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A B S T R A C T   

We study the effects on the mobile telecommunications market from three specific spectrum policies: the 
presence of a secondary market, a technological neutrality approach, and the possibility of sharing agreements 
among operators. We find that when these policies are jointly adopted, investment is 35.9% larger than when 
that is not the case. After two years, network coverage and service penetration can be increased by 9.8% and 
0.9%, respectively, and prices can be reduced by 5.8%. When considering an extended period, dynamic effects 
result in enhanced outcomes. The findings support policies that promote flexible approaches towards spectrum 
management for mobile development.   

1. Introduction 

Mobile operators require access to radio spectrum frequency to 
deliver quality and affordable services to consumers. As a result, a 
transparent, long-term radio-frequency plan which includes a strategy 
for managing and making spectrum available to operators is critical to 
encourage substantial investment and innovation in mobile services. 
The amount of spectrum allocated, the harmonization of this resource, 
the design of the auctions (and the determination of base prices), plus a 
flexible approach for license holders -for instance, in terms of techno
logical neutrality or allowing for secondary spectrum trading- can 
potentially impact on market outcomes, and as a result, on adoption 
levels and consumer surplus. However, sometimes governments 
mandate particular band or technological decisions (limiting flexibility) 
or prioritize high prices to access spectrum, which may condition me
dium- and long-term market outcomes. 

While the literature has focused primarily on spectrum pricing and 
allocation procedures, the effects of a flexible approach for the day-by- 
day usage period of this resource -once allocated-, remains largely un
studied. In this paper, we contribute to the literature by studying the 
effects on market outcome from three specific attributes linked to flex
ible spectrum management: the existence of secondary market trading, a 
technology neutrality approach, and the possibility of conducting 
network sharing agreements among operators. These three policies have 
been hypothesized to positively contribute to mobile sector 

development (GSMA, 2019). For our empirical analysis, we identify as 
market outcomes four variables: capital investment, network coverage, 
service pricing, and adoption. That said, those variables are, as expected, 
related among themselves through some causal linkages that should be 
carefully addressed. 

The remainder of the paper is structured as follows: Section 2 pro
vides a brief literature review. Section 3 develops a model to clarify the 
causal links taking place -from the investment decision from the oper
ator to the final service adoption by consumers. Section 4 provides a 
descriptive analysis of the preliminary evidence arising from the 
selected dataset. Section 5 develops a series of econometric estimations 
based on the proposed models, and some policy simulations are con
ducted. Finally, section 6 concludes with policy recommendations. 

2. Research literature review 

The research literature tends to support the importance of spectrum 
management in developing wireless communications. There is 
consensus that it is vital to have a transparent, long-term plan that in
cludes a strategy for making sufficient spectrum available under 
appropriate conditions to encourage substantial investment and inno
vation in mobile services. In light of this premise, spectrum management 
and pricing and the imposition (or absence) of associated obligations can 
significantly impact capital investment and innovation. 

In terms of empirical evidence, Bahia and Castells (2021) studied the 
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impact of spectrum pricing on several market outcomes, including 
coverage levels and data speeds, by considering a sample of both 
developed and developing countries. Their sample was based on the 
spectrum costs of 229 operators in 64 countries (covering 30 developing 
and 34 developed countries). The evidence generated by their econo
metric models indicated, as expected, that high spectrum costs restrict 
the financial ability for network investment. The researchers found 
strong evidence that higher spectrum prices negatively impact mobile 
coverage in developed and developing countries. They also found evi
dence that high spectrum prices negatively impact network quality, 
including download/upload speeds and latencies. In research examining 
the impact of other market conditions on capital spending, Kim et al. 
(2011) examined the effect of MVNOs (Mobile Virtual Network Opera
tors) entry on the investment behavior of facilities-based carriers. The 
authors used firm-level data for 58 operators in 21 OECD countries be
tween 2000 and 2008. The results suggested that the mandated provi
sion of spectrum for MVNO was related to a lower investment intensity 
of network operators. 

Beyond investment, other researchers focused on linking spectrum 
policy and other sector outcome variables, such as service adoption. 
Zaber and Sirbu (2012) developed an econometric analysis over a 
multi-country panel dataset and were able to show that spectrum 
management policies had a significant influence on the evolution of 3G 
penetration across countries. Countries that mandated a specific fre
quency band for 3G saw faster diffusion but experienced a slower growth 
rate in the long run. In addition, the research found that 3G diffusion 
was not significantly affected by choice of allocation mode: auctions vs. 
alternative license award processes. The above-cited article from Bahia 
and Castells (2021) also studied the impact of spectrum prices on several 
variables affecting consumer welfare, such as network quality and pri
ces. Their results showed significant evidence to suggest a causal link 
between high spectrum prices and certain other spectrum management 
decisions (related to the timing of band release and quantity licensed) 
and consumer outcomes. In particular, higher spectrum prices may have 
driven higher voice and data prices in developing countries, although 
the authors state that evidence for most advanced economies was 
inconclusive. 

In the same vein, Kuroda and Forero (2017) studied the impact of 
spectrum policies for a sample of 47 OECD countries between 2000 and 
2008. They found that the consumer surplus tends to be reduced when 
spectrum allocation is through auctions to raise public revenues (instead 
of other mechanisms such as Beauty Contests). Similarly, Hazlett and 
Muñoz (2009) performed an empirical analysis by relying on a sample of 
28 countries for the period 1999–2003. They found evidence that the 
amount of spectrum and the degree of market competitiveness are key 
drivers for market outcomes such as consumer surplus and license rev
enues, stating that auction rules that focus on revenue extraction may 
conflict with the goal of maximizing social welfare. In turn, Cambini and 
Garelli (2017) studied the impact of spectrum availability and fees on 
mobile sector revenues for a dataset of firms operating in 24 countries in 
the period 2005–2014. They include spectrum availability and license 
fees as determinants for mobile revenues, although they could not find a 
significant correlation among them. 

It must be said that not all the empirical research on the economic 
impact of spectrum management reaches consistent conclusions. To 
mention a specific example, Park et al. (2011), examining a sample of 21 
OECD countries, could not find evidence of the impact of spectrum fees 
on investment levels and consumer prices. Similarly, Bauer (2003) 

found no relationship between spectrum fees and voice prices for a 
sample of 18 OECD countries. However, the studies carried out by both 
Park et al. (2011) and Bauer (2003) had a methodological disadvantage, 
as they relied on cross-section samples rather than data panels, a par
ticularity that may be affecting their results. 

