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What Can Analysts Learn from Artificial Intelligence about 
Fundamental Analysis? 

 

Abstract 
Taking the perspective of an equity investor seeking to maximize risk-adjusted returns through 
financial statement analysis, we apply a machine learning algorithm to estimate Nissim and Penman’s 
(2001) structural decomposition framework of profitability. Our approach explicitly takes account of 
the nonlinearities that precluded Nissim and Penman from estimating their framework. We first 
forecast profitability and then estimate intrinsic values using different subsets of Nissim and Penman’s 
framework and different fundamental analysis design choices; we find that trading on these estimates 
generates substantial risk-adjusted returns. Choices that improve performance include increasingly 
granular ratio disaggregation and long-horizon forecasts of operating performance. Perhaps 
surprisingly, we find only weak evidence of benefits from a fundamental analysis that incorporates 
historical financial statement information beyond the current-period information or focuses only on 
core items. While taking account of non-linearities improves model performance for all firms, the 
effect is strongest for small, loss-making, technology, and financially distressed firms. 
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1. Introduction 

We combine the capabilities of machine learning with Nissim and Penman’s (hereafter NP, 

2001) hierarchical approach to financial statement analysis to estimate their structural model of 

accounting profitability. Applying several financial statement analysis design choices identified by their 

framework, and consistent with the approach described by, among others, Yohn (2020), we first 

forecast profitability (accounting earnings) and then calculate intrinsic values using those forecasts. 

We examine returns to trading strategies based on these value estimates to provide evidence on the 

decision usefulness of both NP’s framework generally and the effects of varying several financial 

statement analysis design choices within the framework. The strength of NP’s framework, an 

extension of the traditional DuPont decomposition, derives from their use of fundamental financial 

statement analysis to identify value-relevant information within financial statements while filtering out 

value-irrelevant noise; this filtering is essential if we accept the premise that trading on information is 

profitable, while trading on noise is not (Black 1986).  

As NP demonstrate, the theoretical and empirical relations among the accounting ratios in 

their structural profitability model are non-linear, necessitating the use of non-traditional estimation 

approaches.1  We apply Deep Learning (hereafter DL), a machine learning algorithm that readily 

accommodates nonlinearities, to evaluate how the financial statement analysis design choices 

identified in NP are empirically linked to both accounting profitability and trading profitability. Our 

findings are informative in three ways. First, they assess the NP framework’s usefulness in financial 

statement analysis. Second, they guide analysts in designing their financial statement analyses. Third, 

	
1 Describing their results, NP (p. 128) report that their analysis “produced large t-statistics and reasonable R-square values 
in estimation, but the models performed poorly in prediction.” They confirm both the instability of estimates produced 
from linear estimators applied to pooled data in their setting, and a nonlinear relation between current-period and future-
period ratios. They conclude that “pooled, linear models are not likely to work well” and (on p. 148) suggest that their 
largely descriptive results “may lead to more formal, parsimonious forecast modeling which brings more sophisticated 
econometrics to the task.”  
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they provide a practical demonstration of the value of artificial intelligence in financial statement 

analysis, specifically by resolving the difficulties NP encountered in estimating their model. 

As discussed in more detail in section 2 and illustrated in Figure 1, NP’s model and related 

discussion substantially extend and enrich the traditional DuPont decomposition. One practical 

application of their framework is to use past ratio realizations to forecast future ratios that can then 

be used to estimate intrinsic equity value. The relations among current-period and future-period ratios 

identified by NP are nonlinear2 and cannot be modeled using traditional estimators such as Ordinary 

Least Squares (OLS) or Least Average Deviation (LAD), leading NP to conclude that these estimators 

perform poorly out of sample.3 Thus, NP confine their analysis to (mostly) descriptive documentation 

of empirical regularities, leaving to future research the task of applying their model to forecast 

profitability. Our analysis undertakes that forecasting task and the task of using the profit forecasts in 

valuation; in doing so, it shows the practical value of artificial intelligence in the analysis of intrinsic 

values. 

We investigate the effects on model performance of five financial statement analysis design 

choices within NP’s framework: level of disaggregation; including only core items (i.e., discarding 

unusual (impersistent) items); separately analyzing operating and financing activities; separately 

analyzing short and long forecast horizons; and using one vs. multiple lags of historical information.4 

	
2 Examples of non-linearities in valuation include the following: The interaction of turnovers and margins determines 
profitability; NP’s Figure 2 documents a convex, downward sloping relation between margins and turnovers. Further, 
most value-relevant ratios and growth rates experience convex mean reversion over time (see NP Figures 4 to 6). Leverage 
has a positive relation with profitability until the costs exceed the benefits of leverage and the relation turns negative (e.g., 
Myers 1984; Graham 2000). Finally, analysts often assume changing growth rates to avoid logical errors such as the paradox 
that a firm assumed to grow at a faster rate than the economy will at some point effectively constitute the overall economy. 
More sophisticated models assume that growth rates decay geometrically over time (Penman 2012). 
3 It is conceptually possible to model non-linearities with linear estimators by including higher-order polynomial and 
interactive terms. As a practical matter, however, the number of predictors grows exponentially rather than linearly under 
this approach, rendering the estimation infeasible. Section 2.2 elaborates on this point. 
4 NP define operating activities as all activities except financing activities, defined as activities undertaken to obtain capital 
from investors. Examples of financial reporting items related to financing activities include interest expense; gains, losses 
and interest or dividend income on trading investments; and financing fees. NP define core activities as activities judged 
as persistent rather than unusual or transitory. Examples of transitory items include currency translation adjustments, 
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A decision maker applying fundamental financial statement analysis makes these choices on empirical 

grounds; theory is silent. Combinations of these design choices within NP’s structural framework 

result in 192 models of theoretically grounded candidate ratios for fundamental analysis and security 

valuation. Our analysis provides evidence on the empirical questions of which combination of design 

choices performs best, and which design choices matter most.5  

We analyze the level of disaggregation as a tradeoff between information loss and noise. Less 

disaggregation increases the risk of information loss. If a ratio’s components are not perfectly 

correlated, each component might exhibit idiosyncratic value-relevant variation that is lost in 

aggregation. In contrast, greater disaggregation increases the risk of incorporating value-irrelevant 

noise. If idiosyncratic variation of ratio components cannot be used to trade profitably, either because 

the information is value-irrelevant or because it is already incorporated in price, there is no gain from 

disaggregation. Indeed, as discussed in Monahan (2018), research documents that a simple random 

walk outperforms linear models with a larger (more disaggregated) set of predictors in out-of-sample 

earnings forecasting.6  

Including only core items can also be considered as a separate and distinct tradeoff between 

information loss and noise. Independent of disaggregation as NP apply the concept, managers and 

analysts provide firm-specific performance measures (pro forma earnings) that exclude certain items 

	
income effects of discontinued operations, gains or losses on the sale of capital investments, write-offs, and restructuring 
charges. NP’s approach is not the only possible one, however. For example, McVay (2006) defines core earnings as 
operating income before depreciation and special items, defined as “material events that arise from a firm’s ongoing, 
continuing activities, but that are either unusual in nature or infrequent in occurrence – but not both – and must be 
disclosed as a separate line item as part of income from continuing operations, or in footnotes to the financial statements” 
(Revsine and Collins 2005, p. 55). Conceptually, we define core items as those arising from a firm’s recurring principal 
business activities, items that are either transitory or largely unrelated to the firm’s business model. Empirically, we use 
NP’s variable definitions. 
5 These investigations are consistent with Yohn’s (2020) recommendation that researchers should analyze approaches 
suggested in textbooks, particularly when those approaches have not been subjected to empirical validation. In the same 
spirit, NP (p. 110) note that the DuPont decomposition is a “standard textbook” framework for financial statement analysis 
but “rarely appear[s] in research.”  
6 This idea is consistent with the principle of Ockham’s razor. William of Ockham, a 14th century logician, argued that 
greater model complexity increases the possibility for error. In our context, this principle suggests that simpler models 
might outperform more complex ones. 
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designated as non-core; research finds that these measures have predictive ability but may be 

susceptible to managerial opportunism (Doyle, Lundholm, and Soliman 2003; Bradshaw, Christensen, 

Gee, and Whipple 2018; Bentley, Christensen, Gee, and Whipple 2018).7 It is unclear which approach 

is preferable for filtering out noise (transitory items): focusing on management/analyst performance 

measures that presumably include mostly or entirely firm-specific core items or applying consistent 

rules to all firms’ financial statements.8 Furthermore, while models including persistent operating items 

and excluding transitory non-operating items should (theoretically) produce better forecasts, both 

theory (Dye 2002) and empirical research (Barnea, Ronen, and Sadan 1976; Kinney and Trezevant 

1997; Givoly, Hayn, and D'Souza 2000; McVay 2006) suggest that managers sometimes manipulate 

income statement presentation, thereby blurring the core vs. non-core distinction.  

A third design choice within NP’s framework is the treatment of financing activities, 

determined by the analyst’s assessment of whether a firm’s financial structure has valuation 

implications. Some (Penman 2012; Li, Richardson, and Tuna 2014) view the valuation implications of 

operating and financing activities as mutually independent, with financial items valued at market (fair) 

value or book value. In contrast, the agency cost literature suggests that capital structure can affect 

managers’ incentives, inducing an association between operating and financing activities. For example, 

managers of firms close to bankruptcy might take excessive risks, because of the call option–like 

payoff structure of equity (Jensen and Meckling 1976). It is thus an empirical question whether past 

financing activities are informative about future operating activities; we believe our approach is among 

the first to test directly how the treatment of accounting information about financing activities affects 

forecasting and trading profitability.  

	
7 According to Audit Analytics, 97% of the S&P 500 firms used at least one pro forma metric in their regulatory findings 
in 2017, up from 59% in 1996  (McKeon 2018). 
8 Lipe (1986) shows that gross profit; sales, general, and administrative expense; depreciation expense; interest expense; 
income tax expense; and other Compustat line items have incremental (and differing) predictive ability for future returns. 
He does not classify line items as core vs. transitory. 
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Finally, while textbooks recommend using as much past information and forecasting as far in 

the future as practicable, empirical evidence on both prescriptions is sparse. Indirectly addressing the 

question of forecast horizon, Nissim (2019) asks which terminal value functional form and forecast 

horizon/terminal value combination is closest to price in the terminal value year; he reports that a 10-

year horizon works best. To the best of our knowledge, no study directly examines the choices of 

forecast horizon and the number of years of past data to include. 

Our approach to evaluating the 192 models based on variation in design choices to implement 

NP’s framework adopts the perspective of an equity investor who makes investment decisions using 

fundamental financial statement analysis and strives to maximize risk-adjusted returns. Black (1986) 

argues that noise trading causes short-run divergence of stock prices from value while information-

based trading causes long-run convergence of stock prices to value. The more price diverges from 

value, the larger the reward for information-based trading. The implication is that trades based on 

models that produce a less noisy estimate of value and help to detect divergence of value from price 

are more profitable.9 To implement this idea, we forecast out-of-sample profitability, estimate intrinsic 

values, calculate value-to-price (VP) ratios, and form hedge portfolios, buying (selling) firms in the 

highest (lowest) VP decile. We obtain model-specific alpha estimates by regressing value-weighted 

excess hedge returns on excess market returns, high-minus-low, small-minus-big, and up-minus-down 

factors (Carhart 1997). Using OLS and quantile regressions, we regress alphas on indicators for model-

specific financial statement analysis design choices to evaluate which choices improve model 

performance. We use alphas to make models of different scales comparable, an important 

consideration in evaluating the performance of RNOA-based and ROCE-based models. 

In preliminary analyses, we confirm many of NP’s findings, based on their sample period 1963-

	
9 The absence of an agreed-upon asset pricing model makes identification of mispricing challenging. However, as noted 
by, for example, Jackwerth and Slavutskaya (2018), asset pricing models can be used to assess relative performance across 
models incorporating different fundamentals. 
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1999 and our longer sample period, 1963-2017; both samples include NYSE/AMEX firms, not 

NASDAQ firms. In extensions of NP’s analyses that plot future profitability against combinations of 

current-period ratios, we show that current-period ratios are individually and interactively associated 

with current and future profitability in non-linear ways, including S-shaped, U-shaped, and concave 

patterns. These relations are visible at least 10 years into the future and attenuate over time. We next 

use DL to estimate these non-linear relations within NP’s framework. Following Monahan (2018), we 

benchmark the resulting one-year-ahead out-of-sample profitability forecasts against a random walk 

and generally find that the DL-based predictions are more accurate.  

In our main analyses, we compute an alpha estimate for each of 192 models derived from 

combinations of the five financial statement analysis design choices within NP’s framework. Hedge 

portfolios formed based on the value-to-price (VP) ratio obtained from estimating NP’s framework 

with DL achieve an alpha of up to 9.46% annually, which compares favorably to the excess return 

estimates reported in previous research (e.g., Piotroski 2000). Further tests show that DL’s estimation 

of non-linearities increases alpha by 94% in comparison to linear estimators. We use OLS and quantile 

regression to analyze the associations between model design-choice features and alpha across the 

entire alpha distribution and find that performance improves with greater ratio disaggregation and 

either long forecast horizons paired with a focus on operating activities or short forecast horizons 

paired with taking financing activities into account. We find weak evidence that models based on core 

items and more lags of historical information perform better.  

