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Monopolistic Competition with Two-Part Tariffs

I. Introduction

While non uniform prices (NUPs) would seem to be an obvious response to the triangle

of deadweight loss associated with uniform prices (UP) and downward-sloping demand functions,

models of competition in differentiated product industries have, for the most part, assumed

uniform prices. Thus, unexploited gains from trade is an implicit assumption of these models.

The reliance on the UP assumption may have been dictated more by the presumed intractibility

of NUP models than by a belief that UP models better describe real-world markets.

In this paper we show that, for the commonly employed assumption of identical

consumers (or, equivalently, a single consumer), it is possible to model NUP competition among

sellers of differentiated products in a way that is a straightforward and intuitive analogue of UP

models. When firms can use NUPs to extract all of the surplus under their demand functions,

a monopolistic competition equilibrium in NUPs can be described by substituting average surplus

functions1 for inverse demand functions and substituting inverse demand functions for marginal

revenue functions in the usual UP model of monopolistic competition. With this approach, it is

easy to show that the NUPs dominate UPs in a free entry equilibrium in differentiated product

industries because access to the triangle of deadweight loss associated with UPs enables sellers

to offer better deals to buyers.

This conclusion is opposite to the findings of recent work on multifirm, competitive

equilibria in markets for homogeneous goods.2 Mandy (1992) demonstrates that the uniform

pricing assumption is theoretically sound for multi-firm, competitive markets for homogenous

1 For a firm selling output x, the average surplus associated with x is the area under its
inverse demand function up to x divided by x.

2 However, Panzar and Postlewaite (1984) and Shaffer (1987) have shown that NUPs
dominate UPs in contestable natural monopolies.
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goods as long as free entry drives profits to zero.3 While earlier work by Mandy (1991) and

models by Hayes (1987) and Locay and Rodriguez (1992) showed that there are circumstances

in which two-part tariffs (TPTs) dominate uniform prices in competitive, homogeneous good

markets, each of these studies dealt with special cases in which TPTs facilitate transfers among

individuals (or among potential states of the world for a given individual) that are not possible

with uniform prices. In the absence of a demand for such transfers, Mandy (1992) shows that

non-uniform prices can always be undercut by a uniform price set equal to minimum average

cost.

Casual empiricism suggests that product differentiation is common and probably

predominates in consumer good industries. Our analysis suggests that absent transactional

barriers to its implementation, non-uniform pricing should be just as common. While the

prevalence of non-uniform prices can only be determined empirically, we would suggest that they

are probably more common than has heretofore been recognized. We show below that NUPs

may superficially appear very much like UPs. Therefore, it is likely that NUPs are frequently

not recognized for what they are because economists have been conditioned to think in terms of

uniform-pricing models. This has probably resulted in mistaken analyses of the nature of

competition and inappropriate policy prescriptions for a number of industries.

This paper is organized as follows. In the next section we show that non-uniform prices

dominate uniform prices in monopolistically competitive markets with identical consumers and

describe the NUP pricing as a non-cooperative equilibrium.4 We show that NUP equilibria are

characterized by an average surplus curve-average cost curve tangency that is similar in

appearance to the demand curve-average cost curve tangency of a Chamberlinian equilibrium.

3 Mandy also shows that if entry barriers limit the number of firms in a market to less than
the fee entry number, two-part tariffs dominate if competition is Bertrand.

4 In the NUP equilibrium, firms employ TPTs or other pricing schemes that are equivalent
to TPTs from a representative consumer’s perspective
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The NUP equilibrium is also welfare-optimal. UP and NUP equilibria are compared in Section

III in terms of numbers of firms and output per firm. The shapes of the cost functions, as well

as the shapes of the demand functions and the manner in which they shift in response to the entry

or increased outputs of competitors, are critical to determining the relative outputs and numbers

of firms for the two equilibria. The analysis is illustrated in Section IV through an example that

uses a specific class of utility functions. Section V discusses non-Cournot competitive responses.

Section VI presents our concluding remarks.

II. Non-Uniform Price Dominance and Competitive Equilibrium

Consider a market for differentiated products where firms compete in quantities under the

assumption that competitors outputs remain constant. Figure 1 depicts a representative firm in

a zero-profit Chamberlinian equilibrium with its demand curve tangent to its average cost curve.

The price p1 and quantity x1 corresponding to the tangency also maximize profits because the

tangency implies marginal revenue equal to marginal cost. Product differentiation is implicit in

the downward sloping demand curve.

