a set of nearest 

neighbors, and then extrapolate the forecast from their earnings. 

When implementing k-NN the way that nearest neighbors are selected is central. We base our 

selection algorithm on an intuitive argument: Earnings reflect economic performance and firms 

with similar past performance are more likely to perform similarly in the future. Consequently, we 

implement our k-NN model by matching each subject firm-year to firm-years with similar earnings 

histories.2 Then, we set our forecast equal to the median of lead earnings for the matched firm-

years. We do not require that the matched firm-years be contemporaries. And, to assure that our 

forecasts are out of sample, we require that matched firm-years precede the subject firm-year by 

at least ℎ years (ℎ is the length of the forecast horizon).3 

We begin our empirical analyses by establishing some basic properties of our model. First, we 

“tune” two key parameters: (1) the length of the earnings history, 𝑀, that we use to find matches 

(we allow 𝑀 to vary between one and five years) and (2) the number of nearest neighbors, 𝑘, that 

we match to each subject firm-year. To avoid overfitting, we use the “tuning sample,” which 

contains only firm-years drawn from 1979 to 1995. Using minimum mean absolute forecast error 

(i.e., MAFE) as our criterion, we find that the optimal value of 𝑀 is two and that the optimal value 

of 𝑘 is 90. Hence, colloquially speaking, learning more about a firm is less important than learning 

 
2 We find matches on the basis of earnings deflated by equity market value. We obtain similar results (untabulated) 

when we use alternative deflators such as equity book value, total assets, or revenues. 
3 Specifically, we search for matches from the set of all firm-years ending within the ten-year period that ends ℎ 

years before the subject firm-year; and we include the subject firm in this set. In a set of untabulated results, we find 

that searching for matches from the set of all preceding firm-years that end ℎ years before the subject firm-year leads 

to only a small improvement in forecast accuracy. 
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about more firms. 

Second, we compare our model to four “naïve” k-NN models in which we set the forecast equal 

to: (1) the subject firm-year’s current earnings (i.e., the random walk forecast); (2) the median of 

the nearest neighbors’ current (instead of lead) earnings; (3) the median of lead earnings for all 

firm-years that end during the ten-year period that ends ℎ years before the subject firm-year; and 

(4) the median of lead earnings for a randomly selected sample of 𝑘 firm-years. We use the “testing 

sample,” which contains firm-years drawn from 1998 to 2018. We find that, regardless of the value 

of 𝑘, our model is superior to all of the naïve models. This implies that both selecting nearest 

neighbors (instead of all or random neighbors) and extrapolating the earnings of these neighbors 

(i.e., using their lead earnings instead of their current earnings) are both important determinants 

of our model’s performance. 

Finally, we compare the subject firm-years to their nearest neighbors per our model. We make 

some interesting discoveries. Per the Fama and French 12 industry classification scheme, the 

average (median) percentage of nearest neighbors in the same industry as the subject firm is 16 

(16) percent; and, when industry is defined on the basis of two-digit SIC code, this amount falls to 

7 (4) percent. The average (median) fraction of nearest neighbors in the same lifecycle group (as 

defined in Dickinson 2011) as the subject firm is 37 (38) percent. The typical subject firm is 53 

percent larger (in terms of equity market value) than its typical nearest neighbor. And, the average 

and median difference between the subject firm-year and the year corresponding to its typical 

nearest neighbor is approximately 5.54 years. Hence, our matching approach is noticeably different 

from conventional approaches in which the subject firm-year is matched to its contemporaries in 

the same industry, same lifecycle group, or same size strata. Whether this difference leads to more 

accurate forecasts is an interesting empirical question that we evaluate next. 
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We compare our model to a broad set of models including: (1) k-NN models that find matches 

using alternative (e.g., profit margin and asset turnover) or additional (e.g., accruals) features; (2) 

the models developed by FRY, VY, and BCG; and (3) the popular regression models described in 

Hou, van Dijk, and Zhang (2012; hereafter, HVZ) and Li and Mohanram (2014; hereafter, LM). 

We use the testing sample and we show that our simple k-NN model generates more accurate 

forecasts than all of the alternative models. This result is robust. It holds regardless of the forecast 

horizon, which we vary from one to three years, and regardless of the criterion we use to evaluate 

accuracy—i.e., MAFE, median absolute forecast error (i.e., MDAFE), or mean square error (i.e., 

MSE). 

After establishing that our model is more accurate than the alternative models on average and 

for the typical firm, we evaluate how its accuracy varies across firms. We evaluate unsigned 

forecast errors and we study both absolute and relative (to other models) accuracy. We evaluate a 

number of standard variables such as analyst following, the book-to-market ratio, equity market 

value, etc. We emphasize two variables: (1) the interquartile range of the nearest neighbors’ lead 

earnings, 𝐼𝑄𝑅𝑖,𝑡, and (2) the absolute value of forecasted earnings growth, 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡. We 

emphasize these variables because they are novel and they measure important properties of our 

forecast. Specifically, given our forecast equals the median value of the nearest neighbors’ lead 

earnings, 𝐼𝑄𝑅𝑖,𝑡 is an ex ante indicator of forecast inaccuracy. Whereas the variable 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡 

measures the extremity of the forecast. 

We find that our model’s accuracy is strongly associated with both 𝐼𝑄𝑅𝑖,𝑡 and 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡. 

Although there is a marginally significant, small, negative association between absolute accuracy 

and 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡, there is a highly significant, large, positive association between 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡 and 

relative accuracy. This implies that when our model generates more extreme forecasts, it is more 
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accurate than other models. Regarding 𝐼𝑄𝑅𝑖,𝑡, we find that when it is low (high), our model 

performs significantly better (worse) on both an absolute and relative basis. Hence, 𝐼𝑄𝑅𝑖,𝑡 is a 

reliable ex ante indicator of forecast inaccuracy. 

In our final set of tests, we assess the usefulness of our forecasts within the context of security 

analysis. To do this, we evaluate the association between the forecast of earnings growth implied 

by our model, 𝐹𝐸𝐺𝑖,𝑡, and future stock returns. We find that, on average, there is a marginally 

significant, small, positive relation between 𝐹𝐸𝐺𝑖,𝑡 and future returns. However, when 𝐼𝑄𝑅𝑖,𝑡 is 

low (i.e., when forecast accuracy is high), the relation between 𝐹𝐸𝐺𝑖,𝑡 and future returns is highly 

significant, large, and positive. Hence, our model generates two complementary and useful 

outputs: The variable 𝐹𝐸𝐺𝑖,𝑡 is a useful predictor of future stock returns and 𝐼𝑄𝑅𝑖,𝑡 is a useful 

indicator of when 𝐹𝐸𝐺𝑖,𝑡 is a better (worse) predictor. 

We make four related contributions. First, we develop a k-NN forecasting model that we argue 

is the new benchmark because it: (1) is easy to understand, easy to use, easy to explain, and easy 

to modify; (2) outperforms competing approaches; and (3) naturally self-assesses via the variable 

𝐼𝑄𝑅𝑖,𝑡, which is a useful ex ante indicator of forecast inaccuracy. 

Second, we provide initial evidence about the usefulness of k-NN models within the context of 

earnings forecasting. A key advantage of k-NN is that it combines the subject firm-year’s historical 

performance with the historical performance of the neighbor firm-years in a non-parametric 

manner. Consequently, compared to regression models, k-NN models accommodate non-

linearities better and are less sensitive to extreme values. Moreover, k-NN is a natural and objective 

way of integrating comparable firms into the forecasting process. Hence, the lack of evidence 

about the reliability of earnings forecasts generated by k-NN models is a noticeable gap in the 

literature that we begin to fill. 
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Third, we make a methodological contribution regarding the best way of identifying matched 

firms/samples, which is an important research design issue. Many studies assume that: (1) it is 

desirable to match on certain structural factors that are either unobservable or difficult to measure 

and (2) these factors vary systematically across industries or lifecycle groups. Hence, matching on 

either industry or lifecycle is common. However, we find that our simple performance-based 

matching algorithm in which we identify firms with similar two-year earnings histories is better. 

We also find that the curse of dimensionality is real: Matching on longer histories and/or additional 

features leads to worse forecasts. Whether these results have implications beyond the subject of 

earnings forecasting is an intriguing question that is beyond the scope of this study. 

Last, but certainly not least, we demonstrate that a firm’s recent earnings history is very 

informative about what its future earnings will be. The trick to uncovering this information is to 

put this history into the correct context and this can be done by identifying firms with similar 

histories. 

II. FORECASTING MODELS 

For each subject firm-year 𝑖, 𝑡, we compute an ℎ-year-ahead forecast of earnings before special 

items and we refer to firm 𝑖’𝑠 realized earnings before special items for year 𝑡 as 𝐸𝐵𝑆𝐼𝑖,𝑡. In this 

section, we describe the different models that we use to generate forecasts of 𝐸𝐵𝑆𝐼. We begin by 

describing our k-NN model, and then we describe the models we compare it to. These models 

include alternative k-NN models; the model used by BCG; and the regression models used by 

HVZ, LM, FRY, and VY. We also compare our model to the random walk. We do not elaborate 

on the random walk except to state that its forecast equals the subject firm-year’s current earnings. 
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Our k-NN Model 

To form our k-NN forecast we follow a five-step process.4 First, we identify the most recent 

𝑀-year earnings history for subject firm-year 𝑖, 𝑡, and then we deflate all the dollar amounts in this 

history by firm 𝑖’𝑠 equity market value at the end of year 𝑡.5 We refer to these deflated amounts as 

scaled earnings before special items, 𝑆𝐸𝐵𝑆𝐼. Second, we identify the set of firm-years that have 

complete histories of 𝐸𝐵𝑆𝐼 of length 𝑀 ending in any year 𝑠 ∈ [𝑡 − ℎ, 𝑡 − 9 − ℎ]. These are the 

neighbors of firm-year 𝑖, 𝑡. Then, for each neighbor firm-year 𝑗, 𝑠, we deflate all of the dollar 

amounts in its earnings history by its equity market value at the end of year 𝑠. 

Third, for each neighbor firm-year 𝑗, 𝑠, we calculate the variable 𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀 , which is the 

Euclidean distance between the subject firm-year’s most recent 𝑀-year earnings history and 

neighbor firm 𝑗’𝑠 𝑀-year earnings history ending in year 𝑠. 

𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀 = √∑ (𝑁𝑆𝐸𝐵𝑆𝐼𝑖,𝑡−𝑚+1 − 𝑁𝑆𝐸𝐵𝑆𝐼𝑗,𝑠−𝑚+1)

2𝑀
𝑚=1     [1] 

In equation [1], 𝑁𝑆𝐸𝐵𝑆𝐼𝑖,𝑡−𝑚+1 (𝑁𝑆𝐸𝐵𝑆𝐼𝑖,𝑡−𝑚+1) is the normalized value in year 𝑡 − 𝑚 + 1 

(𝑠 − 𝑚 + 1) of 𝑆𝐸𝐵𝑆𝐼 for subject firm 𝑖 (neighbor firm 𝑗).6 

Fourth, we identify the 𝑘 neighbors with the smallest values of 𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀 . These are the  

nearest neighbors of subject firm-year 𝑖, 𝑡. Fifth, we compute 𝑘 intermediate forecasts by deflating 

each nearest neighbor’s 𝐸𝐵𝑆𝐼 for year 𝑠 + ℎ by its equity market value at the end of year 𝑠. Finally, 

we set the variable 𝐼𝑄𝑅𝑖,𝑡+ℎ equal to the interquartile range of the intermediate forecasts; and we 

 
4 For an illustration of how we implement k-NN, please refer to Appendix B. In this appendix, we provide an 

example in which we make a forecast in 2010 of Walmart’s earnings for 2011. 
5 We obtain similar results (untabulated) when we use alternative deflators such as equity book value, total assets, 

or revenues. 
6 We normalize 𝑆𝐸𝐵𝑆𝐼 by subtracting its contemporaneous cross-sectional average from its raw value, and then 

dividing this difference by the contemporaneous cross-sectional standard deviation. (This is a common way of 

implementing k-nearest neighbors.) The resulting normalized value has a mean of zero and a standard deviation of 

one. Consequently, both the current and lagged normalized values have the same scale, and thus have the same 

influence on 𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀 . 
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compute our forecast by multiplying the median of the intermediate forecasts by the subject firm’s 

(i.e., firm 𝑖’𝑠) equity market value at the end of year 𝑡. 

Alternative k-NN Models 

Our k-NN model uses only one feature (i.e., scaled earnings) to identify the subject firm-year’s 

nearest neighbors. The advantage of using a single feature is that it leads to the best possible 

matches with respect to this feature, whereas when more features are used the matches with respect 

to every feature are worse. Bellman (1957) refers to this phenomenon as the curse of 

dimensionality. The disadvantage of using a single feature is that we ignore information embedded 

in other features. Hence, whether it is better to add a feature depends on whether its incremental 

information content exceeds the error introduced by having to find matches across more 

dimensions. This is ultimately an empirical question. 

With the above question in mind, we compare our k-NN model to eight alternative k-NN 

models. To implement each model, we follow a five-step process that is similar to the process 

described in the previous subsection. The primary difference is that we use different sets of features 

to identify nearest neighbors, and thus we use a modified distance measure, 𝑀𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝐹,𝑀

, that 

reflects multiple features. 

𝑀𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝐹,𝑀 = √∑ ∑ (𝑁𝐹𝐸𝐴𝑇𝑖,𝑡−𝑚+1

𝑓
− 𝑁𝐹𝐸𝐴𝑇𝑗,𝑠−𝑚+1

𝑓
)

2
𝑀
𝑚=1

𝐹
𝑓=1    [2] 

In equation [2], 𝐹 denotes the number of features and 𝑁𝐹𝐸𝐴𝑇𝑖,𝑡−𝑚+1
𝑓

 (𝑁𝐹𝐸𝐴𝑇𝑗,𝑠−𝑚+1
𝑓

) is the 

normalized value in year 𝑡 − 𝑚 + 1 (𝑠 − 𝑚 + 1) of feature 𝑓 for subject firm 𝑖 (neighbor firm 𝑗). 

We separate the eight sets of alternative features into two categories: (1) the DuPont category 

and (2) the HVZ category. The DuPont category is inspired by the well-known DuPont 

decomposition of return on equity (e.g., Fairfield and Yohn 2001; Nissim and Penman 2001; and 

Soliman 2008). Its root feature set consists of profit margin, 𝑃𝑀, and asset turnover, 𝐴𝑇𝑂; and 
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then there are three additional sets in which percentage sales growth, 𝑆𝐺𝑟𝑜𝑤, and/or leverage, 

𝐿𝐸𝑉, are added to the root feature set. The feature sets in the HVZ category consist of different 

combinations of the predictor variables used by HVZ. It’s root feature set consists of 𝑆𝐸𝐵𝑆𝐼 and 

accruals, 𝐴𝐶𝐶; and then three additional feature sets are formed by progressively adding total 

assets, 𝑇𝐴; dividends, 𝐷𝐼𝑉; and a loss indicator, 𝐿𝑂𝑆𝑆. The variables 𝐴𝐶𝐶, 𝑇𝐴, and 𝐷𝐼𝑉 are 

deflated by equity market value at the end of either year 𝑡 (for subject firm 𝑖) or year 𝑠 (for neighbor 

firm 𝑗). 

BCG’s Model 

BCG’s model is similar to a k-NN model in the sense that they base their forecast of the subject 

firm’s earnings on the earnings of a set of matched firms. To implement it, we follow the four-step 

process outlined in BCG. First, we rank observations on their 𝑆𝐸𝐵𝑆𝐼 for year 𝑡 − 2, and then we 

form two negative 𝑆𝐸𝐵𝑆𝐼 groups and four positive 𝑆𝐸𝐵𝑆𝐼 groups. Second, within each of these 

six groups, we rank observations into quintiles based on their average assets for year 𝑡 − 2. This 

yields 30 performance-size bins: Ten negative  𝑆𝐸𝐵𝑆𝐼-size bins and twenty positive 𝑆𝐸𝐵𝑆𝐼-size 

bins. Third, we randomly select a sample of 50 observations from the performance-size bin to 

which subject firm-year 𝑖, 𝑡 belongs and we calculate the median earnings growth from 𝑡 − 2 to 

𝑡 − 1 for this sample. Finally, we determine our BCG forecast of the subject firm’s year 𝑡 + 1 

earnings by multiplying its earnings for year 𝑡 by the median earnings growth rate.7 

Regression Models 

We evaluate forecasts based on the regression model proposed by HVZ and the EP regression 

 
7 BCG rank observations on the basis of their return on assets, 𝑅𝑂𝐴, for year 𝑡 − 2 and they use the average growth 

rate instead of the median growth rate. We rank on 𝑆𝐸𝐵𝑆𝐼 for year 𝑡 − 2 so that our BCG model is comparable to the 

other models that we evaluate. We use the median growth rate because the average growth rate is sensitive to extreme 

values and generates forecasts that are much less accurate than those based on the median growth rate. We also 

evaluate forecasts based on 𝑅𝑂𝐴 sorts and/or the average growth rate and, in a set of untabulated results, we find that 

these forecasts are less accurate than the forecasts generated by our k-NN model. 
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model described in LM. The HVZ model is widely adopted and is often referred to as the 

benchmark model for regression-based forecasts (e.g., Evans, Njoroge, and Yong 2017 and So 

2013). The EP model is also popular and it forms the basis for the industry- and lifecycle-based 

forecasts described in FRY and LV, respectively. 

The HVZ (EP) forecasts are obtained using the estimated coefficients from the ordinary least 

squares (i.e., OLS) regression shown in equation three (four) below.8 

𝑆𝐸𝐵𝑆𝐼𝑖,𝑡+ℎ = 𝛼0 + 𝛼1 × 𝑇𝐴𝑖,𝑡 + 𝛼2 × 𝐷𝐷𝑖,𝑡 + 𝛼3 × 𝐷𝐼𝑉𝑖,𝑡 + 𝛼4 × 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 + 𝛼5 × 𝐿𝑂𝑆𝑆𝑖,𝑡 

+ 𝛼6 × 𝐴𝐶𝐶𝑖,𝑡 + 𝜀𝑖,𝑡        [3] 

𝑆𝐸𝐵𝑆𝐼𝑖,𝑡+ℎ = 𝛽0 + 𝛽1 × 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 + 𝛽2 × 𝐿𝑂𝑆𝑆𝑖,𝑡 + 𝛽3 × (𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 × 𝐿𝑂𝑆𝑆𝑖,𝑡) + 𝜖𝑖,𝑡 [4] 

In the above equations, 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡+ℎ denotes firm 𝑖’𝑠 scaled earnings before special items for 

year 𝑡 + ℎ; 𝑇𝐴𝑖,𝑡 denotes firm 𝑖’𝑠 scaled total assets at the end of year 𝑡; 𝐷𝐷𝑖,𝑡 is an indicator 

variable that equals one (zero) if firm 𝑖 paid (did not pay) a dividend in year 𝑡; 𝐷𝐼𝑉𝑖,𝑡 denotes firm 

𝑖’𝑠 scaled dividends for year 𝑡; 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 denotes firm 𝑖’𝑠 scaled earnings before special items for 

year 𝑡; 𝐿𝑂𝑆𝑆𝑖,𝑡 is an indicator variable that equals one (zero) if 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 is (is not) negative; 𝐴𝐶𝐶𝑖,𝑡 

denotes firm 𝑖’𝑠 scaled accruals for year 𝑡; and 𝜀𝑖,𝑡 (𝜖𝑖,𝑡) is the error term. With the exception of 

the indicator variables 𝐷𝐷𝑖,𝑡 and 𝐿𝑂𝑆𝑆𝑖,𝑡, all of the variables are deflated by firm 𝑖’𝑠 equity market 

value at the end of year 𝑡. 

As discussed in the next subsection, the estimated coefficients that form the basis of our 

regression-based forecasts are obtained by estimating regressions on rolling samples of “training 

data.” To estimate the HVZ regression coefficients we use the entire sample of training data. 

Following FRY and VY, we estimate three versions of the EP model. In the first version, we use 

 
8 In a set of untabulated results, we find that forecasts generated by median (instead of OLS) regressions are less 

accurate than the forecasts generated by our k-NN model. 
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the entire sample of training data. In the other two versions, we use a subset of the training data 

that is restricted to those firm-years that either have the same Global Industry Classification 

Standard (i.e., GICS) code as the subject firm-year or are in the same lifecycle group (as defined 

by Dickinson 2011) as the subject firm-year. We refer to these two versions of the EP model as 

the EP-GICS model and the EP-LIFE model, respectively. 

Rolling-window Forecasting Procedure 

When developing our k-NN forecasts and our regression-based forecasts, we apply a rolling-

window forecasting procedure. This assures that all of our forecasts are out of sample and that our 

returns tests are not affected by lookahead bias. Specifically, following HVZ, we define the cross-

section of data for year 𝑡 as all of the firm-years that ended their fiscal year between April 1 of 

calendar year 𝑡 − 1 and March 31 of calendar year 𝑡.9 We refer to all of these firm-years (including 

those with fiscal years that ended in calendar year 𝑡 − 1) as year 𝑡 firm-years; and we assign the 

time subscript 𝑡 to the corresponding variables. We then identify nearest neighbors and estimate 

regressions coefficients using the sample of training data that consists of the cross-sections of data 

for years 𝑡 − 9 − ℎ through year 𝑡 − ℎ (ℎ is the length of the forecast horizon in years). 

III. SAMPLE CONSTRUCTION, VARIABLE DEFINITIONS, 

AND DESCRIPTIVE STATISTICS 

Sample Construction 

We obtain data about U.S.-incorporated companies from the Compustat Fundamentals Annual 

file. Our testing sample consists of two subsets: (1) the training data and (2) the forecast 

comparison sample. Because we need data from the cash flow statement to implement the lifecycle 

model, our first ten-year sample of training data begins in 1988. Because our rolling-window 

 
9 This assures that earnings for year 𝑡 and our year 𝑡 forecast of 𝐸𝐵𝑆𝐼 for year 𝑡 + 1 are available by July 1 of 

calendar year 𝑡, which is the first month of the 12 consecutive months that we evaluate when testing the association 

between our year 𝑡 forecasts and future monthly stock returns. 
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forecasting procedure uses ten years of training data, the forecast comparison sample spans the 

years 1998 through 2018. Consequently, the last ten-year sample of training data ends in 2017. 