To address the possibility that positions taken by the best-performing models concentrate in 

small, illiquid, costly-to-trade stocks, making the returns we document unachievable, we include only 

NYSE/AMEX firms and use value-weighted portfolio returns. To probe further, we regress hedge 

portfolio excess returns on Carhart’s (1997) four asset pricing factors and find that returns are 

unrelated to the market, size, and momentum factors, and they vary positively with the value factor. 
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Importantly, the returns are driven by the trade’s long side. Plots of cumulative buy-and-hold returns 

for the short and long portfolios demonstrate that hedge portfolio performance derives from a 

widening spread, not from excessively negative performance of the short portfolio. In sum, the 

evidence indicates that the returns we document are potentially achievable in actual trades. In 

additional tests, we find that the model predicts returns incrementally to other factors suggested in 

prior research. The predictive power is pervasive throughout the sample but pronounced for small, 

loss-making, financially distressed, and technology firms, indicating that accounting for non-linearities 

is especially important when forecasting the profitability of these entities. 

This paper contributes to research on financial statement analysis and accounting-based 

valuation in several ways. First, we confirm that current-period financial ratios exhibit complex 

nonlinear associations with future profitability, and that allowing for these non-linearities provides 

value estimates to which prices converge (Lee, Myers, and Swaminathan 1999). This evidence extends 

the work of Dechow, Hutton, and Sloan (1999), who find little support for Ohlson’s (1995) 

assumption that the stochastic residual income process is linear. This finding is significant given the 

importance of the residual income model for valuation; after Ohlson (1995) reinvigorated the model 

previously developed by Preinreich (1938) and Edwards and Bell (1961), accounting researchers found 

that it yields more accurate valuations than discounted cash flow models (Penman and Sougiannis 

1998; Frankel and Lee 1998; Francis, Olsson, and Oswald 2000). We further contribute to this 

literature by answering Dichev’s (2020) call for more research on long-run earnings predictions using 

novel techniques, in particular machine learning, and integrating these forecasts into Ohlson’s (1995) 

fundamentals-based valuation framework. 

The second contribution derives from our use of NP’s theory-grounded framework to 

discipline variable selection. Prior research uncovers ratios and accounting signals that predict returns, 

earnings changes, and analyst forecast revisions (Ou and Penman 1989a, 1989b; Abarbanell and 
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Bushee 1997; Abarbanell and Bushee 1998; Piotroski 2000). So do we, but our approach differs. 

Variable selection in this prior research is based on statistical fit, which NP describe (p. 125) as 

“trawling through the data without structure”; in contrast, NP derive the variables we consider from 

fundamental principles.10 We use NP’s framework, as opposed to analyzing an arbitrarily large set of 

possible predictor ratios chosen based on either intuition (Ou and Penman 1989) or expert judgment 

(Lev and Thiagarajan 1993). We do so for the reasons put forward by NP (p. 110): their structural 

approach “not only identifies relevant ratios, but also provides a way of organizing the analysis task,” 

thereby providing a way to understand the predictive ability or valuation implications of a particular 

ratio. 

Our paper also extends research that applies machine learning to questions in accounting and 

financial economics.11,12 Several papers that use machine learning algorithms to predict earnings are 

not concerned with using the resulting forecasts as inputs to valuation, do not rely on a framework 

such as NP’s to discipline predictor selection, and do not derive specific prescriptions for financial 

statement analysis.13 We use machine learning to address the problem of nonlinear relations among 

the variables in a structural framework, not to search through arbitrarily large sets of possible 

predictors to arrive at empirically derived ratios. The latter approach might cause an analyst to 

overlook value-relevant information in distorted accounting numbers (Sloan 2019). Our paper shows 

how understanding the ways individual pieces of information are conceptually and empirically linked 

	
10 Fairfield, Sweeney, and Yohn (1996), Fairfield and Yohn (2001), Soliman (2008), and Esplin, Hewitt, Plumlee, and Yohn 
(2014) evaluate components of NP’s framework by showing how disaggregating ROE into different income statement 
line items, margins and turnovers, and returns from operation and financing can be used to forecast profitability, return, 
and analyst forecast revisions. We analyze NP’s framework as a whole. 
11 See, e.g., Huerta, Corbacho, and Elkan (2013), Purda and Skillicorn (2015), Frankel, Jennings, and Lee (2016, 2017), 
Erel, Stern, Tan, and Weisbach (2018), Gu, Kelly, and Xiu (2020), Fu, Du, Guo, Liu, Dong, and Duan (2018), Aubry, 
Kräussl, Manso, and Spaenjers (2019), Bertomeu, Cheynel, Floyd, and Pan (2019), Ding, Lev, Peng, Sun, and Vasarhelyi 
(2020), Bao, Ke, Li, Yu, and Zhang (2020), Brown, Crowley, and Elliott (2020), and Avramov, Kaplanski, and 
Subrahmanyam (2020). 
12 The importance of machine learning in financial markets has also been noted by professional organizations such as the 
CFA Institute, which began including machine learning in its curriculum in 2019. 
13 See, e.g., Callen, Kwan, Yip, and Yuan (1996), Hunt, Myers, and Myers (2019), Anand, Brunner, Ikegwu, and Sougiannis 
(2020), and van Binsbergen, Han, and Lopez-Lira (2020). 
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within a comprehensive financial statement analysis helps protect investors from fluctuations in 

accounting numbers induced by the reporting process (Penman 2010, Chapters 4 & 5). 

We believe our application of machine learning has two distinctive features. First, in contrast 

to applications that use statistical fit to arrive at model inputs, our inputs are specified by the valuation 

theory–based framework developed by NP. We demonstrate how a specific machine learning 

algorithm, DL, can be used in two related accounting applications implied by NP’s framework, 

profitability forecasting and valuation. In contrast to papers that apply machine learning to returns 

prediction via large, arbitrary sets of predictors, we use DL to estimate a model tied to NP’s structural 

framework and arrive at a valuation that is used to form a trading strategy. As discussed in Armstrong 

(2001), complex, atheoretical statistical models tend to include noise, which causes their performance 

to deteriorate out of sample. Theory-grounded models are less susceptible to this threat as they 

incorporate an understanding of underlying mechanisms. Second, we focus on understanding what 

researchers and others including analysts can learn from the application of a machine learning 

algorithm about the processes underlying valuation and financial statement analysis, going beyond the 

empirical tasks of profitability prediction and equity valuation. This approach to understanding, that 

is, learning from artificial intelligence, is inspired by the reasoning of Chess and Go grandmasters who 

started to learn from the games of the artificial intelligence AlphaZero.14 

2. Methodology 

2.1 Structural Accounting–Based Valuation Models 

Structural accounting–based valuation models express a firm’s equity value as a function of 

expected accounting outcomes. Manipulating the definition of an expected return ("! = (V"
# +

	
14  See https://arstechnica.com/science/2018/12/move-over-alphago-alphazero-taught-itself-to-play-three-different-
games. In a heavily publicized match, AlphaZero beat the 18-time Go world champion Lee Sedol by 4-1 in 2016. Nineteen 
years earlier, the artificial intelligence Deep Blue beat the then-reigning Chess world champion Garry Kasparov by 3.5 to 
2.5 in 1997. Artificial intelligence has been employed to perform at a world-class level in a range of other games including 
all 57 Atari video games, StarCraft 2, and Quake 3. 
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D")/V"$%
# )  under the assumptions of constant expected returns and terminal convergence 

( '()&→(	V")&
# /"!& = 0 ) yields the discounted dividend model V*

# = ∑ D"&
"+% /"!" , where "! 

denotes the (constant) expected or required return to common equity, V# value to equity holders, D 

dividends, and all variables in periods following - expected outcomes.  

Dividends, however, are hard to forecast as their payment is discretionary, so in practice, most 

analysts predict accounting earnings. Using the clean surplus relation CSE" = CSE"$% + CNI" −D" 

and an additional terminal convergence condition ('()&→(	CSE")&/"& = 0), we reformulate the 

discounted dividend model into the residual income model V*
# = CSE* + ∑ RE"&

"+% /"!" , where CSE 

denotes the book value of shareholders’ equity, CNI comprehensive net income, and RE" = CNI" −

CSE"$% × ("! − 1) residual income (Preinreich 1938; Edwards and Bell 1961; Ohlson 1995).15 While 

the residual income model links value to expected accounting outcomes, it provides no guidance on 

how to forecast those outcomes. While Ohlson (1995) assumes that RE is linked linearly through time 

to derive further theoretical implications, Dechow et al. (1999) do not find evidence supporting this 

assumption in annual US data.  

2.1.1 Ratio Analysis and Disaggregation 

In contrast to Ohlson (1995), NP’s framework is agnostic about the functional form of the 

RE process; instead, it modifies traditional financial statement ratio analysis to decompose residual 

income into its drivers and relates past to future drivers empirically. Specifically, an alternative way to 

calculate residual income is RE = (ROCE− "! + 1) × CSE"$% , where ROCE (= CNI/CSE) 

denotes return on common equity. To facilitate notation, ratios and income statement accounts 

without subscripts denote period t quantities. This yields a ratio-based formulation of the residual 

income model: 

	
15 Both US GAAP and IFRS require firms to display comprehensive income, which satisfies the clean surplus relation. 
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V*
# = CSE* + ∑ ((

"+% ROCE− "! + 1) × CSE"$% × "!$". (1) 

Figure 1 breaks ROCE into its components in increasing levels of granularity/disaggregation: 

Level 1: ROCE = ROTCE × MSR: ROTCE denotes return on total common equity (= (CNI + 

MII)/(CSE + MI)), MSR minority sharing ratio (= 
CNI/(CNI + MII)
CSE/(CSE + MI)

), MII minority (noncontrolling) 

interest income, and MI minority (noncontrolling) interest.16 

Level 2: ROTCE = RNOA + FLEV × SPREAD: RNOA denotes return on net operating assets (= 

OI/NOA), FLEV financial leverage (= NFO/CSE), SPREAD the spread between RNOA and net 

borrowing cost (= RNOA − NBC), OI operating income, NOA net operating assets (= OA − OL), 

NFO net financial obligations (= FO − FA), OA operating assets, OL operating liabilities, FO 

financial obligations, FA financial assets, NBC net borrowing cost (= NFE/NFO), and NFE net 

financial expense. 

Level 3: RNOA = Sales PM × ATO + Other items/NOA: Sales PM denotes sales profit margin (= 

OI from Sales/Sales) and ATO asset turnover (= Sales/NOA). 

Level 4: Sales PM × ATO = Sales PM* × ATO* + OLLEV × OLSPREAD: Sales PM∗ denotes 

modified profit margin after consideration of implicit charges on supplier credit (= (Core OI from 

Sales + io)/Sales), ATO∗ modified asset turnover (= Sales/OA), OLLEV operating liability leverage 

(= OL/NOA), OLSPREAD the spread between return on operating assets and the implicit interest 

rate on operating liabilities (= (OI + io)/OA − io/OL), and io the implicit interest charge on operating 

liabilities. The analysis reveals eight drivers of ROCE: (1) MSR, (2) FLEV, (3) NBC, (4) ATO*, (5) 

Sales PM*, (6) Other Items/OA, (7) OLLEV, and (8) OLSPREAD: 

	
16 We refer readers who want to learn more about the derivation of NP’s decomposition to their section 2. 
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ROCE = MSR × [Sales PM∗ × ATO∗ +Other Items

OA
+OLLEV ×OLSPREAD

+ FLEV × (RNOA −  NBC)].
 (2) 

Theory is silent as to which of the four levels should be used for prediction, making the choice 

of disaggregation level an empirical question. As previously explained, models with less disaggregation 

run the risk of missing information, and models with more disaggregation run the risk of including 

noise. If idiosyncratic variation of ratio components cannot be used to trade profitably, either because 

the measures contain too much value-irrelevant information or the relevant information is already 

incorporated in price (Malkiel and Fama 1970), investors would be better off not disaggregating. Thus, 

our first hypothesis, stated in alternative form, is: 

Hypothesis 1. Higher-level ratio disaggregation improves model performance. 

2.1.2 Core vs. Transitory Items 

NP document time-series and cross-sectional properties of the eight ROCE drivers. While 

some, such as ATO, are persistent, others, such as RNOA deriving from unusual operating income, 

show mean reversion. Hence, focusing on persistent components and excluding transitory 

components of each ratio might enhance forecasting performance by decreasing noise that is irrelevant 

to prediction. Acknowledging this, NP adjust their final layer of decomposition: 

ROCE = MSR × [Core Sales PM∗ × ATO∗ + Core Other Items

OA
+ UOI

OA
+OLLEV

×OLSPREAD+ FLEV × (Core RNOA− Core NBC+ UOI

NOA
− UFE

NFO
)],

 (3) 

where Core Sales PM∗ denotes modified profit margin from core sales (= (Core OI from Sales + 

io)/Sales), UOI unusual operating income, Core RNOA core return on net operating assets (= Core 

OI from Sales/NOA + Core Other Items/NOA), Core NBC core net borrowing cost (= Core 

NFE/NFO), and UFE unusual financial expense. Equation 3 identifies eight relatively more persistent 
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drivers of ROCE: (1) MSR, (2) FLEV, (3) Core NBC, (4) ATO*, (5) Core Sales PM*, (6) Core Other 

Items/OA, (7) OLLEV, and (8) OLSPREAD. 

