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Abstract

We exploit the cross-section of earnings to create a measure, σ, of a firm’s expected
earnings volatility driven by systematic risk. σ captures firm-year risk by treating in-
come statement line items as exposures to systematic risk and combining them with the
variance-covariance matrix of line-item-related systematic risk factors. σ is positively
associated with measures of total earnings volatility and time series measures of sys-
tematic risk; but, it incrementally explains the cross-section of expected returns, with
an annualized hedge portfolio four-factor equal(value)-weighted alpha of 6.3%(12.1%).
σ explains returns when analysts’ forecasts are not available, when firms do not have
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1 Introduction

We create a measure of a firm’s expected earnings volatility that is driven by systematic

risk. Our approach is motivated by research that uses cross-sectional and panel data to

measure firm-year earnings uncertainty (Chang et al., 2020; Donelson and Resutek, 2015;

Konstantinidi and Pope, 2016). The innovation that allows us to measure the expected

earnings volatility driven by systematic risk is that the cross-section of income statement

line items can be viewed as exposures to systematic risk. This view is supported by prior

research that argues that a company’s decisions and circumstances determine future risk

exposures and that earnings contain information about risk (Ball et al., 2021; Beyer and

Smith, 2021; Chang et al., 2020; Ellahie, 2020; Penman and Zhang, 2019).

We develop our measure based on a simple model of earnings. Our model points to the

estimation method for extracting risk factors from cross-sectional regressions when income

statement line items are treated as exposures to risk. Our method follows Fama and French

(2020) that finds that cross-sectional regressions successfully extract risk factors for returns.

In our empirical design, we use income statement line items as observable characteristics

that capture companies’ exposures to systematic risk and we estimate line item related fac-

tors from cross-sectional regressions. We capture the variances and covariances of these risk

factors with the historical variation in the coefficients. Combining the variance-covariance

matrix of the time-series of the coefficients with the income statement line items in a calcula-

tion for the standard deviation of expected changes in earnings gives our firm-year estimate

of systematic risk, σ.1 σ is the ex ante standard deviation of expected earnings changes based

on observable income statement line items and the historical volatility and co-movement of

factors related to the income statement line items.

We highlight the main empirical results here. First, the coefficients from our cross-

sectional estimations, i.e. the risk factors that are related to income statement line items,

are correlated with other systematic factors. Second, the top line items of the income

1We provide the details of the calculation in sections 2 and 4.
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statement have the largest impact on σ because the factors related to the top line items of

the income statement have the largest variances and covariances in the variance-covariance

matrix, consistent with the intuition in Ball et al. (2015) and Novy-Marx (2013) that top

line items better capture “true economic profitability”. Third, σ is positively correlated

with other measures of total and systematic risk: earnings volatility, earnings uncertainty,

CAPM beta, and earnings beta. Fourth, σ is positively associated with the cross-section

of future returns in magnitudes comparable to other firm characteristics used to explain

the cross-section of returns, and σ captures variation in returns not explained by a four-

factor model with an annualized decile hedge portfolio alpha of approximately 6.3%(12.1%)

equal(value)-weighted.2 Fifth, we show that σ provides information about returns that is

incremental to other measures of earnings uncertainty or risk which we attribute to the

multi-factor, time-varying nature of our measure. Sixth, σ is associated with returns when

limiting the sample to stocks that have no analyst coverage and when limiting the sample to

firms that have no prior year information. This is important because some measures of risk

from the time series of earnings require analyst forecasts or historical earnings (e.g. Ellahie,

2020). Lastly, we find that σ better explains the cross-section of returns where time varying,

multi-factor risk exposure is likely to be most important, for low profitability companies and

during recessions.

Our study is important because it exploits the rich information available in cross-sections

to estimate an ex-ante firm-year measure of multi-factor systematic risk. Compared to

measures of total earnings volatility or earnings uncertainty, our measure extracts ex-ante

volatility driven by systematic risk from the cross-section of income statements. Our paper

is related to and contrasts with other research that creates and studies measures of earnings

volatility or earnings uncertainty (Chang et al., 2020; Dichev and Tang, 2009; Donelson

and Resutek, 2015; Konstantinidi and Pope, 2016). Donelson and Resutek (2015) find that

uncertainty is associated with optimistic forecasts by analysts, suggesting that the correction

2See table 6.
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of optimistic forecasts may lead to lower future returns. Chang et al. (2020) find that higher

variance, skewness, and kurtosis are associated with higher stock prices, suggesting that

investors value the upside potential for positive payoffs. In contrast, we find that the expected

volatility of earnings driven by systematic risk is positively associated with expected returns.

Our findings suggest that investors require higher returns to earnings volatility that is driven

by systematic risk.

Our paper is also related to research that finds that measures of systematic risk derived

from firm level time series of earnings are associated with expected returns (Ellahie, 2020).

Ellahie (2020) finds that an earnings beta estimated using analysts’ earnings forecasts is

associated with returns. Our measure contributes to this research by providing a risk measure

that is associated with expected returns even when analysts’ forecasts or long time series are

not available. Additionally, our measure captures exposure to multiple risk factors, which is

difficult to achieve with low frequency, short time series earnings data.

Finally, while prior research finds that the summary number from the income statement

provides information about total and systematic risk, our paper provides new evidence that

income statement line items contain important information about systematic risk. Accord-

ingly, our paper adds to the evidence that earnings are informative about risk (Chang et al.,

2020). Our findings are important because the line items that report on the drivers of cash

flows also report on a company’s time varying multi-factor risk exposures. In addition, the

line items may interact in ways that increase exposures to risk factors and in ways that

provide hedges against risk factors. We develop a method for combining the complex effects

of these risk exposures and risk factors on expected volatility in earnings.
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2 An earnings model and the variance of expected changes

in earnings

We use a simple model of earnings that helps develop the concepts and empirical methods

for extracting systematic risk from the income statement in cross-sectional data. Our ending

point is an equation for the variance of expected changes in net income driven by systematic

risk for company i in year t+1 given information known in year t (equation 8). We develop

this final equation from a simple model and describe insights that come from this derivation.

Our model, shown in equation 1 below, begins with accounting earnings and book values of

equity because accounting reporting is closely tied to risk through conservative accounting

(Penman, 2016; Penman and Zhu, 2014) and because accounting earnings capture systematic

risk (Ball et al., 2009, 2021; Beaver et al., 1970). Additionally, accounting balance sheets

are a summary of a company’s historical business decisions and circumstances because they

provide the end-of-period (conservative) assets and liabilities of the company (Sunder et al.,

2018; Watts, 2003), and thus should reveal a firm’s current and future exposures to systematic

risks (Beyer and Smith, 2021).

NIi,t+1 = αi + αt +
C∑
1

γc,tBVc,i,t + ϵi,t+1 (1)

Here BV is accounting book value of equity that is made up of components c. Each

component (BVc) is the net cost of an investment that generates a firm’s exposure to sys-

tematic risk. The payoffs to systematic risk for each component BVc is given by γc that

varies over time and represents a systematic risk factor to which a company is exposed. For

example, a company that invests in oil extraction equipment will record an asset on their

balance sheet, BVc, and the return to that investment, γc,t, will depend on the aggregate

supply and demand of oil that affects their production and the price for which the oil may be

sold. The idea that expected earnings are determined by a company’s cost of capital and the

book value of equity in place at the beginning of the period has a long history in accounting

4



valuation (Ohlson, 1995; Penman, 2010).

Company earnings may be determined by persistent idiosyncratic performance that is

unrelated to systematic risk. The persistent component is represented by αi. αt captures

time varying market wide average earnings that affect all firms equally. Independent shocks

to earnings are represented by ϵi,t+1.

Prior research using earnings to estimate a company’s exposure to systematic risk uses a

time series model.

NIi,t+1 = αi + γtβi + ϵi,t+1 (2)

With the time series estimation approach, γt is taken as given and is a systematic macro

factor, e.g. aggregate earnings. Exposure to the factor is estimated and is assumed to be

static over the regression window. However, the true γt is unknown and risk exposure β is

dynamic (Berk et al., 1999; Beyer and Smith, 2021). Additionally, for practical purposes,

earnings may be exposed to multiple risk factors, making a short time series impractical

for estimating exposure to the risk factors. In this regression, α captures the persistent

performance of company i and the idiosyncratic performance is captured by ϵ while β is the

static exposure to systematic risk.

An important assumption with the time-series estimation is the role thatNI plays. NIt+1

is the outcome of risky investments and therefore only captures risk to the extent that higher

systematic risk, as a product of β and γ, leads to higher payoffs. This logic is common in

prior research discussing why earnings forecasts the cross-section of stock returns (Fama and

French, 2006). More specifically, earnings forecast returns because earnings at time t is a

proxy for expected earnings, i.e. NIt+1, and holding price constant, higher expected earnings

imply higher expected returns.

In the time series model, the only other way that earnings can reflect risk is if it is corre-

lated with β, the systematic risk exposure. This type of logic is implied by prior empirical

research that finds evidence that measures of earnings, such as operating profitability, are
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positively associated with the cross-section of future returns, in which the implication would

be that companies with higher earnings must have, by assumption, higher exposure to sys-

tematic risk, i.e., higher β (Ball et al., 2015; Novy-Marx, 2013). Consistent with earnings

reflecting exposure to risk, Kogan et al. (2021) present analytical and empirical evidence

that higher operating profitability companies are less operationally hedged against risk.3

In our paper, we focus on the more direct implication described below that earnings

reflects systematic risk exposure. To do so, in contrast to prior research, we consider a

cross-sectional version of the NI model.

The first thing we note is that when estimating equation (1) in a cross-section, αi is

not estimable. We circumvent this problem with a changes model where we use the first

difference of the equation and by doing so, αi is dropped from the equation. The model is

presented as equation 3 below.4

∆NIi,t+1 = αt +
C∑
1

γc,tNIc,i,t + ϵi,t+1 (3)

For simplicity, we redefine αt and ϵ as the parameters that represent the changes from

the first difference of the equation.

The change in earnings as the dependent variable, in addition to being conceptually

consistent with this changes model of earnings, is also desirable because earnings compo-

nents are persistent (Dechow et al., 2008; Easton and Zmijewski, 1989; Kormendi and Lipe,

1987). First-differencing allows us to better capture the common economic forces that affect

a cross-section of earnings and to mitigate the spurious statistical significance in the pres-

ence of two non-stationary variables (Finger, 1994; Granger et al., 1974). Additionally, the

change in earnings as the outcome variable is consistent with Ellahie (2020) that shows that

earnings betas constructed from changes in expected earnings are more strongly associated

3However, the risk explanation is unsettled. Ahmed et al. (2021) find evidence that the returns to
operating profitability are more consistent with a mispricing explanation for operating profitability than
with a risk explanation.

4To avoid complications, we ignore dividends. In other words, to be precisely correct, the NI components
would have to include dividends.
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with stock returns, presumably because earnings is persistent and less sensitive to changes in

the economy. This model also echoes the premise in Beyer and Smith (2021) that each firm’s

earnings is determined by three sets of components: an idiosyncratic component (ϵi,t+1), a

set of market-wide factors (αt and γc,t), and the firm’s exposures to factors (NIc,i,t).

In this equation, a NIc component is in the most straightforward manner a measure of a

company’s sensitivity to a related risk factor. Given equation 3, it may be helpful to consider

the way that earnings line items reflect a company’s exposure to systematic risk. First, it

is important to note that the risk factor that is represented by γ is the average expected

association between the NI component and subsequent changes in NI. Therefore, γ does

not represent an individual company’s observed association, but rather the association that

is expected based on all companies in the cross-section.5 Second, NI components reflect

changes to the decisions and circumstances that expose a company to risk. For example,

cash inflows change the risk composition of a company’s assets. Revenues and expenses

reflect a company’s supply and demand positions in the market. Research and development

reflects changes to a company’s risky investment mix.

Another way to think about our cross-sectional approach is that we have latent risk ex-

posure βs for which NI components are instrumental variables. To make this more explicit,

assume the true model of earnings is the following, with Γs representing the mutually or-

thogonal underlying systematic factors and each β representing the latent exposure to each

factor.

∆NIi,t+1 = At +
C∑
1

Γc,tβc,i,t + νi,t+1 (4)

Rather than estimating equation 4, we estimate equation 3 that is based on observable

components of earnings. To simplify the exposition, we assume that the net income com-

ponents NIc,i,t are uncorrelated or in the case that they are correlated have been made

5In the appendix, we show how the γs can be alternatively interpreted as market-wide summary measures
that are similar to accounting aggregate factors used in prior research (e.g. Ball et al., 2009; Ellahie, 2020).
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orthogonal to each other prior to estimating the regression (Wooldridge, 2015).6 For presen-

tation purposes, we also assume that the number of net income components included in the

regression, C, is the same as the number of true factors and βs.

Estimating the equation with the net income components in a cross section at time t

(equation 3), we obtain the estimated γs:

γ̂c,t =
Cov(∆NIi,t+1, NIc,i,t)

V ar(NIc,i,t)
(5)

Plugging in the underlying process of ∆NI using equation 4, we obtain the following:

γ̂c,t =
Cov(At +

∑C
1 Γk,tβk,i,t + νi,t+1, NIc,i,t)

V ar(NIc,i,t)
(6)

Because the true A and Γs are common in the cross section, they do not affect the

cross-sectional estimation. Consequently, A is dropped because it is a constant in the cross

section; Γs is retained in the estimates if and only if an observable earnings component NIc

has a non-zero correlation with the latent exposure βk. Put differently, if NIc is a reasonable

proxy for βk, information regarding the true latent factor Γk is extracted and retained in

the estimates. Assuming ν is an independent error term, it should not affect the γ estimate

either so long as it is independent from NIc. Thus the equation above simplifies into the

following:

γ̂c,t =
C∑
1

Γk,t ·
Cov(βk,i,t, NIc,i,t)

V ar(NIc,i,t)
(7)

The estimated factor γ̂ is a combination of the true systematic factors to which earnings

are exposed and the correlation between the true βs and the observed net income components.

In the extreme, including a component of net income that has no correlation with any βs will

6We acknowledge that line items from the income statement are or can be highly correlated. We use our
discussion that relies on this assumption to develop the intuition about some of the important drivers of the
estimated coefficients. While the same intuition applies when the line items are correlated, the drivers and
the explanation are more complicated.
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result in an estimated γc,t of zero. If a component NIc can only partially proxy for one risk

exposure βk, then its estimated γc,t will be non-zero and will result in an under-weighted Γk,t.

If each component of net income perfectly correlates with each true βc, then each estimated

γc,t will exactly equal the true risk factor Γc,t.

In our final step, we use the variance of expected changes in earnings, with expected

change in earnings calculated following equation 3, to form an ex-ante expectation about the

systematic variation in changes in earnings for a company i at time t+1 based on information

available at time t. Such information includes the historical volatility and co-movement of

γ̂s available at time t.

V AR( ̂∆NIi,t+1) = V AR(α̂) +
C∑
c=1

V AR(γ̂c)NI2c,i,t+

2
C∑
c=1

COV (α̂, γ̂c)NIc,i,t + 2
C∑
c=1

C∑
j>c

COV (γ̂c, γ̂j)NIc,i,tNIj,i,t (8)

The focus on the variance of expected changes in earnings is related to other research

that forecasts the higher moments of earnings, forecasts of earnings uncertainty (Donelson

and Resutek, 2015), and studies analysts’ scenario-based forecasts (Chang et al., 2020; Joos

et al., 2016; Konstantinidi and Pope, 2016).

Equation 8 demonstrates some important properties of the variance of changes in earn-

ings. The variance and covariance terms such as V AR(γc) and COV (γc, γj) determine how

income statement line items are combined to calculate the variance of expected changes in

net income. These terms weight squared line items or the product of line items with the

variance-covariance matrix of the estimated γs. The historical variation of each γ is deter-

mined by two sources based on equation 7: the association between the earnings line item

(NIc) and the firm’s underlying factor sensitivity (βk), and the historical volatility of the

underlying risk factor Γk. This means that for a particular γc that has a strong association

between NIc and βk and a more volatile Γk, the variance of γc and the earnings component
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c become a larger part of the variance calculation in equation 8. On the other hand, as the

historical volatility effect decreases or the line item’s association with the underlying factor

sensitivity decreases, V AR(γ̂c) → 0.7 This means that the variance calculation in equation 8

will be most affected by the largest variance risk factors and the line items with the strongest

association between the line item and the underlying factor sensitivity.

2.1 Calculating σ

In this section, we describe how we use equation 8 to create an empirical measure of the

systematic risk information contained in accounting earnings. For the earnings variable,

we use income before extraordinary items, IB. Following the accounting identity equation

(equation 9), we choose these 10 items because IB is defined by these 10 items (Ball et al.,

2015).