As shown above, research so far has focused mainly on spectrum 
pricing and allocation procedures. The effects of a flexible approach 
-beyond the allocation period-, remain largely unstudied. It seems 
necessary to study the effects on market outcomes from three specific 
attributes linked to a flexible spectrum management approach: the 
presence of a secondary market for spectrum trading, a technology 
neutrality approach, and the possibility of conducting network sharing 
agreements among operators. These three attributes have been recently 
put into practice by some countries. 

Spectrum secondary markets consist of a mechanism by which li
cense holders can transfer spectrum-usage rights voluntarily to other 
operators. This approach may result in more efficient use of the limited 
spectrum, ensuring that this resource does not lie fallow but instead is 
used to deliver valuable services. It also adds flexibility in business 
planning for mobile operators. 

Technology neutrality is a policy approach that allows the use of any 
technology in any frequency band. According to this principle, govern
ments allocate and license spectrum for particular services (such as 
mobile connectivity) but do not specify the underlying technology to be 
used (3G, 4G, or 5G). Technology neutrality encourages innovation and 
promotes competition, allowing markets to determine which technolo
gies succeed. Neutrality is essential as the rapid pace of innovation ad
vances makes it necessary to have flexible mechanisms allowing 
migration to newer technologies. Theoretically, a “technology-neutral” 
use of spectrum bands should have a positive and significant impact on 
network deployment, be more adapted to technological advances, and 
contribute to maximizing the financial returns of investment. 

The growth in data traffic means mobile operators must gain access 
to an increasing amount of spectrum to meet demand. When clearing 
new frequency bands for mobile use is not possible, spectrum sharing 
can offer a way to help by enabling mobile access to additional bands in 
areas, and at times, when other services or providers are not using them. 
In addition, the possibility of performing voluntary sharing agreements 
allows maximizing the opportunities for operators to make investment 
profitable, creating incentives for network deployment. Network- 
sharing agreements can optimize the use of infrastructure, generally 
reducing costs, thus being beneficial for both service providers and 
consumers. For that reason, policymakers increasingly see spectrum 
sharing as a means of opening additional frequency bands for 4G and 5G 
services. However, sharing is only possible if regulations do not prohibit 
it and it results from voluntary agreements and not mandates. 

This research focuses on the impact of these three policies on market 
outcomes. As four potential outcome variables (closely linked to each 
other) are identified, it is first important to understand the chain of 
causality linking policies to market outcomes, as explored in the next 
section. 

3. Model specification 

Several contextual factors (competition, regulation, and institutional 
conditions) impact mobile capital investment (CAPEX). In addition, 
capital spending is also conditioned by spectrum policies. In turn, in
vestment drives network coverage levels, which are expected to impact 
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prices. Finally, adoption levels (demand) are a function of the prices, as 
well as other contextual factors. This causal chain is presented in Fig. 1. 

Based on this causal chain, the linkages taking place in the mobile 
sector can be explained through four equations: (i) the investment 
equation, (ii) the coverage equation, (iii) the price equation, and the (iv) 
demand equation. Each link and the corresponding equation will be 
explained in turn. 

3.1. The investment equation 

The first equation explains the drivers of mobile telecommunications 
investment. Mobile CAPEX is expected to depend on its prior-year 
value,1 on sector revenues (REVENUE, to proxy financial capabilities 
for investment and market size), on SPECTRUM POLICY indicators, on 
COMPETITION dynamics, plus a vector X combining other control var
iables. This equation is defined as follows: 

log(CAPEXt) = α+ βlog(CAPEXt− 1)+ γ log(REVENUEt− 1)+ δ(SPECT 
RUM POLICYt)+ ζ(COMPETITIONt)+ μ(Xt)+ ε 

From an econometric perspective, there are three issues regarding 
endogeneity that need to be addressed in this investment equation. 

In the first place, introducing the lagged dependent variable as a 
regressor is expected to correlate with the fixed effects in the error term. 
This situation creates a “dynamic panel bias” (Nickell, 1981), as the 
reported correlation violates the necessary assumptions for consistency 
in Ordinary Least Squared (OLS) estimators. As a result, it cannot be 
estimated through the usual fixed effects approach. 

In the second place, a reverse causality link may exist between rev
enue and investment. On the one hand, revenues provide the funding for 
investment, but on the other hand, investment is fulfilled to increase 

future revenues. Even if this identification concern is not significant for 
us (as investments are expected to translate into greater revenues only in 
the future), we will follow a cautious approach and rely on the lagged 
revenue regressor rather than on the contemporaneous variable. We 
assume that, at the beginning of each year, the mobile operator designs 
an investment plan for the whole year, considering the latest revenue 
figures from the year-end. 

Finally, sector-specific policies (such as those regarding spectrum) 
may be endogenous to investment, possible due to regulatory reforms 
taking place contemporaneously with idiosyncratic shocks to invest
ment2 or because of policy reforms being promoted due to, perhaps, low 
investment levels (reverse causality). All spectrum policy variables 
entering the investment equation will be treated as endogenous to 
overcome these concerns. 

3.2. The coverage equation 

We will measure coverage for the 4G technology, as 5G network 
deployment is still in its infancy. This variable (4G COVERAGE) is 
defined as the percentage of the population covered. The population 
covered by 4G networks is driven by four variables: capital investment 
of mobile operators (CAPEX), past coverage improvements,3 the per
centage of the population living in urban areas (variable URBAN), and 
topographic conditions, such as the presence of forests or hilly terrain. 
As these latest indicators are time-invariant, they will be captured by the 
country fixed effects. It is important to stress that coverage levels are 
also expected to depend on the specific frequencies allocated in each 
country. However, the lack of information on specific bands allocated by 
country prevented us from incorporating this additional regressor. In 
any case, we can expect the past coverage levels to absorb most of these 
effects.4 Therefore, the second equation is modeled as follows:  

Fig. 1. Causality flows in the Mobile sector. 
Source: elaborated by the authors 

1 Some studies have used theoretical models from which CAPEX is deter
mined as a function of the sector physical capital stock (Jung, 2020; Jung and 
Melguizo, 2020). However, the lack of data for telecom physical capital for a 
worldwide sample prevented us from following that approach. As a second-best 
possibility, we consider that controlling by past CAPEX is an appropriate 
measure to reflect country-differences in investment. In addition, given the 
conventional breakdown of CAPEX in terms of non-discretionary spending and 
modernization investment, it is reasonable to consider the prior year CAPEX as 
a valid variable. The empirical specification used is roughly similar as that 
followed by Kim et al. (2011) and Jung (2019). 