Empirically, it is not clear whether including items labeled as persistent/core and excluding 

items labeled as transitory/non-core (i.e., UOI/OA, UFE/NFO) improves forecasting. There are at 

least two considerations. First, management’s reporting decisions may result in transitory income items 

that nonetheless have predictive ability. Penman and Zhang (2002) argue that under conservative 

accounting, management can create earnings reserves by taking actions that generate future-period 

(accounting) benefits while decreasing current-period income; for example, managers can increase 

future accounting performance by recording a current-period impairment loss. The impairment loss, 

classified as transitory (non-core), would be relevant for predicting future earnings. The second 

consideration derives from the view that the distinction between transitory (non-core) and persistent 

(core) income items is at least partly firm-specific, arising from features of the firm’s business model. 

The empirical measures used by NP and in this paper are based on Compustat data definitions applied 

to all entities, which may result in an imperfect separation of core from non-core items for at least 

some firms. Thus, whether focusing on core items improves forecasts is an empirical question that 

motivates our second hypothesis, also stated in alternative form: 

Hypothesis 2. Focusing on core items improves model performance. 

2.1.3 Value of Operating Activities 

NP propose a model simplification based on US GAAP and IFRS that require recognition or 

disclosure of market (fair) values of Net Financial Obligations (NFOs). If NFO fair value equals 

fundamental value, equation 1 can be simplified as follows: 

V*
# = NOA* −NFO* +5(

(

"+%
RNOA− "- + 1) ×NOA"$% × "-$" , (4) 

where NOA denotes value of net operating assets, NFO value of net financial obligations, "- 
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weighted average cost of capital (WACC) ("- = "! ×
V!"

(V!")NFO!)
+ "0 ×

(%$1)×NFO!
(V!")NFO!)

), "0  cost of 

debt, and 6 marginal tax rate. Expression 4 reduces the forecasting inputs to the five drivers of RNOA 

attributable to common shareholders: (1) ATO*, (2) Sales PM*, (3) Other Items/OA, (4) OLLEV, 

and (5) OLSPREAD. 

As in the case of the core vs. noncore distinction, whether the simplified form of the residual 

income model in Expression 4 improves forecasting performance is ex ante unclear. The agency cost 

literature questions the independence of operating and financing activities, as capital structure can 

affect managers’ incentives. As previously noted, managers of (highly) levered firms close to 

bankruptcy might engage in excessive risk-taking to benefit shareholders who face limited downside 

and unlimited upside given the call option–like payoff structure of equity (Jensen and Meckling 1976). 

Hence, our third hypothesis, stated in alternative form: 

Hypothesis 3. Focusing on operating activities improves model performance. 

2.1.4 Terminal Values 

Equations 1 and 4 require indefinite-horizon forecasts, an infeasible task. For practicality, 

analysts assume that firms eventually reach steady-state residual income growth to estimate terminal 

value (Penman 2012; Nissim 2019). Applying a terminal growth rate 7 to equations 1 and 4 yields: 

V*
# = CSE* +5

(ROCE" − "! + 1) × CSE"$%
"!"

&

"+%
+ (ROCE&)% − "! + 1) × CSE&

"!& × ("! − 7)
 (5) 

and 

V*
# =	 NOA* −NFO* +5

(RNOA" − "- + 1) ×NOA"$%
"-"

&

"+%

+(RNOA&)% − "- + 1) ×NOA&
"-& × ("- − 7) .

 (6) 
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The appropriate choice of T is ex ante unclear. While one-, five- and 10-year horizons are 

common in practice, Nissim (2019) finds that a 10-year horizon yields the terminal value estimate 

closest to observed price in the terminal year. This motivates our fourth hypothesis, stated in 

alternative form: 

Hypothesis 4. Expanding the prediction horizon improves model performance. 

Lastly, using longer-past outcomes as predictors increases the likelihood that (1) a firm’s 

activities have changed sufficiently to reduce the information to noise, or (2) the information in the 

reports is already incorporated in price. In the words of Black (1986), “[t]rading on that kind of 

information will be just like trading on noise.” Hence, our fifth and final hypothesis, stated in 

alternative form: 

Hypothesis 5. Using more predictor lags improves model performance. 

We acknowledge that, as a practical matter, a researcher or analyst must make other choices 

in designing a financial statement analysis, including the reinvestment rate, discount rates "! and "-, 

and growth rate 7. Because the number of models to be estimated grows multiplicatively with the 

number of choices, we focus only on the five design choices we believe to be most important.17 In 

our empirical implementation, we invoke Miller and Modigliani (1961) principles and set the 

reinvestment rate to one. Given the lack of an agreed-upon asset pricing model, we follow NP’s 

agnostic approach and set the discount rate to the one-year Treasury bill yield plus 5%. In line with 

historical GDP figures, we assume a 2% growth rate (e.g., Penman and Sougiannis 1998).  

Expressions 5 and 6 link value to ratios, and financial statement analysis links past realizations 

to future realizations of ratios. Because both links or relations are non-linear, it is necessary to use 

methods/tools that can accommodate complex nonlinear associations to apply financial statement 

	
17 Testing Hypotheses 1 to 5 requires estimation of 4 (number of disaggregation levels) × 2 (core vs. non-core) × 2 (ROCE 
vs. RNOA) × 3 (1-, 5-, and 10-year horizons) × 4 (0, 1, 3, and 5 ratio lags) × 29 (number of years for which we estimate 
each model) = 5,568 models. 
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analysis in forecasting and value estimation. The next section introduces such a tool: Deep Learning, 

a special case of a neural network machine learning algorithm. 

2.2 Deep Learning 

A neural network generalizes simpler estimators such as OLS to model complex nonlinear 

relations among independent and (possibly multiple) dependent variables through a layered system of 

equations. The basic building block of a neural network is a neuron, a function that takes in variables 

as inputs, combines them through a linear equation, and transforms the output of that equation 

through a (typically) non-linear function known as an activation function. OLS and Logistic 

Regression are examples of single neurons that create a linear relation among independent variables 

and transform the relation by multiplying by one or	(1 + 83)$%, respectively. 

A neural network organizes relations among inputs into layers (9 = 1, 2, . . . , ;). Each layer j, 

including the input layer 9 = 0 (the independent variables) and output layer 9 = ; (the dependent 

variables), consists of a series of neurons. Layers between the input and output layers are called hidden 

layers. A neural network with one (multiple) hidden layer(s) is referred to as shallow (deep). Deep 

neural networks are also referred to as Deep Learning (DL) algorithms. While the connections 

between layers can be set arbitrarily, the most common implementations are sequential models that 

fully connect each neuron in the preceding layer to each neuron in the subsequent layer. In other 

words, the neurons of one layer become the independent variables that are the inputs for the neurons 

in the next layer. We use a fully connected sequential model with multiple variables in the input and 

output layers, constant activation functions, and a fixed number of neurons (( = 1,2, . . . , <) in each 

hidden layer.18 By combining the activation functions with a series of layers in this way, the neural 

	
18 As is standard in the recent literature, we use rectified linear units activation functions (ReLUs), ℎ#(#) = &'#(0, #), 
which make computation more efficient relative to other possible choices such as sigmoid of hyperbolic tangent activation 
functions (Glorot, Bordes, and Bengio 2011). 
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network can model complex non-linear relations without the need to specify a functional form. 

Figure 2 Panels A to C compare three special cases of neural networks: a single-layered 

network with one predictor and one outcome variable; a single-layered network with eight predictors 

and one outcome variable; and a multi-layered model with two hidden layers, 10 neurons per layer, 

eight predictors, and five outcome variables. Circles symbolize neurons, and lines indicate connections 

among neurons. The Panel A model resembles the random walk model recommended by Watts and 

Leftwich (1977), who find that it outperforms more complicated earnings prediction schemes in time-

series regressions. The Panel B model resembles the model of Hou, Van Dijk, and Zhang (2012), who 

argue that earnings prediction can be enhanced by adding additional predictors such as accruals and 

the book-to-market ratio in a pooled cross-sectional model. The Panel C model resembles a more 

general neural network with the potential to model the non-linearities and interactive effects prevalent 

in NP’s framework by adding hidden layers. The figure highlights the neural network’s ability to jointly 

and simultaneously predict multiple outcome variables, which, as NP argue, can be useful when the 

predictions are mutually dependent, as in the case of earnings prediction. The number of equations 

describing a layer in a fully connected network is determined by the number of neurons in the layer 

and its preceding layer. Thus, in standard notation, layer 9 is modeled as: 

=%
(4) = ℎ5(?%*

(4$%) +∑ ?%6
(4$%)7$%&

6+% =6
(4$%))

=8
(4) = ℎ5(?8*

(4$%) +∑ ?86
(4$%)7$%&

6+% =6
(4$%))

⋮
=7$
(4) = ℎ5(?7$*

(4$%) +∑ ?76
(4$%)7$%&

6+% =6
(4$%))

 , (7) 

where =6
(4)

 denotes neuron ( in hidden layer j, ℎ5 the ReLU activation function, and ?6$6
(4$%)

 the slope 

coefficient connecting neuron ( in layer 9 − 1 to neuron (4 in layer 9. The system of equations is more 

compactly expressed in matrix notation: 
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=6
(4) = ℎ5(?(4$%)=(4$%)) (8) 

such that A()(?(4$%)) = 1 × (< + 1)  and A()(=(4$%)) = < × 1  where A() ( X)  returns the 

dimension of matrix X. To illustrate, for the model depicted in Figure 2 Panel A, ; = 2, <% = 1, and 

<8 = 1; in Figure 2 Panel B, ; = 2, <% = 8, and <8 = 1; and in Figure 2 Panel C, ; = 4, <% = 8, <8 =

<9 = 10, and <: = 5.  

Neural networks are estimated iteratively through minimizing a loss function 75F=(;), =G(;)H 

where hat symbols indicate predicted outcomes. Following Easton, Kapons, Kelly, and Neuhierl 

(2020), who find that minimizing mean absolute deviation yields better results for fundamental 

forecasting than minimizing squared deviation, we set 75F=(;), =G(;)H = |=(;)−	=G(;)|. To specify the 

process through which the minimum is found, the researcher must choose an optimizer. Following 

the recent literature, we use the Adam optimizer, which has been shown to return local minima more 

efficiently and more precisely than other popular optimization algorithms (Kingma and Ba 2014). 

As mentioned previously, neural networks can estimate arbitrarily complex functions among 

independent and dependent variables. While in principle one could achieve the same outcome by 

including higher-order polynomials and interaction terms in linear regression models, the 

dimensionality of this problem quickly makes estimation infeasible. If a model has 10 independent 

variables, a simple linear regression would estimate 1 + 10 = 11 parameters. Including the squares and 

cubes of each independent variable increases the number of parameters to be estimated to 31 [= 1 + 

10 + 10 + 10]. Including interactions among these 30 independent variables increases the number of 

parameters to 1 + 10 + 10 + 10 + 29! = 8.84 × e30. Once the number of parameters exceeds the 

number of observations in the dataset, the model is either not estimable via Ordinary Least Squares 

(OLS) or the estimates will behave poorly (Huber 1973). In contrast, neural networks allow researchers 

to capture higher-order and interactive relations without explicitly specifying them. The combination 
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of hidden layers connected through non-linear activation functions approximates such relations 

automatically (Hornik, Stinchcombe, and White 1989; Cybenko 1989; Tsang, Cheng, and Liu 2017), 

reducing computing and implementation time, limiting subjective research design choices, and making 

neural networks prime candidates for modeling the complex non-linear relationships between the past 

and future value-determining fundamentals discussed in the previous section.19 Indeed, as shown in 

Figure 3, the popularity (as measured by web queries analyzed via Google Trends) of neural networks 

more generally and DL more specifically has increased substantially relative to other prominent 

machine learning algorithms previously used in the accounting literature, such as Lasso Regressions 

and Random Forests. 

We implement the neural network using Google’s Tensorflow API. We choose a fully 

connected deep neural network architecture with five hidden layers and 500 neurons per layer, a 

structure that allows the model to estimate complex, non-linear relationships among variables.20 To 

address overfitting concerns, we add the regularization term J∑ (6,4,= ?6,4= )8 to the value function. 