In Table 1, we summarize how we construct the forecast comparison sample, which consists of 

62,710 firm-years.10 In order to be able to implement and evaluate all of the forecasting models, 

we eliminate firm-years with missing: (1) lagged, current, or lead 𝐸𝐵𝑆𝐼; (2) cash flow data; or (3) 

balance sheet accruals. For the same reason, we eliminate observations with missing or non-

positive: (1) equity market value; (2) current or lagged sales; (3) total assets; or (4) equity book 

value. We also remove financial firms and regulated firms. To minimize the effect of database 

errors and small deflators, we eliminate firm-years with equity market value that is less than 10 

million U.S. dollars or for which the absolute value of 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 exceeds one. Finally, per FRY, we 

eliminate industry-years that have fewer than 100 observations with non-missing values of the 

variables in equation [4] or that have fewer than ten observations with negative current 𝑆𝐸𝐵𝑆𝐼. 

We also construct a sample of data that we use to determine the optimal values of 𝑘 and 𝑀 for 

each of the k-NN models. This process is referred to as parameter tuning, so we refer to these data 

as the tuning sample. To construct the tuning sample, we use an algorithm that is similar to the 

algorithm described above. However, to avoid hindsight bias, we limit the forecast comparison 

subset of the tuning sample to firm-years between 1978 and 1995; thus, the first (last) ten-year 

sample of tuning training data begins in 1968 (ends in 1994). In addition, in order to be able to 

evaluate values of 𝑀 between one and five years, we only include a firm-year in the tuning sample 

if its 𝐸𝐵𝑆𝐼 for the current and previous four years are non-missing. The forecast comparison subset 

of the tuning sample contains 55,905 firm-years (untabulated). 

 
10 We use a similar algorithm to construct the rolling samples of training data. However, we tailor the data 

requirements to the model that is being trained. For example, none of the variables in the HVZ model are a function 

of sales. Hence, when constructing the data that we use to train the HVZ model, we do not eliminate firm-years with 

missing or non-positive current or lagged sales. 
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Variable Definitions 

We define earnings before special items, 𝐸𝐵𝑆𝐼𝑖,𝑡, as the difference between Compustat data 

item 𝑖𝑏𝑖,𝑡 and Compustat data item 𝑠𝑝𝑖𝑖,𝑡. We set missing values of 𝑠𝑝𝑖𝑖,𝑡 to zero. With the 

exception of the variables that relate to the DuPont category of k-NN models, we deflate all firm-

year 𝑖, 𝑡 (𝑗, 𝑠) variables used in the forecast models by firm 𝑖’𝑠 (𝑗’𝑠) equity market value at the end 

of fiscal year 𝑡 (𝑠), 𝑀𝑉𝐸𝑖,𝑡. (The variable 𝑀𝑉𝐸𝑖,𝑡 equals the product of Compustat data items 

𝑝𝑟𝑐𝑐_𝑓𝑖,𝑡 and 𝑐𝑠ℎ𝑜𝑖,𝑡.) For the k-NN models in the DuPont category, we require the following 

variables: Profit margin, 𝑃𝑀𝑖,𝑡, which equals the ratio of 𝐸𝐵𝑆𝐼𝑖,𝑡 to firm 𝑖’𝑠 sales for year 𝑡 

(Compustat data item 𝑠𝑎𝑙𝑒𝑖,𝑡); asset turnover, 𝐴𝑇𝑂𝑖,𝑡, which equals the ratio of 𝑠𝑎𝑙𝑒𝑖,𝑡 to 

contemporaneous total assets (Compustat data item 𝑎𝑡𝑖,𝑡); sales growth, 𝑆𝐺𝑟𝑜𝑤𝑖,𝑡, which equals 

the ratio of 𝑠𝑎𝑙𝑒𝑖,𝑡 to its lagged value; and leverage, 𝐿𝐸𝑉𝑖,𝑡, which equals the ratio of 𝑇𝐴𝑖,𝑡 to equity 

book value, (Compustat data item 𝑐𝑒𝑞𝑖,𝑡). 

For the k-NN models in the HVZ category, the HVZ regression model, and the EP regression 

model, we require the following variables: The indicator variable 𝐿𝑂𝑆𝑆𝑖,𝑡 is set equal to one (zero) 

if 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 < 0 (𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 ≥ 0). We use the balance sheet method to calculate accruals. 

Consequently, 𝐴𝐶𝐶𝑖,𝑡 = {∆(𝑎𝑐𝑡𝑖,𝑡 − 𝑐ℎ𝑒𝑖,𝑡) − ∆(𝑙𝑐𝑡𝑖,𝑡 − 𝑑𝑙𝑐𝑖,𝑡 − 𝑡𝑥𝑝𝑖,𝑡) − 𝑑𝑝𝑖,𝑡} 𝑀𝑉𝐸𝑖,𝑡⁄  (the 

acronyms shown in brackets refer to Compustat data items).11 Scaled total assets, 𝑇𝐴𝑖,𝑡, is 

Compustat data item 𝑎𝑡𝑖,𝑡 divided by 𝑀𝑉𝐸𝑖,𝑡. We set the dividend indicator, 𝐷𝐷𝑖,𝑡, to one (zero) if 

Compustat data item 𝑑𝑣𝑐𝑖,𝑡 > 0 (𝑑𝑣𝑐𝑖,𝑡 = 0) and 𝐷𝐼𝑉𝑖,𝑡 = 𝑑𝑣𝑐𝑖,𝑡 𝑀𝑉𝐸𝑖,𝑡⁄ . We set missing values 

of 𝑑𝑣𝑐𝑖,𝑡 to zero. In Appendix A, we provide a complete list of all of the variables that we use and 

we describe how we compute each variable. 

 
11 We set missing values of Compustat items 𝑐ℎ𝑒, 𝑙𝑐𝑡, 𝑑𝑙𝑐, 𝑡𝑥𝑝 and 𝑑𝑝 to zero. 
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Descriptive Statistics 

In Panel A of Table 2, we provide descriptive statistics for the predictors in the HVZ regression 

model (which includes the predictors in the EP model and the features in the HVZ category of  

k-NN models) and the features in the DuPont category of k-NN models. We refer to these two sets 

of variables as the HVZ variables and the DuPont variables, respectively. The statistics relate to a 

pooled sample that we create by identifying every firm-year that is a member of any of the ten-

year rolling samples of data that we use to train either a regression model or one of the k-NN 

models. Three comments are warranted. First, when constructing the training data for the models 

that rely on the HVZ variables, we do not remove observations with missing values of the DuPont 

variables and vice versa. Hence, the number of observations with available HVZ variables differs 

from the number of observations with available DuPont variables. Second, the descriptive statistics 

for the HVZ variables are similar to the descriptive statistics shown in other studies. Finally, the 

medians of the DuPont variables are similar to the medians shown in other studies. However, 

because we neither delete observations with extreme values of the Dupont variables nor winsorize 

extreme values of the DuPont variables, the means, standard deviations, and tails of the 

distributions are different.12 

In Panels B and C of Table 2, we summarize the estimates of the regression coefficients for the 

HVZ model and the EP model, respectively. We show the average number of observations used in 

 
12 Our results are not attributable to extreme values. We base this conclusion on three facts. First, when estimating 

the regressions shown in equations [3] and [4], we first “clean” the training data by removing observations for which: 

(1) either |𝑆𝐸𝐵𝑆𝐼𝑖,𝑡| > 1 or |𝑆𝐸𝐵𝑆𝐼𝑖,𝑡+1| > 1 or (2) any of the regression variables are greater (less) than the first 

(99th) percentile. (We also estimate the regressions on “unclean” data and, in untabulated results, we find that our 

model is the most accurate.) Second, as discussed in Section V, when evaluating forecast accuracy, we consider four 

different error metrics each of which weighs extreme forecast errors differently; and, regardless of the error metric 

used, our model is the most accurate. Finally, we conduct a battery of robustness tests (results untabulated) in which 

we define extreme values differently (e.g., removing observations with |𝑃𝑀𝑖,𝑡| > 1, or |𝑆𝐺𝑟𝑜𝑤𝑖,𝑡| > 1, or total assets 

or sales less than 10 million U.S. dollars, etc.); and we find that, regardless of the way we define extreme values, our 

model is the most accurate. 
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each rolling-window of training data. Before estimating each regression, we “clean” the training 

data by removing observations for which: (1) either |𝑆𝐸𝐵𝑆𝐼𝑖,𝑡| > 1 or |𝑆𝐸𝐵𝑆𝐼𝑖,𝑡+1| > 1 or (2) any 

of the regression variables are greater (less) than the first (99th) percentile. The coefficients  

(r-squareds) are the time-series averages from the rolling-window regressions. Each t-statistic 

equals the average coefficient divided by its time-series standard error. Regarding the HVZ model, 

all of the coefficients are statistically different from zero and the level of significance for three of 

the coefficients is high. Specifically, the average coefficients (t-statistics) on scaled earnings, 

𝑆𝐸𝐵𝑆𝐼𝑖,𝑡, the loss indicator, 𝐿𝑂𝑆𝑆𝑖,𝑡, and the dividend indicator, 𝐷𝐷𝑖,𝑡, are 0.52 (86.85), -0.06  

(-74.71), and 0.02 (87.77), respectively. On the other hand, the t-statistic on dividends, 𝐷𝐼𝑉𝑖,𝑡, is 

much smaller (-4.13); and the coefficients on total assets, 𝑇𝐴𝑖,𝑡, and accruals, 𝐴𝐶𝐶𝑖,𝑡, are 

insignificant. Finally, the average r-squared is 0.45.13 

In Panel C, we summarize the results of the EP-model regressions that are estimated on all of 

the training data (i.e., the “full sample”) as well as those that are estimated on the subsets of the 

training data that relate to the different lifecycle groups. For the full sample, the average 

coefficients (t-statistics) on 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 and 𝐿𝑂𝑆𝑆𝑖,𝑡 are 0.50 (28.32) and -0.07 (-56.03), respectively. 

These coefficients vary considerably across lifecycle groups. For example, the coefficient on 

𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 achieves its lowest value of 0.34 (t-statistic of 8.02) for the Decline group and its highest 

value of 0.58 (t-statistic of 22.14) for the Introduction group. The coefficient on the interaction 

between 𝑆𝐸𝐵𝑆𝐼𝑖,𝑡 and 𝐿𝑂𝑆𝑆𝑖,𝑡 is insignificant for the full sample and three of the five lifecycle 

groups. However, it is negative and significant for the Mature group (average coefficient and  

 
13 When comparing our parameter estimates to those shown in HVZ, it is important to note that we deflate each of 

our continuous variables by equity market value (we check the sensitivity of our results to different deflators). HVZ, 

on the other hand, report results for regressions that are based on un-deflated variables. All of our inferences about 

forecast accuracy remain unchanged if we use forecasts generated by HVZ regressions that are based on un-deflated 

variables. 
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t-statistic of -0.22 and -11.21, respectively) and positive and significant for the Decline group 

(average coefficient and t-statistic of 0.17 and 3.20, respectively). Finally, the r-squared also varies 

considerably. For the full sample it is 0.45; and, when it is allowed to vary across lifecycle groups, 

it ranges between 0.21 (Mature group) and 0.42 (Introduction group). 