IB ≡ REV T − COGS − SGA−XRD −DP

−XINT − TXT +NOPI + SPI −MII. (9)

The IB line items are the primary standardized components of income as reported in

Compustat; total revenues, REV T , cost of goods sold, COGS, sales, general, and admin-

istrative expenses, SGA, research and development expense, XRD, depreciation expense,

DP , interest expense, XINT , non-operating income, NOPI, income tax expense, TXT ,

special items, SPI, and minority interest, MII.8

Using major line items from the income statement for our implementation of equation 3,

7We also note that because latent risk factors are mutually orthogonal, the covariance output such as
COV (γ̂c, γ̂j) is inherently a function of the variance of one or more common latent factors to which the
exposure NIc and NIj both proxy for.

8Ideally, we would be able to separate investment specific income components of the income statement
that could be applied to the cross-section of companies. However, because general purpose financial reporting
summarizes reporting into aggregate numbers, we use the disaggregated version that applies to the largest
set of companies.
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we use the following empirical model.

∆IBi,t+1 = αt + γ1REV Ti,t + γ2COGSi,t + γ3SGAi,t + γ4XRDi,t + γ5DPi,t

+ γ6XINTi,t + γ7NOPIi,t + γ8TXTi,t + γ9SPIi,t + γ10MIIi,t + ϵi,t+1 (10)

We impute zero for missing earnings component variables except for REV T to allow for

a maximized sample size when estimating the γs from equation 3.9

We begin by estimating yearly cross-sectional models given by equation 10. These cross-

sectional models give yearly estimates of the γs. From the historical γs we create a rolling

window variance-covariance matrix.10 Following equation 8, we combine year t earnings

components with the variance-covariance matrix of past cross sections of estimated γs to

deliver the measure V AR( ̂∆NIi,t+1), and we use the square root of this firm-year estimate

as our measure of systematic risk, σ. Note that for each yearly variance-covariance matrix,

we only utilize cross sections before year t to avoid a look-ahead bias.11

2.2 What is the risk that σ represents?

Developing σ above, we show how our measure captures systematic risk. An important

question is what is the risk that σ captures. We begin the discussion of what σ measures by

describing how σ captures multi-factor risk. We then develop some intuition about σ and

later turn to empirical descriptions of what σ captures.

An important point is that only under some specific conditions can we take the summary

number from the income statement to calculate the same systematic risk as captured by σ.

9We recognize that imputation may introduce noise into the data especially when companies intentionally
avoid reporting information such as R&D expenses (Koh and Reeb, 2015). To remedy this, we perform a
robustness test in which we require the absolute difference between reported IB and calculated IB using
imputation (both unscaled) to be no greater than 0.01% (i.e., ≤ $100) to ensure that imputation does not
cause material bias. Our inferences remain unchanged, tabulated in column (4), Table A5.

10To ensure that the historical variance-covariance matrix captures meaningful variation, we require his-
torical variance-covariance matrices to contain at least 10 years of γs.

11For example, with a firm’s earnings components in 1998, we use and only use the γs from 1997 and
before when forming the variance-covariance matrix of γs.
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In other words, the following inequality holds true in all other conditions, in which γNI is

obtained by regressing ∆NIi,t+1 on NIi,t as a summary measure in each cross section.

σ2 = V AR( ̂∆NIi,t+1) ̸= [V AR(γNI)NI2] (11)

To expand the last term, NI2 could be restated in a familiar format, for example (REV −

EXP )2 = REV 2 + EXP 2 − 2REV × EXP , so that V AR(γNI)NI2 can be rewritten as:

V AR(γNI)NI2 = V AR(γNI)REV 2 + V AR(γNI)EXP 2 − 2V AR(γNI)REV × EXP (12)

Comparing equation 12 and 8, we notice two major distinctions that result in the in-

equality in equation 11. First, the variances of the different risk factors γ̂cs of equation 8 can

be different (V AR(γ̂c)) while the variances of equation 12 are the same (V AR(γNI)). This

implies that a feature of σ is that it potentially captures multiple risk factors with different

levels of historical volatility.

Second, the last part of equation 12 contains a negative component , −2V AR(γNI)REV ×

EXP . This term seemingly resembles the covariance terms in equation 8, which can be writ-

ten as 2COV (γREV , γEXP )REV×EXP . To make these two terms equal, COV (γREV , γEXP ) =

−V AR(γNI) must hold as a necessary but insufficient condition for the two sides of equation

11 to be equal. This illustrates that using the summary net income number to calculate

variance imposes the assumption that the covariance between the γs of REV and EXP must

be negative and that the negative covariance must have a specific magnitude. Because we

do not impose such assumptions in calculating an ex ante standard deviation of earnings

changes using multiple earnings components (as opposed to using one summary measure of

earnings), another feature of σ is that it allows different state variables represented by γ̂cs

to have an empirically determined covariance, which can help uncover risk information from

component interactions (e.g., hedging).

The primary intuition we gain from this discussion is that σ captures the effects of a firm’s
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exposure to multiple risk factors in a way that cannot be easily summarized by a single factor

measure except under a specific set of circumstances. We can use the intuition from this

discussion to ask when might our cross-sectional measurement approach capture information

that is not captured by a single factor or time-series risk-exposure estimation. First, because

accounting time series models typically must rely on short time series, the number of factors

that can be considered simultaneously is limited and is typically a single factor. This means

that if risk is multi-factored, our measure will capture systematic risk exposure not captured

by time series models. Second, aggregated income assumes an equal importance of different

line item related risk factors and will not capture instances where companies are exposed in

varying degrees to different risk factors. Third, time series models assume that risk exposure

is constant over the estimation window while our approach measures exposure at a point-in-

time. If risk exposure is time varying, our measure will capture risk exposure information

incremental to other measures.

The complex nature of multi-factor risks in equation 8 makes developing intuition about

what the risks are that σ captures difficult. As discussed above, earnings volatility depends

on individual risk factors as well as the covariance structure of those risk factors. In addition,

the aggregate nature of financial reports also presents challenges. If in equation 1 the assets

were separable and independent, then we would expect γ to be an estimate of the required

return for each separate asset. However, the assets are not independent and the regressors

do not directly map onto individual assets. For example, revenues from low risk projects are

mingled with revenues from high risk projects and different line items can contain different

product mixes. Because of these challenges, we believe that the best that we can do is to

form some interpretations about the marginal effect on a firm’s required return conditional

on the other regressors and factors in the model.

Given the caveats above, we describe some expectations about the γs based on the

marginal changes in risk exposure line items represent. Even though aggregate general

purpose financial reporting does not typically provide project or investment specific balance
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sheet and income statement numbers, income records the exchange of high risk for low

risk assets (Penman and Zhang, 2019). This means that higher levels of revenues represent a

greater addition of low risk assets in exchange for high risk assets and therefore also represent

a marginal reduction in risk. This is equivalent to a lower expected return. On the other

hand, expenses represent the use of low risk assets in exchange for relatively higher risk

future cash flows. Therefore, we expect a negative γ on revenue items and a positive γ on

expense items.12 Despite the expected effect of collecting or using low risk assets, the total

effect on a company’s expected earnings volatility depends on the resulting mix of assets and

the degree to which the assets add risk and/or result in hedges against other risk factors.

We return to this discussion when we later describe empirically some of the features of these

risks and in particular the empirical variance-covariance matrix of the γs.

3 Literature Review

Most related to our study, prior research develops approaches to measuring uncertainty or

total risk in earnings. Donelson and Resutek (2015) use a non-parametric matching design

to extract an earnings uncertainty measure that is distinct from a firm’s historical earnings

volatility. They find that uncertainty rather than volatility is associated with analysts’ opti-

mism and lower future stock returns. Konstantinidi and Pope (2016) and Chang et al. (2020)

use quantile regressions to extract the higher moments of the distribution of future earnings

(e.g., dispersion, skewness, and kurtosis) and show that these moments are associated with

equity and credit risk measures. Other research finds that analysts can assess a firm’s funda-

mental risks as reflected in the dispersion of their target price scenarios (Joos et al., 2016).

We contribute to this literature by developing a measure of the expected systematic variation

in earnings and show that the systematic variation in earnings is positively associated with

expected returns. The positive association with returns suggests that investors require a

12The negative expectation for revenue items comes from the multiple regression interpretation where
holding constant the effects of the expense items, revenue items have a lower required return.
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higher return for earnings volatility driven by systematic risk.

Some research argues that accounting should be a primary source of information about

a company’s risk (Chang et al., 2020; Farrelly et al., 1985). For example, Beyer and Smith

(2021) show that conditional on the market state, investors can learn indirectly about a

company’s risk exposure from reported earnings. The recognition that accounting reports

should convey systematic risk information to investors has a long history and has generated

a handful of approaches to extracting risk information from reported accounting numbers

(Beaver et al., 1970; Beaver and Manegold, 1975; Bowman, 1979; Ellahie, 2020; Nekrasov

and Shroff, 2009; Ryan, 1997). A few recent studies use a similar motivation but alternative

measurement approaches such as Ball et al. (2021), Ellahie (2020), and Nekrasov and Shroff

(2009). For instance, Ellahie (2020) shows that earnings betas constructed from analyst earn-

ings forecasts predict future returns better than those constructed from historical earnings,

presumably because analyst forecasts include analysts’ forward-looking information.

Other research proposes that accounting information or other firm characteristics can

reflect a firms’ exposure to risk. Berk et al. (1999) design a dynamic model, in which a firm

updates its risk exposure by taking on new projects, with each project having varying risk

exposure (i.e., they bear cash flow shocks that covary with the interest rate shocks differ-

ently). Kogan et al. (2021) proposes that higher profitability companies are more exposed to

systematic risk because they have lower operational hedging. Most related to our empirical

approach, Fama and French (2020) estimate risk factors from cross-sectional regressions by

treating firm characteristics as exposures to risk factors and find that these estimated risk

factors better capture variation in returns than time series factors. We contribute to this

research by showing that earnings are a natural measure of risk exposure and create a mea-

sure of systematic variation in earnings using cross-sectional regressions that treat earnings

line items as exposures to systematic risk.
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4 Data and descriptive statistics

Our data begins with annual financial information from Compustat. We require observations

to have positive total assets, total equity, and revenue.13. All firm-year variables are trimmed

at the top and bottom 1% within each yearly cross section (Ball et al., 2015; Ellahie, 2020).

After trimming the variables, we standardize income statement items to have zero means and

unit standard deviation to make the estimated factors comparable. We merge Compustat

data with monthly stock returns and prices from CRSP for stocks listed on major U.S.

exchanges (NYSE, AMEX, NASDAQ). Monthly returns are from June to May beginning the

year after the fiscal year end and include delisting returns (Donelson and Resutek, 2015).

We also calculate other measures of earnings uncertainty, earnings beta, and macro-economic

variables. The variables are defined in table A1 in the appendix.

The steps to prepare for the changes in earnings regressions (equation 10) leave us with

327,957 firm-year observations for the years 1950 through 2019. Table 1 presents a summary

of the firm-year data and financial variables. Panel A shows the number of companies by

fiscal year. The number of companies increases from 449 in 1950 to approximately 5000

in 2019 with the largest number of companies in the mid to late 1990s. Panel B provides

descriptive statistics before standardization for the income statement variables that are used

to calculate σ.

Panel C presents a Pearson correlation matrix for the income statement variables. Some

of the correlations among the line item variables are large. The correlation between REVT

and COGS is 94.9% and the correlation between REVT and SGA is 58.7%. While the high

correlations should not introduce bias to our estimates of γ, they may introduce instability

to the estimates, which may affect our estimates of σ (Wooldridge, 2015). In robustness

tests, we repeat our main tests calculating σ after removing the most correlated line items,

COGS and SGA, and find similar results, tabulated in column (2) and (3) of table A5.

13We require positive total equity because we follow Ball et al. (2015) by using a natural log of book-to-
market ratio (BEME), in which the ratio has to be positive.
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The first step for creating σ is to estimate yearly cross-sectional regressions of equation

10. Summary information about the coefficients from these yearly regressions are displayed

in table 2, while the comprehensive table of all coefficients across all sample years is in table

A2 in the appendix. Panel A shows the summary statistics for the estimated γs. The mean

of the yearly coefficients are similar to the coefficients that would be estimated for the pooled

sample. As expected and discussed in section 2.2, the mean sign of the coefficients are mostly

negative for revenue items and positive for expense items. This is consistent with line items’

effects on cash balances and therefore their marginal effect on the riskiness of a company’s

asset mix.14

The absolute magnitudes of the coefficients are generally larger for items higher on the

income statement, i.e. REVT, COGS, SGA. Similarly, the standard deviations of the coef-

ficients are larger for line items higher on the income statement. The importance of these

higher line items in determining future changes in earnings may reflect the idea that higher

line items are more economically informative than lower line items (Ball et al., 2015; Novy-

Marx, 2013). However, the larger magnitudes and stronger significance of higher line items

should not imply that lower line items will not contribute to the risk measure, because the

Fama-MacBeth t-statistic has an absolute magnitude over 3 for each line item, including

the lower line items. This suggests that over the entire sample period, every line item, on

average, has a statistically significant systematic relation with changes in earnings, further

implying that every line item can be a reasonable proxy for underlying risk exposures.

Panel B gives the variance-covariance matrix for the full panel of γ estimates that rep-

resent the matrix used when calculating σ. γREV T is negatively correlated with γCOGS and

the γs for the other major expense line items (SGA, XRD, DP, XINT, TXT). To understand

14One explanation is that our cross-sectional regression coefficients capture mean reversion in earnings
where higher levels of revenues are more likely to have earnings declines in the future and higher levels of
expenses are more likely to have earnings increases in the future. We would argue that mean reversion
represents one source of risk that extreme earnings represent. If the risk of mean reversion is related to
systematic risk factors, then some firms should have varying exposures to these factors and the risk should
be priced. However, if mean reversion without systematic risk were the primary driver of these regression
results, we would expect the coefficients on line items with the strongest mean reversion (e.g. SPI) to have
the largest coefficients.
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the connection between the mean γREV T and the mean of expense related coefficients, e.g.

γCOGS, we discuss the variances and covariances of these terms. The variance of γCOGS is

among the largest of the γs (58.3) but is smaller than the variance of γREV T (83.8). Thus

the main effect of the the γs on REV T and COGS are to significantly increase the variance

of changes in earnings with γCOGS being less than γREV T . As discussed earlier, expenses

exchange low-risk assets, cash, for higher risk expected future cash flows. This intuition is

most obvious when considering expenses such as advertising or research and development.

Expenses (e.g. COGS) increase the exposure to a high risk factor (γCOGS). However, the

covariance between γCOGS and γREV T is negative and the largest of all of the covariances

(−69.8). In risk factor terms, γREV T partially hedges the risk in γCOGS, or equivalently,

γCOGS partially hedges the risk in γREV T . γREV T also hedges the risk in the other expense

γs, but the effectiveness of the hedging is lower (i.e. weaker negative covariances). The total

effect on a firm’s expected variance depends on the mix of its exposures and the variance-

covariance matrix. The benefit of σ is that it is designed to capture these complicated

combinations of effects.

As a whole, panel B demonstrates that many covariances of γs are far from zero. We

note the largest magnitude γs reported in panel A are also the γs with the largest variances

and covariances in the variance-covariance matrix presented in panel B. This means that

the γs captured from the cross-sectional regressions are not independent, the magnitudes

depend on the correlation structure of the coefficients, and therefore the covariance terms in

equation 8 are important in determining the variance of expected changes in earnings.

We provide an example of how the variances and covariances are combined with line

items as well as how they impact the output σ values in the appendix table A3. In this

table, for simplicity, we focus on the intercept, γREV T , and γCOGS. Equation 8 is a matrix

operation that produces the output measure σ, which is the matrix product of a vector of

net income line items, the variance-covariance matrix of γs, and the transposed vector of

net income line items. In case 1 of table A3 (panel C), when firm A has one unit of REV T
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and 0.5 units of COGS, the output σ equals 26.972; In case 2 (panel D), when firm B has

one unit of REV T and 0.9 unit of COGS, the output σ equals 5.327. Contrasting these two

cases, we note that more closely matched COGS and REV T decreases firm B’s risk. The

importance of COGS is consistent with the view that sales and variable production costs

hedge against each other when a systematic shock occurs (Kogan et al., 2021). Empirically,

this is supported by the large magnitude of the negative covariance between the γs for REV T

and COGS. Thus, while the marginal effect of COGS is to increase risk by exchanging low

risk for high risk assets, COGS and REV T also interact to decreases risk, implying that

the covariances of the factors are essential for understanding how individual line items work

together to contribute to expected volatility.

In panels C and D of Table 2, we describe the correlations between the estimated γs and

13 macro variables used in prior research to capture systematic factors. These factors include

growth in industrial production (∆IP ), growth in durable goods (∆DG), non-durable goods

(∆NGD), and service (∆SG) (Baker and Wurgler, 2007); growth in GDP (∆GDP ); five

factors including the market premium (Mkt rf), SMB, HML, RMW, and CMA (Fama and

French, 2015); and the change in the federal funds rate (∆FFO), the spread between long

and short interest rate (∆Term), and the spread between low-grade bonds and long-term

government bonds rate (∆Sprd) (Chen et al., 1986).