This practice biases parameter estimates towards zero, thereby mitigating the influence of noise on 

our estimates (Friedman, Hastie, and Tibshirani 2001). We estimate each neural network over 50 

epochs using learning (K) and regularization (J) rates of 10-3 and 10-5. This standard architecture is 

able to capture complex non-linearities while also being simple enough to be estimated in six to seven 

	
19 For an illustration of how a neural network estimates arbitrarily complex higher-order and interactive relationships 
among variables, see playground.tensorflow.org. 
20 While there is no agreed-upon method to choose a neural network’s numbers of neurons and hidden layers, we use a 
simplification of the formulas discussed in Hagan, Demuth, Beale, and De Jesús (1996) to choose the number of neurons 
in the model: Nh = 0.5 × Ns/(Ni + No) = 0.5 × 55972/(9 + 1) ≈ 2,799, where Nh denotes the recommended upper bound 
for the number of neurons, Ni the number of variables in the input layer, and No the number of variables in the output 
layer. Bengio (2009) argues that neural networks need multiple hidden layers to represent the high levels of abstraction 
required for many artificial intelligence tasks. While traditional architectures were confined to one to three hidden layers, 
He, Zhang, Ren, and Sun (2016) propose an architecture with up to 1000 hidden layers. Given the discussion above and 
the computational challenges discussed in previous footnotes, the architecture of five hidden layers and 500 neurons per 
layer that we choose for this paper strikes a compromise to allow computation of complex relationships while maintaining 
computational feasibility. 
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minutes with a single GPU and 15 GB of RAM on Google Cloud’s AI Platform.21 

2.3 Model Evaluation 

 Because NP’s framework is designed to aid in equity valuation, and assuming the investor 

wishes to maximize risk-adjusted return, we compare model performance using future portfolio 

returns. We measure portfolio performance as alphas from a Jensen, Black, and Scholes (1972) time-

series asset pricing model. We calculate each model’s alpha as follows: 

1. Calculate a firm’s Value to Price (VP) ratio. Value is computed using the accounting-based 

valuation models described in section 2.1. Valuation inputs are obtained using the deep neural 

networks under the financial statement analysis design choices described in section 2.2. To ensure 

that all information is available at the time of portfolio formation in year t, forecasting models are 

estimated from year t − Leads − 9 to year t − Leads, where Leads is the number of ROCE or 

RNOA leads the model is designed to forecast. The estimation period of 10 years is chosen in line 

with Hou et al. (2012). 22  Figure 4 shows the timeline. To ensure that differences in model 

performance are driven by choice of fundamentals and not by differences in sample composition, 

we condition the estimation sample into firm-year observations for which 10 leads and five lags 

	
21 Given that we estimate 192 (number of different design choice combinations) × 29 (number of years for which we 
estimate each model) = 5,568 models, more complex model architectures become prohibitively costly to estimate. 
However, while we estimate all 5,568 models to analyze the effects of fundamental selection, researchers or practitioners 
applying the model in real time can use the findings in this paper to select the appropriate model for their needs. Thus, 
they have to estimate only one model, which makes more complex architectures feasible. We use the scikit-optimize 
Bayesian optimization API (scikit-optimize.github.io) to find the optimal architecture for an RNOA-based, level 4 
disaggregation model that uses five years of lagged information, forecasts 10 years of RNOA, and focuses on core items 
over a grid of ℤ ∈ [0,10] for the number of hidden layers, ℤ ∈ [1,1000] for the number of neurons per layer, ℤ ∈ [1,1000] 
for the number of epochs, and ℝ ∈ [10-12,10-1] for the learning and regularization rates. We pool all observations and, as 
is common in the literature, split the sample into an estimation sample consisting of 90% of all observations and a 
validation sample consisting of the remaining 10% of observations. We estimate the model using the estimation sample 
and apply the model to forecast RNOA for the validation sample. Performance is measured as mean absolute RNOA 
forecast error. The search yields an optimal architecture that consists of 10 hidden layers, 1000 neurons per layer, 100 
epochs, and learning and regularization rates of 4.27 × 10-4 and 1.99 × 10-10. 
22 If the parameters to be estimated vary predictably by industry, estimating the model by industry would improve 
forecasting. However, Damodaran (2007) argues that such variation is not predicted by valuation theory, and Fairfield, 
Ramnath, and Yohn (2009) do not find that estimating earnings forecasting models by industry yields more accurate 
predictions. 
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for each predictor variable used in a level 4 disaggregation model are available. 

2. Following Fama and French (1993), at the end of June in year t + 1, form decile portfolios using 

the VP ratios based on accounting data for fiscal year t.23 The first portfolios are formed in 1988 

(1963 plus a maximum lead of 10 years plus a maximum lag of five years plus a sample estimation 

period of 10 years). 

3. Calculate future annual value-weighted portfolio returns from July in year t + 1 to June in year t 

+ 2.24 The portfolio holding period is shown in Figure 4.25 

4. Calculate excess returns by subtracting returns on the risk-free security and the lowest decile 

portfolio from the return on the highest decile portfolio. 

5. Regress excess return on the risk factors proposed in Carhart (1997).26 Compute model alpha as 

the regression intercept estimate. 

This approach has two benefits. First, it allows the researcher to compare models based on ROCE 

with models based on RNOA. Given their differing distributional properties as shown in Tables 1 and 

3, it is unclear how to analyze the relative performance of ROCE-based and RNOA-based models in 

other ways, such as comparing absolute forecast error or bias (Hou et al. 2012; Evans, Njoroge, and 

Yong 2017). Second, if earnings outcomes are influenced by unforecastable macroeconomic shocks 

(Ball, Sadka, and Sadka 2009; Bonsall, Bozanic, and Fischer 2013), earnings expectations – not earnings 

realizations – determine stock prices. Because of the lack of a generally agreed-upon asset pricing 

	
23 Using median, terciles or quintiles instead of deciles does not affect our inferences. 
24 As noted by Loughran and Ritter (2000), using value-weighted instead of equal-weighted returns helps to ensure that 
results are not driven by small, illiquid stocks that are costly to trade. Tests based on value-weighted returns hence offer 
less power to detect mispricing. 
25 Our result are robust to using monthly instead of annual returns. 
26 The more recent Fama and French (2015) five factor model adds a factor for profitability, precisely the variable this 
paper is concerned with. To avoid multi-collinearity issues, we thus use the Carhart (1997) four factor model and note that 
the goal of this paper is not to document a novel asset pricing anomaly, but to understand the decision usefulness of 
different financial statement analysis choices. However, we redo our analysis using alternative factor models including the 
CAPM, the Fama and French (1993) three factor model, the Fama and French (2015) five factor model, and a simple 
unadjusted excess return model. Our inferences remain unchanged. We are unable to determine whether the models’ 
abnormal return performance is due to mispricing or whether they identify another risk factor not captured by various 
factor models. 
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model, we are agnostic about individual models’ alpha magnitudes and, as proposed by Jackwerth and 

Slavutskaya (2018), we focus on comparing the relative alpha magnitudes across models to test the 

hypotheses presented in section 2.1. 

3. Data and Descriptive Evidence 

3.1 Data 

Following NP, we use annual Compustat data from 1963 to 2017 for NYSE and AMEX firms. 

We retain observations with five lags for all required variables and non-negative values for CSE, NOA, 

OA, and OL at fiscal-year beginning and end to ensure that our results are not driven by different 

sample compositions across models and meaningful values for computed ratios. Stock return data and 

asset pricing factor data come from CRSP and Ken French’s website, respectively. 

3.2 Summary Statistics 

Table 1 Panel A presents descriptive statistics for price and valuation anchors. Following Fama 

and French (1993), we measure price as the firm’s market value of equity on the last day of June in 

the year succeeding the fiscal year of portfolio formation. Price’s mean and median exceed those of 

CSE and NOA, indicating that the market, on average, expects firms to yield positive future residual 

income. For most firms NFO is positive, meaning that financial obligations exceed financial assets. 

However, the first percentile of the NFO distribution is negative; some firms’ financial assets exceed 

their financial obligations.  

Table 1 Panel B replicates and extends NP’s Table 1; although the table includes 17 additional 

years, the numbers are generally similar, with a few exceptions. First, and consistent with the results 

in Givoly and Hayn (2000), the number of loss firms is increasing and profitability is decreasing over 

time. Mean ROCE in the extended sample is 1.2% lower, and its standard deviation is 3.8% higher. 

RNOA’s distribution, on the other hand, changed little. This difference could be due to increases in 

financial leverage, as documented in Schularick and Taylor (2012). FLEV’s mean is 9% higher, and its 
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standard deviation increased from 0.87 to 1.14 in the more recent sample. NBC and ATO are similar 

over time, while sales PM’s mean is 1% higher and its standard deviation is 5% higher than the 

corresponding NP statistics. Core items are on average close to their non-core counterparts. Unusual 

items such as Core Other Items/OA, UOI/NOA, and UFE/NFO have means close to zero, with 

sizable 1st and 99th percentiles. OLLEV has a larger mean and a similar median in the more recent 

sample. It appears that some firms have greater operating leverage after 2000 than previously. In 

contrast, OLSPEAD’s distribution does not change much. 

Table 2 presents correlations for selected ratios, with Pearson (Spearman) correlations above 

(below) the diagonal. Several correlations are economically and statistically significant, suggesting the 

usefulness of NP’s framework for prediction. ROCE and ROTCE are close to perfectly correlated. 

RNOA, however, exhibits idiosyncratic variation. Its Pearson (Spearman) correlations with ROCE 

and ROTCE are 0.78 (0.90) and 0.77 (0.90), respectively. Sales PM is more strongly correlated with 

contemporaneous non-core profitability measures than Core Sales PM, while the opposite holds for 

Core RNOA. While Fairfield and Yohn (2001) find that turnovers are better profitability predictors 

than margins, in Table 2 margins are more strongly correlated with contemporaneous profitability 

than turnovers. OLLEV correlates more strongly with RNOA than with ROCE, a potential by-

product of cross-sectional variation in financial leverage confounding the univariate relation between 

OLLEV and ROCE. Lastly, financial leverage and borrowing cost are positively correlated, albeit not 

strongly. Firms that take on higher financial risk have to compensate their lenders with higher interest 

payments (Penman, Reggiani, Richardson, and Tuna 2017). 

3.3 Non-Linearities 

Figure 5 Panels A to H present evidence on the relation between future profitability and 

contemporaneous ratios, by plotting median portfolio ROCE in periods t to t+10 by ROCE, FLEV, 

SPREAD, ATO, Sales PM, OLLEV, OLSPREAD, and RNOA decile in period t. Except for OLLEV, 
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the plots provide visual evidence of non-linear relations. Plotted relative to future ROCE, current 

ROCE, OLSPREAD and RNOA have an S-shaped association, FLEV and ATO have a U-shaped 

association, and SPREAD and Sales PM have a concave association. These functional forms are visible 

over 10 years, attenuating over time. Figure 6 Panels A to D present examples of interactive relations 

across ratios in predicting future ROCE. The surfaces obtained from plotting OLLEV and ATO, 

FLEV and ATO, SPREAD and Sales PM, and OLSPREAD and Sales PM on the X and Y axes and 

lead 1 (Panels A and B) and lead 5 (Panels C and D) ROCE on the Z axis exhibit curvatures that are 

visually different from the straight plane one would observe under linear, non-interactive relations. In 

sum, the visual evidence in Figures 5 and 6 suggests non-linearities in the dynamic relations across 

several fundamental ratios and subsequent profitability. 

It would be difficult to specify these (visually) nonlinear functional forms in a linear model 

based on accounting or financial statement analysis intuition, which makes flexible machine learning 

algorithms the appropriate estimation tool. While other algorithms such as Random Forests or 

Gradient Boosted Trees can handle non-linearities, we focus on DL because it is readily able to 

approximate any functional form and, as evidenced by Figure 3, because it is widely used in practice 

(Hornik et al. 1989; Schmidhuber 2015; Huang, Jin, Gao, Thung, and Shen 2016). We acknowledge 

that in our finite sample, other algorithms or some combination of algorithms might produce more 

accurate profitability forecasts. However, our main concern is the estimation of non-linear relations 

within NP’s framework to derive implications for financial statement analysis, not analyzing different 

machine learning algorithms to determine which one yields the most accurate predictions.27 

4. Results 

4.1 Forecast Errors 

We first analyze whether estimating NP’s framework via DL yields more accurate out-of-

	
27 Examples of papers that take an algorithm-comparison approach include Hunt et al. (2019) and Anand et al. (2020). 
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sample profitability forecasts than a random walk. As discussed in Monahan (2018), a random walk 

tends to yield more accurate predictions than other more complex earnings forecasting models, which 

justifies its use as a benchmark in our setting. Table 3 Panels A and B, which show one-year-ahead 

means of average absolute ROCE and RNOA out-of-sample forecast errors for each of our 192 

models and comparisons to random walk forecast errors, indicate that most of the models outperform 

the random walk.  

4.2 Alphas 

Table 4 reports Carhart (1997) alphas computed as discussed in section 2.3. Panel A (Panel B) 

presents results for ROCE- (RNOA-) based models. Following Newey and West (1986), we compute 

heteroscedasticity and autocorrelation robust standard errors with a lag order of 4 × (29/100)2/9 ≈ 3. 

For both matrices, alphas increase from the upper left to the lower right of each panel; that is, higher 

levels of ratio disaggregation, focusing on core items, expanding the forecast horizon, and using more 

lagged information are all positively correlated with alpha. Low disaggregation models that incorporate 

few leads and lags perform poorly. Alphas of ROCE models are smaller in absolute magnitude, are 

significantly positive in only five out of 96 cases, and are less dispersed than their RNOA counterparts. 