Taken together, the results in Panels B and C suggest that regression models that either use 

multiple predictors or that allow the coefficients on the predictors to vary across lifecycle groups 

generate more accurate forecasts. However, whether these forecasts are more accurate than 

forecasts generated by our k-NN model is unclear. OLS regressions are predicated on strong 

assumptions about linearity and within-sample homogeneity. Our k-NN model, on the other hand, 

avoids these assumptions. Consequently, whether our k-NN model is more accurate than these 

popular regression models is an important empirical question. 

IV. BASIC PROPERTIES OF OUR MODEL 

Parameter Tuning 

In order to implement our k-NN model, we must make three choices: (1) the feature(s) we use 

to identify neighbors; (2) the length of the history in the features (i.e., 𝑀) that we match on; and 

(3) the number of neighbors (i.e., 𝑘) that we match to the subject firm. Regarding the first choice, 

we make three assumptions: (1) earnings are a good indicator of past performance; (2) firms with 

similar past performance will have similar future performance; and (3) the incremental information 

content of other variables is too low to justify adding them to the set of features that we use to find 

matches. Based on these assumptions, we choose only one feature: 𝑆𝐸𝐵𝑆𝐼. The validity of these 

assumptions is an empirical question that we evaluate in Section V. 

We are agnostic about the optimal values of 𝑀 and 𝑘, and thus we use an empirical approach 

to choose them. Specifically, to avoid lookahead bias, we use the sample of tuning data; and then 
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we evaluate the accuracy of our k-NN model for combinations of 𝑀 and 𝑘. We consider values of 

𝑀 between one and five years and values of 𝑘 between 10 and 200 neighbors. We vary 𝑀 by 

increments of one and 𝑘 by increments of 10. We define the best model as the combination of 𝑀 

and 𝑘 that minimizes the mean of the absolute value of the scaled forecast errors (i.e., the MAFE). 

Each scaled forecast error equals 100 multiplied by the ratio of the difference between realized 

and forecasted 𝐸𝐵𝑆𝐼𝑖,𝑡+1 to 𝑀𝑉𝐸𝑖,𝑡. That is, we express forecast errors as percentages of the subject 

firm-year’s equity market value at the end of year 𝑡. 

We document our parameter tuning results in the graph shown in Figure 1. In this graph, we 

show MAFE (𝑘) on the vertical (horizontal) axis. For each of the five different values of 𝑀, we 

plot the MAFEs corresponding to the different values of 𝑘. Then we identify the optimal value of 

𝑘, which we refer to as 𝑘∗.14 The graph reveals four facts. First, and foremost, the k-NN model in 

which 𝑀 = 2 and 𝑘 = 90 is best. Second, regardless of the value of 𝑀, there is diminishing 

marginal returns to increasing 𝑘. Third, there is a negative, monotonic relation between 𝑀 and 𝑘∗. 

This is a manifestation of the curse of dimensionality.15 That is, as the number of dimensions used 

to find matches increases, there are fewer good matches. Finally, matching on longer histories (i.e., 

higher values of 𝑀) is inferior with the important exception that using a history of two years—i.e., 

current and lagged 𝑆𝐸𝐵𝑆𝐼—is better than using only current 𝑆𝐸𝐵𝑆𝐼. 

Benefits of Matching and Extrapolation 

In this subsection, we evaluate the benefits of matching on 𝑆𝐸𝐵𝑆𝐼 and of extrapolating the 

forecast from the nearest neighbors’ implied earnings growth rate. To do this, we use the forecast 

 
14 We define 𝑘∗ as the value of 𝑘 for which an increase in 𝑘 does not lead to a statistically significant decrease in the 

MAFE (at the 5 percent level). 
15 Within the context of k-NN, dimensionality is a function of both the number of features that are used to find 

matches and the length of the history in the features (i.e., 𝑀). 
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comparison subset of the testing sample; and we compare the forecasts from our k-NN model to 

forecasts generated by alternative models in which we either use naïve matching approaches or do 

not extrapolate. To evaluate the importance of matching on 𝑆𝐸𝐵𝑆𝐼, we compare our k-NN model 

to two naïve models that are identical to our model except that their forecasts are based on the 

earnings of different sets of neighbors. Specifically, the Random (Economy-wide) k-NN model 

matches the subject firm-year to 𝑘 randomly-selected firm-years (all firm-years) drawn from the 

ten-year period that ends in year 𝑡 − 1. To evaluate the importance of extrapolating, we compare 

our model to a k-NN model that is identical except that it bases the forecast on the median of the 

𝑘 nearest neighbors’ current (i.e., year 𝑠) earnings instead of their lead (i.e., year 𝑠 + 1) earnings. 

We refer to this as the No-extrapolation model. Finally, we also compare our model to the random 

walk, which is a naïve k-NN model that matches the subject firm to itself and does not extrapolate. 

Consequently, this comparison is informative about the benefits of both matching and 

extrapolation. 

We document the results of the comparisons described above in the graph shown in Figure 2, 

which has the same format as the graph shown in Figure 1. Our model is noticeably better than all 

of the naïve models.16 This has two implications. First, the way matches are formed matters. 

Although the MAFE of the Random k-NN model decreases as 𝑘 increases, it converges to the 

MAFE of the Economy-wide k-NN model, which is greater than 10 and much larger than the 

MAFE of our k-NN model. Second, extrapolation also matters. Regardless of the value of 𝑘, 

forecasts based on the median of the nearest neighbors’ current earnings are less accurate than 

forecasts generated by our k-NN model, which are based on the nearest neighbors’ lead earnings. 

 

 
16 We obtain similar results (untabulated) when we evaluate either the median absolute forecast error or the mean 

square error. 
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Comparison of Subject Firm-years to their Nearest Neighbors 

In Table 3, we compare the subject firm-years to their nearest neighbors. We evaluate the 

forecast comparison subset of the testing sample. The statistics shown in Panel A are computed 

via a three-step process. First, for each subject firm-year, we compute the variable shown in the 

first column of the panel for each of the 90 nearest neighbors. Second, we compute the median of 

these 90 amounts. This yields a sample of 62,710 medians—i.e., one for each subject firm-year. 

Finally, we compute and tabulate the mean, standard deviation, etc. of this sample of medians. To 

compute the statistics shown in Panel B, we first determine the percentage of nearest neighbors 

that are in the same group as the subject firm—i.e., same Fama-French industry, same two-digit 

Standard Industrial Classification (i.e., SIC) code, or same lifecycle group. We then compute and 

tabulate the mean, standard deviation, etc. of these percentages. 

As shown in Panel A, the average, median, and inter-quartile range of the median differences 

in 𝑆𝐸𝐵𝑆𝐼 are each equal to 0.00. Thus, subject firm-years have similar scaled earnings as their 

nearest neighbors, which is not surprising given that 𝑆𝐸𝐵𝑆𝐼 is the variable that we use to find 

matches. That said, there are some clear dissimilarities between the subject firm-years and their 

neighbors. For example, the average, median, and inter-quartile range of the median percentage 

differences in equity market value are -84, 53, and 122 percent, respectively. Hence, the size of 

the subject firm-year is usually very different from the size of its nearest neighbors. Moreover, per 

the distribution of the medians of the variable (𝑌𝑒𝑎𝑟𝑖,𝑡 − 𝑌𝑒𝑎𝑟𝑗,𝑠), the nearest neighbor firm-years 

typically precede the subject firm-year by more than five years. Finally, as shown in Panel B, the 

median percentage of nearest neighbors in the same Fama-French 12-industry group (with the 

same two-digit SIC code) as the subject firm-year is 16 percent (4 percent) and the median 

percentage of nearest neighbors in the same lifecycle group as the subject firm-year is 38 percent. 
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These results lead to two conclusions. First, the nearest neighbors are very similar in terms of 

scaled earnings, but otherwise quite heterogeneous. Second, our matching algorithm is different 

from conventional algorithms that match the subject firm-year to its contemporaries in the same 

industry, same size strata, or same lifecycle group. 

V. COMPARISON TO ALTERNATIVE FORECASTING MODELS 

In this section, we compare the forecasts generated by our k-NN model (i.e., the model in which 

we match on 𝑆𝐸𝐵𝑆𝐼 and set 𝑀 = 2 and 𝑘 = 90) to a number of alternative models. We use the 

forecast comparison subset of the testing sample and we evaluate four measures of forecast 

accuracy each of which weighs extreme errors differently: (1) the mean of the absolute scaled 

forecast errors, MAFE; (2) the median of the absolute scaled forecast errors, MDAFE; (3) the 

mean of the squared scaled forecast errors, MSE; and (4) the mean of the squared trimmed scaled 

forecast errors, TMSE. To compute TMSE, we first delete the top and bottom 0.1 percent of the 

scaled forecast errors, and then we compute the mean square error. Each scaled forecast error 

equals 100 multiplied by the ratio of the difference between realized and forecasted 𝐸𝐵𝑆𝐼𝑖,𝑡+1 to 

𝑀𝑉𝐸𝑖,𝑡. That is, we express forecast errors as percentages of the subject firm-year’s equity market 

value at the end of year 𝑡. 

Comparison to Alternative k-NN Models 

When implementing our k-NN model, we identify nearest neighbors by matching on 𝑆𝐸𝐵𝑆𝐼. 

This raises the question: What if we use more and/or different features? For example, empirical 

results in Fairfield and Yohn (2001) and Soliman (2008) imply that the DuPont decomposition is 

useful within the context of forecasting profitability. And, as shown in Table 2, four of the six 

predictors used in the HVZ model are associated with future earnings. Hence, if we use only 𝑆𝐸𝐵𝑆𝐼 

to find neighbors, we discard information. That said, adding features implies higher 
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dimensionality, which, in turn, implies worse matches. Consequently, whether using alternative 

features and/or adding features leads to more accurate forecasts is an empirical question. 

With the above question in mind, we compare our k-NN model to eight alternative k-NN 

models. To implement these models, we follow the same five-step algorithm that we use to 

implement our k-NN model except we use different sets of features to identify nearest neighbors. 

In addition, for each model, we use the tuning sample and the approach described in Section IV to 

choose the optimal values of 𝑀 and 𝑘. 

We put the eight models into two categories: (1) the DuPont category and (2) the HVZ category. 

Both categories consist of four models and we refer to the models in the DuPont (HVZ) category 

as k-NNDUP1, k-NNDUP2, etc. (k-NNHVZ1, k-NNHVZ2, etc.). When implementing the k-NNDUP1 

model, we identify nearest neighbors by using a root feature set that consists of profit margin, 𝑃𝑀, 

and asset turnover, 𝐴𝑇𝑂. The k-NNDUP2 (k-NNDUP3) model adds sales growth, 𝑆𝐺𝑟𝑜𝑤, (leverage, 

𝐿𝐸𝑉) to the root feature set; and the k-NNDUP4 model uses all four features. The  

k-NNHVZ1 model uses 𝑆𝐸𝐵𝑆𝐼 and 𝐴𝐶𝐶 to find matches; and the models k-NNHVZ2 through  

k-NNHVZ4 are formed by progressively adding the features 𝐴𝑇, 𝐷𝐼𝑉, and 𝐿𝑂𝑆𝑆. 