The Pearson correlations between the realized γs and the macro factors are presented in

panel C. We do not develop ex ante expectations for the signs of the correlations between γs

and the macro variables.15 Creating predictions about the correlations between the discount

rates for line item related factors and macro factors is challenging. However, the γs can

also be interpreted as market aggregates that more closely resemble accounting aggregate

ratios from prior research (e.g. Ball et al., 2021). We explain this interpretation in the

appendix. With this interpretation, we expect the γs to be associated with macro variables

built on measures of earnings growth. The correlations in panel C reasonably reflect these

15Prior research notes the challenge of developing ex-ante expectations for macro variable premia (Chen
et al., 1986).
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expectations. γREV T , γCOGS, and some of the other γs are correlated with ∆SG, Mkt rf ,

RMW , and less significantly, but also with ∆IP and ∆NDG.

Panel D provides the R-squared values from regressing the time series of the γs on the

13 macro factors. The macro factors explain over 50% of the variation in γREV T , γCOGS,

γSGA, and γSPI . While not conclusive, panels C and D provide some evidence that the line

item related factors we are capturing with the γs are measuring variation that is shared,

at least in part, with macro factors used in prior research, suggesting that at least some of

the estimated γs recover factors that are used in prior research. These panels also provide

evidence that the risk composition captured by σ is complex and could be incremental to

the risk factors from prior research.

We use the income statement line items and the historical variance-covariance matrix of

γs available before the year of the income statement line items to calculate the standard

deviation of expected changes in earnings for each firm-year. For instance, for income state-

ment line items in 1998, we use the variance-covariance matrix of γs calculated from 1950

to 1997 to form σ.

We then combine our annual financial information including σ with monthly returns and

other variables that have been used to explain the cross-section of returns. For the main

analyses, we require an observation to have non-missing characteristics used for control

variables: SIZE, BEME, ret1 (short-term momentum), and ret12,2 (long-term momentum).

We also require at least 10-years of historical γ coefficients to calculate the expected variance,

so that we have a total of 214,904 firm-years and 2,478,383 firm-months for the main analyses,

starting from 1960. In some of our analyses, the sample size changes with the availability of

other control variable.

Table 3 provides the summary statistics for the firm-month data set. Panel A presents the

variables we use in the main analyses and other comparable measures of earnings uncertainty,

volatility, and risk. The summary statistics of return variables are similar to those in prior

papers such as Ball et al. (2015). σ has a mean value of 0.016 and standard deviation
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of 0.015. While moving from the first quartile to the third quartile, σ increases by 0.007,

moving from the third quartile to 99th percentile, σ increases by 0.065, suggesting that σ is

right skewed. OP has a mean value of 0.117 and IB has a mean value of 0.016, and their

distributions are similar to Ball et al. (2015) and Ball et al. (2016). βCAPM has a mean value

close to one. Other variables, including EU, IQR, βWealth, βTFP , and βAnalyst, are similar

to the variables calculated in Donelson and Resutek (2015), Konstantinidi and Pope (2016),

Ball et al. (2021), and Ellahie (2020).

Panel B gives the correlation matrix for σ and firm characteristics that have been used

to explain the cross-section of returns and other measures of total risk and systematic risk

exposure. These firm characteristics include SIZE, BEME, short-term momentum (ret1),

and long-term momentum (ret12,2) (Ball et al., 2015; Ellahie, 2020; Novy-Marx, 2013). σ is

negatively associated with SIZE, suggesting that companies with lower market capitalization

are more risky as measured by σ. σ is also positively correlated with measures of historical

earnings volatility (σ(∆IB) 0.250), earnings uncertainty (EU 0.113), earnings dispersion

(IQR 0.692), CAPM (βCAPM 0.159) and earnings beta (βAnalyst 0.009). These correlations

are consistent with σ capturing certain aspects of risk, earnings volatility or earnings uncer-

tainty.

σ is negatively correlated with BEME (−0.211), OP (−0.242), βWealth (−0.036) and βTFP

(−0.005). These correlations are opposite to the sign that prior research has found between

these characteristics and returns (Ball et al., 2021; Fama and French, 2015). They suggest

that σ may in part capture something different, potentially about risk, from these firm

characteristics. We also include IB, which is the summary number from which we extract

income components when calculating σ. σ is also negatively correlated with this income

measure.

Panel C presents summary information about the firm-level autocorrelation in σ. In the

first row, we restrict the sample to firms that have at least 10 years of observations (7,707

unique firms). The median auto-correlation of σ is 0.295. When we sequentially examine
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firms that have at least 20, 30, and 40 years of observations, the number of unique firms

drops while the median auto-correlation increases, suggesting that a firm’s time-varying σ

measure is moderately persistent, and that persistence of σ increases with firm age. This

observation suggests that a mature firm’s risk composition, measure by σ, is less variable

over time, while a young firm may change its risk composition more frequently and have

more time-varying risk exposures.

Panel D complements the descriptive information of individual γs and macro variables

in Table 2 by describing the association between average σ by year and the same macro

variables. Average σ is negatively associated with growth related macro variables: ∆DG,

∆NGD, ∆SG, and ∆GDP . An interpretation for these correlations is that during an

economic downturn, e.g. a decline in GDP , average risk is higher than during expansionary

periods. In the last cell, we show the R-squared of regressing annual average σ on 13 time-

series of macro variables, and the R-squared is 0.713, suggesting that annual average σ is

explained by macroeconomic variables to a great extent.

Panel E provides the frequency with which companies in the Fama-French 12 industries

are ranked into quintiles of σ. Companies in some industries are more frequently ranked into

the top or the bottom quintiles. For example, 57.07% of utility company-years are ranked

in the lowest quintile of σ and more than 80% are in the lowest two quintiles; similarly,

companies in the finance sector also have over 70% of observations ranked in the lowest

two quintiles. Utilities and finance companies are more likely to have line items that hedge

risk. For example, utilities may earn revenues as a margin over costs and finance companies

may have hedging instruments and closely hedged costs and revenues. Companies in the

Business Equipment, Healthcare, and Other are more frequently in the top two quintiles.

These higher risk industries are arguably a set of industries with high exposures to new

innovations, changing demand, and other systematic risks.(Donelson and Resutek, 2015).
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5 Results

To test whether σ captures meaningful information about systematic risk that is reflected

in asset prices, we follow empirical methods that are common in prior research (Ball et al.,

2015; Chang et al., 2020; Donelson and Resutek, 2015; Ellahie, 2020; Fama and French, 1993,

2006, 2015). We describe the tests and the results in this section.

5.1 σ and future fundamental risk

Before turning to systematic risk, we test whether σ provides an ex-ante signal of total

fundamental risk as measured by future absolute changes in earnings and the standard devi-

ation of future changes in earnings. Prior research finds that higher moments of forecasted

earnings provide an ex-ante signal about fundamental risk (Chang et al., 2020; Konstantinidi

and Pope, 2016). Table 4 panel A sorts companies each year into quintiles by σ. While the

association is not monotonic, the high σ portfolios have significantly higher absolute changes

in IB and higher standard deviations in changes in IB.16

One possible explanation for the higher future fundamental risk for high σ portfolios is

that this result is driven by the association between σ and prior fundamental risk. Panels

B and C address this explanation by sorting companies independently on σ and historical

earnings volatility, σ(∆IB). Panel B provides the mean absolute value of changes in IB for

the two-way sorted portfolios and panel C provides the future standard deviation of changes

in IB for these portfolios. The results show that for higher quintiles of σ(∆IB), increasing

down the column from the lowest to highest quintile of σ, fundamental risk increases mono-

tonically. For panels B and C, across all quintiles of σ(∆IB), the portfolio with the highest

16Similar to the interpretations in Bali et al. (2011), we attribute the non-monotonicity to the skewness
of σ. Shown in the first column of Table 4, in higher quintiles of σ, the variation in σ is larger, while in the
lower quintiles, variation in σ is more limited. Specifically, mean σ increases from 0.017 to 0.034 from the
fourth quintile to the fifth quintile; however, mean σ increases from 0.008 to 0.010 and from 0.010 to 0.013
from the first quintile to the second and from the second to the third. When we sort σ each year into the
following five buckets of percentiles in order to achieve comparable differences in average σ across sorts: [P0,
P60], [P60, P70], [P70, P80], [P80, P90], and [P90, P100], the increases in the response variables of panel A,
B, and C of table 4 are monotonic, except for column 2 of panel C.
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quintile of σ has a fundamental risk measure that is significantly greater than the lowest

quintile.

In Panel D, we formally test if σ is a reasonable proxy of a firm’s expected variance of

earnings change. We regress the realized absolute value of unexpected changes in earnings,

which is the absolute difference between realized changes in earnings and the predicted

change in earnings following equation 9, on σ. If σ is a reasonable proxy for volatility in

earnings changes, we expect σ to have a positive regression coefficient. In column (1) of

Panel D, we use a pooled regression specification and in column (2), we use a panel linear

regression that controls for firm and year fixed effects. In both specifications, σ is positively

associated with the realized absolute unexpected change in earnings. The coefficient is near

one with fixed effects, suggesting that σ captures volatility in earnings changes.

5.2 σ and future systematic risk exposure

Table 4 provides evidence that σ and total fundamental risk are positively associated. Next,

we turn to σ as a leading indicator of future systematic risk. As shown previously, σ is

positively associated with contemporaneous measures of exposure to systematic risk, βCAPM .

If σ captures time varying exposure to systematic risk, we expect σ to anticipate future

risk exposures. In Table 5, we sort stocks each year into quintiles by year t βCAPM and then

within each βCAPM quintile, we sort stocks into quintiles by σ. Table 5 presents the mean

βCAPM one year (panel A), two years (panel B), and three years (panel C) after the ranking

year.

Because the results in each panel are similar, for exposition we focus on panel A. Moving

from left to right for each row shows that sorting on βCAPM in year t also sorts stocks into

portfolios that have increasing βCAPM in year t+1, t+2, and t+3. In the middle quintile, the

mean βCAPM is approximately equal to 1. In the lowest quintile, βCAPM is between 0.371

and 0.684 depending on the σ quintile and horizon. This means that on average, βCAPM

tends to be positive. βCAPM in the highest quintile is closer to 2 than to 1. Moving from
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top to bottom for each column shows that the highest quintile of σ has a significantly higher

future βCAPM than the lowest σ quintile. However, similar to what we observe in Table 4,

the association between σ and βCAPM is not monotonic for any but the highest quintile of

βCAPM , which we attribute to the highest quintile of βCAPM capturing the right skewness

of σ, and the limited variation of low quintile σ among the lower quintiles of βCAPM .17 In

general, this table is consistent with σ providing a leading indicator of future βCAPM that is

incremental to the contemporaneous βCAPM .

5.3 σ and the cross-section of returns

In this section, we follow prior research that tests the pricing of earnings volatility and

systematic risk measured from earnings (Ball et al., 2021; Chang et al., 2020; Donelson and

Resutek, 2015; Ellahie, 2020). σ may be associated with expected returns for two reasons.

First, if σ captures a higher positive exposure to systematic risk as suggested by the results

in the previous section, then σ should be positively associated with the risk that investors

price (Ball et al., 2021; Ellahie, 2020). Second, investors may also directly price earnings

uncertainty that is driven by systematic risk and this may differ from idiosyncratic or total

uncertainty (Chan et al., 2001; Donelson and Resutek, 2015).

5.3.1 Portfolio sorts

We first sort stocks into five portfolios by ranking σ within each fiscal year and then calculate

the equal weighted and value weighted portfolio monthly returns for the 12-month period,

starting from June after the current fiscal year end to May the next year, for each of these

portfolios. Table 6 presents these results.

Panel A provides the raw equal and value weighted portfolio returns for sorts into quintiles

17Again, we sort σ in each year into the following five buckets of percentiles in order to reach to comparable
differences of average σ across sorts: [P0, P60], [P60, P70], [P70, P80], [P80, P90], and [P90, P100]. In
untabulated analyses, the increases in the response variables of panel A, B, and C of Table 5 are monotonic,
except for column 2 and column 3 of panel A, column 3 of panel B, and column 3 of panel C. The differences
between the high and low groups are all statistically significant at 0.01 level.
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based on σ. For the equal and value weighted portfolios, the mean portfolio return increases

from the lowest to the highest quintile portfolio. The increase in returns is monotonic.18 The

hedge portfolio return is significantly greater than zero and economically significant with a

monthly (annualized) return for the equal weighted portfolio of 0.300% (3.6%) and for the

value weighted portfolio 0.673% (8.4%).

To test whether σ contains information incremental to other systematic risk factors, we

then regress the portfolio returns on a four factor model (Carhart, 1997; Fama and French,

1993).19 Panel B presents the results when sorting by σ into quintiles. Following other papers

(e.g., Bali et al., 2011; Ball et al., 2015), we repeat the analysis by sorting into deciles, and

the results are in panel C.

α is the intercept for the time series portfolio return regressions. In each specification

(equal weighted and value weighted, quintiles and deciles), α generally increases from the

portfolios with the lowest σs to the portfolios with the highest σs. The increase is gen-

erally monotonic, and the αs from the hedge portfolios are significantly positive, ranging

from 0.422% monthly to 0.953%. These monthly return magnitudes translate to annualized

returns ranging from 5.2% to 12.1%, which are similar to those in prior research studying

different factors (Fama and French, 1995).

The significant hedge portfolio αs show that σ captures risk information that is incre-

mental to the risk factors included in the model. However, coefficients on the included risk

factors also show that ranking on σ ranks on sensitivity to other risk factors.

In table 7, we examine the potential non-linear effects of σ and other risk factor variables

by first sorting on the other firm characteristics and then on σ. Sorting on σ within each

quintile of SIZE, BEME, and ret12,2 creates a significant hedge portfolio return. However, the

magnitude of the hedge portfolio return varies across some of the characteristic portfolios.

For example, the hedge return is the largest for firms in the mid quintile of SIZE. The

18At the same time, we also notice that the increase of future returns from the first quintile to the second
is much less than the increase in future returns from the fourth quintile to the fifth quintile of σ, again,
consistent with lower variation in lower quintiles of σ.

19We repeat the same test with alternative factor models in the appendix, tabulated in Table A4.
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hedge portfolio return is the largest for the lowest quintile of ret12,2. There appears to be

an interaction with ret12,2 in that the hedge portfolio return from sorting on ret12,2 is the

largest for firms in the lowest quintile of σ.

5.3.2 Fama-MacBeth regressions

Following prior research, we estimate monthly cross-sectional regressions and summarize the

monthly coefficient estimates (Fama and MacBeth, 1973). To demonstrate σ’s ability to in-

crementally explain returns, we add variables that capture other aspects of earnings volatility,

earnings uncertainty, earnings dispersion, and earnings sensitivity in different specifications

(e.g. Ball et al., 2021; Dichev and Tang, 2009; Donelson and Resutek, 2015; Konstantinidi

and Pope, 2016).

In panel A, we contrast σ with other measures that capture the second moment of earn-

ings. In column (1), panel A of table 8, we present the baseline results from the model

including σ and control variables from prior research: SIZE, BEME, short momentum (ret1)

and long momentum (ret12,2) (e.g. Ball et al., 2015; Ellahie, 2020; Novy-Marx, 2013). Simi-

lar to the portfolio tests, σ is strongly positively associated with the cross-section of returns

after controlling for other firm characteristics. The coefficient has a magnitude of 0.221,

which translates to a 0.43 basis point monthly return when σ moves from the first decile

value (0.0079) to the tenth decile value (0.0272). This is equivalent to an annualized return

of 5.3%, close in magnitude to the equal-weighted quintile sort in excess returns (table 6).

As a benchmark, the same calculation for BEME yields a 0.63 basis point monthly return

(7.9% annualized).

Columns (2) through (5) of panel A present models that include other related measures

of volatility or uncertainty.20 Column (2) presents the results from including a measure of σ

20The number of observations differs across the columns because the alternative variables have different
data requirements. Specifically, column (2) requires non-missing IB; column (3) requires at least 2 years of
observations of a firm to calculate its historical volatility of earnings changes; column (4) requires at least
2 years of observations of a firm to calculate earnings changes, and each firm must have peer firms that
match with its past earnings attributes following the criteria set in Donelson and Resutek (2015); column
(5) requires cash-flow data, which are unavailable before 1988.
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using only the summary income number, income before extraordinary items, rather than the

individual line items when calculating σ. While the coefficient on σIB is significant before

adding σ (untabulated coefficient of 0.294 and t-statistics of 4.58), the coefficient on σIB is

not significant after adding σ, as shown in column (2). This is consistent with our discussion

in section 2.2 that the multi-factor information captured by σ is important. Specifically,

it suggests that factor volatilities are not equal, that the covariances are not the same as

what is imposed by using the summary income number, and that these two features of σ are

important for capturing systematic risk.

Column (3) includes the historical volatility of earnings. The coefficient is insignificant.