While RNOA-based alphas range from -9.61% to 9.46%, the ROCE-based alphas range from -3.23% 

to 5.29%. However, alphas for 10-year forecast horizon RNOA-based models are generally higher 

than their ROCE-based counterparts. In contrast, RNOA-based alphas forecasting one year ahead are 

significantly negative, while those based on ROCE are not statistically different from zero.28 Together, 

	
28 We compare the characteristics of firms in the Table 4 Panel B short- and long-horizon model portfolios to determine 
why alphas for short-horizon models are negative. Value estimates in short-horizon models largely derive from NOA, the 
valuation anchor. In consequence, these models tend to focus on capital intensive firms with high financial leverage, low 
asset turnovers, and declining profitability. In contrast, long-horizon value estimates derive largely from increases in 
residual operating income. Short-horizon models’ reliance on the valuation anchor results from the research design choice 
to apply the same terminal growth rate to all firms. As a result, short-horizon models that do not take account of the 
growth trajectory tend to underestimate the value of firms with strong growth prospects. The long-horizon models avoid 
these problems by expanding the forecast horizon. We do not attempt to estimate firm-specific terminal growth rates both 
because it is unclear how to measure these growth rates and because the appropriate year for the terminal value calculation 
likely differs by firm. 
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these findings suggest that independent consideration of operating and financing activities improves 

(deteriorates) model performance for long (short) forecast horizons. In the short run, financing 

activities are informative about future operating performance; in the long run, with increasing model 

complexity, this relation turns into noise.  

Table 4 Panel A (Panel B) shows alphas obtained from ROCE-based (RNOA-based) models 

under different financial statement analysis design choices. Evaluating the effects of different financial 

statement analysis design choices individually runs the risk of confusing the effect of one design choice 

for that of another. In contrast, regression coefficients measure the effects of an individual financial 

statement analysis design choice holding others constant. To capture as much as practicable of the 

information contained in the alpha distributions shown in Table 4 Panels A and B, we use quantile 

regressions in addition to OLS regressions. OLS results, which estimate the effect of analysis-design 

choices on the conditional mean of the absolute forecast error distribution, are shown in column 1. 

The results of quantile regressions, which estimate the effect of financial statement analysis choice on 

the conditional 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the absolute forecast error 

distribution, are shown in columns 2 to 8. Robust White (1980) t-statistics are presented in 

parentheses.29 

Table 4 Panel C tests Hypotheses 1 to 5 by regressing alpha on indicators for the financial 

statement analysis design choices the model is based on. Specifically, Level 2 (3, 4) is an indicator that 

the profitability forecasting model uses the level 2 (3, 4) disaggregation illustrated in Figure 1. Core is 

an indicator that the model excludes transitory items from the ratios used for prediction. Leads 5 (10) 

	
29 We are running regressions on the outputs of a series of machine learning models that vary only in their inputs. We 
therefore know the true functional form (which can be observed in Panels A and B) that generates these results, but we 
cannot run a regression with this functional form because the number of observations would always be equal to the number 
of independent variables to estimate. The regressions in Table 4 Panel C are meant to serve as linear approximations, 
which facilitates interpretation of our results. Because we are using a linear approximation, the quantile regressions help 
to uncover potentially deceptive conditional mean results. For example, a specific financial statement analysis design choice 
could make the best models better and the worst models worse, with a resulting mean effect of zero. Our presentation 
allows the reader to see the effect of including an input on different parts of the alpha distribution. 
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is an indicator that the model predicts profitability 5 (10) years ahead. Lags 1 (3, 5) is an indicator that 

the model uses ratios from the current and preceding 1 (3, 5) years.  

As discussed before, the focus on alphas allows us to directly compare the performance of 

RNOA-based and ROCE-based models. To do so, we pool the alphas in Table 4 Panels A and B into 

one regression and include ROCE, an indicator for ROCE-based models (i.e., an indicator that the 

valuation model is based on equation (6) as one of the equity value drivers. Given the strong interactive 

relation between RNOA-based models and forecasts horizon apparent in Table 4 Panel B, we add 

interaction terms between ROCE and Leads 5 and Leads 10 to avoid model misspecification. 

4.2.1 Hypothesis 1: Disaggregation Level 

We find evidence that level 2 to 4 disaggregation improves model performance on average 

and across all percentiles relative to level 1 disaggregation. The slope coefficients generally increase 

from level 2 disaggregation, which incorporates financial leverage, to level 3 disaggregation, which 

incorporates margins and turnovers, to level 4 disaggregation, which incorporates operating leverage. 

The economic magnitude of these effects is large. On average, level 2, 3, and 4 disaggregation increases 

alpha by 2.3, 2.4, and 2.8%.  

4.2.2 Hypothesis 2: Core Items 

Core’s slope coefficient is significantly positive for the 50th percentile but not significant at 

conventional levels for other models. Thus, inconsistent with Hypothesis 2 and at least some 

conventional wisdom, we do not find strong evidence that focusing on core items improves trading 

profitability. Although there are potential statistical and accounting-based explanations (including 

those discussed in section 2.1.2) of why excluding non-core items might not enhance model 

performance, examining these explanations is beyond the scope of this paper. 

4.2.3 Hypothesis 3: Operating Activities 

ROCE’s slope coefficients are strongly positive and significant across all models. On average, 
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ROCE-based models yield alphas 9.3% higher than RNOA-based models when the forecast horizon 

is one year. In contrast, its interactions with Lead 5 and Lead 10 are significantly negative and of larger 

absolute magnitude than ROCE’s main effect. On average, RNOA-based models yield alphas that are 

2.5% (= 11.8 − 9.3) and 2.1% (= 11.4 − 9.3) higher than those of ROCE-based models when the 

forecast horizon is 10 years and five years, respectively; 9.3% lower when the forecast horizon is one 

year. We interpret these results as follows: First, analysts who forecast over short horizons should not 

focus only on operating activities, taking the value of financing activities as given. They are better off 

using ROCE-based models. Second, analysts who forecast over longer horizons are better off focusing 

on operating activities and taking the value of financing activities as given. This result suggests that 

the Miller and Modigliani (1961) principles invoked in the derivation of equation (4) to abstract away 

from potential financing frictions are appropriate (inappropriate) for valuation models based on long 

(short) forecast horizons. It also provides empirical support for the advice frequently given in 

valuation textbooks to forecast as far in the future as possible when using such models (e.g., Penman 

2012). A potential ex post explanation is that financing-induced agency-cost issues are linked to firm 

value in the short run but not in the long run. However, further examination of this conjecture is 

beyond the scope of this paper, the primary purpose of which is to evaluate financial statement analysis 

design choices within NP’s structural framework. 

To summarize, in tests of Hypothesis 3, we find an interaction with the design choice of 

forecast horizon: focusing on operating activities increases alpha based on forecasts over long 

horizons, but if the forecasting horizon is short, an analyst should account for the effects of financing 

activities. 

4.2.4 Hypothesis 4: Forecast Horizon 

On average and across all percentiles, we find evidence that increasing forecast horizon 

improves model performance for RNOA-based models, with larger effects for longer forecast 
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horizons. F-tests reject the equality of the 5-leads and 10-leads slope coefficients at the 1% level across 

all percentiles. The effect of the forecast horizon is much smaller for ROCE-based models. As the 

results of the tests of Hypothesis 3 hint, we find that the positive main effect of different horizons is 

approximately offset by the negative interactive effect with ROCE. In terms of economic magnitude, 

on average, forecasting 10 years rather than one year ahead increases alpha by 13.3% for RNOA-based 

models and by 1.5% (= 13.3 – 11.8) for ROCE-based models. To summarize, tests of Hypothesis 4 

show that increasing forecast horizon improves model performance, especially for RNOA-based 

models. 

4.2.5 Hypothesis 5: Historical Information 

Despite textbooks’ recommendations to use as much historical information as feasible to form 

forecasts, we find at best limited evidence that using more historical information improves model 

performance. Using last-period financial information combined with current-period information 

increases alpha by 0.9, 0.9, and 0.5% for the 50th, 75th, and 95th percentiles. All other slope coefficients 

are insignificant at conventional levels. 

4.2.6 Summary 

We find evidence supporting Hypothesis 1, which points to the benefits of disaggregation. We 

do not find evidence supporting Hypothesis 2, which suggests that the core vs. non-core distinction 

is not crucial for the financial statement analyses we consider. We find evidence for an interaction 

between the design choices analyzed by tests of Hypotheses 3 (operating vs. financing activities) and 

4 (short vs. long forecast horizons). When the forecast horizon is long, focusing on operating activities 

improves model performance; when the forecast horizon is short, joint consideration of operating 

and financing activities improves model performance. We find limited and weak evidence that using 

more historical information increases alpha.  
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4.3 Additional Tests 

4.3.1 Importance of Non-Linearities for Financial Statement Analysis  

We explore the interaction between inherent nonlinearities in the inputs to NP’s framework 

and the five financial statement analysis design choices we consider. Figure 1 and equations 2 and 3 

reveal multiplicative relations between certain ratios and profitability, with the number of such 

relations increasing in the level of disaggregation. Further, visual evidence in Figures 5 and 6 indicates 

non-linear associations between ratios and profitability that attenuate over a 10-year horizon. This 

evidence suggests that consideration of non-linearities is important for the choices of forecast horizon 

and the number of historical periods to include in the short run, but decreasingly important in the 

long run. 

To provide evidence on the importance of considering non-linearities, we re-estimate the 192 

models analyzed in Table 4 using OLS and compute alpha for each model as previously described. As 

in Table 4, we regress the alpha estimates of all 384 estimates (192 DL estimates plus 192 OLS 

estimates) on fundamental indicators using OLS and quantile regressions, including interaction terms 

between each fundamental indicator and an indicator that the model is estimated via DL, DL. Table 

5 presents the results. Main effects are suppressed to enhance readability. 

We find that consideration of non-linearities improves average performance by 2.4% for level 

3 disaggregation, with mixed evidence for level 2 and 4 disaggregations. As Figure 1 shows, this result 

may be due to the multiplicative relation between Sales PM and ATO. However, for level 2 

disaggregation, the interactive effect with DL is positive only for the 75th percentile; for level 4, it is 

negative for the 10th, 75th, 90th and 95th percentiles.  

The interaction terms between DL and ROCE, and DL and Lead 5 and Lead 10 load positively, 

but the triple interaction between DL, ROCE, and Lead 10 loads negatively on average. This suggests 

that non-linearities are important for short-horizon models that account for financing activities and 
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long-horizon models that focus on operating activities. Considering non-linearities increases the 

alphas of ROCE-based models that forecast one year ahead and RNOA-based models that forecast 

five years ahead by 1.3% and 2.2%, respectively. 

We find little evidence that consideration of non-linearities is important for models using more 

historical information. Only the interaction between DL and Lag 1 loads positively for the 50th and 

75th percentiles of the alpha distribution, with magnitudes of 0.9% and 0.7%, respectively. All other 

interaction terms are statistically insignificant. We find no evidence that consideration of non-

linearities is important for the effect of core activities. 

In sum, we find evidence that consideration of non-linearities affects model performance for 

all financial statement analysis design choices except for focusing on core items. The results are most 

pronounced for RNOA-based models with longer forecasting horizons. 

4.3.2 Trading Cost 

We have designed the trading strategies we describe to reduce or eliminate certain obstacles 

to implementation: including NYSE/AMEX stocks and excluding NASDAQ stocks, conditioning on 

firms with at least five lags of fundamental data, using value-weighted returns, and taking positions in 

June of the following year to ensure that all accounting information is available. Nevertheless, the 

alphas presented might be unrealistic if most of the returns come from short positions.30 Short-selling 

is expensive, and shares to short might be unavailable in the slow-moving over-the-counter short 

market (Lee and So 2015). To evaluate this possibility, we probe the performance of the model with 

the highest alpha, i.e., a five-year horizon RNOA-based level 3 disaggregation model without a focus 

on core items and incorporating only the ratios available from the most recent financial statements. 

We first estimate the Carhart (1997) time-series regression for this model to understand which factors 

drive its performance; results for equal and value-weighted portfolios are presented in Table 6 

	
30 Engle, Ferstenberg, and Russell (2012) estimate overall one-way transaction cost for NYSE stocks at nine basis points. 
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Columns 1 and 2. The model’s hedge portfolio returns do not move with the market factor (Mkt-Rf) 

and move positively with the value factor (HML); performance is not driven by small stocks, as is 

evident from the insignificant association with the size factor (SMB). The model’s performance does 

not vary with the momentum factor (UMD) proposed in Jegadeesh and Titman (1993). The portfolio 

does not focus on stocks whose price dramatically increased or decreased recently. 

Next, Figure 7 Panel A, which plots the cumulative long and short portfolio returns over 1988 

to 2017 along with the cumulative CRSP market return over the same period, provides visual evidence 

that the portfolio returns are driven by the long side. Indeed, while the cumulative return difference 

between the two portfolios increases over time, there is no evidence of extreme negative returns for 

the short portfolio. Further, the return difference between the short and long portfolios increases over 

time, and the long portfolio return exceeds the short portfolio return in 22 years and falls short in 7 

years (1989, 1995, 1999, 2011, 2013, 2015, 2017). The cumulative return of the long portfolio exceeds 

that of the short portfolio every year, providing additional support for the view that the returns are 

not driven by risk factors. The cumulative return on the short portfolio initially equals that of the 

CRSP market portfolio but falls short starting in 2006. We conclude that the hedge portfolio returns 

appear to be driven by long positions in medium-sized firms trading on major exchanges, providing 

support for the practicability of the trading strategy. 