We present the results of these analyses in Table 4. In the top row of the table, we show the 

error metrics (e.g., MAFE, MDAFE, etc.) for our k-NN model. In the remaining rows we tabulate 

the differences between the error metrics for the corresponding alternative model and the error 

metrics for our k-NN model. The results lead to four conclusions. First, and foremost, our k-NN 

model is never less accurate and usually more accurate than all of the alternative k-NN models. 

Second, our k-NN model dominates the models in the DuPont category. For example, regardless 

of the error metric used, k-NNDUP1 is the best DuPont model. Nonetheless, its MAFE (MDAFE) 

is 19.1 (40.6) percent larger than the MAFE (MDAFE) of our k-NN model and its MSE (TMSE) 
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is 17.0 (28.5) percent larger than the MSE (TMSE) of our k-NN model. 

Third, the models in the HVZ category perform relatively well. For example, the k-NNHVZ1 and  

k-NNHVZ2 models are roughly as accurate as our k-NN model. That said, the k-NNHVZ3 and  

k-NNHVZ4 models are less accurate than our model and the differences are nontrivial. Finally, 

adding features reduces accuracy. Both the MAFE and MDAFE are increasing in the number of 

features used to find matches. Moreover, for the models in the DuPont category, the MSE and 

TMSE are also increasing in the number of features. Consequently, the curse of dimensionality is 

a genuine concern. 

Comparison to Extant Models 

In this subsection, we compare the forecasts generated by our k-NN model to forecasts 

generated by six well-known extant models: (1) the random walk (i.e., RW); (2) the BCG model 

(i.e., BCG); (3) the HVZ regression model (i.e., HVZ); (4) the EP regression model that is trained 

on an unrestricted sample of training data (i.e., EP); (5) the EP regression model that is trained on 

a set of training data that is restricted to firm-years with the same GICS code as the subject firm-

year (i.e., EP-GICS); and (6) the EP regression model that is trained on a set of training data that 

is restricted to firm-years in the same lifecycle group as the subject firm-year (i.e., EP-LIFE). 

We present the results of these analyses in Table 5, which has the same format as Table 4. These 

results lead to one overarching conclusion: Our k-NN model is superior to all of the extant models. 

Specifically, regarding MAFE, MDAFE, and TMSE, our model is always the best and all the 

differences are statistically significant. Moreover, our model always has the lowest MSE; however, 

one of the six differences is not statistically significant. 

Analyst Following and Forecast Horizon 

Given the necessity of having an accurate forecasting model for firms that are not covered by 
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analysts, in this subsection we separately evaluate firm-years that are covered by analysts and those 

that are not. We also evaluate forecasts of two- and three-year ahead earnings as well as forecasts 

of aggregate (i.e., cumulative) earnings for years 𝑡 + 1 through 𝑡 + 3. For the sake of brevity, we 

compare our k-NN model to the random walk, the HVZ model, and the EP-LIFE model. We 

include the random walk because it is a common benchmark. We include the remaining models 

because each is the best of its class—i.e., our k-NN model is the most accurate k-NN model and 

the HVZ (EP-LIFE) model is the most accurate regression model that uses an unrestricted (a 

restricted) sample of training data. 

We present the results of the analyses described above in Table 6, which has the same format 

as Tables 4 and 5. In Panel A, we show how the absolute and relative accuracy of our k-NN model 

vary with analyst coverage. Two conclusions warrant discussion. First, each of the models is more 

accurate when it is used to forecast the earnings of firms that are covered by analysts. For example, 

the MAFE of our k-NN forecasts is 5.36 percent for the subsample of firms that are followed by 

analysts and 10.21 percent for the subsample of firms that are not. Second, the relative performance 

of our k-NN model does not depend on analyst coverage. That is, our k-NN model generates more 

accurate forecasts of the earnings of firms that are covered by analysts and those that are not. This 

is important because it implies that our k-NN forecasts are the preferred alternative when analysts’ 

forecasts are unavailable. 

In Panel B, we show the results relating to forecasts of earnings for years 𝑡 + 2 and 𝑡 + 3 as 

well as aggregate earnings for years 𝑡 + 1 through 𝑡 + 3. Each model performs worse as the 

forecast horizon lengthens, which is not surprising. For example, the MAFE of our k-NN forecasts 

of earnings for years 𝑡 + 1, 𝑡 + 2, and 𝑡 + 3 are 6.80, 8.73, and 10.15 percent, respectively. 

Nonetheless, and perhaps more important, regardless of the forecast horizon, our k-NN model 
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continues to generate forecasts that are more accurate than those generated by the other models. 

Cross-sectional Variation in Absolute and Relative Accuracy 

In this subsection, we evaluate the association between 11 firm characteristics and the absolute 

and relative (to other models) accuracy of our k-NN model. To do this, we estimate four separate 

regressions. Each regression has a different dependent variable and the same 11 independent 

variables. In the first regression, the dependent variable is the absolute value of the scaled forecast 

error generated by our k-NN model for subject firm-year 𝑖, 𝑡, |𝑘𝑁𝑁𝐹𝐸𝑖,𝑡|. The dependent variables 

in regressions two through four are equal to the difference between |𝑘𝑁𝑁𝐹𝐸𝑖,𝑡| and the absolute 

value of the scaled forecast error for subject firm-year 𝑖, 𝑡 generated by the random walk model, 

|𝑅𝑊𝐹𝐸𝑖,𝑡|, the HVZ regression model |𝐻𝑉𝑍𝐹𝐸𝑖,𝑡|, and the EP-LIFE regression model, 

|𝐿𝐼𝐹𝐸𝐹𝐸𝑖,𝑡|, respectively. 

We estimate OLS panel regressions and we report standard errors that are clustered by firm and 

year. For ease of interpretation, we standardize all the variables to have a mean of zero and a 

standard deviation of one. Hence, the variables have the same scale, and thus the coefficients are 

directly comparable. Specifically, each coefficient reflects the number of standard deviations that 

the dependent variable changes for a change of one standard deviation in the corresponding 

independent variable. Consequently, the absolute values of the coefficients can be used to rank the 

independent variables with respect to their relative importance. 

We present the results in Table 7. In Panel A, we show descriptive statistics for the raw amounts 

of the dependent and independent variables. We make three comments. First, because we include 

return volatility, 𝑅𝑒𝑡𝑉𝑜𝑙𝑖,𝑡, in the set of independent variables, the sample we estimate our 

regressions on is smaller than the forecast comparison sample described in Table 1. Second, when 

calculating descriptive statistics, we express all the dependent variables in percentage terms. 
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Finally, the independent variables are: (1) The absolute value of forecasted earnings growth, 

𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡; (2) the interquartile range of the intermediate forecasts, 𝐼𝑄𝑅𝑖,𝑡; (3) An indicator that 

equals one (zero) if the firm is (is not) followed by at least one analyst, 𝐹𝑂𝐿𝐿𝑂𝑊𝑖,𝑡; (4) the book-

to-market ratio, 𝐵𝑃𝑖,𝑡; (5) the natural log of equity market value, 𝐿𝑛𝑀𝑉𝐸𝑖,𝑡; (6) an indicator that 

equals one (zero) if the firm reported (did not report) special items in year t; 𝑆𝑃𝐼𝑖,𝑡; (7) research 

and development expense divided by total assets, 𝑅&𝐷𝑖,𝑡; (8) 𝐿𝑂𝑆𝑆𝑖,𝑡; (9) the absolute value of 

accruals divided by equity market value, 𝐴𝑏𝑠𝐴𝐶𝐶𝑖,𝑡; (10) 𝑅𝑒𝑡𝑉𝑜𝑙𝑖,𝑡; and (11) the absolute value of 

lagged dollar earnings growth divided by equity market value, 𝐴𝑏𝑠𝐿𝐸𝐺𝑖,𝑡. 

In panel B of table 7, we show the coefficient estimates from regressions involving each of the 

dependent variables and the independent variables described in Panel A. Regarding absolute 

accuracy, three variables stand out in terms of their association with |𝑘𝑁𝑁𝐹𝐸𝑖,𝑡|: (1) 𝐴𝑏𝑠𝐴𝐶𝐶𝑖,𝑡, 

which has a coefficient (t-statistic) of 0.17 (10.33); (2) 𝐵𝑃𝑖,𝑡, which has a coefficient (t-statistic) 

of 0.13 (6.49); and (3) 𝐼𝑄𝑅𝑖,𝑡, which has a coefficient (t-statistic) of 0.12 (7.12). We draw three 

conclusions from these results. First, extreme accruals may be an indicator of low-quality earnings 

in the sense that when the absolute magnitude of the accrual component of earnings is large, 

matches based on the subject firm’s recent earnings history are less informative about its future 

earnings. Second, our k-NN model performs worse for value stocks and better for glamour stocks. 

Finally, a one standard deviation increase in 𝐼𝑄𝑅𝑖,𝑡 is associated with a 0.12 standard deviation 

increase in |𝑘𝑁𝑁𝐹𝐸𝑖,𝑡|, which implies that 𝐼𝑄𝑅𝑖,𝑡 is a reliable ex ante indicator of forecast 

inaccuracy. That is, when the dispersion of the nearest neighbors’ lead earnings is high, the forecast 

based on these earnings is less accurate. 

Regarding relative accuracy, we draw three key conclusions. First, relative to the other models, 

our model is at its best when it makes extreme forecasts. Specifically, the coefficient (t-statistic) 
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on 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡 is -0.43 (-10.17) in the regression that compares our k-NN model to the random 

walk model. Moreover, the coefficients (t-statistics) on 𝐴𝑏𝑠𝐹𝐸𝐺𝑖,𝑡 in the remaining two 

regressions are -0.14 and -0.16 (-5.08 and -4.51), respectively. Second, in addition to being an 

important determinant of absolute accuracy, 𝐼𝑄𝑅𝑖,𝑡 is also an important determinant of relative 

accuracy. For example, when we compare our model to the EP-LIFE and HVZ models, the 

coefficients (t-statistics) on 𝐼𝑄𝑅𝑖,𝑡 are 0.15 and 0.16 (2.70 and 2.60), respectively. This buttresses 

our conclusion that 𝐼𝑄𝑅𝑖,𝑡 is a reliable ex ante indicator of forecast inaccuracy. Finally, when 

compared to the random walk model (regression models) our model performs worse (better) for 

firms that are experiencing losses. 