As a simplifying assumption, let D represent the demand of a single individual who

accounts for all of the sales of all products in the market. That is, the demand curves for all

other products in this market represent the demands of this same individual.5 The analysis

would be the same if D and the demands for all other products were the aggregated demands

for a large number of identical consumers, each of whom prefers some diversity in his or her

consumption of this class of products.6

5 The representative consumer assumption is common in modelling exercises reported in the
industrial organization literature. See Spence (1976), Dixit and Stiglitz (1977) and Chamberlin
(1962) for applications to monopolistic competition.

6 The assumption that the single consumer is representative of many homogeneous
consumers means that issues relating to monopsony can be ignored.
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Both sellers and consumers (the

consumer) might expect to do better than

at the tangency in Figure 1 if they could

negotiate a more complex contract. For

example, assuming the quantity produced

by other firms is held constant, consumer

surplus and seller profits could both be

increased by a two-part tariff with a per

unit price of p2 and a fixed tariff E

equal to (p1 - p2)x1. Consumer surplus would increase by the area of triangle A, and the seller’s

profits would increase by the area of B. Of course, if consumers were price takers, the firm

would set E equal to the area under the demand curve above p2. Therefore a uniform price

would never be employed when the seller could employ a two-part tariff (TPT) instead.7

In the presence of TPTs, Chamberlinian demand-average cost curve tangencies cannot be

a feature of a free entry equilibrium. Positive profits would attract entry, which would shift

demand curves inward. Even without entry, demand curves would shift inward as all firms tried

to increase output to the point of the demand curve-marginal cost intersection. Therefore,

demand curves must lie inside of average cost curves in an equilibrium with two-part tariffs.

It is straightforward to show that the zero-profit equilibrium with two-part tariffs is

characterized by the tangency of an average surplus curve with the average cost curve that looks

very much like the Chamberlinian average revenue-average cost tangency, where average surplus

for quantity x, AS(x), is defined to be the area under the inverse demand curve up to x divided

by x, i.e., AS(x) = [∫
0

x
p(y)dy]/x. The two-part tariff equilibrium is illustrated in Figure 2. The

average surplus curve lies above the demand curve since it averages the higher willingness to pay

7 In the discussion that follows, we use TPTs as representative of full surplus extracting
NUPs generally.
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of earlier units.8 Note that the inverse demand function bears the same relationship to AS as

marginal revenue does to the inverse demand function and lies completely inside of the average

cost curve.9 The TPT can be thought as consisting of a marginal fee p(x*) equal to MC(x*),

and a fixed fee equal to the shaded area T = [pas - p(x*)]x*. Since pas = AS(x*), it is easy to

show that T is also equal to the area under the demand and above p(x*) from quantity zero up

to x*.

To see that this is an

equilibrium, let total cost for

output x, TC(x), be

composed of a fixed cost, F,

and variable cost V(x), with

marginal cost MC(x) =

∂V(x)/∂x. Let i = 1, ..., n

firms offer two-part tariff

contracts. We will establish

the AS-AC tangency

configuration as a non-

cooperative equilibrium of this game. Let the ith firm offer Ti as the fixed fee, and pi as the

marginal fee. This implies a revenue for firm i of Ri(x) = Ti + xpi, and an average revenue

function ARi(x) = pi + Ti/x. If, for any x, ARi(x) > AC(x), another firm j, selling the same

variant of the product as i, can undercut firm i by offering a contract with ARj(x) below

ARi(x) but above or at average cost, ARi(x) > ARj(x) ≥ AC(x). Therefore, competition between

8 AS(x) > p(x) ⇔ S(x) = ∫
0

x
p(y)dy > xp(x), which is true for any downward-slopping

demand curve since p(y) > p(x) for all y < x.

9 Marginal revenue is the partial derivative of total revenue, and price is the partial
derivative of total surplus with respect to x.
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firms will force each firm to offer an average revenue function below AC or at most at AC;

i.e., ARi(x) ≤ AC(x) for all x. Further, at the operating output x*, a firm must cover costs to

stay in business, i.e., ARi(x
*) = AC(x*). Clearly, two firms offering the same variety cannot

coexist.

The consumer who buys quantity x is willing to pay up to the total surplus of x.

Therefore the consumer is willing to pay an average price of AS(x). Consumers buy x if

AS(x) ≥ ARi(x). Combining this with earlier results, we have AS(x*) ≥ ARi(x
*) = AC(x*).