4.3.3 Comparison to Other Estimators 

DL is more computationally expensive than traditional estimators such as OLS or LAD; while 

computing power has substantially increased, estimating the deep neural networks analyzed in this 

paper remains time consuming. For comparison, while modern hardware computes the OLS and LAD 

estimators in seconds, the DL estimator used in this paper requires six to seven minutes of computing 
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time. 31  In this subsection, we provide evidence that DL provides benefits as compared to the 

traditional OLS and LAD estimators, helping to justify DL’s incremental computing cost. 

Table 6 Columns 3 to 6 present the results of estimating the full model via OLS and LAD for 

equal-weighted and value-weighted returns. Alphas are insignificant across all models. For value-

weighted returns, DL yields 94% (= 0.095/0.049 − 1) higher returns than the linear LAD estimator. 

Figure 7 Panel B plots the cumulative long and short portfolio returns for portfolios based on OLS. 

While the cumulative return of the long portfolio exceeds that of the short portfolio over 1989-2017, 

that return is close to the return on the market portfolio. In sum, the DL estimator consistently 

outperforms OLS and LAD estimators, supporting the view that consideration of non-linearities is 

important when estimating NP’s model, even at the cost of additional computing time. 

4.3.4 Panel Data Regressions 

We extend our analysis by applying an alternative method, panel data regressions, to test the 

ability of the VP measure to predict stock returns.32 Table 7 column 1 presents the results of regressing 

one-year-ahead returns on VP decile ranks (VP Rank) computed using the best-performing model 

and controls including log market value of equity (Size), market-to-book ratio (MtB), and current-year 

stock return (Ret). We control for firm and year fixed effects. Standard errors are clustered at the firm 

level. Consistent with Fama and French (1992), Size’s slope coefficient is negative. Ret’s negative slope 

coefficient replicates the results of Jegadeesh and Titman’s (1993) Table 7 showing that return 

momentum reverses in the following year. However, MtB’s slope coefficient is not significantly 

different from zero, possibly because of the strong positive relation between the portfolio return and 

	
31 While it may take six to seven minutes to train the model, the model generates a prediction in less than a second once 
the weights are established. The total DL estimation time, therefore, is not prohibitive to generating a trading strategy at 
scale. 
32 Inconsistent with the notion that only systematic risk is priced, Daniel and Titman (1997), Daniel, Grinblatt, Titman, 
and Wermers (1997), and Hirshleifer, Hou, and Teoh (2012) find that firm-specific market-to-book ratios and accruals 
predict returns better than their factor mimicking portfolios constructed following Jensen et al. (1972). 
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the value factor documented in Table 6. VP Rank’s slope coefficient is statistically (p < 0.01) and 

economically significant. Ceteris paribus, a stock in the highest VP decile experiences a (0.5% × 9 = 

4.5%) higher annual return than a stock in the lowest VP decile. Column 2 tests whether this finding 

is robust to the inclusion of two additional variables that have been shown to predict returns: F-Score 

(F-Score) and Accruals (∆NOA) measured as change in NOA scaled by average total assets (Piotroski 

2000; Richardson, Sloan, Soliman, and Tuna 2005). Prior literature reports that firms with stronger 

fundamentals and lower accruals have higher future returns. We find, however, that VP Rank’s slope 

coefficient is unaffected by adding F-Score and ∆NOA. 

We next examine which types of firms’ valuations benefit most from considering non-

linearities. Specifically, we test whether VP Rank’s predictive power is pronounced for small firms, 

loss-making firms, technology firms, and firms in financial distress. Small, loss-making and financially 

distressed firms might be exposed to more bankruptcy risk; however, limited liability protects equity 

investors through the abandonment option, resulting in a non-linear payoff structure (Hayn 1995; 

Fama and French 1993). Further, as shown in Barth, Li, and McClure (2019), the relation between 

value and fundamentals requires accounting for non-linearities, especially for technology, loss-making, 

and small young firms. Therefore, models that account for non-linearities might provide more accurate 

valuations for these entities.  

Table 7 Columns 3 to 6 present the results of this analysis. Loss firms (Loss) are firms with 

negative ROCE; technology firms (Tech) are firms in the Computers, Electronic Equipment, and 

Measuring and Control Equipment Fama and French (1997) 48 industries; and financially distressed 

firms are those with Z-scores below 1.8 (Z-Score; Altman 1968). The results indicate that VP Rank’s 

predictive power is most pronounced for loss-making firms and technology firms; the effect is 0.6% 

(t = 1.83) and 1.5% (t = 2.18) larger for valuing loss-making and technology firms, respectively.  

To summarize, we find that our results based on hedge portfolio regressions are robust to the 
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use of panel data methods. VP Rank remains a significant predictor of returns even after we control 

for several other factors documented in the accounting and finance literatures. VP Rank’s predictive 

ability for returns is pervasive throughout the sample but most pronounced for loss-making and 

technology firms. 

5. Conclusion 

We estimate the structural valuation framework proposed but not fully evaluated by Nissim 

and Penman (NP, 2001). NP acknowledge that the estimation methods available to them were 

insufficient for the non-linear structure of their model; we address this issue by applying Deep 

Learning, a well-known machine learning algorithm that can capture arbitrarily complex relationships 

across variables to estimate the non-linear information dynamics in NP’s model and forecast firms’ 

future earnings to arrive at an estimate of a firm’s value. We also explore the effects of variation in 

several financial statement analysis design choices that analysts must make on empirical rather than 

theoretical grounds. We take the perspective of an equity investor who wishes to maximize risk-

adjusted returns, and we test how different financial statement analysis design choices within NP’s 

structural framework affect the performance of value-to-price-based trading strategies. We find that 

more disaggregation, combined with focusing on operating activities and expanding the forecast 

horizon, improves model performance; we find little evidence that incorporating more historical 

information and focusing on core items improves performance. Consideration of non-linearities 

improves model performance throughout the sample, especially for small, loss-making, technology, 

and financially distressed firms. 

Our findings are subject to several caveats. First, restricting predictors to those theoretically 

derived by NP might exclude valuation-useful information. For example, Easton et al. (2020) show 

that Hou et al.’s (2012) empirically derived profitability predictors have incremental predictive power 

over a random walk when using the LAD estimator. Second, while our assumptions of constant 
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discount, growth, and reinvestment rates facilitate the attribution of model performance to 

fundamentals, models might perform even better after each of these rates is carefully calibrated. Third, 

we test model performance for firms with at least five years of lagged data for all predictors. If 

information dynamics for firms with more-limited historical data take a different functional form, 

value estimates for these firms obtained using the algorithms presented in this paper might perform 

poorly. Fourth, restricting the estimation sample to 10 years (Hou et al. 2012) might not be optimal 

for DL algorithms; while traditional estimators’ marginal performance decreases in sample size, DL’s 

marginal performance decreases at a slower rate.33 Fifth, we use a standard architecture of the neural 

network (five hidden layers with 500 neurons per layer and learning and regularization rates of 10-3 

and 10-5 ), but one could apply Bayesian Optimization algorithms to identify optimal architectures ex 

ante. Finally, given the absence of an agreed-upon asset pricing model, it is unclear whether the alpha 

magnitudes we report are due to risk or mispricing (Roll 1977).

	
33  Ng, A. Why DL is Taking Off. https://www.coursera.org/lecture/neural-networks-deep-learning/why-is-deep-
learning-taking-off-praGm. October 17, 2018. 
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Appendix A: Variable Definitions 

Variable Definition 

ATO Asset turnover: Sales/NOA 

ATO* Modified asset turnover: Sales/OA 

Core NBC Core net borrowing cost: Core NFE/NFO 

Core NFE Core net financial expense: Compustat: (XINT − IDIT) × (1 − MTR) + 
DVP 

Core OI from Sales Core operating income from sales: OI from Sales − UOI 

Core Other Items Core other items: Other Items − UOI 

Core RNOA Core return on net operating assets: Core OI from Sales/NOA 

Core Sales PM Core sales profit margin: Core OI from Sales/Sales 

Core Sales PM* Modified core sales profit margin: (Core OI from Sales + io)/Sales 

Core SPREAD Core financial leverage spread: Core RNOA − Core NBC 

CSE Common equity: Compustat (average): CEQ + TSTKP − DVPA 

FLEV Financial leverage: NFO/CSE 

io Implicit interest charge on operating liabilities: Rf × (OL − TXDITC) 

MIB Minority interest book value: Compustat (average): MIB 

MII Minority interest income: Compustat: MII 

MSA Marketable security adjustment: Compustat: MSA 

MSR Minority sharing ratio: (CNI/(CNI + MII)) × (CSE/(CSE + MIB))-1 (if 
CNI, MII, CSE, MIB ≥ 0, otherwise set to 1) 

MTR Marginal tax rate: Top statutory federal tax rate plus 2% percent average 
state tax rate. The top federal statutory corporate tax (in percent): 52 (1963), 
50 (1964), 48 (1965-1967), 52.8 (1968-1969), 49.2 (1970), 48 (1971-1978), 46 
(1979-1986), 40 (1987), 34 (1988-1992), 35 (1993-2017), and 21 (2018). 

NBC Net borrowing cost: NFE/NFO 

NFE Core net financial expense: Core NFE − ∆MSA 

NFO Net financial obligations: Compustat (average): (DLC + DLTT + PSTK − 
TSTKP + DVPA) − (CHE + IVAO) 

NOA Net operating assets: NFO + CSE + MIB 

OA Operating assets: Compustat (average) AT − CHE − IVAO 

OI Operating income: NFE + CNI + MII 

OI from Sales OI − Other Items 

OL Operating liabilities (average): OA − NOA 

OLLEV Operating liability leverage: OL/NOA 

OLSPREAD Operating leverage spread: (OI + io)/OA − io/OL 

Other Items Compustat: ESUB 
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P Price at the end of the June in year following the fiscal year: Compustat: 
PRCCF × CSHO 

Rf Risk-free rate: One-year Treasury bill yield during the year 

RNOA Return on net operating assets: OI/NOA 

ROCE Return on common equity: NOA/CSE × RNOA − NFO/CSE × NBC 

ROTCE Return on total common equity: (CNI + MII)/(CSE + MIB) 

Sales Compustat: SALE 

Sales PM Sales profit margin: OI from Sales/Sales 

Sales PM* Modified sales profit margin: (OI from Sales + io)/Sales 

SPREAD Financial leverage spread: RNOA − NBC 

TXDITC Deferred taxes and investment tax credit: Compustat: TXDITC 

UFE Unusual financial expense: Compustat: ∆MSA 

UOI Unusual operating income: Compustat: (NOPI + SPI) × (1 − MTR) − 
ESUB + XIDO + ∆RECTA 

∆ denotes change over the fiscal year and (average) average over fiscal year beginning and ending 
values.
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Figure 1. Nissim and Penman (2001) Analysis of ROCE 
This figure depicts the analysis of profitability developed in Nissim and Penman (2001). All variables are defined in Appendix A.  
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Figure 2. Estimator Comparison 
This figure’s Panels A, B, and C graphically present the architecture of a single-layered neural network with a single 
predictor, a single-layered neural network with eight predictors, a multi-layered neural network (a fully connected sequential 
multi-layered neural network with one input layer with eight neurons, two hidden layers with 10 neurons each, and one 
output layer with 5 neurons).  
 
Panel A. Single-layered Neural Network with a Single Predictor 
 

 
 
Panel B. Single-layered Neural Network with Multiple Predictors 
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Panel C. Multi-layered Neural Network 
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Figure 3. Prominence of Different Machine Learning Algorithms. 
This figure depicts the prominence of different machine learning algorithms as measured by web queries analyzed via the 
web tool Google Trends over the 2004 to 2020 period. 
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Figure 4. Model Estimation and Forecasting Timeline 
This figure depicts the model estimation and forecasting timeline. The sample starts in 1963.  
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Figure 5. Univariate Time-Series Plots 
This figure’s Panels A to H present median portfolio ROCE in periods t to t+10 by ROCE, FLEV, SPREAD, ATO, Sales 

PM, OLLEV, OLSPREAD, and RNOA decile in period t. All variables are defined in Appendix A. 
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Panel C. Future ROCE by Current SPREAD Decile 

 
 
Panel D. Future ROCE by Current ATO Decile 
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Panel E. Future ROCE by Current Sales PM Decile 

 
 
Panel F. Future ROCE by Current OLLEV Decile 
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Panel G. Future ROCE by Current OLSPREAD Decile 

 
 
Panel H. Future ROCE by Current RNOA Decile 
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Figure 6. Illustrating Interactive Relationships across Variables in ROCE Prediction 
This figure’s Panels A to D illustrate examples of non-linear, interactive relationships across various ratios and future 

ROCE. All variables are defined in Appendix A. 

 
Panel A. OLLEV, ATO, and Lead 1 ROCE 

 
Panel B. FLEV, ATO, and Lead 1 ROCE 
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Panel C. SPREAD, Sales PM, and Lead 5 ROCE 

 
Panel D. OLSPREAD, Sales PM, and Lead 5 ROCE 
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Figure 7. Cumulative Portfolio Long and Short Position Returns 
This figure compares the performance of models based on Deep Learning profitability forecasts to that of models based 

on OLS and LAD forecasts. Panels A and B plot the log of cumulative returns for the long and short portfolios formed 

based on value-price ratios in the preceding year estimated via Deep Learning and OLS and cumulative value-weighted 

CRSP market return. Value price ratios are based on market prices at the end of June and value estimates from a residual 

income model based on forecasts for 5 RNOA leads obtained from Deep Learning and OLS models that do not focus on 

core items and incorporate information only from the most recent financial statements. 