Other papers, such as Frankel and Litov (2009), have shown that historical volatility of

earnings (σ(∆IB)) is not priced. Column (4) includes the earnings uncertainty measure,

EU, from Donelson and Resutek (2015). Consistent with the findings in Donelson and

Resutek (2015), the coefficient is significantly negative. However, σ remains significantly

positive, suggesting that these measures capture different aspects of investors’ learning about

future earnings. Column (5) includes the earnings dispersion measure from Konstantinidi

and Pope (2016), IQR. The earnings dispersion measure is negatively associated with future

returns, supporting the positive price premium associated with higher total expected earnings

variance in Chang et al. (2020). σ again remains significantly positive.

Panel B repeats the regressions in panel A with measures of the level of earnings and

systematic risk sensitivity measures (e.g. Ball et al., 2015, 2021; Ellahie, 2020). Column

(1) is repeated from panel A for reference. Again, in all columns, σ is strongly positively

associated with the cross-section of returns after controlling for other firm characteristics.

Columns (2) through (6) of panel B present the models that include each of the measures of

earnings or risk in earnings.21

Column (2) presents the results from including the mean forecast that parallels our

21The number of observations differs across the columns because the alternative variables have different
data requirements. Specifically, column (3) requires non-missing IB; column (4) requires non-missing OP;
column (5) requires analyst forecasts from IBES; column (6) requires Compustat variables OIADP and
PDVC.
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calculation of σ. ∆̂IB is the mean forecasted changed in income using equation 10. The

coefficient is significant without σ (untabulated coefficient of 0.211 and t-statistics of 3.29),

but becomes insignificant after adding σ to the model. This suggests that the variance-

covariance matrix of γs contains richer information than the mean γs for capturing the risk

in σ that is associated with expected returns, and σ subsumes the predicting power of the

first-moment estimates. Columns (3) and (4) include measures of the level of income because

prior research finds that measures of earnings are associated with the cross-section of returns

(Ball et al., 2015; Novy-Marx, 2013). The coefficients on the income measures are positive.

However, the coefficient on σ remains significant.

Columns (5) and (6) include risk sensitivity measures derived from earnings time series

regressions (Ball et al., 2021; Ellahie, 2020). In column (5), βAnalyst is positively associated

with returns and in column (6), βWealth is positively associated with returns.22 In both

columns σ remains significant. Notice that in column (5), the number of observations is

significantly lower because the tests require analyst forecasts.

Together in panels A and B, our results show that σ captures meaningful and incre-

mentally important information about systematic risk that helps explain the cross-section

of expected returns incremental to other measures of expected returns, earnings risk, and

uncertainty.

5.4 Additional tests

In this section, we evaluate the robustness of the main results and conduct additional tests

that provide insights into the risk that σ captures.

5.4.1 σ and returns without analyst coverage

One benefit of σ is that it can be calculated for stocks without a long time-series of data,

without stock returns, or without the analyst data required for forecast-based measures of

22In untabulated analysis, without σ in the model, both βWealth and βTFP positively predict future returns.
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risk (Ellahie, 2020). To test whether the usefulness of σ is limited to the sample with analyst

coverage, we split the sample into observations with and without analyst coverage. Table

9 panel A presents these results. σ is statistically significant and of similar magnitudes for

both subsamples, and the differences across the two groups are insignificant.

5.4.2 σ and firm age

Since we argue one benefit of σ is that it can be calculated without a long firm specific

time series, we examine if σ can predict returns on a sample of firms that have a short time

series. Column (1), Table 9 panel B presents the results. σ is statistically significant and of

particularly high magnitude for firms that show up in Compustat for the first time. We then

split the original sample into young firms that are less than 5 years old and firms that are

greater than 5 years old, with age being calculated as the number of years that a firm has

data available in Compustat. Column (2) and (3) of Table 9 panel B present these results.

σ is statistically significant for both subsamples, and σ has a significantly higher magnitude

among younger firms particularly for firms that enter Compustat for the first time, which

implies that future returns of a young firm are more sensitive to σ.

5.4.3 Transaction costs

Many firm characteristics are no longer associated with the cross-section of returns after

controlling for transaction costs, raising the possibility that the characteristics result from

mispricing and only exist when arbitrage is limited (Hou et al., 2015). If σ captures risk

that is unrelated to arbitrage costs, we would expect it to be associated with returns even

outside of costly-to-arbitrage stocks. Table 9 panel C presents the resutls from subsamples

of stocks that represent higher or lower transaction costs. Column (1) is for micro cap stocks

that should have the highest transaction costs. Columns (2) and (3) remove microcap stocks

or stocks with prices lower that $5. σ is statistically significant in all three subsamples.

Perhaps surprisingly, σ performs better among the subsamples that have lower transaction
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costs, as the coefficients between the micro-cap firms and the all-but-micro-cap firms (non-

penny stock firms) are statistically different. These results suggest that the ability of σ to

predict returns is not driven by limits to arbitrage.

5.4.4 Level of operating profitability

As we discuss in section 2.2, σ is different from the variance of net income. An important

reason that σ captures incremental information about risk is that σ captures time varying

and multi-factor risk. We therefore turn to testing the information contained in σ by creating

subsamples of companies that are likely to vary by their exposure to time varying, multi-

factor risks. To first capture variation in companies’ exposure to time varying, multi-factor

risk, we use operating profitability and split the sample into companies with high versus low

operating profitability. In the next section, we consider the effect of recessionary periods.

Operating profitability may be associated with time varying, multi-factor risk exposure

for several reasons. First, when expenses represent a larger portion of income (subtracting

from revenues), these companies with poor performance are more likely to change course

and invest in different ways and in riskier projects (Hemmer and Labro, 2019; Miller and

Friesen, 1983). Second, early stage companies with low profitability often have expenses

that require high risk investments such as advertising and marking expenses or research and

development expenses. Together, we expect that low profitability companies are exposed to

a wider variety of risk factors than high profitability companies and therefore that σ contains

relatively more incremental information about risk for low than high profitability companies.

Table 9 panel D presents the results from this test. Columns (1) through (4) present

the results for subsamples of companies ranked by the level of operating profitability. The

coefficients on σ are significant in all columns, and the coefficients and the magnitudes are

particularly higher in column (1). This column is for subsamples of companies with low levels

of operating profitability where we expect time varying, multi-factor risks to be the most

important. The coefficient decreases in magnitude and in significance moving from column
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(1) to column (4). In addition, comparing column (1) to column (3) or column (4), the

differences in the coefficients are statistically significant, further suggesting that σ captures

risk particularly well when firms have poor operating performance.

5.4.5 Recession

In panel E, we also consider time periods for which multi-factor risks and/or time varying

risk exposure are likely to be important by separating sample periods based on whether they

occurred during a recession. We focus on recessionary and non-recessionary periods because

companies are likely to restructure and recreate business practices and investments and

therefore change risk exposures during recessions (Caballero and Hammour, 1996; Francois

and Lloyd-Ellis, 2003; Perelman, 1995). We estimate the association between σ and returns

for subsamples of company-months when σ is measured during a recession. A company’s

fiscal year is defined as being in recession if NBER has flagged any month of its fiscal year

as being in a recession. The results are consistent with multi-factor, time varying risk being

captured by σ, since its ability to predict returns is significantly higher during recessions

than non-recessions.

5.5 Robustness tests

We conduct a number of robustness tests and include important robustness tests in the

appendix. We briefly highlight those tests here. Some of these tests were referenced earlier.

In our main tests, we find that σ is incrementally significant when explaining the cross-

section of returns where the factors included in the models are based on common factors. In

table A4 we repeat the portfolio sorts with the Fama-French five factors (Fama and French,

2015). We find that σ continues to be incrementally significant in all specifications.

Table A5 column (1) presents the Fama-MacBeth regressions including the firm charac-

teristics that parallel the Fama-French five factors (Fama and French, 2015). The coefficient

on σ remains significant after controlling for these variables. In column (2), we remove
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COGS in estimating the γs for the σ calculation to decrease the effects of multicollinearity.

In column (3), we remove COGS and SGA. σ continues to predict future returns. Since

we calculate IB using imputed earnings components following the identity equation of IB,

imputation may have caused bias. We take the absolute difference between the calculated

IB (with imputation) and reported IB from Compustat, and we restrict the sample to the

observations that have an absolute difference of less than 10−4 (i.e., dollar difference below

$100) to minimize potential biases introduced by imputation. In column (4), the coefficient

on σ remains significant.

Table A6 presents the Fama-MacBeth regressions including different profitability mea-

sures. The results show that the coefficients on profitability measures decline slightly in

magnitude and in significance when σ is included in the regressions, leading to the conclu-

sion that σ and profitability share some overlapping information about returns, but that this

shared information cannot completely explain the relation between profitability and returns.

6 Conclusion

We develop a measure of the expected volatility of earnings that is driven by systematic

risk. Our measure contributes to prior research that finds that accounting earnings contain

macro-economic information (Ball et al., 2009) and that earnings contain important infor-

mation about total and systematic risk (Ball et al., 2021; Chang et al., 2020; Ellahie, 2020;

Konstantinidi and Pope, 2016)

We show that income statement items convey information about a firm’s sensitivity to

systematic factors and that cross-sectional changes in earnings regressions reveal systematic

risk factors. We find that our measure of ex-ante systematic risk, σ, is associated with

other total and systematic risk measures, is a leading indicator of risk exposure, and is a

statistically and economically important predictor of the cross-section of expected returns.

Our measure performs well when analyst’ coverage is not available, for equal and value
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weighted portfolios, and for low and high transaction cost stocks. One of the primary

advantages of σ is that it captures time varying, multi-factor risk exposures in earnings that

is particularly important in some circumstances, which we measure as young companies,

companies with low profitability, and during recessions.
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Appendix

The relation between estimated macro-economic states and aggregated earnings

ratios

Prior accounting research has loosely interpreted cross-sectional earnings regression coef-

ficients as relating to the average idiosyncratic properties of earnings. Because of this typical

type of interpretation, our interpretation of the regression coefficients as reflecting properties

of a macro-state is somewhat new, but our approach is an application of the recent use of

cross sectional regressions to extract risk factor premia in finance (Fama and French, 2020).

In this appendix, we demonstrate the tight correspondence between aggregated earnings in-

formation and cross-sectional regression coefficients. For simplicity, we use the example of

aggregate return-on-assets (ROA).

Consider the example where a researcher would like to use aggregated ROA as a macro-

economic factor (e.g., Beaver et al. (1970); Ellahie (2020)). One common approach is to use

the equal or value-weighted average of firm level ROA to represent the state variable.

AggROAt =
N∑
i

wi ·
Earningsi,t
Assetsi,t−1

=
N∑
i

wi ·ROAi

In this representation, we have
∑N

i wi = 1. When each firm in year t is weighted equally,

we have wi = 1/N or when each firm is weighted by size, wi = Assetsi/
∑

Assetsi. AggROA

can be used as a macro factor to which companies may have different levels of exposure -

i.e. risk sensitivity. An alternative approach to capturing aggregated ROA would be to use

a cross-sectional regression estimate such as follows.

Earningsi,t = β0 + β1Assetsi,t−1 + ϵi,t

Note that in this regression, the estimated β1 can be interpreted as the weighted average

ROA. This is because the estimated β1 can be represented as the following (subscripts
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omitted).

β̂1 =

∑
Assets · Earnings− 1

N
·
∑

Assets ·
∑

Earnings∑
Assets2 − 1

N
· (
∑

Assets)2

After some manipulation, β̂1 can be further represented as

β̂1 =
Assets21 ·

Earnings1
Assets1

+ ...+ Assets2N · EarningsN
AssetsN

− 1
N
· (
∑

Assets)2 ·
∑

Earnings∑
Assets∑

Assets2 − 1
N
· (
∑

Assets)2

=
Assets21 ·ROA1 + ...+ Assets2N ·ROAN − 1

N
· (
∑

Assets)2 ·ROA∑
Assets2 − 1

N
· (
∑

Assets)2

= w1 ·ROA1 + ...+ wN ·ROAN + wN+1 ·ROA.

In this representation, when i = 1, ..., N , we have

wi =
Assets2i∑

Assets2 − 1
N
· (
∑

Assets)2

When i = N + 1, we have

wi =
− 1

N
· (
∑

Assets)2∑
Assets2 − 1

N
· (
∑

Assets)2

Therefore,
∑N+1

i wi = 1, and β̂1 can be interpreted as the weighted average ROA in

the cross section. The weight of each firm’s ROA in the representation is proportional to

the square of assets, suggesting that a large company’s earnings contributes more to the

aggregated earnings than a small company. The representation bears resemblance to taking

value weighted returns as the systematic factor in empirical CAPM practices.
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Table A1: Variable definitions

Main Variables Data sources: Compustat, CRSP, IBES

∆IB Income before extraordinary items (Compustat item IB) substracting lagged IB, scaled by lagged
total assets (AT)

IB Income before extraordinary items (Compustat item IB) scaled by total assets (AT)
REV T Total revenue (Compustat item REVT) scaled by AT
COGS Cost of goods sold (Compustat item COGS) scaled by AT, imputed zero if missing
SGA Selling, general and administrative expenses (i.e., Compustat item XSGA − XRD) scaled by AT,

imputed zero if missing
XRD R&D expenses (Compustat item XRD) scaled by AT, imputed zero if missing
DP Depreciation and amortization (Compustat item DP) scaled by AT, imputed zero if missing
XINT Interest expenses (Compustat item XINT) scaled by AT, imputed zero if missing
TXT Income tax expenses (Compustat item TXT) scaled by AT, imputed zero if missing
NOPI Non-operating expense (Compustat item NOPI) scaled by AT, imputed zero if missing
SPI Special items (Compustat item SPI) scaled by AT, imputed zero if missing
MII Minority interest (Compustat item MII) scaled by AT, imputed zero if missing
ret Monthly return, obtained from CRSP
ret1 Prior one month return, obtained from CRSP
ret12,2 The prior year’s return skipping the last month, obtained from CRSP
σ Standard deviation of the predicted ∆IBi,t+1 using income statement line items and estimated

historical γs available until the year before income statement year, following equation ∆IBi,t+1 =
αt + γ1REV Ti,t + γ2COGSi,t + γ3SGAi,t + γ4XRDi,t + γ5DPi,t + γ6XINTi,t + γ7NOPIi,t +
γ8TXTi,t + γ9SPIi,t + γ10MIIi,t + ϵi,t+1

σIB Standard deviation of the predicted ∆IBi,t+1 using the level of earnings and estimated historical γs
available until the year before income statement year, following equation ∆IBi,t+1 = αt + γIBi,t +
ϵi,t+1

SIZE The natural log of market cap, which is the fiscal-year-end SHROUT times the absolute value of
PRC scaled by 1000, from CRSP

BEME The natural log of equity scaled by market cap, in which equity is calculated as Shareholder book
value (SH) plus deferred taxes and investment tax credit (TXDITC) subtracting preferred stock
(PS), following Freyberger et al. (2020). SH, TXDITC, and PS are obtained from Compustat. SH
is set to SEQ (shareholder equity); if missing, it is set at CEQ (common equity) plus PS (preferred
stock, detailed below); if CEQ+PS is missing, it’s set at AT−LT. PS is set at PSTKRV (preferred
stock redemption value); if missing, it is set at PSTKL (preferred stock liquidating value); if PSTKL
is missing, it is set at PSTK (preferred stock, total); if missing, set at zero

INV Asset growth, AT over lagged AT and then take the natural log
OP Operating profitability scaled by total assets, in which operating profitability is calculated as (REVT

− COGS − (XSGA − XRD)), following Ball et al. (2015)
σ(∆IB) The historical volatility of ∆IB, calculated as the standard deviation of a firm’s ∆IB trailing over

five years, with at least two-year observations
EU Non-parametric earnings uncertainty of earnings, calculated as the standard deviation of forward

earnings change of a focal firm’s matched peer firms, with matching criteria following Donelson and
Resutek (2015)

IQR Following Konstantinidi and Pope (2016), we use quantile regression to forecast earnings at the first
quartile and the third quartile, and we take the interquartile range (IQR) as a measure of earnings
uncertainty

∆̂IB Mean predicted ∆IBi,t+1 using income statement line items and estimated historical γs available
until the year before income statement year, following equation ∆IBi,t+1 = αt + γ1REV Ti,t +
γ2COGSi,t + γ3SGAi,t + γ4XRDi,t + γ5DPi,t + γ6XINTi,t + γ7NOPIi,t + γ8TXTi,t + γ9SPIi,t +
γ10MIIi,t + ϵi,t+1

βAnalyst It is an earnings beta based on price-scaled expectations shocks, following Ellahie (2020). Change in
earnings is the monthly revision in the 1-year ahead analyst forecast of earnings per share, multiplying
outstanding shares and adjusted for the split factors, then scaled by market value of equity. Earnings
beta is the coefficient of five-year trailing change in earnings and aggregated change in earnings. Data
are from IBES and CRSP

βCAPM CAPM beta, the coefficient of regressing trailing 60-month firm returns to market returns
βWealth Earnings sensitivity to aggregate demand shock, following Ball et al. (2021)
βTFP Earnings sensitivity to aggregate supply shock, following Ball et al. (2021)