2 See for instance Alesina et al. (2005).  
3 Even if those advances were specific to prior technologies. For instance, 4G 

deployments are surely facilitated by the presence of passive infrastructure 
previously deployed for 3G or 2G (towers, base stations, posts, ducts).  

4 The only data available by frequency is that of digital dividend allocation 
for IMT (data reported by the ITU). However, this variable was found to be not 
significant to explain coverage levels (results available upon request). We 
would like to thank an anonymous referee for raising up this point. 
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where we expect Φ > 0. Given that investment may take some time to be 
translated into coverage gain, we model COVERAGE in period t as a 
function of CAPEX in period t-2.5 In addition, the possibility of relying on 
previous technologies to account for previous coverage advances con
tributes to avoiding the lag of the dependent variable, thus preventing 
the “dynamic panel bias” as described above. 

3.3. The price equation 

Once network coverage is estimated, we turn to mobile broadband 
price (MBB PRICES), a variable that will drive adoption through elas
ticity. End-user prices are assumed to depend on taxation applied to the 
services, as well as competition intensity. End-user pricing is a function 
of value-added taxes that increase the consumer’s total cost of owner
ship of mobile service. Competitive intensity would, as expected, 
negatively impact pricing. In addition, coverage improvements resulting 
from past investments contribute to reducing prices as the supply curve 
shifts to the right. Coverage gains can also be interpreted as the result of 
technological improvements that, from a dynamic perspective, usually 
translate into lower prices. In addition, we introduce the URBAN vari
able as an additional control for possible cost-differences driven by the 
density of the user base. 

Spectrum allocation procedures can also be expected to affect end- 
user prices. For instance, if the government chooses to maximize reve
nue through spectrum allocation, we may expect this to affect service 
prices. Similarly, spectrum scarcity may elevate the prices from 
competitive auctions, with its corresponding incidence on end-user 
prices. Unfortunately, the lack of public data on spectrum allocation 
prices prevented us from considering this potential effect. 

These causal links are captured in the following equation: 

log(MBB PRICESt)=Λ + π(TAXt) + Ψ log(4G COVERAGEt)

+ Γ(COMPETITIONt) + τlog(URBANt) + ε 

As described above, we expect Ψ < 0. 

3.4. The adoption equation 

Following the price equation, pricing will be a determinant of service 
adoption, measured as mobile broadband unique subscribers’ penetra
tion. Adoption is also expected to depend on income levels, which will 
be proxied through GDP per capita (in lags, to avoid reverse-causality 
concerns), and on the population’s age structure, as elder groups are 
expected to be less prone to adopt the technology: 

log(MBB PENETRATIONt)=Θ+ ηlog(MBB PRICESt)+ ς log(GDPpct− 1)

+ σ(AGEt) + ε 

Naturally, higher prices should reduce demand (that is to say, we 
expect η < 0). 

3.5. The effects of spectrum policy on outcome variables 

As implied in the four equations, we explicitly assume that spectrum 
policy variables do not directly impact the coverage, price, and adoption 
equations, but only indirectly because of the backward linkages with 
investment. From the investment equation, it seems straightforward to 

calculate the impact on CAPEX from a spectrum policy reform: 

∂log(CAPEXt)

∂(SPECTRUM POLICYt)
= δ 

Turning next to the second equation, we can assess the impact that 
will yield in coverage improvement by considering the CAPEX gains as a 
consequence of SPECTRUM POLICY: 

∂log(COVERAGEt+2)

∂(SPECTRUM POLICYt)
=Φ

[
∂log(CAPEXt)

∂(SPECTRUM POLICYt)

]

= Φδ 

Note that the increase in coverage happens in period t + 2, as CAPEX 
improvements are not supposed to materialize immediately into 
coverage gains. In turn, coverage increases as a result of all the above are 
expected to bring down prices: 

∂log(MBB PRICESt+2)

∂(SPECTRUM POLICYt)
=Ψ

[
∂log(COVERAGEt+2)

∂(SPECTRUM POLICYt)

]

= ΨΦδ < 0 

The prices will be reduced as long as Ψ < 0. Finally, reduced prices 
will yield an increase in demand: 

∂log(MBB PENETRATIONt+2)

∂(SPECTRUM POLICYt)
= η

[
∂log(MBB PRICESt+2)

∂(SPECTRUM POLICYt)

]

= ηΨΦδ > 0 

The variation in demand will be positive, assuming our expectations 
on the sign of the coefficients is effectively verified. 

All in all, what started in period t with a particular spectrum policy 
turned into an increase in adoption in period t + 2. In turn, an increase in 
broadband adoption is expected to translate into macroeconomic gains, 
as has been widely verified in the research literature. 

4. Data and exploratory analysis 

To carry out our empirical analysis, we built an unbalanced panel 
consisting of 145 countries for 2008–2019. Table 1 describes the vari
ables used to estimate the equations described in the previous section. 

Before the empirical estimate of the 4-equation model as described in 
the previous section, we will show some descriptive statistics and tests as 
a brief explanatory analysis regarding the link between spectrum pol
icies and two mobile outcomes defined before: investment and adoption. 
Table 2 reflects the descriptive statistics and mean difference tests for 
mobile CAPEX (in per capita terms, for comparative purposes), 
depending on groups defined by the spectrum policies. 

As indicated in Table 2, those countries that allow spectrum sec
ondary trading invest on average 50.9 dollars per capita, in countries 
that do not allow that policy is 25 dollars per capita. The difference is 
statistically significant at a 1% level. Similar conclusions can be reached 
for the case of other spectrum policies such as sharing ($ 43.1 for 
countries that do allow it versus $ 29.3 for those that do not) and 
technological neutrality ($ 38.4 for those that consider it versus $ 33.3 
for those that do not). In the last case, the difference is smaller than the 
other two and significant at 5%. When all three flexibility attributes in 
spectrum policy are present (the “Spectrum flexibility dummy” sce
nario), CAPEX per capita reaches $ 56.4. In contrast, when the three 
attributes are not present (or some may be, while others do not), the 
average investment per capita is $ 34.8 per capita, with the difference 
being statistically significant at a 1% level. 