If AS(x*) > ARi(x
*) = AC(x*), and firm i is the only one providing this brand, it has an incentive

to offer a higher average revenue function. Such an action cannot be part of an equilibrium as

explained above (because firm i can then be undercut by firm j). Therefore at equilibrium we

must have AS(x*) = ARi(x
*) = AC(x*) for produced quantity x*. For all other levels of

production the average revenue schedule of firm i lies below average cost. Therefore it is tangent

to average cost at x*. Equality of average surplus to average cost, together with tangency of AS

and AC, implies equality of unit price to marginal cost. To see this, note that dAC/dx≡ AC′

= (MC - AC)/x and dAS/dx≡ AS′ = (p - AS)/x, so that AC′ = AS′ and AC = AS implies

p = MC(x*).10

An arbitrary number of firms, with each firm producing one variety, will result in an

AS(x) function that may lie above or below AC(x). Further, as the number of substitutes

increases, the demand and average surplus function of each variety shifts inwards. Therefore,

there exists a number of varieties that makes AS(x) and AC(x) just touch at x*. Since every

product that generates consumer benefits as great as its costs is produced at the optimal level of

production, the TPT (NUP) equilibrium is also welfare-optimal (Spence 1976).

How important is the equilibrium depicted in Figure 2 as a description of empirical

reality? It is not hard to identify "competitive" markets with two-tariffs: for example, taxi meters

10 For constant marginal cost, the fixed fee is exactly equal to the lump-sum part of the two-
part tariff.
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start with a fixed fee to which is added a constant per mile charge, bars and movies theaters

change fixed admission fees and sell food and beverages on a per unit basis, and mortgages

agreements usually involve an up front payment of points in addition to the monthly interest

charge; but most goods and services clearly are not priced in this manner, perhaps because it is

too expensive to enforce prohibitions on resale. The administrative costs of collecting both parts

of the tariff may be another transactional barrier to employing two-part tariffs.

Other pricing schemes for which resale is not a problem can be employed to accomplish

exactly the same end, however. For example, the good in Figure 2 might be sold at a per unit

price of pas + v with the understanding that consumers purchasing x* receive a rebate of vx*.

As long as pas + v was greater than the price intercept of the demand curve, the outcome would

be the same as for the two-part tariff illustrated in Figure 2. This might account for ostensible

promotional practices such as two-for-the-price-of-one sales and the quantity-based ties to other

products, such as the glassware that gas stations formerly gave to customers who filled their tanks

during price wars and the frequent practice of mail order book services of allowing customers

to select an additional title free when their orders exceed a certain dollar threshold. Quantity

discounts, normally considered to be second degree price discrimination, could serve the same

purpose. Full surplus would be extracted by setting price above the price intercept for purchases

of less than x* and charging pas for purchases of x* or greater.

The simplest alternative to two-part pricing that is equivalent in surplus extracted, and one

that is no more difficult to administer than uniform pricing, may be for firms to package their

products in fixed-quantity sales units of x* sold at a per sales unit "price" of pasx
*. Many, if

not most, products are sold in this manner. A 20 oz. box certainly is no more a natural unit for

measuring Cheereos than a Ford Taurus is a natural unit for measuring transportation services.

Economies of scale in packaging undoubtedly dictate that most products be offered in a limited

number of different-sized packages; but absent transaction cost barriers, profit maximization

requires that package size be determined by the logic of the non-uniform pricing model
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developed here when products are differentiated. This theoretical necessity, combined with its

consistency with a broader range of price and packaging strategies, and a common tendency to

interpret sales of fixed-quantity packages at a single per package price as uniform pricing, are

the basis of our claim in the introductory section that we probably encounter non-uniform pricing

in a wide variety of markets of common goods and services, but fail to recognize it for what it

is due to a training-induced bias toward the uniform price interpretation.

III. Comparing UP and NUP equilibria

Perhaps the most frequently recurring question in the literature on monopolistic

competition, at least since the "excess capacity controversy,"11 is whether competitive markets

provide the welfare optimal number of differentiated products.12 A closely related but less

intensively investigated question is how closely output per product (or per firm) approaches

optimal levels.