37



Macro Variables Data sources: BEA, Federal Reserve Bank Reports, and Kenneth French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html)

∆IP Annual growth in the industrial production index (Federal Reserve Statistical Release G.17)
∆DG, ∆NDG, &∆SG Growth in consumer durables goods, nondurables goods, and services, from BEA National

Income and Product Accounts Table 1.1.5
∆GDP U.S. GDP growth by year, from BEA National Income and Product Accounts Table 1.1.5
Mkt RF Annual market premium, obtained from Kenneth French’s library
SMB Annual SMB factor, obtained from Kenneth French’s library
HML Annual HML factor, obtained from Kenneth French’s library
RMW Annual RMW factor, obtained from Kenneth French’s library
CMA Annual CMA factor, obtained from Kenneth French’s library
∆FFO Annual change in the federal funds rate, from Federal Reserve H15 Reports
∆Term Annual change of the variable Term, i.e., the difference in the rate of the 10 year minus the

1 year US Treasury Notes , from Federal Reserve H15 Reports
∆Sprd Annual change of the variable Sprd, i.e., the difference in the bond yield for BAA and the

rate of the 10 year US Treasury Notes, from Federal Reserve H15 Reports
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Table A2: Comprehensive historial γs

Panel A: Comprehensive historial γs and cross-sectional R2× 100

Fyear Intercept REVT COGS SGA XRD DP XINT TXT NOPI SPI MII R2

1950 −0.960 −0.495 0.118 −0.066 −0.004 0.445 −0.276 −1.457 −0.139 0.055 −0.084 30.957
1951 −0.452 0.125 −0.161 −0.006 −0.058 0.105 −0.046 −0.324 0.004 0.031 −0.031 3.223
1952 0.493 0.038 0.050 0.077 −0.044 0.071 0.043 −0.029 0.013 0.056 −0.023 1.426
1953 0.869 0.242 −0.654 0.416 0.249 −0.017 0.226 0.580 0.054 −0.356 −0.170 8.265
1954 2.184 −0.396 0.228 −0.104 0.373 0.172 −0.316 −0.035 0.379 −0.004 −0.109 7.201
1955 1.073 −0.220 −0.034 0.186 −0.275 0.068 0.217 0.388 0.073 0.041 −0.002 3.451
1956 −0.086 0.262 −0.034 0.204 0.054 −0.095 0.231 −0.236 −0.025 0.131 0.058 5.916
1957 −0.605 0.382 −0.336 0.453 0.045 −0.007 0.401 −0.451 0.029 −0.161 0.043 11.263
1958 1.848 −0.157 0.080 0.023 0.132 0.243 −0.202 0.137 0.021 −0.021 −0.160 2.938
1959 −0.218 −0.040 −0.101 0.331 −0.080 −0.116 0.189 0.143 0.010 0.205 0.117 4.147
1960 0.370 0.036 −0.100 0.186 −0.061 0.147 0.240 0.100 −0.023 0.061 −0.032 1.217
1961 0.981 −0.306 0.317 0.104 0.017 0.227 −0.097 0.163 −0.163 −0.098 −0.098 1.926
1962 0.630 −0.638 0.724 0.186 0.098 0.193 0.044 0.140 0.051 −0.122 0.017 1.766
1963 1.371 −0.121 0.242 0.296 0.047 0.249 0.032 0.203 0.041 −0.019 −0.015 3.882
1964 1.457 −8.092 7.241 1.974 0.153 0.328 0.162 0.926 −0.142 −0.030 −0.109 6.032
1965 1.428 1.969 −1.596 −0.350 −0.001 0.095 0.026 0.516 −0.089 −0.111 −0.091 6.551
1966 0.448 −5.518 4.725 1.384 0.005 0.095 0.105 0.659 −0.033 −0.079 −0.049 1.114
1967 1.070 −11.644 10.141 2.677 0.266 0.307 0.309 1.233 −0.085 −0.062 0.069 2.853
1968 0.614 5.267 −4.525 −1.088 −0.108 −0.262 0.055 −0.136 0.058 −0.049 −0.075 1.275
1969 −0.470 −4.160 3.313 0.984 −0.186 −0.108 0.218 0.854 −0.128 −0.006 0.136 2.529
1970 0.924 −30.650 26.448 6.809 0.556 0.898 0.535 2.921 −0.477 −0.083 0.138 8.379
1971 1.545 −24.916 21.077 5.511 0.832 0.747 0.420 2.452 −0.184 −0.164 −0.110 7.334
1972 1.520 −12.776 10.795 2.682 0.707 0.736 0.078 1.331 0.032 −0.039 0.010 5.520
1973 0.463 −7.787 6.548 1.553 0.174 0.960 −0.284 0.711 −0.178 0.067 0.115 3.518
1974 0.298 −16.953 14.370 4.426 0.340 0.611 0.020 0.929 −0.426 −0.425 0.030 6.702
1975 1.462 −14.184 11.967 3.591 0.753 0.812 0.242 0.919 −0.223 −0.636 −0.091 8.374
1976 0.966 −26.168 21.957 6.178 0.909 0.788 0.581 2.596 −0.415 −0.528 0.085 7.336
1977 1.474 −22.289 18.981 5.374 0.921 0.810 0.459 2.301 −0.305 −0.313 −0.045 5.686
1978 1.173 −9.954 8.114 2.261 0.661 0.596 0.052 1.231 −0.072 −0.468 0.142 4.496
1979 0.514 −23.720 19.505 5.781 0.712 1.126 0.486 2.308 −0.551 −0.615 0.018 6.638
1980 0.406 −19.349 16.321 4.537 0.788 0.818 0.465 2.094 −0.727 −0.713 −0.067 4.157
1981 −1.232 −10.021 8.507 2.695 0.125 0.060 0.770 1.252 −1.117 −0.625 −0.011 3.712
1982 0.881 −13.916 12.212 3.621 0.618 0.515 1.167 1.727 −0.993 −0.628 −0.005 4.661
1983 0.547 −11.309 9.621 2.745 0.809 0.655 0.926 1.920 −0.849 −1.155 −0.031 5.135
1984 −0.341 −19.314 16.364 4.995 0.698 0.262 1.068 2.397 −0.847 −1.304 −0.104 8.173
1985 −0.062 −21.755 18.856 5.880 1.117 0.071 1.213 3.034 −0.918 −2.507 0.134 11.472
1986 1.153 −20.970 16.830 6.080 0.873 1.989 0.888 2.865 −0.984 −2.539 0.274 13.778
1987 1.124 −19.547 16.566 5.735 1.093 0.898 0.840 2.446 −0.773 −1.998 0.148 11.636
1988 0.413 −25.658 21.048 7.663 1.465 1.467 0.776 2.644 −0.562 −1.568 0.031 13.036
1989 0.069 −16.941 13.801 4.917 0.843 1.166 0.729 1.875 −1.058 −2.363 0.077 11.553
1990 0.001 −17.813 14.683 5.524 1.280 0.131 1.106 1.932 −0.823 −2.522 0.174 12.264
1991 0.560 −7.159 6.019 2.154 0.079 0.851 0.795 0.961 −0.576 −2.936 0.077 9.198
1992 0.380 −5.334 4.634 1.468 −0.286 0.306 0.915 1.211 −0.476 −3.083 0.255 8.373
1993 0.940 −10.117 8.711 2.566 0.762 0.710 0.747 1.543 −0.769 −2.989 0.077 10.166
1994 0.537 −8.832 7.389 1.886 1.304 0.497 0.403 1.237 −0.666 −2.420 0.289 7.278
1995 −0.025 −3.285 2.965 0.727 −0.567 0.381 0.549 0.942 −0.651 −2.644 0.126 4.990
1996 −0.106 −2.756 3.073 0.418 −0.354 0.059 0.216 1.199 −0.749 −2.839 0.151 5.746
1997 −0.782 −7.882 6.799 2.736 −0.445 0.130 0.761 1.554 −0.754 −3.354 0.172 7.469
1998 −0.171 0.109 0.304 −0.721 −0.634 0.868 0.311 0.479 −0.532 −3.203 0.104 4.163
1999 −2.678 12.134 −9.268 −5.441 −1.922 0.682 1.066 0.055 −0.850 −1.557 0.224 5.516
2000 −0.811 −23.380 19.057 8.385 0.097 0.246 2.245 2.561 −1.534 −4.022 0.185 17.420
2001 3.251 −27.122 22.326 9.664 1.772 2.293 1.667 2.899 −1.479 −8.388 0.066 45.950
2002 3.101 −17.901 14.202 6.238 2.344 1.698 0.361 1.978 −0.930 −6.088 0.314 34.656
2003 1.849 −0.091 0.784 −0.025 0.561 0.623 −0.042 0.161 0.081 −2.700 0.018 7.479
2004 0.846 −4.383 3.473 1.329 −0.374 0.915 0.101 0.775 −0.277 −2.023 0.064 5.235
2005 0.816 −4.065 3.519 1.189 0.018 0.424 0.064 1.055 −0.366 −2.214 0.363 5.232
2006 −0.280 −1.508 1.189 0.558 0.218 0.188 0.133 0.801 −0.673 −2.001 0.094 3.943
2007 −2.025 −8.611 6.697 2.544 0.511 0.643 0.529 1.564 −1.164 −2.599 0.142 6.318
2008 1.911 −23.576 19.657 7.525 1.752 0.378 1.232 2.095 −2.889 −7.484 0.026 43.210
2009 2.607 −9.527 8.003 2.967 1.479 0.803 0.132 1.107 −0.883 −3.140 −0.014 17.002
2010 0.422 −7.752 6.019 2.406 0.200 0.704 0.471 1.459 −0.904 −1.950 0.174 7.943
2011 −0.242 −8.349 6.858 2.415 −0.361 0.063 0.419 1.037 −0.521 −1.825 0.203 6.362
2012 −0.011 −6.798 5.841 1.611 −0.129 −0.148 0.456 1.255 −0.206 −2.379 −0.023 7.750
2013 −0.139 −5.094 4.124 1.174 −0.028 0.086 0.325 1.214 −0.565 −1.887 0.005 5.062
2014 −1.027 −6.213 5.401 2.758 −0.040 −0.805 0.706 0.988 −1.218 −2.063 0.067 8.567
2015 0.510 −9.560 7.307 3.151 −0.494 1.058 0.270 1.142 −1.348 −2.267 0.027 10.587
2016 0.723 −8.086 6.044 2.751 −0.760 1.293 0.455 1.253 −0.863 −1.867 −0.049 8.928
2017 0.123 −4.975 3.740 2.038 −0.190 0.527 0.305 2.017 −0.951 −2.000 0.211 8.066
2018 −0.805 −4.872 3.291 2.054 −0.460 −0.368 0.131 1.001 −0.961 −2.338 0.050 7.540
2019 −1.149 −5.426 4.791 2.241 0.112 −0.563 0.122 0.926 −1.117 −1.886 −0.080 5.417
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Panel B: Regressing varying time-series of γs to macro variables

Economic production set of macro variables: ∆IP , ∆DG, ∆NGD, ∆SG, and ∆GDP
γInt γREV T γCOGS γSGA γXRD γDP γXINT γTXT γNOPI γSPI γMII

1950–1984
R2 0.292 0.468 0.460 0.481 0.596 0.426 0.375 0.522 0.383 0.426 0.127
Pval 0.062 0.002 0.002 0.001 0.000 0.005 0.014 0.000 0.012 0.005 0.532

1985–2019
R2 0.379 0.415 0.436 0.359 0.327 0.287 0.480 0.367 0.257 0.318 0.289
Pval 0.013 0.006 0.004 0.019 0.034 0.068 0.001 0.016 0.107 0.040 0.065
Equity market set of macro variables: Mkt rf , SMB, HML, RMW , and CMA

1950–1984
R2 0.242 0.192 0.197 0.228 0.222 0.021 0.434 0.246 0.381 0.396 0.193
Pval 0.134 0.261 0.246 0.163 0.177 0.986 0.004 0.126 0.012 0.009 0.258

1985–2019
R2 0.365 0.575 0.563 0.641 0.451 0.153 0.307 0.433 0.405 0.548 0.103
Pval 0.017 0.000 0.000 0.000 0.003 0.410 0.048 0.004 0.007 0.000 0.650
Bond market set of macro variables: ∆FFO, ∆Sprd, and ∆Term

1950–1984
R2 0.224 0.068 0.073 0.067 0.172 0.071 0.149 0.126 0.044 0.149 0.252
Pval 0.046 0.529 0.494 0.536 0.114 0.512 0.165 0.236 0.699 0.166 0.028

1985–2019
R2 0.281 0.103 0.113 0.095 0.174 0.167 0.109 0.073 0.378 0.400 0.105
Pval 0.016 0.329 0.287 0.371 0.112 0.124 0.302 0.495 0.002 0.001 0.324

This table displays the comprehensive list of estimated γs across all fiscal years available in Compustat, as well as the
relation between estimated γs and macro variables across different time periods. We require REVT to be non-missing and
greater than zero, and impute zero for all other variables to retain a maximized sample. Variable definitions are in Table
A1. In Panel A, The cross-sectional regression model follows ∆IBi,t+1 = αt + γ1REV Ti,t + γ2COGSi,t + γ3SGAi,t +
γ4XRDi,t + γ5DPi,t + γ6XINTi,t + γ7NOPIi,t + γ8TXTi,t + γ9SPIi,t + γ10MIIi,t + ϵi,t+1, in which each variable is
standardized to have a zero mean and a unit standard deviation within each cross section. Intercept refers to αt, which is a
constant in a cross section. Each column in the table represents the γ estimate for that variable, and the column named R2

indicates the R-squared of the regression in each cross section. In Panel B, we break each time-series of γ into two pieces
(1950–1985, 1986–2019), and regress each piece of time-series on three sets of macro variables, the economic production set
that includes ∆IP , ∆DG, ∆NGD, ∆SG, and ∆GDP ; the equity market set that includes Mkt rf , SMB, HML, RMW ,
and CMA; and the bond market set that includes ∆FFO, ∆Sprd, and ∆Term. R2 and PV al indicate the R-squared and
the P-value of the model F statistics.
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Table A3: A demonstration of how two components affect the output σ

Panel A: Variance-covariance matrix of two earnings components (REVT and COGS)

γInt γREV T γCOGS

γInt 1.069 −2.252 1.864
γREV T −2.252 83.486 −69.401
γCOGS 1.864 −69.401 57.830

Panel B: Combine the vector of earnings components with the variance-covariance matrix

σ2 = V ar[∆̂NIt+1] = V ar[1× γ̂Int +REV T × γ̂REV T + COGS × γ̂COGS ]

=

 1
REV T
COGS

T

×

 V ar(γInt) Cov(γInt, γREV T ) Cov(γInt, γCOGS)
Cov(γInt, γREV T ) V ar(γREV T ) Cov(γREV T , γCOGS)
Cov(γInt, γCOGS) Cov(γREV T , γCOGS) V ar(γCOGS)

×

 1
REV T
COGS


Panel C: Case 1, firm A with 1 unit of REVT and 0.5 unit of COGS

σ2
A =

 1
1
0.5

T

×

 1.069 −2.252 1.864
−2.252 83.486 −69.401
1.864 −69.401 57.830

×

 1
1
0.5

 = 26.972

Panel D: Case 2, firm B with 1 unit of REVT and 0.9 unit of COGS

σ2
B =

 1
1
0.9

T

×

 1.069 −2.252 1.864
−2.252 83.486 −69.401
1.864 −69.401 57.830

×

 1
1
0.9

 = 5.327

This table demonstrates how the variance-covariance matrix of the estimated γs of two components, REVT and COST,
along with these two components, affects the output measure σ. Detailed in Section 4, the first step is to estimate γs
from available prior cross sections; the second step is to use estimated γ from each prior cross section to form each point
estimate of ∆IB for that cross section, and the third step is to take the second moment of all point estimates of ∆IB from
all prior cross sections. The second and the third step combined is equivalent to form the historical variance-covariance
matrix of γs and conduct a matrix multiplication, which is a row vector of a firm’s earnings components, multiplied by the
variance-covariance matrix of γs, multiplied by a column vector of the firm’s earnings components. The variance-covariance
matrix of REVT and COGS (and the intercept) of all historical cross sections is shown in Panel A, and the matrix operation
is shown in Panel B. Panel C and D demonstrate how different firm characteristics, or varying line items, affect the output
σ. Shown in Panel C, firm A has 1 unit of REVT and 0.5 unit of COGS, and the output σ is 26.972; in Panel D, firm B
has 1 unit of REVT and 0.9 unit of COGS, and the output σ is 5.327. The contrast of firm A and B indicates that holding
REVT constant, a higher COGS results lower risk, consistent with the operating hedging theory in Kogan et al. (2021).
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Table A4: Fama-French five factors: portfolio sorting tests