Table 3 presents a similar analysis but considers mobile broadband 
penetration the market outcome variable. Countries that allow second
ary spectrum markets exhibit on average 54.2% mobile broadband 

log(4G COVERAGEt)= η + Φlog(CAPEXt− 2) +
∑i=3

i=1
νilog(COVERAGEt− i) + λlog(URBANt) + ε   

5 This was the approach followed by Katz and Jung (2021a). 
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unique subscriber’s penetration, while the countries that do not allow 
that policy reach only 26.0%. The difference is statistically significant at 
a 1% level. A similar conclusion can be reached for the case of spectrum 
sharing (48.6% versus 36.2% penetration). However, in the case of 
technological neutrality, no statistical differences can be detected across 
groups (average penetration is 43%). When all three flexibility attributes 
of spectrum management are present, mobile broadband penetration is 
60.7%. In contrast, when not all the three attributes are present, average 

penetration reaches only 38.7%, with the difference being statistically 
significant at a 1% level. 

A similar conclusion can arrive when comparing the kernel density 
functions for the same outcome variables. Fig. 2 plots the density 
functions for CAPEX per capita depending on two specific groups of 
countries based on whether or not they exhibit total flexibility. As 
indicated in Fig. 2, the density function for the total flexibility group 
shifts to the right, indicating higher CAPEX per capita. Additionally, the 

Table 1 
Variables used in the empirical analysis.  

Group Variable Description Source 

Outcome 
variables 

Mobile CAPEX Investment in mobile telecommunication services. GSMA 
4G Coverage Percentage of population covered by a 4G network. GSMA 
MBB prices Data-only mobile broadband price for 1.5 GB. ITU 
MBB penetration Mobile broadband unique subscribers’ penetration. GSMA 

Spectrum 
variables 

Spectrum secondary 
trading allowed 

Dummy variable that takes the value of 1 if a secondary market for spectrum is allowed.1 ITU 

Spectrum sharing allowed Dummy variable that takes the value of 1 if spectrum sharing for mobile operators is permitted.2 ITU 
Spectrum technological 
neutrality 

Dummy variable that takes the value of 1 if technological neutrality principles apply in spectrum allocation and 
use. 

ITU 

Spectrum flexibility scale Scale taking values from 0 to 3 depending on the number of the above spectrum policies in each country (e.g., 3 if 
all three policies are implemented). 

Built from 
ITU data 

Spectrum flexibility dummy Dummy variable that takes the value of 1 if all three spectrum policies are applied. Built from 
ITU data 

Spectrum for LTE allocated Dummy variable that takes a value of 1 if a spectrum allocation was carried out for LTE services ITU 
Spectrum of digital 
dividend allocated 

Dummy variable that takes a value of 1 if the digital dividend (700 MHz band) was allocated for IMT ITU 

Control 
variables 

Mobile Revenue Revenue from mobile telecommunication services. GSMA 
ICT Regulatory Tracker Composite index based on 50 indicators grouped into clusters: Regulatory Authority, Mandates, and Regime and 

Competition Framework. 
ITU 

Cellular coverage Percentage of population covered by a mobile-cellular network. ITU 
Taxation Tax rate for mobile cellular tariffs (includes VAT). ITU 
HHI Mobile Herfindahl Hirschman Index of the mobile sector. GSMA 
SMP (Significant Market 
Power) 

Index taking values from 0 to 2 depending on the definition of SMP and its scope (geographical, market share, 
essential facilities, access to financial resources, countervailing power of consumers, economies of scale). 

ITU 

GDP per capita Gross Domestic Product per inhabitant in current US dollars. IMF 
Urban population Percentage of population living in urban areas. World Bank 
Population age Percentage of population over 65 years old. World Bank  

1 In some countries, spectrum trading has been admitted only for specific frequencies, in case of transactions required by competition authorities to permit mobile 
mergers. However, the lack of detail in the data provided by the ITU prevented us to identify these specific situations. We would like to thank an anonymous referee for 
raising up this point. 

2 In some cases, sharing may be restricted to certain frequency bands or for geographic areas of the country. Unfortunately, the data provided by the ITU does not 
specifies such situations. 
Source: elaborated by the authors 

Table 2 
Descriptive stats and mean difference test for Mob. CAPEX pc (2008–2019).  

Spectrum policy Yes/No Mean (Mobile CAPEX per capita) Observations T-stat p-value for Ho (diff = 0) 

Spectrum secondary trading allowed Yes 50.891 487 − 16.461*** 0.00 
[1.469] 

No 25.002 1882 
[0.704] 

Spectrum sharing allowed Yes 43.201 662 − 5.999*** 0.00 
[1.389] 

No 29.307 352 
[1.808] 

Spectrum technological neutrality Yes 38.404 809 − 2.272** 0.012 
[1.315] 

No 33.295 351 
[1.573] 

Spectrum flexibility dummy Yes 56.423 181 − 7.190*** 0.00 
[2.708] 

No 34.812 657 
[1.390] 

Notes: *p<10%, **p<5%, ***p<1%. Standard errors in brackets. 
Source: elaborated by the authors 
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density function for those countries with less spectrum management 
flexibility seems highly concentrated, suggesting that the total flexibility 
approach is more significant than carrying out isolated specific policies. 

A similar analysis was performed for the case of mobile broadband 
unique subscribers’ penetration (Fig. 3). In this case, again, the density 
function corresponding to the total spectrum flexibility group is posi
tioned to the right. However, in this case, disparity levels within both 
observation groups are much larger than in Fig. 2. The explanation can 
be related to the adoption variable depending on many other factors 
such as affordability, age, and the like. 

In sum, this preliminary evidence suggests a positive link between 
spectrum flexibility approaches and mobile service development. 
However, it remains to be seen if these are simple correlations or if these 
relations represent a causality direction as depicted in Fig. 1, robust to 
the addition of control variables and measures to control endogeneity. 
This will be explored in the next section. 

5. Econometric results 

As presented in the investment equation, CAPEX is expected to 
depend on its own lagged value, sector revenues, spectrum policies, and 
competition. To avoid the endogeneity concerns related to the “dynamic 
panel bias”, we need to rely on an estimation strategy that considers the 
existence of cross-country individual unobservable elements but does 
not incur the problems generated by the conventional fixed-effects 
approach. For that purpose, the estimator proposed by Arellano and 
Bond (1991) based on the Generalized Method of Moments (GMM), and 
later improved by Arellano and Bover (1995) into the System-GMM 
methodology is designed explicitly for panels exhibiting short 
time-periods, larger cross-section dimensions, a left-hand-side variable 
that is dynamic (that is to say, it depends on its past realizations), fixed 
individual effects, and heteroskedasticity and autocorrelation within 
individuals but not across them (Roodman, 2009). This methodology 
relies on using lagged variables as instruments.6 To avoid the fact that 
the two-step procedure tends to offer biased standard errors, we will 
compute the finite-sample correction as in Windmeijer (2005) to achieve 
robust estimates. 