VI. RELATION WITH FUTURE STOCK RETURNS 

As shown in the previous section, our k-NN model is useful in the sense that its forecasts are 

more accurate than the forecasts generated by each of the alternative models that we evaluate. In 

this section, we evaluate its usefulness within another context: Security analysis. We examine two 

outputs of our model: (1) the implied forecast of earnings growth, 𝐹𝐸𝐺𝑖,𝑡, and (2) 𝐼𝑄𝑅𝑖,𝑡, which, 

as shown in the previous section, is a reliable ex ante indicator of forecast inaccuracy. We focus 

on these two variables for two complementary reasons. First, results in Ball and Brown (1968), 

who show that there is a positive association between realized earnings growth and 

contemporaneous stock returns, provoke the question: Is there a positive association between 

forecasts of earnings growth and future stock returns? Second, to the extent there is a positive 

association, a priori logic suggests that the strength of this association is a decreasing function of 

forecast inaccuracy. Hence, we hypothesize that accurate forecasts of earnings growth are more 

useful for predicting future stock returns than inaccurate forecasts. To test this prediction, we 

estimate the following regression: 
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𝑅𝐸𝑇𝑖,𝑡+1 = 𝛾0 + 𝛾1 × 𝐹𝐸𝐺𝑖,𝑡 + 𝛾2 × 𝐼𝑄𝑅𝑖,𝑡 + 𝛾3 × (𝐹𝐸𝐺𝑖,𝑡 × 𝐼𝑄𝑅𝑖,𝑡) + 𝚪 ⋅ 𝐂𝒊,𝒕 + 𝜁𝑖,𝑡+1 [5] 

In equation [5], 𝑅𝐸𝑇𝑖,𝑡+1 is firm 𝑖’𝑠 market-adjusted stock return for each of the 12 months 

between July 1 of the calendar year in which the forecast is made and June 30 of the subsequent 

year.17 The variable 𝐹𝐸𝐺𝑖,𝑡, which is forecasted earnings growth, is the difference between our 

year 𝑡 forecast of 𝐸𝐵𝑆𝐼 for year 𝑡 + 1 and realized 𝐸𝐵𝑆𝐼 for year 𝑡 divided by 𝑀𝑉𝐸𝑖,𝑡. The variable 

𝐼𝑄𝑅𝑖,𝑡 is defined above; 𝐂𝒊,𝒕 (𝚪) is a 4 × 1 (1 × 4) vector of control variables (regression 

coefficients); and 𝜁𝑖,𝑡+1 is the error term. Each independent variable is the scaled decile rank of the 

underlying raw variable, and thus it equals one of the following ten numbers {0,
1

9
, ⋯ ,

8

9
, 1}. 

Hence, each slope coefficient equals the return on a hedge portfolio that takes a long (short) 

position in stocks in the top (bottom) decile of the corresponding independent variable. 

In Table 8, we summarize the estimates of the regression coefficients obtained from equation 

[5]. The coefficients (r-squareds) are the time-series averages generated by the monthly cross-

sectional regressions. Each t-statistic equals the average coefficient divided by its time-series 

standard error. As shown in Column 1, when we do not allow the coefficient on 𝐹𝐸𝐺𝑖,𝑡 to vary 

with 𝐼𝑄𝑅𝑖,𝑡, there is a marginally significant, small, positive association between 𝐹𝐸𝐺𝑖,𝑡 and 

𝑅𝐸𝑇𝑖,𝑡+1. Hence, for the “average” firm, the forecasts generated by our model are relatively weak 

predictors of future stock returns. However, as shown in Column 2, when we allow the coefficient 

 
17 To assure that our year 𝑡 forecasts of 𝐸𝐵𝑆𝐼 in year 𝑡 + 1 are available, we follow HVZ and evaluate returns for 

the 12-month period that starts on July 1 of calendar year 𝑡 and ends on June 30 of calendar year 𝑡 + 1; and, per the 

discussion in Section II, 𝐸𝐵𝑆𝐼 for year 𝑡 and our year 𝑡 forecast of 𝐸𝐵𝑆𝐼 for year 𝑡 + 1 are based on accounting reports 

that are available on or before June 30 of calendar year 𝑡. When estimating equation [5], we do not exclude 

observations with missing realized ex post earnings. Rather, we include all observations for which there is an 

observable forecast in year 𝑡 of 𝐸𝐵𝑆𝐼 for year 𝑡 + 1. We include CRSP delisting returns and we adjust for missing 

delisting returns following Shumway (1997) and Shumway and Warther (2002). Specifically, we assume a delisting 

return of -30 percent for NYSE and AMEX firms (-55 percent for NASDAQ firms) with missing performance-related 

delisting returns. We include delisting returns following the procedure in Beaver et al. (2007); and we assume that, 

starting on the delisting date, the proceeds from firms that delist are re-invested in the value-weighted market portfolio. 
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to vary with 𝐼𝑄𝑅𝑖,𝑡, we find that when 𝐼𝑄𝑅𝑖,𝑡 is low (high), the coefficient on 𝐹𝐸𝐺𝑖,𝑡 is positive 

and significant (negative and insignificant). Moreover, in the regressions shown in Columns 2, the 

coefficient on 𝐹𝐸𝐺𝑖,𝑡 is the hedge-portfolio return for low 𝐼𝑄𝑅𝑖,𝑡 firms. Hence, per the results in 

Column 2, this hedge portfolio generates an average monthly market-adjusted return of 0.66 

percent, which is equivalent to an annual market-adjusted return of 8.21 percent. These amounts 

are economically significant.  

The results described above lead to two important conclusions. First, they support our 

prediction that accurate forecasts of earnings growth are more useful predictors of future stock 

returns than inaccurate forecasts. Second, and perhaps more important, they imply that our model 

has a unique built-in self-assessment feature. Specifically, the variable 𝐼𝑄𝑅𝑖,𝑡 is informative about 

forecast accuracy, and thus it a useful indicator of when the forecasts generated by our model are 

more (less) useful. 

VII. SUMMARY AND CONCLUSIONS 

Expected earnings play a central role in many business decisions and they are a key variable of 

interest in many academic studies. Nonetheless, as discussed in Monahan (2018), most models 

either do not beat the random walk or do not beat it by much. Moreover, although practitioners 

often use comparable firms, evidence about the use and usefulness of comparable-firm-based 

forecasts is sparse. 

In this study, we examine the efficacy of comparable-firm-based forecasts. We eschew 

complicated models and use a simple k-NN model in which we match the subject firm-year to 

firm-years with comparable current and lagged earnings. We do this for three reasons. First, there 

is substantial and compelling empirical evidence that earnings are a useful performance indicator; 

and, a priori, it is reasonable to assume that firms with similar past performance will have similar 
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future performance. Second, simplicity is a virtue. Simple models are easy to understand, use, 

explain, and modify; and they are less subject to overfitting. Finally, we use k-NN because it is a 

natural and objective way of integrating comparable firms into the forecasting process. 

Despite (or, perhaps, because of) its simplicity, our k-NN model performs very well. Its 

forecasts are significantly more accurate than forecasts generated by the random walk, more 

complicated k-NN models, the model developed by BCG, and extant regression models. These 

results are robust. Our k-NN model’s superiority holds for different error metrics, for firms that 

are followed by analysts and for firms that are not, and for different forecast horizons. Moreover, 

our model is unique in the sense that it self-assesses via the variable 𝐼𝑄𝑅𝑖,𝑡, which is a reliable ex 

ante indicator of forecast inaccuracy. This ability to self-assess is useful. For example, as we show, 

it can be used to identify situations in which our forecasts are strong (weak) predictors of future 

stock returns. 

Our results offer new insights into the usefulness of reported earnings. Our simple k-NN model, 

which matches on the most recent two years of earnings, is best. Adding more features or using a 

longer earnings history does not lead to better forecasts. This implies that a firm’s recent earnings 

history is very informative about what its future earnings will be. The trick to uncovering this 

information is to put this history into the correct context and this can be done by identifying firms 

with similar histories. 
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APPENDIX A 

Variable Definitions 

Variable Definition Construction 

Panel A: Variables and subscripts to describe matching models 

i,t Subscript for firm (i) and time (t) for subject firm  

M Years of earnings history  

j,s Subscript for firm (j) and time (s) for neighbor firm  

𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀  Euclidean Distance between the subject firm-year’s 

most recent 𝑀-year earnings history and neighbor firm 

𝑗’𝑠 𝑀-year earnings history ending in year 𝑠 

 

k Number of nearest neighbors with the smallest value of 

𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀  

 

h Forecast horizon in years.  

k* The value of 𝑘 for which an increase in 𝑘 does not lead 

to a statistically significant decrease in MAFE (at the 5 

percent level) 

 

 

https://fivethirtyeight.com/features/frequently-asked-questions-last-revised/
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Variable Definition Construction 

Panel B: Financial variables 

EBSIi,t Earnings before special items for firm i at time t ibi,t – spii,t 

MVEi,t Equity market value for firm i at the end of fiscal year t prcc_fi,t * cshoi,t 

SEBSIi,t EBSIi,t scaled by MVEi,t (ibi,t - spii,t) / MVEi,t 

FSEBSIi,t+h Forecast of EBSIi,t+h scaled by MVEi,t  

FEBSIi,t+h Forecast of EBSIi,t+h FSEBSIi,t+h * MVEi,t 

ACCi,t Accruals for firm i at time t scaled by MVEi,t [Δ(acti,t – chei,t) – Δ(lcti,t – dlci,t – 

txpi,t) – dpi,t] / MVEi,t 

TAi,t Total assets for firm i at time t scaled by MVEi,t ati,t / MVEi,t 

DIVi,t Dividends for firm i at time t scaled by MVEi,t dvci,t / MVEi,t 

DDi,t Indicator variable equal to 1 for dividend payers and 0 

otherwise at time t 

ⅼ(DIVi,t > 0) 

LOSSi,t Indicator variable equal to 1 for firms with negative 

SEBSIi,t and 0 otherwise 

ⅼ(SEBSIi,t < 0) 

PMi,t Profit margin for firm i at time t EBSIi,t / salei,t 

ATOi,t Asset turnover for firm i at time t salei,t / ati,t 

LEVi,t Leverage for firm i at time t ati,t / ceqi,t 

SGrowi,t Sales growth for firm i at time t salei,t / salei,t-1 - 1 

IQRi,t Inter quartile range of forward SEBSI of comparable 

firms 

 

FEGi,t Forecasted dollar earnings growth for firm i at time t 

scaled by MVEi,t 

FSEBSIi,t+1 – SEBSIi,t 

AbsFEGi,t Absolute value of FEGi,t  

AbsLEGi,t Absolute value of realized dollar earnings growth for 

firm i at time t  scaled by MVEi,t 

(EBSIi,t – EBSIi,t-1) / MVEi,t 

BPi,t Book-to-market ratio of firm i at time t ceqi,t / (prcc_fi,t * cshoi,t) 

FOLLOWi,t Indicator variable equal to 1 if firm i at time t is 

followed by at least one analyst and 0 otherwise 

 

LnMVEi,t Natural logarithm of MVEi,t  

SPIi,t Indicator variable equal to 1 for non-zero special items 

and 0 otherwise at time t 

ⅼ(abs(spii,t) > 0) 

R&Di,t R&D expenditures scaled by total assets for firm i at 

time t 

xrdi,t / ati,t 

AbsACCi,t Absolute values of ACCi,t for firm i at time t  

RetVoli,t Standard deviation of returns during the fiscal year for 

firm i at time t 

 

Profitabilityi,t EBSIi,t scaled by ending equity book value for firm i at 

time t 

(ibi,t – spii,t) / ceqi,t 

Investmenti,t Percentage growth of total assets at the fiscal year end 

for firm i from time t-1 to time t 

(ati,t – ati,t-1) / ati,t-1 
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Variable Definition Construction 

Panel C: Forecast evaluation metrics 

MAFE Mean absolute forecast error (% of MVEi,t)  Mean(|EBSIi,t+h - FEBSIi,t+h| / MVEi,t) 

* 100 

MDAFE Median absolute forecast error (% of MVEi,t ) Median(|EBSIi,t+h - FEBSIi,t+h| / 

MVEi,t) * 100 

MSE Mean of squared forecast error Mean(((EBSIi,t+h - FEBSIi,t+h) / 

MVEi,t)2) * 100 

TMSE Mean of squared forecast error after truncating the top 

and bottom 0.1% signed forecast errors 

 

Lowercase variables in the construction column refer to Compustat identifiers. 