Panel A: Quintile sort

EW portfolio return

Portfolio α βmkt βsmb βhml βrmw βcma

Low −0.123 0.960 0.712 0.463 0.131 −0.066
2 −0.061 0.932 0.680 0.388 0.232 0.028
3 0.016 0.986 0.774 0.271 0.106 −0.079
4 0.189 0.992 0.800 0.081 −0.179 −0.054
High 0.414 1.010 0.906 −0.173 −0.593 −0.061
H−L 0.536∗∗∗ 0.050∗∗ 0.194∗∗∗ −0.636∗∗∗ −0.724∗∗∗ 0.004

[5.69] [2.14] [5.92] [−14.59] [−15.76] [0.06]

VW portfolio return

Portfolio α βmkt βsmb βhml βrmw βcma

Low 0.370 0.980 0.085 0.294 0.101 0.101
2 0.382 1.030 0.049 0.268 0.148 0.119
3 0.536 1.061 0.147 0.109 0.114 0.090
4 0.874 1.055 0.200 −0.199 −0.096 0.075
5 1.281 1.033 0.303 −0.404 −0.340 0.096
H−L 0.911∗∗∗ 0.053∗∗ 0.219∗∗∗ −0.698∗∗∗ −0.440∗∗∗ −0.005

[9.44] [2.20] [6.52] [−15.63] [−9.35] [−0.07]

Panel B: Decile sort

EW portfolio return

Portfolio α βmkt βsmb βhml βrmw βcma

Low −0.191 0.971 0.802 0.484 0.157 −0.088
2 −0.055 0.949 0.622 0.441 0.105 −0.042
3 −0.063 0.934 0.646 0.410 0.201 0.020
4 −0.059 0.929 0.716 0.366 0.263 0.037
5 −0.012 0.981 0.766 0.311 0.191 −0.057
6 0.043 0.992 0.781 0.231 0.021 −0.103
7 0.111 0.990 0.792 0.162 −0.089 −0.079
8 0.267 0.993 0.808 0.001 −0.269 −0.03
9 0.373 1.020 0.857 −0.093 −0.441 −0.064
High 0.458 1.000 0.956 −0.255 −0.751 −0.057
H−L 0.649∗∗∗ 0.029 0.154∗∗∗ −0.739∗∗∗ −0.909∗∗∗ 0.031

[5.14] [0.93] [3.51] [−12.65] [−14.74] [0.35]

VW portfolio return

Portfolio α βmkt βsmb βhml βrmw βcma

Low 0.404 0.997 0.146 0.269 0.091 0.111
2 0.324 0.969 0.044 0.312 0.120 0.103
3 0.329 1.027 0.039 0.323 0.168 0.072
4 0.428 1.034 0.067 0.228 0.129 0.152
5 0.436 1.071 0.126 0.191 0.194 0.119
6 0.633 1.051 0.175 0.015 0.027 0.060
7 0.737 1.062 0.169 −0.101 0.033 0.073
8 0.994 1.058 0.229 −0.288 −0.209 0.088
9 1.122 1.044 0.289 −0.328 −0.297 0.062
High 1.517 1.023 0.331 −0.520 −0.449 0.190
H−L 1.113∗∗∗ 0.026 0.186∗∗∗ −0.789∗∗∗ −0.540∗∗∗ 0.079

[9.39] [0.88] [4.51] [−14.38] [−9.33] [0.94]

This table shows monthly equal-weighted and value-weighted average excess returns to portfolios sorted on σ, defined in
Table A1, and the results of time series regressions of these portfolios’ returns on the Fama and French five factors (Fama
and French, 2015) (i.e., the market factor (MKT), the size factor small-minus-large (SMB), the value factor high-minus-
low (HML), the profitability factor robust-minus-weak (RMW), and the investment factor conservative-minus-aggressive
(CMA)). Portfolio returns are scaled up by 102. Panel A reports these results based on a quintile-sorted σ, and Panel B
reports these results based on a decile-sorted σ. The sample covers June 1960 to May 2020, and return data cover June
1961 to May 2021. T-statistics are reported in the brackets. ∗,∗∗, and ∗∗∗ indicate two-tailed p<0.1, p<0.05, and p<0.01,
respectively.
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Table A5: Returns: Fama-MacBeth regression tests, robustness checks

(1) (2) (3) (4)

σ 0.159∗∗∗ 0.383∗∗∗ 0.397∗∗∗ 0.242∗∗∗

[3.41] [7.59] [7.86] [5.48]
SIZE −0.001∗∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

[−3.24] [−2.47] [−2.50] [−2.54]
BEME 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

[5.36] [6.57] [6.59] [6.36]
ret1 −0.051∗∗∗ −0.050∗∗∗ −0.049∗∗∗ −0.050∗∗∗

[−14.54] [−14.08] [−14.08] [−14.16]
ret12,2 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

[3.37] [3.77] [3.79] [3.70]
OP 0.018∗∗∗

[6.20]
INV −0.011∗∗∗

[−10.33]
Intercept 0.013∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.012∗∗∗

[5.25] [4.22] [4.20] [4.72]

N 2,284,131 2,492,237 2,515,265 2,431,412
R2 4.84% 4.28% 4.25% 4.32%

This table shows σ’s ability to predict cross-sectional future returns, using Fama-Macbeth regression method (Fama and
MacBeth, 1973). Variables are defined in Table A1. Future returns start from June after a firm’s fiscal-year-end to May of
the following year. The sample covers June 1960 to May 2020, and return data cover June 1961 to May 2021. In column (1),
we show the baseline regression model with two additional firm characteristics as control variables, INV and OP (Ball et al.,
2015; Titman et al., 2004). In column (2), we remove COGS in estimating cross-sectional models to decrease the effect
of multicollinearity on the estimated γs. In other words, we use this model: ∆IBi,t+1 = αt + γ1REV Ti,t + γ3SGAi,t +
γ4XRDi,t+γ5DPi,t+γ6XINTi,t+γ7NOPIi,t+γ8TXTi,t+γ9SPIi,t+γ10MIIi,t+ϵi,t+1. In column (3), we remove SGA in
estimating cross-sectional models to further decrease the effect of multicollinearity on the estimated γs. We use this model:
∆IBi,t+1 = αt+γ1REV Ti,t+γ4XRDi,t+γ5DPi,t+γ6XINTi,t+γ7NOPIi,t+γ8TXTi,t+γ9SPIi,t+γ10MIIi,t+ ϵi,t+1.
All other procedures in column (2) and (3) follow exactly the same as the main analyses. In column (4), we calculate IB
using imputed earnings components following the identity equation of IB: IB ≡ REV T − COGS − SGA−XRD −DP −
XINT −TXT +NOPI+SPI−MII. We calculate the absolute difference between the calculated IB and reported IB from
Compustat, and we restrict the sample to the observations that have an absolute difference of less than 10−4 to minimize
potential biases introduced by imputation. T-statistics are reported in the brackets. ∗,∗∗, and ∗∗∗ indicate two-tailed
p<0.1, p<0.05, and p<0.01, respectively.
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Table A6: Returns: Fama-MacBeth regression tests, σ and profitability measures

GP OPBGLN IB

(1) (2) (3) (4) (5) (6)

Profits 0.008∗∗∗ 0.007∗∗∗ 0.019∗∗∗ 0.017∗∗∗ 0.014∗∗∗ 0.011∗∗

[7.34] [6.39] [6.87] [5.71] [3.04] [2.10]
σ 0.222∗∗∗ 0.253∗∗∗ 0.307∗∗∗

[5.26] [5.53] [6.81]
SIZE −0.001∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

[−2.36] [−2.18] [−3.57] [−3.25] [−3.28] [−3.05]
BEME 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

[6.24] [7.49] [5.78] [7.17] [5.24] [6.43]
ret1 −0.050∗∗∗ −0.051∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗

[−14.01] [−14.41] [−14.10] [−14.43] [−14.46] [−14.58]
ret12,2 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

[3.68] [3.61] [3.51] [3.51] [3.60] [3.55]
Intercept 0.013∗∗∗ 0.010∗∗∗ 0.014∗∗∗ 0.011∗∗∗ 0.015∗∗∗ 0.012∗∗∗

[4.61] [4.02] [5.16] [4.42] [5.74] [4.68]

N 2, 470, 006 2, 470, 006 2, 469, 331 2, 469, 331 2, 472, 577 2, 472, 577
R2 4.32% 4.60% 4.31% 4.57% 4.46% 4.62%

This table shows σ’s ability to absorb some predicting power of profitability measures. Variables are defined in Table A1.
Future returns start from June after a firm’s fiscal-year-end to May of the following year. The sample covers June 1960
to May 2020, and return data cover June 1961 to May 2021. In column (1) and (2), GP represents gross profits, which
is revenue subtracting cost of goods sold, scaled by total assets (Novy-Marx, 2013). In column (3) and (4), OPBGLN

represents operating profitability calculated following Ball et al. (2015), which is revenue subtracting cost of goods sold
and self-reported selling, general and administrative expenses, scaled by total assets. In column (5) and (6), IB represents
income before extraordinary items, which is IB scaled by total assets. T-statistics are reported in the brackets. ∗,∗∗, and
∗∗∗ indicate two-tailed p<0.1, p<0.05, and p<0.01, respectively.
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Table 1: Distribution of fiscal years and annual financial data

Panel A: Distribution of fiscal years

Fyear N Pct Cum CumPct Fyear N Pct Cum CumPct
1950 449 0.14 449 0.14 1985 5895 1.80 107308 32.72
1951 458 0.14 907 0.28 1986 5946 1.81 113254 34.53
1952 465 0.14 1372 0.42 1987 6002 1.83 119256 36.36
1953 469 0.14 1841 0.56 1988 5813 1.77 125069 38.14
1954 445 0.14 2286 0.70 1989 5668 1.73 130737 39.86
1955 465 0.14 2751 0.84 1990 5619 1.71 136356 41.58
1956 486 0.15 3237 0.99 1991 5727 1.75 142083 43.32
1957 504 0.15 3741 1.14 1992 6055 1.85 148138 45.17
1958 522 0.16 4263 1.30 1993 7187 2.19 155325 47.36
1959 539 0.16 4802 1.46 1994 7478 2.28 162803 49.64
1960 1057 0.32 5859 1.79 1995 7910 2.41 170713 52.05
1961 1388 0.42 7247 2.21 1996 8184 2.50 178897 54.55
1962 1751 0.53 8998 2.74 1997 7981 2.43 186878 56.98
1963 1941 0.59 10939 3.34 1998 7940 2.42 194818 59.40
1964 2136 0.65 13075 3.99 1999 8134 2.48 202952 61.88
1965 2283 0.70 15358 4.68 2000 7817 2.38 210769 64.27
1966 2479 0.76 17837 5.44 2001 7279 2.22 218048 66.49
1967 2672 0.81 20509 6.25 2002 7055 2.15 225103 68.64
1968 3220 0.98 23729 7.24 2003 6991 2.13 232094 70.77
1969 3423 1.04 27152 8.28 2004 6979 2.13 239073 72.90
1970 3506 1.07 30658 9.35 2005 6815 2.08 245888 74.98
1971 3632 1.11 34290 10.46 2006 6727 2.05 252615 77.03
1972 3761 1.15 38051 11.60 2007 6527 1.99 259142 79.02
1973 4098 1.25 42149 12.85 2008 6229 1.90 265371 80.92
1974 5311 1.62 47460 14.47 2009 6050 1.84 271421 82.76
1975 5317 1.62 52777 16.09 2010 6030 1.84 277451 84.60
1976 5311 1.62 58088 17.71 2011 5927 1.81 283378 86.41
1977 5299 1.62 63387 19.33 2012 6024 1.84 289402 88.24
1978 5243 1.60 68630 20.93 2013 6010 1.83 295412 90.08
1979 5158 1.57 73788 22.50 2014 5933 1.81 301345 91.89
1980 5222 1.59 79010 24.09 2015 5596 1.71 306941 93.59
1981 5256 1.60 84266 25.69 2016 5384 1.64 312325 95.23
1982 5556 1.69 89822 27.39 2017 5319 1.62 317644 96.86
1983 5785 1.76 95607 29.15 2018 5193 1.58 322837 98.44
1984 5806 1.77 101413 30.92 2019 5120 1.56 327957 100.00

Panel B: Descriptive statistics

N Mean St. Dev. Pctl(1) Pctl(25) Median Pctl(75) Pctl(99)
∆IB 304,511 0.003 0.101 −0.340 −0.014 0.004 0.025 0.326
REVT 327,957 0.984 0.809 0.035 0.325 0.842 1.437 3.608
COGS 327,957 0.688 0.666 0.005 0.169 0.514 1.008 3.052
SGA 327,957 0.180 0.214 −0.070 0.016 0.115 0.277 0.914
XRD 327,957 0.021 0.054 0.000 0.000 0000 0.010 0.276
DP 327,957 0.036 0.030 0.000 0.016 0.032 0.050 0.139
XINT 327,957 0.018 0.019 0.000 0.002 0.014 0.028 0.081
TXT 327,957 0.024 0.035 −0.041 0.001 0.014 0.040 0.139
NOPI 327,957 0.008 0.017 −0.028 0.000 0.004 0.013 0.073
SPI 327,957 −0.006 0.031 −0.148 0.000 0.000 0.000 0.036
MII 327,957 0.0004 0.002 −0.001 0.000 0.000 0.000 0.010
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Panel C: Pearson correlations

∆IBt+1 REVT COGS SGA XRD DP XINT TXT NOPI SPI
REVT 0.038
COGS 0.040 0.949
SGA 0.060 0.587 0.393
XRD 0.025 −0.024 −0.091 0.176
DP 0.072 0.196 0.149 0.166 0.089
XINT 0.039 0.076 0.099 0.003 −0.144 0.161
TXT 0.008 0.372 0.270 0.160 −0.078 0.032 −0.164
NOPI −0.043 0.046 0.043 0.066 0.098 0.055 0.061 0.102
SPI −0.265 −0.007 0.000 −0.082 −0.152 −0.122 −0.008 0.144 0.006
MII −0.006 −0.013 −0.009 −0.049 −0.047 −0.001 0.022 0.009 0.033 0.022

This table displays information for the sample that is used to construct the income-statement-related systematic factors
(i.e., γs), using cross-sectional regression model ∆IBi,t+1 = αt + γ1REV Ti,t + γ2COGSi,t + γ3SGAi,t + γ4XRDi,t +
γ5DPi,t+γ6XINTi,t+γ7NOPIi,t+γ8TXTi,t+γ9SPIi,t+γ10MIIi,t+ϵi,t+1. The sample covers 70 fiscal years, spanning
from 1950 to 2019. Observations must have positive total assets (Compustat item AT), positive revenue (Compustat item
REVT), non-missing earnings (Compustat item IB), and positive equity to enter the sample. Equity is calculated as
Shareholder book value (SH) plus deferred taxes and investment tax credit (TXDITC) subtracting preferred stock (PS),
following Freyberger et al. (2020). ∆IBt+1 is IB subtracted from leading year IB then scaled by AT. Detailed variable
definition and calculation are in Table A1. We impute zero for all other earnings components, including COGS, SGA, XRD,
DP, XINT, TXT, NOPI, SPI, and MII. All variables displayed are trimmed at the top and bottom 1% within each fiscal
year. Panel B displays the summary statistics of earnings-related variables after scaling by AT but before standardization.
Panel C displays Pearson correlation among these variables. Italics, underline, and boldness indicate two-tailed p<0.1,
p<0.05, and p<0.01, respectively.
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Table 2: Cross-sectional γ coefficients from year 1950 to 2019

Panel A: Regression coefficients (×102) for each cross-section (N=70)

Mean St. Dev. T-stats Pctl(1) Pctl(25) Median Pctl(75) Pctl(99)
γINT 0.481 1.059 3.801 −2.227 −0.131 0.502 1.072 3.148
γREV T −8.998 9.154 −8.224 −28.215 −16.252 −7.770 −0.531 7.396
γCOGS 7.531 7.633 8.255 −5.995 0.739 6.031 13.403 23.604
γSGA 2.503 2.639 7.934 −2.437 0.417 2.197 4.225 8.781
γXRD 0.301 0.680 3.704 −1.120 −0.060 0.128 0.743 1.949
γDP 0.469 0.544 7.206 −0.638 0.095 0.379 0.799 2.084
γXINT 0.428 0.461 7.762 −0.294 0.109 0.318 0.723 1.846
γTXT 1.168 0.944 10.343 −0.763 0.532 1.125 1.909 2.956
γNOPI −0.533 0.531 −8.405 −1.954 −0.860 −0.526 −0.086 0.174
γSPI −1.540 1.711 −7.532 −7.764 −2.410 −1.430 −0.087 0.154
γMII 0.052 0.117 3.697 −0.163 −0.031 0.037 0.135 0.329