Another concern was that of potential endogeneity between 

Fig. 2. Kernel density estimate for Mobile CAPEX per capita (By spectrum 
flexibility level). 
Source: elaborated by the authors 

Fig. 3. Kernel density estimate for MBB unique subscribers’ penetration (By 
spectrum flexibility level). 
Source: elaborated by the authors 

Table 3 
Descriptive statistics and mean difference test for MBB unique subscribers’ penetration (2018–2019).  

Spectrum policy Yes/No Mean (MBB Penetration) Obs. T-stat p-value for Ho (diff = 0) 

Spectrum secondary trading allowed Yes 0.542 428 − 28.669*** 0.00 
[0.009] 

No 0.26 1420 
[0.005] 

Spectrum sharing allowed Yes 0.486 673 − 9.577*** 0.00 
[0.008] 

No 0.362 354 
[0.008] 

Spectrum technological neutrality Yes 0.425 819 0.116 0.546 
[0.007] 

No 0.426 354 
[0.011] 

Spectrum flexibility dummy Yes 0.607 181 − 13.991*** 0.00 
[0.012] 

No 0.387 668 
[0.007] 

Notes: *p<10%, **p<5%, ***p<1%. Standard errors in brackets. 
Source: elaborated by the authors 

6 As pointed out by Arellano and Bover (1995), the original Arellano and 
Bond (1991) estimator presented a weakness, as lagged levels are usually poor 
instruments for first differenced variables. For that reason, their proposed 
modification includes lagged levels as well as lagged differences. 
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spectrum policy variables and investment. To control for this concern, 
we will treat these variables as endogenous, relying on external in
struments. These instruments must verify a double condition: help 
explain the regulatory variable but not directly link to the dependent 
variable. In our case, we will rely on a specific indicator linked to the 
energy-market regulation. This instrument helps explain a country’s 
approach towards regulation and can thus help explain spectrum pol
icies. However, it is not related to mobile CAPEX, as it belongs to a 
different economic sector. We will rely on the RISE7 index, developed by 
the World Bank and the Energy Sector Management Assistance Program 
(ESMAP). The index comprises 30 indicators for 138 countries for the 
period 2010–2019, offering a snapshot of a country’s policies and reg
ulations in the energy sector. Estimation results for the investment 
equation are reported in Table 4. 

The lagged CAPEX value and Revenue exhibit the expected sign and 
significance levels in all estimates. On the other hand, the selected in
struments were verified to be suitable according to the Hansen-J test: the 
null hypothesis of exogeneity was rejected in neither case. 

Results provide arguments to support flexible spectrum approaches. 
Due to the high correlation between the three spectrum policy variables 
creating multicollinearity problems, we introduce these variables one by 
one. Column [I] suggest, albeit at a 10% significance level, that coun
tries allowing secondary markets for spectrum invest 14.7% more than 
countries that do not allow this possibility. According to column [II], 
countries that allow spectrum sharing invest 8.7% more than countries 
that do not. In addition, column [III] indicates that countries that follow 
a technological neutrality approach for spectrum invest 31.9% more 
than countries that do not follow this principle. 

However, this is only a preliminary conclusion, as these regressions 
may be affected by the omitted variable bias. As we introduce spectrum 
variables one by one, some of them may be capturing a part of the effect 
from the omitted ones. Thus, we need to consider all three variables 
within the same regression framework but avoid the collinearity 

problems. We then group them into a spectrum flexibility scale, taking 
values from zero to three depending on the number of these policies 
carried out by each country. Results are reported in column [IV] of 
Table 4, indicating that mobile investment increases on average 12.6% 
for each policy a country adopts. For example, if a country with zero 
flexibility adopts all three policies, then CAPEX should increase by 
37.8%, a lower figure than that resulting from adding the individual 
coefficients from estimates of columns [I] to [III]. This result suggests 
that at least one of the previous estimates was contaminated by the 
omitted variable bias. Finally, in column [V], we introduce the spectrum 
flexibility dummy, which exhibits a positive and significant coefficient, 
suggesting that adopting all three policies is associated with an increase 
of investment of 34.9%, in comparison to countries that have not fol
lowed that approach. 

While the previous results highlight the relevance of flexible spec
trum approaches, we performed additional checks to avoid any further 
risk of omitted variable bias. The initial risk is that the spectrum policy 
variables may be capturing country differences in terms of spectrum 
allocation. In order to control for this potential bias, we will reproduce 
the estimates performed in columns [IV] and [V] of Table 4 but intro
ducing as additional controls dummies for spectrum allocation for LTE 
services and digital dividend allocated for IMT.8 The results, reported in 
Table 5, remain almost unchanged when introducing these further 
controls, either separately or jointly (in interaction). 

Beyond the quantity of spectrum allocated, further checks were 
carried out by controlling for income differences (through GDP per 

Table 4 
Two-step GMM estimation results for the investment equation.  

Dependent variable: Log (Mobile CAPEX) [I] [II] [III] [IV] [V] 

Log (Mobile CAPEX) t-1 0.771*** 0.782*** 0.647*** 0.682*** 0.683*** 
[0.055] [0.095] [0.077] [0.092] [0.076] 

Log (Mobile Revenue) t-1 0.193*** 0.198** 0.320*** 0.281*** 0.282*** 
[0.055] [0.082] [0.073] [0.091] [0.076] 

Log (HHI Mobile) 1.675* 0.851 1.091 1.395 2.757 
[0.997] [2.930] [1.691] [1.547] [2.687] 

Log (HHI Mobile) - sq − 0.102* − 0.050 − 0.070 − 0.084 − 0.168 
[0.060] [0.176] [0.101] [0.092] [0.163] 

Spectrum secondary trading allowed 0.147*     
[0.078]     

Spectrum sharing allowed  0.087**     
[0.044]    

Spectrum technological neutrality   0.319**     
[0.127]   

Spectrum flexibility scale    0.126***     
[0.091]  

Spectrum flexibility dummy     0.349***     
[0.130] 