 

Panel A. Deep Learning  
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Table 1. Ratio Descriptive Statistics  
This table’s Panels A and B present descriptive statistics for valuation anchors and ratios. All ratios are winsorized at the 

1st and 99th percentiles. All variables are defined in Appendix A. 

 

Panel A. Anchors 
Variable N Mean StD P1 P25 Median P75 P99 

P 55,972 4,093 17,305 3 65 394 1,948 68,935 

aCSE 55,972 1,569 6,836 4 55 248 962 21,354 

aNOA 55,972 2,939 17,195 4 76 366 1,510 37,994 

aNFO 55,972 1,343 14,130 -1,138 4 64 477 16,110 

 

Panel B. Ratios 
Variable N Mean StD P1 P25 Median P75 P99 

ROCE 55,972 0.09 0.20 -0.83 0.05 0.12 0.17 0.58 

MSR 55,972 1.00 0.03 0.83 1.00 1.00 1.00 1.08 

ROTCE 55,972 0.09 0.21 -0.81 0.05 0.12 0.17 0.56 

RNOA 55,972 0.10 0.15 -0.44 0.05 0.09 0.15 0.63 

FLEV 55,972 0.69 1.14 -0.68 0.07 0.44 0.96 6.54 

SPREAD 55,972 0.05 0.25 -0.84 -0.01 0.04 0.10 1.06 

Sales PM 55,972 0.06 0.11 -0.36 0.02 0.05 0.10 0.35 

ATO 55,972 2.35 2.27 0.20 1.11 1.87 2.79 12.17 

Other Items/NOA 55,972 0.00 0.01 -0.01 0.00 0.00 0.00 0.06 

NBC 55,972 0.05 0.12 -0.56 0.03 0.05 0.07 0.64 

Sales PM* 55,972 0.07 0.12 -0.35 0.03 0.06 0.11 0.45 

ATO* 55,972 1.45 0.97 0.10 0.79 1.31 1.85 5.52 

OLLEV 55,972 0.58 0.94 0.08 0.27 0.40 0.60 4.04 

OLSPREAD 55,972 0.02 0.09 -0.35 -0.01 0.03 0.06 0.28 

Other Items/OA 55,972 0.00 0.01 -0.01 0.00 0.00 0.00 0.04 

Core Sales PM 55,972 0.06 0.10 -0.28 0.03 0.05 0.09 0.31 

Core Other Items/NOA 55,972 0.00 0.06 -0.20 -0.01 0.00 0.01 0.26 

Core RNOA 55,972 0.10 0.13 -0.32 0.05 0.09 0.14 0.55 

Core NBC 55,972 0.05 0.12 -0.53 0.03 0.05 0.07 0.61 

Core SPREAD 55,972 0.05 0.23 -0.74 -0.01 0.03 0.09 0.95 

Core Sales PM* 55,972 0.07 0.10 -0.27 0.04 0.06 0.10 0.40 

Core Other Items/OA 55,972 0.00 0.04 -0.11 -0.01 0.00 0.01 0.15 

UOI/NOA 55,972 0.00 0.06 -0.24 -0.01 0.00 0.01 0.20 

UFE/NFO 55,972 0.00 0.01 -0.04 0.00 0.00 0.00 0.04 
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Table 2. Ratio Correlation Matrix 
This table presents correlations among selected fundamental ratios. All ratios are winsorized at the 1st and 99th percentiles. Pearson (Spearman) correlations are above 
(below) the diagonal. * indicates statistical significance at the 5% level. All variables are defined in Appendix A. 
 

Variable ROCE ROTCE RNOA FLEV SPREAD Sales PM ATO NBC OLLEV OLSPREAD Core Sales PM Core RNOA 

ROCE 1.00 0.99* 0.78* -0.14* 0.52* 0.65* 0.09* -0.03* 0.03* 0.80* 0.55* 0.67* 

ROTCE 0.99* 1.00 0.77* -0.11* 0.52* 0.64* 0.10* -0.03* 0.04* 0.79* 0.53* 0.66* 

RNOA 0.90* 0.90* 1.00 -0.20* 0.69* 0.62* 0.24* -0.06* 0.17* 0.90* 0.53* 0.89* 

FLEV -0.11* -0.11* -0.38* 1.00 -0.16* 0.08* -0.25* 0.06* -0.13* -0.16* 0.10* -0.20* 

SPREAD 0.75* 0.75* 0.80* -0.35* 1.00 0.42* 0.18* -0.71* 0.15* 0.62* 0.37* 0.62* 

Sales PM 0.65* 0.65* 0.60* 0.04* 0.53* 1.00 -0.13* -0.02* 0.00 0.71* 0.88* 0.53* 

ATO 0.19* 0.19* 0.33* -0.42* 0.22* -0.41* 1.00 -0.03* 0.38* 0.10* -0.16* 0.26* 

NBC -0.07* -0.07* -0.08* 0.25* -0.52* -0.12* 0.03* 1.00 -0.06* -0.06* -0.03* -0.06* 

OLLEV 0.17* 0.17* 0.25* -0.24* 0.17* -0.12* 0.49* -0.01* 1.00 0.04* 0.05* 0.22* 

OLSPREAD 0.79* 0.80* 0.85* -0.30* 0.74* 0.67* 0.12* -0.18* 0.17* 1.00 0.62* 0.80* 

Core Sales PM 0.56* 0.56* 0.49* 0.06* 0.45* 0.89* -0.45* -0.13* -0.11* 0.60* 1.00 0.59* 

Core RNOA 0.79* 0.80* 0.89* -0.37* 0.71* 0.50* 0.35* -0.09* 0.28* 0.77* 0.57* 1.00 

Core NBC -0.07* -0.07* -0.08* 0.26* -0.51* -0.12* 0.03* 0.97* -0.02* -0.18* -0.14* -0.09* 

Core SPREAD 0.65* 0.65* 0.69* -0.34* 0.90* 0.45* 0.23* -0.55* 0.20* 0.66* 0.50* 0.78* 

UOI/NOA 0.33* 0.33* 0.37* -0.13* 0.29* 0.31* 0.06* -0.01 -0.02* 0.28* 0.01* 0.06* 

UFE/NFO -0.02* -0.02* -0.01 -0.01* -0.06* -0.01* 0.01 0.09* 0.00 -0.01* -0.01 0.00 
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Table 3. Mean Absolute Forecast Errors 
This table examines model performance for different equity value drivers. Panel A (Panel B) presents out of sample 1 year ahead mean absolute forecast errors for 
ROCE- (RNOA-) based models. † indicates that the model has a lower mean absolute forecast error than a random walk. The sample mean random walk forecast error 
for ROCE (RNOA) equals 0.1182 (0.0847).  
 
Panel A. ROCE         
  Core 0, Level 1 Core 0, Level 2 Core 0, Level 3 Core 0, Level 4 Core 1, Level 1 Core 1, Level 2 Core 1, Level 3 Core 1, Level 4 
Leads 1, Lags 0 0.1095† 0.1105† 0.1118† 0.1125† 0.1095† 0.1046† 0.1084† 0.1068† 
Leads 1, Lags 1 0.1089† 0.1105† 0.1132† 0.1130† 0.1086† 0.1053† 0.1104† 0.1104† 
Leads 1, Lags 3 0.1084† 0.1128† 0.1157† 0.1152† 0.1085† 0.1079† 0.1128† 0.1116† 
Leads 1, Lags 5 0.1093† 0.1156† 0.1190 0.1179† 0.1093† 0.1102† 0.1165† 0.1150† 
Leads 5, Lags 0 0.1100† 0.1114† 0.1132† 0.1143† 0.1100† 0.1059† 0.1087† 0.1082† 
Leads 5, Lags 1 0.1088† 0.1113† 0.1134† 0.1135† 0.1088† 0.1066† 0.1086† 0.1089† 
Leads 5, Lags 3 0.1088† 0.1125† 0.1152† 0.1145† 0.1088† 0.1069† 0.1115† 0.1118† 
Leads 5, Lags 5 0.1100† 0.1149† 0.1185 0.1185 0.1100† 0.1090† 0.1150† 0.1151† 
Leads 10, Lags 0 0.1108† 0.1117† 0.1147† 0.1153† 0.1108† 0.1071† 0.1100† 0.1089† 
Leads 10, Lags 1 0.1097† 0.1113† 0.1147† 0.1148† 0.1098† 0.1068† 0.1106† 0.1110† 
Leads 10, Lags 3 0.1087† 0.1116† 0.1161† 0.1163† 0.1086† 0.1075† 0.1134† 0.1138† 
Leads 10, Lags 5 0.1095† 0.1146† 0.1191 0.1201 0.1096† 0.1094† 0.1164† 0.1161† 
 
Panel B. RNOA         
  Core 0, Level 1 Core 0, Level 2 Core 0, Level 3 Core 0, Level 4 Core 1, Level 1 Core 1, Level 2 Core 1, Level 3 Core 1, Level 4 
Leads 1, Lags 0 0.0915 0.0789† 0.0793† 0.0801† 0.0915 0.0751† 0.0783† 0.0772† 
Leads 1, Lags 1 0.0909 0.0788† 0.0797† 0.0798† 0.1201 0.0786† 0.0835† 0.0784† 
Leads 1, Lags 3 0.0905 0.0803† 0.0823† 0.0819† 0.1095† 0.0758† 0.0785† 0.0801† 
Leads 1, Lags 5 0.0909 0.0823† 0.0848 0.0846† 0.1086† 0.0763† 0.0783† 0.0821† 
Leads 5, Lags 0 0.0915 0.0797† 0.0810† 0.0820† 0.1085† 0.0767† 0.0799† 0.0788† 
Leads 5, Lags 1 0.0912 0.0792† 0.0805† 0.0809† 0.1093† 0.0784† 0.0830† 0.0788† 
Leads 5, Lags 3 0.0910 0.0804† 0.0815† 0.0813† 0.1100† 0.0763† 0.0786† 0.0796† 
Leads 5, Lags 5 0.0913 0.0815† 0.0847 0.0840† 0.1088† 0.0763† 0.0791† 0.0818† 
Leads 10, Lags 0 0.0921 0.0794† 0.0817† 0.0817† 0.1088† 0.0771† 0.0808† 0.0783† 
Leads 10, Lags 1 0.0914 0.0791† 0.0815† 0.0815† 0.1100† 0.0779† 0.0834† 0.0790† 
Leads 10, Lags 3 0.0911 0.0794† 0.0825† 0.0825† 0.1108† 0.0783† 0.0772† 0.0807† 
Leads 10, Lags 5 0.0915 0.0810† 0.0843† 0.0855 0.1098† 0.0787† 0.0784† 0.0833† 
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Table 4. Model Alphas 
This table examines model performance for different equity value drivers. Panel A (Panel B) presents Carhart (1997) alphas for ROCE- (RNOA-) based models. Standard 
errors are computed following Newey and West (1987) with a lag order of 3. Panel C Model 1 (2, 3, 4, 5, 6, 7, 8) presents OLS (5th, 10th, 25th, 50th, 75th, 90th, 95th percentile 
quantile) results of regressing the Carhart (1997) model alphas presented in Table 3 on indicators for different equity value drivers. Robust t-statistics are reported in 
parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10% level. 