Panel B: 70-year historical variance-covariance matrix (×104) of γs

γInt γREV T γCOGS γSGA γXRD γDP γXINT γTXT γNOPI γSPI γMII

γINT 1.121 −2.966 2.451 0.907 0.423 0.271 −0.066 0.201 0.073 −0.323 −0.023
γREV T −2.966 83.793 −69.789 −23.336 −4.399 −2.672 −2.360 −7.682 2.294 5.264 −0.143
γCOGS 2.451 −69.789 58.261 19.292 3.643 2.181 1.974 6.403 −1.881 −4.269 0.116
γSGA 0.907 −23.336 19.292 6.965 1.312 0.733 0.742 2.152 −0.776 −2.087 0.047
γXRD 0.423 −4.399 3.643 1.312 0.462 0.166 0.084 0.363 −0.102 −0.417 0.003
γDP 0.271 −2.672 2.181 0.733 0.166 0.296 0.064 0.254 −0.071 −0.360 0.015
γXINT −0.066 −2.360 1.974 0.742 0.084 0.064 0.213 0.292 −0.168 −0.457 0.018
γTXT 0.201 −7.682 6.403 2.152 0.363 0.254 0.292 0.892 −0.287 −0.725 0.034
γNOPI 0.073 2.294 −1.881 −0.776 −0.102 −0.071 −0.168 −0.287 0.282 0.690 −0.020
γSPI −0.323 5.264 −4.269 −2.087 −0.417 −0.360 −0.457 −0.725 0.690 2.927 −0.089
γMII −0.023 −0.143 0.116 0.047 0.003 0.015 0.018 0.034 −0.020 −0.089 0.014
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Panel C: Pearson correlations of γs and 13 macro variables

γInt γREV T γCOGS γSGA γXRD γDP γXINT γTXT γNOPI γSPI γMII

∆IP −0.467 0.222 −0.220 −0.257 −0.383 −0.247 −0.049 −0.057 0.223 0.186 0.302
∆DG −0.122 −0.012 0.013 −0.058 −0.075 0.014 0.003 0.032 0.246 0.284 −0.022
∆NDG −0.216 −0.200 0.208 0.099 −0.009 −0.005 −0.031 0.097 0.169 0.336 0.028
∆SG −0.012 −0.340 0.351 0.218 0.191 0.094 0.064 0.200 0.244 0.450 −0.180
∆GDP −0.228 −0.126 0.131 0.024 −0.015 −0.034 −0.088 0.015 0.293 0.454 −0.100
Mkt rf 0.014 0.318 −0.310 −0.368 −0.258 −0.094 −0.270 −0.232 0.312 0.223 −0.259
SMB 0.309 −0.042 0.046 0.014 0.134 0.128 0.028 0.024 0.093 0.020 −0.209
HML 0.229 −0.204 0.204 0.242 0.130 0.089 0.150 0.100 0.039 −0.032 −0.082
RMW 0.172 −0.413 0.399 0.516 0.368 0.129 0.348 0.389 −0.327 −0.405 0.187
CMA 0.155 −0.292 0.292 0.335 0.255 0.160 0.310 0.209 −0.131 −0.157 0.064
∆FFO −0.373 0.261 −0.272 −0.266 −0.318 −0.235 −0.352 −0.279 0.287 0.380 0.010
∆Sprd −0.064 0.011 −0.016 0.032 −0.004 −0.127 −0.025 −0.107 −0.212 −0.118 −0.271
∆Term 0.261 −0.104 0.111 0.114 0.276 0.035 0.154 0.001 −0.092 −0.144 −0.297

Panel D: Regressing the γs to 13 macro variables

γInt γREV T γCOGS γSGA γXRD γDP γXINT γTXT γNOPI γSPI γMII

Rsq 0.417 0.529 0.530 0.581 0.473 0.226 0.404 0.443 0.391 0.553 0.401
Pval 0.002 0.000 0.000 0.000 0.000 0.266 0.003 0.001 0.004 0.000 0.003

This table displays information on the estimated γs from the cross-sectional regression model ∆IBi,t+1 = αt+γ1REV Ti,t+
γ2COGSi,t + γ3SGAi,t + γ4XRDi,t + γ5DPi,t + γ6XINTi,t + γ7NOPIi,t + γ8TXTi,t + γ9SPIi,t + γ10MIIi,t + ϵi,t+1. αt

indicates the γInt that is constant for each cross section. The sample covers 70 fiscal years, spanning from 1950 to 2019.
Panel A displays the distribution and summary information of 70 γs, and each γ corresponds to each earnings component.
Panel B shows the 70-year historical variance-covariance matrix of ten γs. Panel C shows the Pearson correlation between
the time-series of each γ and 13 time-series macro variables. The definition and calculation of each macro variable is detailed
in Table A1. Italics, underline, and boldness indicate two-tailed p<0.1, p<0.05, and p<0.01, respectively. In Panel D, we
regress each time-series of γ on 13 macro variables. R2 and PV al indicate the R-squared and the P-value of the model F
statistics.
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Table 3: Descriptive statistics of the main tests

Panel A: Descriptive statistics for the main tests

Mean St. Dev. Pctl(1) Pctl(25) Median Pctl(75) Pctl(99)
Variables for the main analyses

σ 0.016 0.015 0.006 0.010 0.012 0.017 0.082
SIZE 5.008 2.165 0.653 3.392 4.913 6.545 10.104
BEME −0.373 0.909 −2.635 −0.907 −0.355 0.144 2.382
ret 0.012 0.163 −0.364 −0.059 0.002 0.070 0.509
ret1 0.013 0.162 −0.359 −0.059 0.001 0.070 0.507
ret12,2 0.139 0.725 −0.790 −0.179 0.063 0.323 2.280

Other control variables
σIB 0.012 0.010 0.006 0.008 0.010 0.012 0.061
σ(∆IB) 0.109 0.407 0.001 0.014 0.034 0.087 1.183
EU 0.070 0.262 0.010 0.026 0.042 0.074 0.368
IQR 0.093 0.117 0.022 0.039 0.052 0.091 0.618

∆̂IB 0.006 0.016 −0.028 −0.000 0.005 0.008 0.071
IB 0.016 0.121 −0.518 0.005 0.034 0.069 0.189
OP 0.117 0.119 −0.279 0.047 0.118 0.184 0.394
βWealth 0.285 0.943 −2.024 −0.144 0.158 0.630 2.822
βTFP 1.277 4.018 −3.710 −0.263 0.520 2.058 16.996
βCAPM 1.082 0.652 −0.153 0.629 1.023 1.457 2.960
βAnalyst 0.665 1.672 −3.193 −0.002 0.350 1.005 7.182

Panel B: Pearson correlations

Variables for the main analyses

σ SIZE BEME ret1
SIZE −0.008
BEME −0.211 −0.289
ret1 0.003 −0.020 0.026
ret12,2 −0.002 −0.033 0.013 0.002

σ and other control variables

σIB σ(∆IB) EU IQR ∆̂IB IB OP βWealth βTFP βCAPM βAnalyst

σ 0.773 0.250 0.113 0.692 0.588 −0.635 −0.242 −0.036 −0.005 0.159 0.009
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Panel C: Auto-correlation of firm-level σ (lag = 1)

N Mean St. Dev. Pctl(1) Pctl(25) Median Pctl(75) Pctl(99)
t ≥ 10 7,707 0.293 0.301 −0.370 0.057 0.295 0.528 0.878
t ≥ 20 3,301 0.375 0.285 −0.185 0.141 0.376 0.605 0.904
t ≥ 30 1,278 0.414 0.275 −0.112 0.183 0.403 0.633 0.915
t ≥ 40 581 0.424 0.272 −0.057 0.194 0.415 0.631 0.921

Panel D: Pearson correlation of annual average σ and macro variables

∆IP ∆DG ∆NGD ∆SG ∆GDP Mkt rf SMB
σt −0.049 −0.452 −0.541 −0.810 −0.710 0.111 −0.142

HML RMW CMA ∆FFO ∆Sprd ∆Term R2

σt −0.181 0.109 −0.083 −0.117 0.212 −0.037 0.706

Panel E: Distribution of Fama–French 12-industry classification across σ quintiles

Percentage of total firm-year observations of σ quintiles
Industry Classification 1 2 3 4 5 N

Business Equipment 6.30 7.35 16.09 30.58 39.69 28,333
Chemicals 16.21 15.78 22.56 23.45 22.00 5,014
Durables 18.42 15.78 24.34 22.73 18.74 6,266
Nondurables 20.44 16.52 23.14 22.05 17.85 14,137
Finance 29.72 41.81 18.04 6.31 4.12 36,758
Healthcare 9.29 8.15 15.52 25.82 41.22 11,944
Manufacturing 21.12 18.35 24.22 20.51 15.81 27,337
Energy 12.89 13.36 25.60 26.72 21.43 8,982
Other 13.51 13.26 18.12 22.61 32.50 7,329
Telecom 22.27 15.39 21.50 21.30 19.54 3,925
Utilities 57.07 27.36 9.64 3.78 2.14 8,778
Retail 15.98 15.02 24.37 25.88 18.75 19,469

This table shows the sample distribution overtime and descriptive statistics for the variables that are used in the main
analyses. The sample covers 60 fiscal years, spanning from 1960 to 2019. Sample years before 1959 are disposed to ensure
that γ captures at least 10-year time-series variation. Variable definitions are in Table A1. Observations must have non-
missing values for σ, SIZE, and BEME for firm-year variables and ret, ret1, and ret12,2 for firm-month variables to be in the
sample for the main analyses, resulting 214,904 firm-year observations or 2,478,383 firm-month observations. Other control
variables are calculated based on data availability. Summary statistics are in Panel A. In Panel B, we show the Pearson
correlation table of variables that participate the main analyses, as well as the relation between σ and other comparable
uncertainty, volatility or risk measures. In Panel C, we show the distribution of auto-correlation of firm-level σi,t, with the
lag equal to one. t ≥ T indicates that the firm has at least T observations in its own time-series. In Panel D, we take the
average σi,t of each cross section as the annual σt, and we show the Pearson correlation between σt and each of the 13 macro
variables that represent systematic risk factors. In the last cell of the second row, the R2 is the R-squared of regressing σt

on 13 time-series of macro variables. In Panel E, we show the quintile distribution of σ of each year across Fama-French
12-industry classification. Industry specification is the variable SICCD obtained from CRSP, and we exclude observations
that have missing SICCD information. Italics, underline, and boldness in Panel C and Panel E indicate two-tailed p<0.1,
p<0.05, and p<0.01, respectively.
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Table 4: Realized variability of change in performance and future performance

Panel A: Mean of |∆IBt+1| and and standard variation of ∆IBt+1, sorted by σ

Mean σ Mean|∆IBt+1| SD(∆IBt+1)
Low 0.008 0.021 0.045
2 0.010 0.020 0.044

σ 3 0.013 0.032 0.063
4 0.017 0.047 0.084
High 0.034 0.099 0.168
H−L 0.026∗∗∗ 0.078∗∗∗ 3.733∗∗∗

[213.52] [105.12] [14.19]

Panel B: Mean |∆IBt+1|, sorted by σ(∆IB) and σ

σ(∆IB)
Low 2 3 4 High H−L

Low 0.009 0.020 0.029 0.040 0.029 0.020∗∗∗ [28.79]
2 0.007 0.020 0.031 0.048 0.051 0.044∗∗∗ [45.46]

σ 3 0.007 0.022 0.034 0.054 0.076 0.069∗∗∗ [53.98]
4 0.009 0.025 0.038 0.065 0.100 0.091∗∗∗ [61.29]
High 0.017 0.033 0.058 0.113 0.180 0.163∗∗∗ [64.03]
H−L 0.008∗∗∗ 0.013∗∗∗ 0.029∗∗∗ 0.073∗∗∗ 0.151∗∗∗

[19.16] [19.49] [29.79] [42.76] [57.94]

Panel C: Standard variation ∆IBt+1, sorted by σ(∆IB) and σ

σ(∆IB)
Low 2 3 4 High H/L

Low 0.019 0.037 0.050 0.074 0.066 3.489∗∗∗ [12.18]
2 0.015 0.036 0.054 0.083 0.096 6.442∗∗∗ [41.50]

σ 3 0.016 0.041 0.056 0.088 0.132 8.517∗∗∗ [72.54]
4 0.021 0.042 0.065 0.105 0.158 7.656∗∗∗ [58.62]
High 0.039 0.056 0.094 0.168 0.260 6.662∗∗∗ [44.38]
H/L 2.061∗∗∗ 1.523∗∗∗ 1.901∗∗∗ 2.253∗∗∗ 3.934∗∗∗

[4.25] [2.32] [3.61] [5.08] [15.48]

Panel D: Regressing realized absolute unexpected change in earnings on σ

Dependent variable: |∆IBi,t+1 − Et[∆IBi,t+1]|
(1) (2)

σ 2.453∗∗∗ 1.271∗∗∗

[202.21] [86.70]
Constant 0.009∗∗∗

[34.04]

N 203,120 203,120
R2 0.168 0.481
Fixed Effects NA Firm, Year

This table shows the relation between σ and realized variability of change in performance or future performance. Variables
are defined in Table A1. In Panel A, we show the realized absolute change in earnings (|∆IBt+1|) of each quintile for each
quintile-sorted σ, as well as realized standard deviation of change in earnings (∆IBt+1) of each quintile for each quintile-
sorted σ. In Panel B and C, we first sort on historical earnings volatility, σ(∆IB), into quintiles within each year, and then
sort σ within each quintile-year of σ(∆IB). Panel B (C) show the realized absolute change in earnings, |∆IBt+1| (realized
standard deviation of change in earnings, |∆IBt+1|), of double-quintile sorts. In Panel D, we take the absolute difference
of each firm-year’s realized change in earnings (∆IBi,t+1) and the mean predicted change in earnings Et[∆IBi,t+1] from
cross-sectionally estimated γs. Observations must have non-missing leading year change in earnings (∆IBi,t+1) to enter the
regression. Column (1) shows the specification of an ordinary least square model, regressing the realized absolute difference
on σi,t. Column (2) shows the same model as column (1), augmented with firm and year fixed effects. T-statistics of mean
tests and F-statistics of variance tests are reported in the brackets. ∗,∗∗, and ∗∗∗ indicate two-tailed p<0.1, p<0.05, and
p<0.01, respectively.
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Table 5: Two-way sorts: future systematic risk sensitivity (βCAPM)

Panel A: βCAPM in year t+ 1

βCAPM

Low 2 3 4 High H−L
Low 0.382 0.731 1.012 1.321 1.878 1.496∗∗∗ [201.46]
2 0.371 0.727 1.001 1.307 1.889 1.518∗∗∗ [201.02]

σ 3 0.375 0.728 0.998 1.309 1.926 1.550∗∗∗ [197.56]
4 0.397 0.740 1.012 1.326 1.937 1.539∗∗∗ [183.30]
High 0.422 0.774 1.034 1.347 1.973 1.552∗∗∗ [164.78]
H−L 0.039∗∗∗ 0.044∗∗∗ 0.021∗∗∗ 0.026∗∗∗ 0.095∗∗∗

[6.19] [7.65] [3.79] [4.28] [9.39]

Panel B: βCAPM in year t+ 2

βCAPM

Low 2 3 4 High H−L
Low 0.451 0.762 1.020 1.291 1.746 1.295∗∗∗ [145.43]
2 0.440 0.750 0.995 1.275 1.752 1.312∗∗∗ [148.64]

σ 3 0.448 0.756 1.001 1.268 1.785 1.336∗∗∗ [145.10]
4 0.501 0.783 1.016 1.296 1.795 1.295∗∗∗ [129.27]
High 0.563 0.830 1.052 1.323 1.835 1.272∗∗∗ [112.39]
H−L 0.112∗∗∗ 0.068∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.089∗∗∗

[13.92] [8.81] [4.15] [3.86] [7.47]

Panel C: βCAPM in year t+ 3

βCAPM

Low 2 3 4 High H−L
Low 0.515 0.790 1.028 1.264 1.613 1.098∗∗∗ [108.45]
2 0.502 0.774 1.001 1.238 1.628 1.126∗∗∗ [115.17]

σ 3 0.518 0.789 1.003 1.224 1.660 1.142∗∗∗ [109.38]
4 0.597 0.831 1.021 1.261 1.659 1.063∗∗∗ [93.93]
High 0.684 0.881 1.064 1.299 1.709 1.025∗∗∗ [79.62]
H−L 0.169∗∗∗ 0.092∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.095∗∗∗

[17.92] [9.74] [3.83] [3.48] [7.10]

This table shows the realized future systematic sensitivity, or βCAPM in year t + 1, t + 2, and t + 3,
double sorted on σ and and current βCAPM . Variables are defined in Table A1. In this table, we
aggregate firm-month βCAPM to firm-year βCAPM by a firm’s fiscal year. We first sort annual βCAPM

into quintiles within each year, and then sort σ within each quintile-year of βCAPM . Panel A shows
the realized leading one-year systematic sensitivity (i.e., βCAPM in year t+ 1) of double-quintile sorts;
Panel B shows the realized leading two-year systematic sensitivity (i.e., βCAPM in year t+2) of double-
quintile sorts; and Panel C shows the realized leading three-year systematic sensitivity (i.e., βCAPM in
year t + 3) of double-quintile sorts. T-statistics are reported in the brackets. ∗,∗∗, and ∗∗∗ indicate
two-tailed p<0.1, p<0.05, and p<0.01, respectively.
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Table 6: Fama-French-Carhart four factors: portfolio sorting tests