Regional fixed effects YES YES YES YES YES 
Time-trend YES YES YES YES YES 

Arellano-Bond test for AR (1) in first differences − 5.38*** − 4.16*** − 3.76*** − 4.16*** − 4.09*** 
Arellano-Bond test for AR (2) in first differences − 0.26 1.26 1.44 1.28 0.78 

Hansen test of overid. Restrictions 127.54 114.96 102.92 91.69 96.07 

Observations 1341 744 735 618 618 

Notes: *p<10%, **p<5%, ***p<1%. Robust standard errors in brackets. 
Source: elaborated by the authors 

7 Acronym for Regulatory Indicators for Sustainable Energy. 

8 Ideally, we would have liked to control for the quantity of spectrum allo
cated for IMT (in MHz). Unfortunately, there is not a public database containing 
this information. As a second-best possibility, we introduced the dummies for 
allocating spectrum for LTE services and digital dividend, as we understand that 
countries verifying those conditions should have more MHz allocated to IMT 
than those that do not. 
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capita), for cost differentials (proxied by the share of urban population), 
and for other regulatory factors9 beyond spectrum policy (proxied by 
ITU’s ICT Regulatory Tracker). In all cases, the results stand.10 

Having assessed the link between spectrum policy variables and 
mobile CAPEX, we turn to the coverage equation. Our aim, in this case, 
is to estimate the impact of CAPEX on coverage levels, particularly the 
induced effect from a CAPEX variation related to spectrum policy. The 
coverage equation has as a dependent variable the level of 4G coverage 
as a function of mobile CAPEX (in lags, given that investment takes some 
time to materialize into coverage gains). We decided to approximate 
past investment by mobile CAPEX in period t-2, as, from a statistical 
viewpoint, it provided to be more relevant than CAPEX in period t-1 to 
explain coverage in period t. A one-year lag may be too tight, especially 
considering that we ignore at which point of the fiscal year the de
ployments were mostly carried out. 4G coverage is expected to depend 
also on past coverage levels (defined for cellular technology rather than 
4G specific, so we avoid entering the lagged dependent variable as re
gressor) and the percentage of the urban population. The estimated re
gressions also include country fixed effects, which control for national- 
level time-invariant unobservable factors. In addition, we include year 
fixed effects to account for economic cycle variations. 

A key issue for the identification strategy is the treatment of the 
lagged CAPEX. We perform three different estimations. We run a stan
dard OLS with fixed effects, treating the lagged CAPEX as exogenous. We 
then treat the CAPEX regressor as endogenous, as determined in the 
previous equation. We run an OLS fixed effects estimate but introducing 
the predicted CAPEX from the investment equation as a regressor (using 
the estimate of column [VI] in Table 5). This procedure is similar to the 
so-called CDM model (Crepon et al., 1998). In third place, we will follow 

Table 5 
Two-step GMM estimation results for the investment equation with further spectrum controls.  

Dependent variable: Log (Mobile CAPEX) [I] [II] [III] [IV] [V] [VI] 

Log (Mobile CAPEX) t-1 0.700*** 0.679*** 0.739*** 0.688*** 0.676*** 0.713*** 
[0.079] [0.092] [0.082] [0.077] [0.075] [0.084] 

Log (Mobile Revenue) t-1 0.259*** 0.284*** 0.219*** 0.272*** 0.294*** 0.238*** 
[0.073] [0.092] [0.081] [0.074] [0.075] [0.086] 

Log (HHI Mobile) 0.958 1.429 0.655 1.042 1.527 0.893 
[1.445] [1.828] [1.641] [1.731] [1.618] [1.768] 

Log (HHI Mobile) - sq − 0.058 − 0.087 − 0.041 − 0.063 − 0.092 − 0.055 
[0.086] [0.109] [0.098] [0.103] [0.097] [0.106] 

Spectrum flexibility scale 0.128*** 0.124*** 0.117**    
[0.044] [0.046] [0.046]    

Spectrum flexibility dummy    0.368*** 0.357*** 0.359***    
[0.119] [0.123] [0.118] 

Spectrum for LTE allocated − 0.125   − 0.070   
[0.086]   [0.080]   

Spectrum of digital dividend allocated  0.001   − 0.036   
[0.079]   [0.082]  

Spectrum for LTE allocated & Spectrum of digital dividend allocated   0.113   0.089   
[0.110]   [0.116] 

Regional fixed effects YES YES YES YES YES YES 
Time-trend YES YES YES YES YES YES 

Arellano-Bond test for AR (1) in first differences − 3.97*** − 4.17*** − 4.25*** − 3.85*** − 4.08*** − 4.01*** 
Arellano-Bond test for AR (2) in first differences 1.37 1.28 1.48 1.12 0.79 1.18 

Hansen test of overid. Restrictions 97.99 91.09 85.03 99.37 91.18 93.49 

Observations 567 617 566 567 617 566 

Notes: *p<10%, **p<5%, ***p<1%. Robust standard errors in brackets. 
Source: elaborated by the authors 

Table 6 
Estimation results for the coverage equation.  

Dependent 
variable: Log (4G 
Coverage) 

[I] [II] [III] 

Log (Mobile 
CAPEX) t-2 

0.261*** 0.272* 0.936*** 
[0.095] [0.140] [0.312] 

Log (Cellular 
coverage) t-1 

2.009*** 1.259 2.140*** 
[0.712] [0.982] [0.564] 

Log (Cellular 
coverage) t-2 

1.655*** 1.445* 1.918*** 
[0.552] [0.772] [0.458] 

Log (Cellular 
coverage) t-3 

1.187*** 0.332 1.223*** 
[0.284] [0.709] [0.260] 

Log (Urban 
population) 

6.002*** 5.510* 4.957*** 
[2.277] [2.913] [1.613] 

Country fixed 
effects 

YES YES YES 

Year fixed effects YES YES YES 

Under- 
identification 
test 

n.a. n.a. 25.869*** 

Weak 
identification 
test 

n.a. n.a. 33.305ⴕ 

Hansen test of 
overid. 
restrictions 

n.a. n.a. 0.061 

Treatment for 
lagged CAPEX 

Exogenous Endogenous 
(regression over 
predicted value) 

Endogenous 
(instrumented) 

Observations 785 366 772 

Estimation 
Method 

OLS OLS-CDM IV-LIML 

Notes: *p < 10%, **p < 5%, ***p < 1%. Robust standard errors in brackets. (ⴕ) 
Stock-Yogo weak ID test critical values: 10% maximal LIML size (8.68), 15% 
maximal LIML size (5.33), 20% maximal LIML size (4.42) and 25% maximal LIML 
size (3.92). 
Source: elaborated by the authors 

9 According to Ezzat and Aboushady (2018), restrictive policies are expected 
to have a relatively lower impact on mobile than in fixed segment, as they 
consider that wireless market is less likely to be characterized by economies of 
scale as in the case of the market for landline services.  
10 These results are not shown here to save space but remain available from 

the authors upon request. 
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Instrumental Variables using the Limited Information Maximum Like
lihood approach (IV-LIML), treating the lagged CAPEX as endogenous 
and using as instruments a further lag for Log (Mobile CAPEX) and Log 
(Mobile Revenue), also in t-3 (the rationale for using these instruments is 
that they are the determinants of mobile CAPEX in t-2 according to the 

investment equation, and the Hansen test verifies their exogeneity). 
Results are reported in Table 6. 