 

APPENDIX B 

Illustration of k-NN for Walmart 2010 

In this appendix, we provide an illustration of k-NN. Specifically, we use it to make a forecast 

in 2010 of Walmart’s 𝐸𝐵𝑆𝐼 for 2011. In this example, we set 𝑀 = 5 and 𝑘 = 10. Hence, we 

compare the five-year history of Walmart’s 𝑆𝐸𝐵𝑆𝐼 that ends in 2010 to all the observable five-

year histories of 𝑆𝐸𝐵𝑆𝐼  that end in any year 𝑠 ∈ {2000, 2001, ⋯ , 2009}, and then we use the 

variable 𝐷𝐼𝑆𝑇𝑖,𝑡,𝑗,𝑠
𝑀 , which is described in Equation [1], to identify Walmart’s ten nearest neighbors. 

In Panel A of Figure B.1, we plot, in event time, the scaled earnings of Walmart along with 

those of its ten nearest neighbors. In Panel B, we show the different calendar time periods that 

relate to each of these neighbors. As shown in Figure B.1, Walmart’s ten nearest neighbors come 

from a broad range of industries and are drawn from as early as 𝑠 = 2001 and as late as 𝑠 = 2009. 

Moreover, Walmart itself is one of its own nearest neighbors—i.e., the Walmart history that ends 

in 2009 is one of the histories that is closest to the Walmart history that ends in 2010. 

To compute the variable 𝐼𝑄𝑅 and our forecast of Walmart’s 𝐸𝐵𝑆𝐼 for 2011, we first compute 

ten intermediate forecasts by deflating each of the nearest neighbor’s realized 𝐸𝐵𝑆𝐼 for year 𝑠 + 1 

by its equity market value at the end of year 𝑠. As shown in Panel A of Figure B.1, these 

intermediate forecasts range between 0.015 to 0.084. Next, we set 𝐼𝑄𝑅 equal to 0.022, which is 

the interquartile range of the intermediate forecasts. Finally, we compute our forecast by 
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multiplying the median of the intermediate forecasts, which equals 0.076, by 202,286 million U.S. 

dollars, which is Walmart’s equity market value at the end of 2010. Hence, in this example, the 

2010 forecast of Walmart’s 𝐸𝐵𝑆𝐼 (in millions of U.S. dollars) for 2011 is  

15,354 = 0.076 × 202,286. 
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Figure B.1 

Walmart 2010 

 
Figure B.1 illustrates the nearest neighbor matching approach. It shows the example of forecasting Walmart’s 2011 earnings as of  

𝑡0 = 2010. For exposition purposes we plot the 10 nearest firm sequences with their respective ending years. Sub-figure A plots 

the earnings sequences aligned in sequence time. Earnings sequences that are more similar to Walmart’s 2006 to 2010 period are 

colored darker. Sub-figure B shows the calendar year timing of the 10 nearest earnings sequences inside the rolling 10-year window 

used to train the k-NN model. The dashed line for each neighbor’s sequence represents the 𝑠 + 1 period used to compute the median 

forecast for Walmart’s 𝑡 + 1 earnings. 
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Figure 1 

Mean Absolute Forecast Error by K and M 

 
Figure 1 shows the MAFE for each combination of K and M from a common sample with data for all combinations. Each line plots 

the MAFE by K for a specific value of M. The labels for each line point to the number of neighborss (k∗) at which decreases in 

MAFE become insignificant for increasing K by another 10 neighbors, given a value of M. 
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Figure 2 

Decomposition of MAFE by Components of the Matching Model 

 
Figure 2 compares the mean absolute 𝑖, 𝑡 + 1 forecast error (MAFE) of a random walk forecast (RW) with various simple forecast 

models that use the median 𝑠 + 1 or 𝑠 year’s earnings of K selected firms j. The number of selected firms K is varied to show the 

influence of the number of nearest neighbors. We select firms either randomly or using the k-NN method to show the impact of 

selecting nearest neighbors. Nearest neighbors are selected using earnings as the matching variable and the model considers most 

recent earnings and lagged earnings (𝑀 = 2). We examine choices of a forecast median (𝑠 + 1 or 𝑠 year’s earnings) to show the 

impact of extrapolating the selected firms’ trends. 
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Table 1 

Sample Composition 

 

Data Filter Firm-Years 

Total Compustat Observations 1998 - 2018 182,167 

Less missing EBSI -32,835 

Random walk forecast sample 149,332 

Less missing lagged EBSI -9,224 

Less missing and non-positive MVE -12,221 

Less financial firms and regulated firms -31,309 

KNN (M=2) forecast sample 96,578 

Industry forecast sample 96,343 

Less missing Cash Flow Data -149 

Lifecycle/HVZ forecast sample 96,194 

Less missing and non-positive sales, total assets, and equity book value -16,478 

Less missing and non-positive lagged sales -870 

Less missing balance sheet accruals -1,705 

Less MVE < $10M -6,702 

Less absolute scaled earnings greater than one -724 

Less missing future EBSI -5,769 

Less Industry-years with <100 (<10) total (loss) observations -1,125 

Less Missing BCG Forecast Data -111 

Forecast Comparison Sample 62,710 

Table 1 shows the effect of our data requirements on the final sample composition. 
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Table 2 

Descriptive Statistics 

 
Panel A: Summary statistics for the regression estimation sample 

Variable N Mean StD P05 P25 Med P75 P95 

ACC 117,734 -0.04 14.17 -0.41 -0.09 -0.02 0.00 0.13 

DD 117,734 0.26 0.44 0.00 0.00 0.00 1.00 1.00 

DIV 117,734 0.01 0.08 0.00 0.00 0.00 0.00 0.04 

SEBSI 117,734 -0.03 0.19 -0.41 -0.06 0.03 0.07 0.14 

LOSS 117,734 0.37 0.48 0.00 0.00 0.00 1.00 1.00 

TA 117,734 1.53 31.44 0.11 0.44 0.89 1.68 4.44 

PM 106,986 -3.94 162.70 -1.84 -0.03 0.03 0.07 0.19 

ATO 106,986 1.18 0.93 0.14 0.59 1.02 1.54 2.76 

LEV 106,986 4.93 275.93 1.13 1.40 1.91 2.80 7.19 

SGrow 106,986 1.24 60.38 -0.31 -0.02 0.10 0.27 1.25 

 

Panel B: Coefficients of the in-sample estimation of the HVZ regression model 

Average N Intercept ACC DD DIV SEBSI LOSS TA Adj. R2 

39,907 0.01 -0.00 0.02 -0.01 0.52 -0.06 -0.00 0.45 

 [19.55] [-1.22] [87.77] [-4.13] [86.85] [-74.71] [-1.63]  

 

Panel C: Coefficients of the in-sample estimation of the EP regression model 

Lifecycle Average N Intercept SEBSI LOSS LOSS*SEBSI Adj. R2 

 41,192 0.02 0.50 -0.07 0.02 0.45 

  [16.96] [28.32] [-56.03] [0.93]  

Introduction 
8,537 -0.01 0.58 -0.05 0.01 0.42 

 [-7.49] [22.14] [-28.64] [0.20] 
 

Growth 
11,218 0.02 0.44 -0.04 0.03 0.24 

 [29.39] [26.44] [-52.30] [1.48]  

Mature 
13,557 0.03 0.54 -0.04 -0.22 0.21 

 [40.70] [41.47] [-45.79] [-11.21]  

Shake-Out 
4,567 0.01 0.53 -0.06 -0.03 0.36 

 [10.17] [28.15] [-31.18] [-1.18]  

Decline 
3,314 -0.01 0.34 -0.04 0.17 0.35 

 [-7.50] [8.02] [-28.22] [3.20]  

Table 2, Panel A provides pooled summary statistics for the variables included in the regression and k-NN models. Panel B (Panel 

C) shows the average coefficients of the 10-year rolling window regressions for the HVZ (EP) model. T-statistics are derived from 

Fama-MacBeth standard errors. See Table A.1 for remaining variable definitions. 
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Table 3 

Comparison of Subject Firms to their Nearest Neighbors 

 
Panel A: Descriptive statistics for comparable and subject firms 

Variable N Mean StD P05 P25 Med P75 P95 

SEBSIi,t - SEBSIj,s 62,710 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

(MVEi,t -MVEj,s)/MVEi,t 62,710 -0.84 5.85 -6.05 -0.38 0.53 0.84 0.98 

(acci,t -accj,s)/MVEi,t 62,710 -0.02 0.24 -0.27 -0.06 -0.01 0.02 0.22 

(FEGi,t -FEGj,s) 62,710 0.00 0.09 -0.01 0.00 0.00 0.00 0.01 

(Yeari,t -Yearj,s) 62,710 5.54 1.08 4.00 5.00 5.50 6.00 7.00 

(Agei,t -Agej,s) 62,710 5.54 13.08 -11.00 -3.00 2.00 12.00 33.00 

 

Panel B: Industry and lifecycle membership 

Variable N Mean StD P05 P25 Med P75 P95 

percent same FF12 62,710 16.46 10.48 2.22 8.89 15.56 22.22 36.67 

percent same Sic2 62,710 7.07 7.69 0.00 1.11 4.44 10.00 23.33 

percent same lifecycle 62,710 36.98 18.53 6.67 22.22 37.78 52.22 65.56 

Table 3, Panel A presents descriptive statistics about the comparable firms chosen by our comparable matching procedure. The 

suffix i,t denotes the subject firm-year and the suffix j,s denotes the  relevant matched neighbor firm-year. Panel B reports the 

percentage of matched comparable firms that are in the same industry (lifecycle) as the subject firm. FF12 is the Fama-French-12 

Industry classification, and Sic2 is the 2-digit SIC industry code. t is the first year of the two-year earnings sequence. See Table A.1 

for remaining variable definitions. 
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Table 4 

Comparison of Our k-NN Model to Alternative k-NN Models (t+1) 

 
Model N MAFE MDAFE MSE TMSE 

KNN 62,710 6.80 2.56 3.42 1.72 

KNNDUP1 62,710 1.30*** 1.04*** 0.58*** 0.49*** 

KNNDUP2 62,710 1.53*** 1.08*** 0.72*** 0.63*** 

KNNDUP3 62,710 2.02*** 1.24*** 0.97*** 0.87*** 

KNNDUP4 62,710 2.05*** 1.27*** 0.98*** 0.88*** 

KNNHVZ1 62,710 0.00 -0.01 0.02 0.01 

KNNHVZ2 62,710 0.01 0.02 -0.02 0.00 

KNNHVZ3 62,710 0.14*** 0.15*** 0.04 0.04*** 

KNNHVZ4 62,710 0.11*** 0.16*** 0.00 0.02 

Table 4 tabulates forecast error metrics from the nearest neighbor (k-NN) model for a variety of alternative model specifications. 