Panel A: Realized future raw returns, sorted into σ quintiles

EW portfolio return VW portfolio return
Low 0.720 1.073
2 0.796 1.113

σ 3 0.844 1.233
4 0.917 1.442
High 1.020 1.746
H−L 0.300∗∗ 0.673∗∗∗

[2.20] [5.14]

Panel B: Realized future excess returns, sorted into σ quintiles

EW portfolio return VW portfolio return

α βmkt βsmb βhml βmom α βmkt βsmb βhml βmom

Low 0.024 0.939 0.66 0.472 −0.152 0.466 0.954 0.05 0.318 −0.059
2 0.092 0.905 0.609 0.47 −0.094 0.463 1.004 0.007 0.322 −0.025
3 0.161 0.973 0.734 0.301 −0.144 0.594 1.041 0.115 0.162 −0.032
4 0.295 0.982 0.831 0.112 −0.189 0.865 1.043 0.23 −0.138 −0.025
High 0.446 1.012 1.06 −0.139 −0.239 1.187 1.032 0.408 −0.301 −0.017
H−L 0.422∗∗∗ 0.073∗∗∗ 0.399∗∗∗ −0.611∗∗∗−0.087∗∗∗ 0.721∗∗∗ 0.079∗∗∗ 0.358∗∗∗ −0.619∗∗∗0.042∗

[3.91] [2.88] [11.03] [−15.75] [−3.32] [7.17] [3.33] [10.61] [−17.15] [1.72]

Panel C: Realized future excess returns, sorted into σ deciles

EW portfolio return VW portfolio return

α βmkt βsmb βhml βmom α βmkt βsmb βhml βmom

Low −0.033 0.956 0.737 0.488 −0.166 0.484 0.969 0.111 0.312 −0.058
2 0.079 0.922 0.585 0.457 −0.139 0.434 0.944 0.007 0.329 −0.058
3 0.091 0.903 0.58 0.478 −0.108 0.419 1.001 −0.009 0.346 −0.047
4 0.093 0.907 0.637 0.463 −0.079 0.499 1.01 0.029 0.306 −0.006
5 0.146 0.967 0.706 0.356 −0.125 0.518 1.044 0.074 0.254 −0.042
6 0.176 0.98 0.762 0.246 −0.164 0.661 1.038 0.166 0.059 −0.025
7 0.251 0.98 0.802 0.176 −0.193 0.769 1.048 0.164 −0.05 −0.026
8 0.341 0.984 0.86 0.048 −0.186 0.956 1.045 0.29 −0.215 −0.031
9 0.410 1.016 0.958 −0.064 −0.208 1.037 1.04 0.363 −0.261 −0.026
High 0.485 1.007 1.165 −0.214 −0.271 1.436 1.024 0.507 −0.34 −0.017
H−L 0.518∗∗∗ 0.051 0.428∗∗∗ −0.702∗∗∗−0.106∗∗∗ 0.953∗∗∗ 0.056∗ 0.397∗∗∗ −0.652∗∗∗ 0.041

[3.58] [1.52] [8.83] [−13.53] [−3.02] [6.89] [1.71] [8.56] [−13.14] [1.24]

This table shows monthly equal-weighted and value-weighted average excess returns to portfolios sorted on σ, defined in
Table A1, and the excess returns from time series regressions of these portfolios’ returns on the Fama-French-Carhart four
factors (Carhart, 1997; Fama and French, 2015) (i.e., the market factor (MKT), the size factor small-minus-large (SMB),
the value factor high-minus-low (HML), and the momentum factor (MOM)). Portfolio returns are scaled up by 102. Panel
A reports the raw returns based on a quintile-sorted σ. Panel B reports the excess returns based on a quintile-sorted σ,
and Panel C reports the excess returns based on a decile-sorted σ. The sample covers June 1960 to May 2020, and return
data cover June 1961 to May 2021, a total of 720 months. T-statistics are reported in the brackets. ∗,∗∗, and ∗∗∗ indicate
two-tailed p<0.1, p<0.05, and p<0.01, respectively.
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Table 7: Two-way sorts: future returns

Panel A: SIZE and σ

SIZE
Low 2 3 4 High H−L

Low 0.014 0.011 0.010 0.011 0.010 −0.004∗∗∗ [−5.76]
2 0.015 0.012 0.011 0.011 0.010 −0.005∗∗∗ [−7.40]

σ 3 0.017 0.012 0.012 0.011 0.011 −0.006∗∗∗ [−7.87]
4 0.019 0.013 0.013 0.011 0.011 −0.008∗∗∗ [−10.27]
High 0.016 0.013 0.014 0.012 0.012 −0.004∗∗∗ [−4.22]
H−L 0.002∗ 0.003∗∗∗ 0.004∗∗∗ 0.001∗ 0.002∗∗∗

[1.84] [3.13] [5.32] [1.83] [3.19]

Panel B: BEME and σ

BEME
Low 2 3 4 High H−L

Low 0.006 0.009 0.010 0.011 0.014 0.009∗∗∗ [11.77]
2 0.008 0.010 0.012 0.013 0.015 0.007∗∗∗ [9.60]

σ 3 0.010 0.010 0.012 0.014 0.015 0.005∗∗∗ [6.66]
4 0.011 0.013 0.014 0.014 0.016 0.005∗∗∗ [5.63]
High 0.009 0.016 0.017 0.017 0.018 0.009∗∗∗ [8.53]
H−L 0.003∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.003∗∗∗

[3.13] [9.09] [9.34] [7.18] [3.97]

Panel C: ret12,2 and σ

ret12,2
Low 2 3 4 High H−L

Low 0.004 0.010 0.011 0.013 0.016 0.012∗∗∗ [15.33]
2 0.006 0.010 0.011 0.014 0.017 0.010∗∗∗ [12.68]

σ 3 0.008 0.011 0.012 0.014 0.018 0.010∗∗∗ [11.29]
4 0.011 0.011 0.012 0.014 0.018 0.007∗∗∗ [7.24]
High 0.012 0.012 0.013 0.015 0.019 0.007∗∗∗ [6.33]
H−L 0.008∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗

[6.82] [3.05] [3.04] [4.42] [3.85]

This table shows the equal-weighted average excess returns to portfolios, double quintile-sorted on firm
characteristics and σ. Variable definitions are in Table A1. Panel A reports the double sorts on σ and
SIZE (Fama and French, 1992). Panel B reports the double sorts on σ and BEME (Fama and French,
1992). Panel C reports the double sorts on σ and ret12,2, or momentum (Carhart, 1997). For Panel A
and B, We sort on the firm characteristic variable first within each year, and then sort σ within each
quintile-year of the firm characteristic variable. For Panel C, We sort on the ret12,2 first within each
month, and then sort σ within each quintile-month. The sample covers June 1960 to May 2020, and
return data cover June 1961 to May 2021, a total of 720 months. T-statistics are reported in the brackets.
∗,∗∗, and ∗∗∗ indicate two-tailed p<0.1, p<0.05, and p<0.01, respectively.
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Table 8: Fama-MacBeth regressions: σ and other measures of uncertainty, volatility or risk

Panel A: σ and other measures of earnings uncertainty or earnings volatility

(1) (2) (3) (4) (5)

σ 0.221∗∗∗ 0.226∗∗∗ 0.211∗∗∗ 0.401∗∗∗ 0.169∗∗∗

[5.40] [3.76] [5.30] [8.04] [5.10]
SIZE −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗ −0.001∗∗∗

[−2.51] [−2.67] [−2.63] [−1.98] [−2.63]
BEME 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.001∗∗

[6.36] [6.08] [6.50] [5.62] [2.36]
ret1 −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.049∗∗∗ −0.034∗∗∗

[−14.18] [−14.40] [−14.27] [−12.93] [−7.53]
ret12,2 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.002

[3.75] [3.65] [3.90] [3.02] [0.84]
σIB 0.083

[0.84]
σ(∆IB) −0.000

[−0.03]
EU −0.015∗∗

[−2.21]
IQR −0.016∗∗∗

[−2.68]
Intercept 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.010∗∗∗ 0.015∗∗∗

[4.95] [4.50] [5.18] [3.98] [4.25]

N 2, 478, 383 2, 472, 577 2, 336, 409 1, 939, 404 1, 192, 306
R2 4.33% 4.53% 4.55% 4.21% 3.53%
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Panel B: σ and other measures of risk in earnings

(1) (2) (3) (4) (5) (6)

σ 0.221∗∗∗ 0.250∗∗∗ 0.307∗∗∗ 0.253∗∗∗ 0.140∗∗ 0.213∗∗∗

[5.40] [5.85] [6.81] [5.53] [2.37] [5.12]
SIZE −0.001∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

[−2.51] [−2.51] [−3.05] [−3.25] [−2.71] [−2.63]
BEME 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.000 0.003∗∗∗

[6.36] [6.47] [6.43] [7.17] [0.91] [5.52]
ret1 −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.034∗∗∗ −0.050∗∗∗

[−14.18] [−14.38] [−14.58] [−14.43] [−7.79] [−14.14]
ret12,2 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗ 0.006∗∗∗

[3.75] [3.68] [3.55] [3.51] [2.21] [3.70]

∆̂IB 0.092
[1.34]

IB 0.011∗∗

[2.10]
OP 0.017∗∗∗

[5.71]
βAnalyst 0.001∗∗∗

[2.63]
βWealth 0.000∗∗

[2.38]
βTFP −0.000

[−0.05]
Intercept 0.013∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.015∗∗∗ 0.013∗∗∗

[4.95] [4.55] [4.68] [4.42] [4.73] [5.04]

N 2, 478, 383 2, 478, 383 2, 472, 577 2, 469, 331 801, 378 2, 291, 135
R2 4.33% 4.51% 4.62% 4.57% 4.81% 4.51%

Panel A shows the comparison of σ and other measures of second moment of earnings. In column (1), we show the baseline
regression model. In column (2), σIB refers to the sigma measure constructed using the level of IB only. In column (3), we
add historical volatility of change in earnings, σ(∆IB) (Dichev and Tang, 2009). In column (4), we add non-parametric
earnings uncertainty EU (Donelson and Resutek, 2015). In column (5), we add IQR, an inter-quartile uncertainty measure
using quantile regression (Konstantinidi and Pope, 2016). Panel B shows the comparison of σ and other measures of
earnings risk, including first moment of earnings and covariance of earnings. In column (1), we show the baseline regression
model. In column (2), we add the mean predicted change in net income. In column (3), we add current year earnings
IB. In column (4), we add current year operating profitability OP. In column (5), we add earnings beta constructed using
analyst forecasts (Ellahie, 2020). In Column (6), we add earnings beta constructed using aggregated shocks, wealth and
TFP (Ball et al., 2021). The main sample covers June 1960 to May 2020. Return data cover June 1961 to May 2021, a
total of 720 months. Other variables are subject to their data availability discussed in the original papers. T-statistics are
reported in the brackets. ∗,∗∗, and ∗∗∗ indicate two-tailed p<0.1, p<0.05, and p<0.01, respectively.
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Table 9: Returns: FM regression tests by groups

Panel A: Analyst coverage

(1) No coverage (2) With coverage

σ 0.193∗∗∗ 0.141∗∗∗

[4.69] [2.64]
SIZE −0.001∗∗∗ −0.001∗

[−3.77] [−1.75]
BEME 0.004∗∗∗ 0.002∗∗∗

[7.49] [3.02]
ret1 −0.053∗∗∗ −0.036∗∗∗

[−14.47] [−8.87]
ret12,2 0.005∗∗∗ 0.007∗∗∗

[3.29] [3.84]
Intercept 0.015∗∗∗ 0.013∗∗∗

[5.80] [4.38]

Differences (1)−(2)
0.052
[0.77]

N 1, 284, 487 1, 193, 896
R2 4.43% 4.07%

Panel B: Firm age

(1) Age = 1 (2) Age ≤ 5 (3) Age > 5

σ 1.160∗∗∗ 0.248∗∗∗ 0.187∗∗∗

[2.70] [3.76] [4.32]
SIZE −0.003 −0.001∗∗ −0.001∗∗

[−1.33] [−2.36] [−2.57]
BEME 0.005 0.003∗∗∗ 0.003∗∗∗

[1.36] [4.25] [5.94]
ret1 −0.083∗∗∗ −0.052∗∗∗ −0.050∗∗∗

[−3.59] [−11.67] [−14.09]
ret12,2 0.009 0.007∗∗∗ 0.006∗∗∗

[0.76] [3.91] [3.72]
Intercept 0.008 0.011∗∗∗ 0.013∗∗∗

[0.54] [3.86] [5.14]

Differences (1)−(2) (1)−(3)
0.912∗∗ 0.972∗∗

[2.10] [2.25]

N 32, 760 498, 564 1, 979, 819
R2 36.08% 6.07% 4.45%
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Panel C: Transaction costs

(1) Micro caps (2) All-but-micro caps (3) Price>$5

σ 0.136∗∗ 0.314∗∗∗ 0.376∗∗∗

[2.51] [5.58] [8.10]
SIZE −0.002∗∗∗ −0.000 −0.004∗∗∗

[−4.36] [−0.81] [−12.72]
BEME 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗

[5.92] [5.02] [4.02]
ret1 −0.054∗∗∗ −0.038∗∗∗ −0.043∗∗∗

[−14.27] [−9.25] [−11.99]
ret12,2 0.005∗∗∗ 0.007∗∗∗ −0.000

[3.54] [3.74] [−0.07]
Intercept 0.019∗∗∗ 0.008∗∗ 0.030∗∗∗

[6.46] [2.52] [12.12]

Differences (2)−(1) (3)−(1)
0.177∗∗ 0.240∗∗∗

[2.27] [3.35]

N 1, 350, 538 1, 127, 845 1, 966, 839
R2 3.80% 6.25% 4.80%

Panel D: High and low operating profitability

(1) Q1 (2) Q2 (3) Q3 (4) Q4

σ 0.339∗∗∗ 0.301∗∗∗ 0.145∗∗ 0.104∗∗

[4.18] [3.43] [2.03] [2.13]
SIZE −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗

[−3.08] [−2.76] [−3.41] [−2.24]
BEME 0.005∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

[7.84] [6.18] [5.32] [4.49]
ret1 −0.06∗∗∗ −0.048∗∗∗ −0.047∗∗∗ −0.048∗∗∗

[−13.53] [−11.69] [−11.64] [−12.29]
ret12,2 0.005∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

[2.55] [3.26] [3.34] [4.19]
Intercept 0.012∗∗∗ 0.012∗∗∗ 0.015∗∗∗ 0.015∗∗∗

[4.59] [4.58] [5.78] [5.33]

Differences (1)−(2) (1)−(3) (1)−(4)
0.038 0.194∗ 0.235∗∗

[0.32] [1.80] [2.49]

N 619, 536 619, 595 619, 596 619, 656
R2 5.74% 5.59% 5.17% 5.33%
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Panel E: Recession

(1) Recession = 1 (2) Recession = 0

σ 0.432∗∗∗ 0.139∗∗∗

[4.60] [2.63]
SIZE −0.001∗ −0.001∗∗∗

[−1.86] [−2.59]
BEME 0.005∗∗∗ 0.002∗∗∗

[4.74] [3.54]
ret1 −0.068∗∗∗ −0.052∗∗∗

[−10.94] [−11.97]
ret12,2 0.002 0.006∗∗∗

[0.49] [3.53]
Intercept 0.015∗∗∗ 0.015∗∗∗

[3.21] [5.34]

Difference (1)−(2)
0.293∗∗∗

[2.72]

N 586, 726 1, 891, 657
R2 5.43% 4.92%

This table shows σ’s ability to predict cross-sectional future returns across different groups of firms, using Fama-Macbeth
regression method (Fama and MacBeth, 1973). Variables are defined in Table A1. Future returns start from June after
a firm’s fiscal-year-end to May of the following year. In Panel A, we partition firms into those that have information and
those that do not have information in IBES. In Panel B, we partition firms into first entering Compustat, firms younger
than 5-year-old, and firms older than 5-year-old. Age is calculated based on a firm’s existance in Compustat. In column
(1) and (2) of Panel C, we partition firms into micro caps and all-but-micro-caps (i.e., SIZE below or above the NYSE 20
percentile breakpoint). In column (3) or Panel C, we exclude penny stocks (price equal to or less than $5). In Panel D, we
partition firm-years into quartiles of operating profitability, sorting by OP within each yearly cross section. In Panel E, we
partition firm-years into being in recession or not. A firm-year is in recession if any month of its fiscal year is flagged by
NBER as being in recession. The sample covers June 1960 to May 2020, and return data cover June 1961 to May 2021, a
total of 720 months. Differences of coefficients across samples are tested using two-sample T tests. T-statistics are reported
in the brackets. ∗,∗∗, and ∗∗∗ indicate two-tailed p<0.1, p<0.05, and p<0.01, respectively.

63