Results are in line with those expected. Past mobile investment is 
significant to explain current 4G coverage levels, as are the past 
coverage levels for previous technologies. For the case of lagged CAPEX, 

Table 7 
Estimation results for the price equation.  

Dependent variable: Log (MBB 
prices) 

[I] [II] [III] [IV] 

Log (4G Coverage) − 0.161*** − 0.598** − 0.578*** − 0.948*** 
[0.040] [0.299] [0.160] [0.231] 

Taxation 0.013* 0.018* 0.017** 0.016*** 
[0.007] [0.011] [0.008] [0.005] 

SMP − 0.181*** − 0.200* − 0.191*** − 0.214** 
[0.047] [0.106] [0.061] [0.091] 

Log (Urban population) − 3.584** 1.002 − 0.079 2.530 
[1.413] [3.468] [1.424] [2.406] 

Country fixed effects YES YES YES YES 
Year fixed effects YES YES YES YES 

Underidentification test n.a. n.a. 24.881*** n.a. 
Weak identification test n.a. n.a. 12.927ⴕ n.a. 
Hansen test of overid. restrictions n.a. n.a. 5.689 n.a. 

Treatment for 4G Coverage Exogenous Endogenous (regression over 
predicted value) 

Endogenous 
(instrumented) 

Endogenous (regression over predicted 
value) 

Observations 948 367 695 359 

Estimation Method OLS OLS-CDM IV-LIML Simultaneous equation with column [IV] – 
Table 8 

Notes: *p < 10%, **p < 5%, ***p < 1%. Robust standard errors in brackets. (ⴕ) Stock-Yogo weak ID test critical values: 10% maximal LIML size (5.44), 15% maximal LIML 
size (3.87), 20% maximal LIML size (3.30) and 25% maximal LIML size (2.98). 
Source: elaborated by the authors 

Table 8 
Estimation results for the demand equation.  

Dependent variable: Log (MBB 
penetration) 

[I] [II] [III] [IV] 

Log (MBB prices) − 0.066** − 0.156** − 0.373*** − 0.145*** 
[0.029] [0.073] [0.117] [0.054] 

Log (GDP per capita) t-1 0.205** 0.060 0.348*** 0.071 
[0.091] [0.158] [0.100] [0.058] 

Population age − 0.164*** − 0.076*** − 0.050* − 0.069*** 
[0.027] [0.032] [0.027] [0.017] 

Country fixed effects YES YES YES YES 
Year fixed effects YES YES YES YES 

Underidentification test n.a. n.a. 19.936*** n.a. 
Weak identification test n.a. n.a. 10.353ⴕ n.a. 
Hansen test of overid. restrictions n.a. n.a. 4.47 n.a. 

Treatment for MBB prices Exogenous Endogenous (regression over 
predicted value) 

Endogenous 
(instrumented) 

Endogenous (simultaneous regression) 

Observations 1306 362 682 359 

Estimation Method OLS OLS-CDM IV-LIML Simultaneous equation with column 
[IV] – Table 7 

Notes: *p < 10%, **p < 5%, ***p < 1%. Robust standard errors in brackets. (ⴕ) Stock-Yogo weak ID test critical values: 10% maximal LIML size (6.46), 15% maximal LIML 
size (4.36), 20% maximal LIML size (3.69) and 25% maximal LIML size (3.32). 
Source: elaborated by the authors 

Table 9 
Evolution of mobile outcome variables after adopting spectrum flexible approach – short term effects.  

Variable affected Period Variation rate Average value for Spectrum flexibility dummy = 0 Simulated value after policy reform 

Mobile CAPEX T 35.9% $ 928.97 million $ 1262.47 million 
4G Coverage t+2 9.8% 65.05% 71.42% 
MBB prices t+2 − 5.8% $ 14.61 $ 13.76 
MBB penetration t+2 0.9% 38.7% 39.05% 

Source: elaborated by the authors 
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the OLS model (column [I]) and the estimation a-la CDM (column [II]) 
exhibit similar coefficients, while in the case of the IV-LIML (column 
[III]), this value becomes much greater. In addition, more urban coun
tries seem to exhibit greater coverage levels, which is reasonable as 
investment is more profitable under such circumstances. 

The third equation links mobile broadband prices with the taxation 
of mobile services, 4G coverage and competitive pressures. We also add 
a further control for the urban population to proxy for cost differences. 
To control for competition levels, we rely on the SMP variable as defined 
in Table 1.11 The estimated regressions also include country and year 
fixed effects. Again, the key issue is the treatment for the variable that 
comes from the previous equation, in this case, 4G coverage. As in the 
previous case, we will follow diverse approaches: considering 4G 
coverage as exogenous (OLS fixed effects) as well as endogenous, on the 
one hand using the predicted value from the previous “CDM” equation 
(column [II] in Table 6), and on the other hand, relying on the IV-LIML 
estimate instrumenting with its determinants (lagged CAPEX and pre
vious technology coverage, and urban population). In addition, in col
umn [IV], we replicate the estimate of column [II] but now performing it 
simultaneously with the demand equation. The rationale for doing so is 
essentially a supply and demand function, which should be estimated 
together (the price equation can be considered the inverse of the supply 
function). Table 7 provides the results. 

As expected, the higher the coverage, the lower the prices, and the 
magnitude of the coefficient increases when we control endogeneity (in 
absolute value), confirming a rightward shift in the supply curve. In 
turn, the higher the taxation applying to mobile services, the higher the 
end-user prices. On the other hand, the more monitored the competition 
in the market is (as denoted by the SMP indicator), the lower the prices. 
The urban population regressor only reaches a significant level in the 
OLS estimate. 