See Table A.1 for definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the 

table provides the difference between the error metric of the k-NN model and that of the alternate specifications. The table compares 

the accuracy of the k-NN model compared to other models that use a comparable-firm-based approach. KNNDUP1 matches on PM 

and ATO. KNNDUP2 matches on PM, ATO, and LEV. KNNDUP3 matches on PM, ATO, and SGrow. KNNDUP4 matches on PM, 

ATO, LEV, and SGrow. KNNHVZ1 matches on ACC. KNNHVZ2 matches on ACC and TA. KNNHVZ3 matches on ACC, TA, and 

DIV. KNNHVZ4 matches on ACC, TA, DIV, and LOSS. Statistical significance of the differences in mean error metrics is determined 

based on t-statistics clustered by firm and calendar year. The statistical significance of differences in MDAFE is determined using 

quantile regression tests for differences in the median of the absolute forecast error distribution between models. ***, **, and * 

denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 5 

Comparison of Our k-NN Model to Extant Models (t+1) 

 
Model N MAFE MDAFE MSE TMSE 

KNN 62,710 6.80 2.56 3.42 1.72 

RW 62,710 0.48*** 0.09*** 0.24*** 0.25*** 

BCG 62,710 0.52*** 0.28*** 0.23*** 0.23*** 

HVZ 62,710 0.34*** 0.51*** 0.04** 0.04** 

EP 62,710 0.35*** 0.48*** 0.05** 0.05*** 

EP-GICS 62,710 0.35*** 0.51*** 0.07*** 0.05*** 

EP-LIFE 62,710 0.20*** 0.39*** 0.03 0.03** 

Table 5 tabulates forecast error metrics from the nearest neighbor (k-NN) model and extant earnings forecasting models. See Table 

A.1 for definitions of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides 

the difference between the error metric of the k-NN model and that of the extant forecasting models. Statistical significance of the 

differences in mean error metrics is determined based on t-statistics clustered by firm and calendar year. The statistical significance 

of differences in MDAFE is determined using quantile regression tests for differences in the median of the absolute forecast error 

distribution between models. ***, **, and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, 

respectively. 
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Table 6 

Performance After Partitioning by Analyst Coverage and for Longer Forecast Horizons 

 
Panel A: Split by analyst coverage 

Model N MAFE MDAFE MSE TMSE 

(a) t+1 forecast error with analyst coverage 

KNN 44,108 5.36 2.03 2.19 1.10 

RW 44,108 0.42*** 0.09*** 0.22*** 0.18*** 

HVZ 44,108 0.39*** 0.52*** 0.05*** 0.03*** 

EP-LIFE 44,108 0.23*** 0.37*** 0.04** 0.01 

(b) t+1 forecast error without analyst coverage 

KNN 18,602 10.21 4.52 6.34 3.35 

RW 18,602 0.61*** 0.12 0.27** 0.36*** 

HVZ 18,602 0.24*** 0.31*** 0.04 0.04 

EP-LIFE 18,602 0.13*** 0.29*** 0.01 0.02 

Panel B: Forecast errors for different forecast horizons 

Model N MAFE MDAFE MSE TMSE 

(a) t+2 forecast error 

KNN 55,548 8.73 3.72 4.20 2.58 

RW 55,548 0.79*** 0.14*** 0.45*** 0.49*** 

HVZ 55,548 0.24*** 0.33*** 0.07** 0.07*** 

EP-LIFE 55,548 0.12*** 0.23*** 0.00 0.02 

(b) t+3 forecast error 

KNN 49,007 10.15 4.46 7.32 3.41 

RW 49,007 0.94*** 0.21*** 0.54*** 0.58*** 

HVZ 49,007 0.15*** 0.19*** 0.01 0.06** 

EP-LIFE 49,007 0.09*** 0.18*** -0.01 0.00 

(c) Aggregate forecast error (t+1 + t+2 + t+3) 

KNN 48,941 21.50 9.65 24.00 14.64 

RW 48,941 2.30*** 0.46*** 3.68*** 3.76*** 

HVZ 48,941 0.71*** 0.95*** 0.57** 0.60** 

EP-LIFE 48,941 0.38*** 0.70*** 0.15 0.20 

Table 6 tabulates forecast error metrics from the nearest neighbor (k-NN) model within subsamples. See Table A1 for definitions 

of the forecast evaluation metrics tabulated in each column. Below each forecast error metric, the table provides the difference 

between the error metric of the k-NN model compared with that from the random walk (RW) and regression-based (HVZ, EP-

LIFE) models. Panel A examines forecast errors for firm-years with vs. without analyst coverage. Panel B tabulates forecast error 

metrics from the nearest neighbor matching (k-NN) model for various forecast horizons. Below each forecast error metric, the table 

provides the difference between the error metric of the k-NN model compared with that from the random walk (RW) and regression-

based (HVZ, EP-LIFE) models. Statistical significance of the differences in mean error metrics is determined based on t-statistics 

clustered by firm and calendar year. The statistical significance of differences in MDAFE is determined using quantile regression 

tests for differences in the median of the absolute forecast error distribution between models. ***, **, and * denote statistical 

significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 7 

Determinants of Absolute and Relative Forecast Accuracy 

 
Panel A: Summary Statistics 

Variable: N Mean StD P05 P25 Med P75 P95 

(a) Dependent variables 

|kNNFE| 54,440 6.51 16.13 0.14 0.84 2.41 6.48 24.90 

|kNNFE| - |RWFE| 54,440 -0.51 4.98 -5.51 -0.80 -0.15 0.62 2.67 

|kNNFE| - |LIFEFE| 54,440 -0.20 3.02 -4.38 -1.26 -0.17 0.85 3.95 

|kNNFE| - |HVZFE| 54,440 -0.34 2.89 -4.47 -1.68 -0.28 0.89 3.90 

(b) Explanatory variables 

AbsFEG 54,440 0.02 0.04 0.00 0.00 0.01 0.01 0.10 

IQR 54,440 0.09 0.10 0.01 0.03 0.05 0.11 0.29 

FOLLOW 54,440 0.74 0.44 0.00 0.00 1.00 1.00 1.00 

BP 54,440 0.58 0.49 0.09 0.26 0.45 0.74 1.50 

LnMVE 54,440 6.03 2.00 2.94 4.49 5.94 7.36 9.58 

SPI 54,440 0.63 0.48 0.00 0.00 1.00 1.00 1.00 

R&D 54,440 0.06 0.11 0.00 0.00 0.01 0.07 0.28 

LOSS 54,440 0.28 0.45 0.00 0.00 0.00 1.00 1.00 

AbsACC 54,440 0.09 0.14 0.00 0.02 0.04 0.10 0.35 

RetVol 54,440 0.15 0.09 0.05 0.09 0.12 0.18 0.33 

AbsLEG 54,440 0.06 0.11 0.00 0.01 0.02 0.06 0.27 
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Panel B: Regression results 

Dep. Variable: |kNNFE| |kNNFE| -  

|RWFE| 

|kNNFE| -  

|LIFEFE| 

|kNNFE| -  

|HVZFE| 

Intercept -0.00 0.00 -0.00 -0.00 

 [-0.00]    [0.00]    [-0.00]    [-0.00]    

AbsFEG 0.04 *** -0.43 *** -0.14 *** -0.16 *** 

 [2.76]    [-10.17]    [-5.08]    [-4.51]    

IQR 0.12 *** 0.06 0.15 *** 0.16 *** 

 [7.12]    [1.39]    [2.70]    [2.60]    

FOLLOW -0.01 *** -0.01 -0.01 -0.02 *** 

 [-2.65]    [-1.18]    [-1.46]    [-3.13]    

BP 0.13 *** 0.05 *** 0.00 0.01 

 [6.49]    [3.38]    [0.20]    [1.05]    

LnMVE -0.02 0.00 -0.00 0.00 

 [-1.04]    [0.03]    [-0.52]    [-0.48]    

SPI 0.00 -0.02 *** 0.02 *** 0.03 *** 

 [0.80]    [-3.79]    [4.65]    [5.42]    

R&D 0.01 0.02 **  -0.02 -0.00 

 [1.03]    [2.40]    [-1.43]    [-0.10]    

LOSS 0.03 *** 0.04 *** -0.06 *** -0.09 *** 

 [4.96]    [3.44]    [-6.44]    [-8.40]    

AbsACC 0.17 *** 0.01 -0.01 0.01 

 [10.33]    [0.70]    [-0.57]    [1.01]    

RetVol 0.05 *** 0.00 0.04 *** 0.04 *** 

 [4.53]    [0.33]    [4.54]    [4.57]    

AbsLEG 0.08 *** -0.05 -0.01 -0.02 

 [3.50]    [-1.31]    [-0.20]    [-0.43]    

Adj. R2 0.21 0.15 0.01 0.02 

N 54,440 54,440 54,440 54,440 

Table 7 reports summary statistics and coefficients of regressions of absolute forecast errors of the k-NN model and of absolute 

forecast error differences of the k-NN model and the benchmark models on factors associated with forecast errors. All continuous 

explanatory variables are winsorized at the 1st and 99th percentile. Panel A provides summary statistics. Panel B provides the 

regression results. For Panel B, all variables, dependent and independent variables, are standardized (subtracting the mean of the 

variable and dividing the difference by the standard deviation of the variable). The number of observations differs from 62,170 due 

to requiring return volatility data. T-values are reported in parentheses and are based on standard errors clustered by firm and by 

year. ***, **, and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 
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Table 8 

Return Predictability Tests 

  
1 2 

1 𝐹𝐸𝐺 0.17* 0.66*** 

 [1.68] [3.17] 

2 𝐼𝑄𝑅  0.26 

  [0.85] 

3 𝐹𝐸𝐺 ∗ 𝐼𝑄𝑅  -0.79** 

  [-2.48] 

4 BP 0.17 0.19 

 [0.53] [0.56] 

5 Profitability 0.39 0.26 

 [0.95] [0.73] 

6 Investment -0.81*** -0.82*** 

 [-4.67] [-4.58] 

7 MVE -0.20 -0.24 

 [-0.61] [-0.73] 

8 Intercept 0.45 0.35 

 [0.78] [0.73] 

Effect of 1 + 3  -0.13 

  [-0.79] 

Adj. R2 0.02 0.03 

Average N per cross-sect. 2,730 2,730 

No. of cross-sect. coeff. 252 252 

Table 8 reports coefficients and t-values from Fama-MacBeth regressions to predict monthly 

market-adjusted returns. The coefficients (r-squareds) are the time-series averages generated by 

252 monthly cross-sectional regressions. Each t-statistic equals the average coefficient divided by 

its time-series standard error. All explanatory variables are decile ranks with values from 0 to 1 in 

increments of 1/9 which are formed in June of each year. Returns span from July until June of the 

next year. Market-adjusted returns are raw returns minus the value-weighted market return. Firms 

that delist within the 12-month holding period from July to June are invested in the value-weighted 

market return until the end of the holding period. T-values are reported in parentheses. ***, **, 

and * denote statistical significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 

 