Panel A. ROCE         
  Core 0, Level 1 Core 0, Level 2 Core 0, Level 3 Core 0, Level 4 Core 1, Level 1 Core 1, Level 2 Core 1, Level 3 Core 1, Level 4 
Leads 1, Lags 0 -0.0048 0.0085 -0.0031 -0.0088 -0.0043 0.0066 -0.0001 0.0090 
Leads 1, Lags 1 0.0009 0.0172 0.0026 0.0041 0.0007 0.0026 -0.0016 0.0021 
Leads 1, Lags 3 0.0026 0.0039 -0.0011 0.0059 0.0031 0.0113 0.0119 0.0153 
Leads 1, Lags 5 0.0022 0.0041 0.0099 0.0042 0.0021 0.0138 0.0150 0.0053 
Leads 5, Lags 0 -0.0316* -0.0010 0.0386 -0.0218 -0.0317* 0.0154 0.0151 0.0436 
Leads 5, Lags 1 -0.0155 -0.0027 0.0025 0.0514** -0.0144 0.0336 0.0240 0.0190 
Leads 5, Lags 3 -0.0067 -0.0323 -0.0085 0.0170 -0.0086 -0.0259 -0.0053 0.0389 
Leads 5, Lags 5 -0.0013 -0.0255 -0.0071 0.0378 -0.0004 0.0433 0.0139 0.0119 
Leads 10, Lags 0 -0.0113 0.0156 0.0041 0.0347 -0.0159 0.0380 0.0299 0.0431** 
Leads 10, Lags 1 0.0246 0.0529** 0.0351 0.0477* 0.0132 0.0233 0.0340 0.0416** 
Leads 10, Lags 3 0.0323 -0.0068 -0.0028 -0.0109 0.0346 0.0210 0.0170 0.0464* 
Leads 10, Lags 5 0.0347 0.0095 0.0092 0.0228 0.0338 0.0028 -0.0097 -0.0055 

 
Panel B. RNOA         

  Core 0, Level 1 Core 0, Level 2 Core 0, Level 3 Core 0, Level 4 Core 1, Level 1 Core 1, Level 2 Core 1, Level 3 Core 1, Level 4 
Leads 1, Lags 0 -0.0844*** -0.0879*** -0.0844*** -0.0942*** -0.0846*** -0.0924*** -0.0896*** -0.0961*** 
Leads 1, Lags 1 -0.0843*** -0.0864*** -0.0872*** -0.0934*** -0.0844*** -0.0944*** -0.0919*** -0.0924*** 
Leads 1, Lags 3 -0.0867*** -0.0817*** -0.0844*** -0.0926*** -0.0862*** -0.0902*** -0.0936*** -0.0924*** 
Leads 1, Lags 5 -0.0923*** -0.0919*** -0.0870*** -0.0904*** -0.0924*** -0.0867*** -0.0839*** -0.0872*** 
Leads 5, Lags 0 -0.0237* 0.0559*** 0.0946*** 0.0535** -0.0236* 0.0425** 0.0353** 0.0405* 
Leads 5, Lags 1 -0.0132 0.0314 0.0389** 0.0588*** -0.0131 0.0595*** 0.0443** 0.0455*** 
Leads 5, Lags 3 -0.0138 0.0048 0.0167 0.0196 -0.0151 0.0420* 0.0056 0.0500** 
Leads 5, Lags 5 -0.0304 0.0165 0.0587* 0.0433 -0.0229 0.0508 0.0239 0.0526* 
Leads 10, Lags 0 -0.0172 0.0392 0.0609*** 0.0790*** -0.0180 0.0495** 0.0641*** 0.0484* 
Leads 10, Lags 1 0.0026 0.0765*** 0.0589*** 0.0291 -0.0037 0.0638*** 0.0768*** 0.0834*** 
Leads 10, Lags 3 0.0105 0.0755*** 0.0509*** 0.0678*** 0.0061 0.0700*** 0.0587*** 0.0605*** 
Leads 10, Lags 5 0.0047 0.0532** 0.0512*** 0.0545** 0.0065 0.0384* 0.0733*** 0.0410** 
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Panel C. Alpha Determinant Model 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Quantile Mean P5 P10 P25 P50 P75 P90 P95 

          
Level 2 0.023*** 0.036*** 0.030*** 0.030*** 0.017** 0.010*** 0.010*** 0.010*** 
  (5.475) (5.893) (6.041) (10.873) (2.053) (2.605) (4.222) (10.620) 
Level 3 0.024*** 0.037*** 0.032*** 0.030*** 0.019** 0.007** 0.007** 0.012*** 
  (5.730) (6.485) (6.746) (10.637) (2.346) (2.170) (2.581) (3.980) 

Level 4 0.028*** 0.038*** 0.029*** 0.032*** 0.020** 0.012*** 0.012*** 0.012*** 
  (6.620) (6.255) (6.102) (9.101) (2.348) (3.872) (7.113) (14.933) 
Core 0.003 0.001 -0.001 0.001 0.006** 0.001 0.001 -0.000 
  (1.046) (0.280) (-0.632) (0.449) (2.018) (0.713) (0.391) (-0.185) 

ROCE 0.093*** 0.092*** 0.092*** 0.095*** 0.099*** 0.093*** 0.090*** 0.089*** 
 (29.019) (12.895) (26.669) (48.586) (32.622) (65.565) (38.793) (109.408) 

Leads 5 0.115*** 0.111*** 0.100*** 0.108*** 0.124*** 0.128*** 0.131*** 0.133*** 
  (23.851) (12.860) (23.679) (23.442) (18.419) (28.487) (47.010) (6.866) 

Leads 10 0.133*** 0.123*** 0.123*** 0.129*** 0.144*** 0.148*** 0.152*** 0.151*** 
  (29.692) (21.804) (40.377) (25.580) (23.010) (25.928) (74.005) (61.394) 

Lags 1 0.006 0.008 0.001 -0.000 0.009** 0.009** 0.002 0.005** 
  (1.536) (1.275) (0.393) (-0.104) (2.477) (2.547) (0.957) (2.209) 

Lags 3 -0.002 -0.004 -0.001 -0.002 0.001 0.003 -0.002 -0.002 
  (-0.408) (-0.547) (-0.213) (-0.888) (0.284) (0.956) (-0.692) (-1.604) 

Lags 5 -0.000 -0.002 0.002 -0.000 0.004 0.003 -0.001 -0.002 

 (-0.022) (-0.254) (0.396) (-0.103) (1.150) (1.001) (-0.609) (-1.323) 

ROCE × Leads 5 -0.114*** -0.124*** -0.119*** -0.114*** -0.125*** -0.120*** -0.104*** -0.104*** 
 (-17.869) (-12.654) (-14.297) (-17.601) (-15.643) (-13.596) (-21.920) (-5.307) 
ROCE × Leads 10 -0.118*** -0.121*** -0.126*** -0.122*** -0.131*** -0.120*** -0.121*** -0.120***  

(-18.927) (-13.240) (-25.334) (-16.472) (-16.020) (-18.221) (-36.093) (-41.570) 
Constant -0.110*** -0.140*** -0.124*** -0.122*** -0.113*** -0.094*** -0.085*** -0.084*** 

 
(-21.294) (-17.655) (-20.705) (-42.366) (-13.149) (-22.455) (-30.890) (-59.418) 

Observations 192 192 192 192 192 192 192 192 
Pseudo R2 0.851 0.686 0.700 0.678 0.596 0.596 0.610 0.618 
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Table 5. Importance of Non-Linearities for Alpha Determinant Model 
This table examines the importance of non-linearities for different equity value drivers. Model 1 (2, 3, 4, 5, 6, 7) presents 5th (10th, 25th, 50th, 75th, 90th, 95th) percentile 
quantile results of regressing the Carhart (1997) model alphas presented in Table 3 on indicators for the model’s equity value drivers, an indicator that the model was 
estimated using Deep Learning (DL) rather than OLS, and interactions between the Deep Learning and equity value driver indicators. Robust t-statistics are reported in 
parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10% level. 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Variables Mean Q5 Q10 Q25 Q50 Q75 Q90 Q95 
          
DL × Level 2 0.005 0.009 -0.008 -0.006 0.014 0.009** 0.003 -0.003 
  (0.768) (0.620) (-1.176) (-0.501) (1.519) (2.355) (0.618) (-0.208) 
DL × Level 3 0.025*** 0.016* 0.013** 0.003 0.030*** 0.012** 0.007* 0.009 
  (3.805) (1.741) (2.055) (0.216) (3.465) (2.554) (1.742) (1.211) 
DL × Level 4 -0.010 0.002 -0.016** -0.012 0.007 -0.013** -0.028*** -0.038** 
  (-1.413) (0.134) (-2.174) (-0.942) (0.661) (-2.351) (-3.724) (-2.213) 
DL × Core -0.002 0.001 -0.002 -0.001 0.003 -0.002 0.001 -0.000 
  (-0.567) (0.259) (-0.528) (-0.317) (1.105) (-0.710) (0.315) (-0.031) 
DL × ROCE 0.013* 0.017 -0.005 0.008 0.015 0.014** 0.020*** 0.011 
  (1.895) (1.177) (-0.694) (1.238) (1.634) (2.076) (3.058) (0.433) 
DL × Leads 5 0.022*** 0.037*** 0.026*** 0.034*** 0.038*** 0.012 0.007 0.013 
  (2.701) (3.648) (4.246) (7.226) (2.785) (1.373) (0.900) (0.624) 
DL × Leads 10 0.004 0.007 -0.001 0.002 0.009** 0.007* 0.007 0.006 
  (0.751) (0.839) (-0.127) (0.388) (2.065) (1.849) (1.536) (0.378) 
DL × Lags 1 -0.005 0.000 0.001 -0.001 -0.002 0.001 0.001 -0.002 
  (-0.750) (0.031) (0.080) (-0.150) (-0.293) (0.161) (0.263) (-0.143) 
DL × Lags 3 -0.007 -0.004 0.001 0.001 0.000 -0.004 -0.004 -0.007 
  (-1.044) (-0.431) (0.125) (0.172) (0.066) (-1.327) (-1.015) (-0.374) 
DL × Lags 5 0.010* 0.004 0.005 0.010*** 0.015*** 0.012*** 0.006 0.006 
  (1.885) (0.504) (0.741) (2.771) (4.813) (5.152) (1.530) (0.515) 
DL × ROCE × Leads 5 0.000 0.004 0.012 0.008 -0.008 -0.003 0.010 0.019  

(0.015) (0.313) (1.008) (0.755) (-0.730) (-0.228) (1.281) (0.663) 
DL × ROCE × Leads 10 -0.022** -0.008 -0.019** -0.021 -0.047*** -0.011 -0.003 -0.009 
  (-2.087) (-0.366) (-2.103) (-1.419) (-2.944) (-1.152) (-0.330) (-0.330) 
          

Observations 384 384 384 384 384 384 384 384 
Pseudo R2 0.811 0.644 0.659 0.633 0.561 0.598 0.624 0.638 
Main Effects YES YES YES YES YES YES YES YES 
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Table 6. Estimator Comparison 
This table examines performance across different profitability forecasting models. Models 1 to 6 regress value-weighted 
(VW) and equal-weighted (EW) hedge portfolio excess returns on asset pricing factors following Carhart (1997). Hedge 
portfolios are formed based on value-to-price ratio deciles. Value-to-price ratios are computed using market prices at the 
end of June and value estimates from a residual income model based on forecasts for 5 RNOA leads. RNOA forecasts in 
models 1 and 2 (3 and 4, 5, and 6) are obtained from a deep neural network (OLS, LAD) model without a focus on core 
items and 0 lags of all level 3 disaggregation variables. Newey and West (1987) t-statistics with a lag order of 3 are reported 
in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10% level. 
 

  (1) (2) (3) (4) (5) (6) 
Model NN VW NN EW OLS VW OLS EW LAD VW LAD EW 
        
Mkt-Rf -0.164 0.174 0.013 -0.303 -0.041 -0.124 
  (-0.689) (0.706) (0.117) (-1.242) (-0.154) (-0.552) 
HML 0.534*** 0.524** 0.209* 0.085 0.301* 0.125 
  (4.624) (2.615) (1.969) (0.582) (1.901) (0.812) 
SMB 0.170 1.330* 0.278 0.655 0.927*** 1.021 
  (0.416) (1.959) (1.288) (1.015) (2.933) (1.277) 
UMD -0.153 -0.085 -0.114 0.080 -0.007 0.019 
  (-0.617) (-0.392) (-0.715) (0.424) (-0.043) (0.092) 
Alpha 0.095*** 0.076** 0.000 0.056 0.049 0.062 
  (4.108) (2.564) (0.010) (1.142) (1.704) (1.688) 
        
Observations 29 29 29 29 29 29 
NW SEs 3 lags 3 lags 3 lags 3 lags 3 lags 3 lags 
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Table 7. Panel Data Regressions 
This table examines cross-sectional determinants of returns. Models 1 to 6 regress market adjusted returns on value-to-
price ratio deciles ranks (VP Rank) and controls. Value-to-price ratios are computed using market prices at the end of June 
and value estimates from a residual income model based on forecasts for 5 RNOA leads. Standard errors are clustered by 
firm. Robust t-statistics are reported in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10% level. 
 

  (1) (2) (3) (4) (5) (6) 
Model Rett+1 Rett+1 Rett+1 Rett+1 Rett+1 Rett+1 
        
VP Rank 0.005*** 0.005*** 0.021*** 0.003** 0.009*** 0.004** 
  (3.24) (3.32) (3.19) (2.23) (3.62) (2.37) 
Size -0.197*** -0.192*** -0.186*** -0.197*** -0.191*** -0.197*** 
  (-19.89) (-19.82) (-17.97) (-19.56) (-19.62) (-19.87) 
MtB 0.003 0.001 0.004 0.003 0.008 0.002  

(0.28) (0.13) (0.36) (0.29) (0.71) (0.23) 
Rett -0.039*** -0.041*** -0.038*** -0.039*** -0.042*** -0.038*** 
 (-3.77) (-3.96) (-3.70) (-3.79) (-4.04) (-3.67) 
F-Score  0.003*     
  

 
(1.80) 

    

∆NOA  -0.159***   
  

  
 

(-2.79) 
    

VP Rank × Size   -0.002***    
  

  
(-2.83) 

   

Loss    -0.033**  
 

  
   

(-2.00) 
  

VP Rank × Loss    0.006*  
 

  
   

(1.85) 
  

Z-Score     -0.241  
  

    
(-1.30) 

 

VP Rank × Z-Score     -0.084**  
  

    
(-2.07) 

 

VP Rank × Tech      0.015** 
  

     
(2.18) 

        
Observations 30,129 30,129 30,129 30,129 29,606 30,129 
Adj. R2 0.154 0.154 0.154 0.154 0.155 0.154 
Fixed Effects Firm & Year Firm & Year Firm & Year Firm & Year Firm & Year Firm & Year 
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