Finally, the adoption equation links demand (measured as mobile 
broadband unique subscribers’ penetration) as a function of prices, in
come (proxied by the lag of GDP per capita), and the population’s age 
composition. The estimated regressions include country and year fixed 
effects. The estimation strategies are similar to those from the previous 
equations.12 As stated before, in the last column [IV], we report the 
result of the demand equation estimated simultaneously with the price 
equation (same column, Table 7). Table 8 summarizes these estimates. 
The results suggest that, as expected, demand is negatively linked to 
prices. The higher the prices, the lower the adoption level and the cor
responding coefficient becomes greater (in absolute value) once mea
sures to control for endogeneity are taken. Income, as measured by the 
lag of GDP per capita, tends to explain positively the adoption levels in 
estimates reported in columns [I] and [III], and the older the composi
tion of the population, the lower the demand, as expected. Results are 
consistent across the different empirical strategies followed. 

All in all, we were able to explain the causality links across the chain 
as described in Fig. 1, and the results are robust to the addition of control 
variables and endogeneity control. We were able to reach similar con
clusions from very different empirical strategies. 

At this point, all the effects of the causality chain can be linked as 
described in Fig. 1. For that purpose, we will rely on the parameters of 
our preferred econometric specifications, column [VI] in Table 5 and 
columns [II] from Tables 6–8 (the CDM approach). From those esti
mates, our selected parameters are the following: δ = 0.359, Φ = 0.272, 
Ψ = − 0.598 and η = − 0.156. The formulas to calculate the effects over 
the different outcome variables are described in Section 3. Initial effects 
are verified in period t for CAPEX and period t + 2 for the remaining 
outcome variables. Significant gains can be simulated for CAPEX 
(+35.9%), 4G Coverage (+9.8%), MBB prices (− 5.8%) and MBB pene
tration (+0.9%). 

Fig. 4. Evolution of mobile outcome variables after adopting spectrum flexible approach – long term effects. 
Source: elaborated by the authors 

11 We decided to use the SMP variable instead of the HHI, as this latest indi
cator proved to be non-significant. 

12 For the IV-LIML estimate, the instruments for prices are mobile taxation, 
SMP criteria and the lagged 4G coverage. 
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Table 9 summarizes these estimations. 
However, the effects on outcome variables are not limited to a single 

period, as CAPEX improvements will induce future CAPEX variations, 
which in turn will yield further variations in the rest of the outcome 
variables. Simulating the effects for five years and starting with the 
sample average values (for the group of spectrum flexibility = 0), Fig. 4 
exhibits the evolution for each case. 

Over five years, the dynamic effects are supposed to magnify the 
results, hypothetically ending with a mobile broadband prices reduction 
of 14.3% and mobile broadband unique subscribers’ penetration in
crease of 2.37%. In addition, these outcomes are expected to yield 
macroeconomic gains for society. As found out by Katz and Jung 
(2021b), a 1% increase in mobile broadband unique subscribers’ pene
tration is expected to yield an increase of 0.16% in GDP per capita. Then, 
the effects mentioned above can imply a gain in GDP per capita of 0.4% 
for this five-year simulation. 

These results, again, provide empirical support for the relevance of 
spectrum management in general and for promoting a flexible approach 
in particular. 

6. Conclusions 

This study complemented prior research and generated new evi
dence about the impact of the spectrum policies on the performance of 
the mobile sector. Beyond the specific results estimated, we believe that 
a contribution of this paper is to trigger future research in the field. 

We developed a 4-equation model with the precise linkages in the 
mobile sector: from policy reforms to adoption gains. We focused on 
assessing the effects of three specific policies related to a flexible spec
trum approach: the presence of a secondary market, a technological 
neutrality approach, and the possibility of conducting sharing agree
ments among operators. Four possible variables were identified as 
market outcomes: investment, coverage, prices and adoption. We were 
able to identify a significant impact from these spectrum policies. When 
those three attributes are jointly adopted, mobile investment is expected 
to be 35.9% larger than when that is not the case, according to the pa
rameters estimated. In addition, promoting these policies can increase 
coverage within two years by 9.8%, bring down mobile prices by 5.8%, 
and increase mobile broadband penetration by 0.9%. When we consider 
an extended time period, dynamic effects are expected to take over, 
resulting in mobile broadband prices being reduced by 14.3% and mo
bile broadband unique subscribers’ penetration potentially increasing 
by 2.4%. These results were verified to be robust after adding control 
variables and for controlling potential endogeneities associated with 
these causal frameworks. Different empirical strategies were followed, 
all arriving at the same conclusion. 

All in all, we understand that following a flexible approach towards 
spectrum management can contribute significantly to the development 
of the mobile sector, and as a result, policymakers and regulatory au
thorities should take steps in that direction to maximize social welfare. 
This empirical evidence is expected to provide policymakers with a 
deeper understanding of the linkages between the regulation and mobile 
market outcome and the characteristics that effective spectrum policies 
should have. 

However, some caveats need to be made regarding the study results. 
While it is essential to highlight the effort conducted by the ITU to make 
publicly available a database that incorporates country-level informa
tion on spectrum policy, some of the indicators are limited in terms of 
their predictive ability. For example, the binary nature of the spectrum 
policy indicators (i.e., the existence or not of a particular policy) does 
not indicate their quality and the degree of implementation. Some of 
these policies may be gradually adopted, only for specific frequencies or 
for some geographic areas of the country. This limitation prevented a 
more granular look at how these policies affect the market outcomes. In 
addition, technological progress might render some of the indicator’s 
imperfect. For example, the coverage variable is measured regarding 4G 

wireless technology and does not address causality with future 5G 
deployment (for which data is currently scarce), although we believe 
that the conclusions can be extended. For that reason, we recognize the 
limitations that constrained our analysis and expect more precise esti
mates to be carried out in future research when richer datasets become 
available. 

On another note, the COVID-19 pandemic is expected to impact the 
analysis. On the one hand, worldwide GDP contraction could reduce 
telecommunication revenues,13 therefore negatively impacting capital 
spending levels (investment equation). On the other hand, the lockdown 
period is expected to result in the expanded use of digital technologies, 
thus representing an unobservable shock affecting adoption levels (de
mand equation). These effects were out of the scope of the current 
research. That being said, policymakers and regulators should assess the 
quality of their spectrum management framework and examine whether 
some of the policies found to be critical in promoting improvement to 
sector performance are in place. 
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