11 See articles by Barzel (1970), Demsetz (1959, 1964, 1968), and Schmalensee (1972).

12 Work with various models of consumer demand has shown that product diversity at a
competitive equilibrium may exceed or fall short of the optimum. In their survey of the work
on the diversity question, Besanko, Perry and Spady (1990) observe that, while there are
exceptions, findings of too little variety are generally associated with representative consumer
models, such as that presented in the previous section, while findings of too much variety are
generally produced with spatial and characteristics models. They hypothesize that the strong
association of too little diversity with representative consumer models and too much diversity
with spatial and characteristics models is a reflection of the generalized nature of competition in
the former and the localized nature of competition in the latter. All products are equally good
substitutes for each other in representative consumer models, so competition is generalized across
firms; but a product competes directly only with near neighbors in spatial and characteristics
models. Thus, new brands "crowd" the characteristics space in the characteristics models,
whereas, they create a new dimension to the preference space in the representative consumer
models. This suggests that the social value of an additional firm will be lower in characteristics
models than in representative consumer models. The logit model of competition with an extreme
value representation of consumer demand described in Besankoet al., which does not fit either
the representative consumer demand or the spatial/characteristics interpretation of consumer
demand, generates too little diversity. Each firm is in direct competition with all other firms in
this model, however.
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In this section we show that comparisons of UP equilibria with the optimum can be

described in terms of three basic relationships: (1) The shape of the inverse demand function

facing the individual firm; (2) The degree of substitutability between different firms’ outputs; and

(3) The shape and location of the average cost curve. Knowledge of the first relationship is

sufficient to determine whether output per firm at a UP equilibrium exceeds of falls short of its

value at the optimum. Consideration of the other two relationships is necessary to answer the

diversity question.13

III.A Comparison of UP and NUP Equilibrium Outputs

The importance of the shape of the inverse demand function and entry- or output- induced

changes in slopes in answering the relative output question is evident in Figure 3, where xc is

equilibrium sales per firm in the standard Cournot equilibrium with uniform prices, xt is

equilibrium per firm output for Cournot competitors with two-part tariff equivalent non-uniform

prices, and Dc, Dt and ASt are the associated inverse demand and average surplus functions

when prices are uniform and non-uniform respectively. Whether xc is greater than or less than

xt (the value of x at the global optimum) depends on whether the Dc-AC tangency lies to the

right or to the left of the ASt-AC tangency.14 With declining average cost, this is determined

entirely by the relative slopes of the inverse demand and average surplus functions at the two

equilibria. If Dc is steeper than ASt, xc is greater than xt and vice versa. The case illustrated

in Figure 3 is that of linear inverse demand functions derived from a quadratic utility function,

which is a special case of the example of Section IV.

13 Whether consumers are representative or competition is local plays no necessary role in
this analysis.

14 The absolute difference between xc and xt also depends in part on the slope of the
average cost function. It is curious that while economists have worked with different demand
representations, they haven’t investigated the impact of variation in cost functions.
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To move from the Dc-AC tangency to the ASt-AC tangency, the inverse demand

function must shift inward. In the process, the slopes of D and AS may change, which will

affect the relative values of xt and xC. To isolate the effect of the difference in the relative

values of the two slopes from the effects of shifts in these values, we assume in this subsection

that D and AS shift parallel to themselves in response to entry or increases in the outputs of

other firms, before considering the effects of changes in slope. Inverse demand functions that



11

are separable in own output and the outputs of other firms have this property. Inverse demand

functions that are linear in own and other firms’ outputs are a common example.

Intuition suggests that, in general, the average surplus function (AS) is flatter than the

underlying inverse demand function, but that is not always the case. In fact we can show that

linear or concave inverse demand functions imply an average surplus function that is flatter than

the inverse demand function, and exceptions occur only for very convex inverse demand

functions. This is stated in the following Lemma. Its proof is in the appendix.

Lemma 1: (a) For a weakly concave demand curve, the average surplus curve is

flatter than the demand curve, AS′(x) < p′(x) .

(b) The average surplus function is concave (convex, linear) if and only if the

demand function is concave (convex, linear).

If the average surplus function is flatter than the underlying demand, and the demand

curve for variety i shifts parallel to itself when a larger amount of other varieties is produced,

we can clearly see that A lies to the right of B on the AC curve in Figure 3. We prove this

in the following theorem.

Theorem 1: For weakly concave demand curves, if the demand curve for variety i

shifts parallel to itself when the outputs of other varieties increase, then a larger amount

of each variety is produced at the NUP equilibrium than at the UP equilibrium.

Proof: Suppose otherwise, i.e., that xc > xt. By the tangency at the monopolistic

competition equilibrium we have

AC′(xc) = pc′(xc) .

By the weak concavity of demand curve, we have
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pc′(xc) ≥ pc′(xt) .

By the parallel shift property,

pc′(xt) = pt′(xt) .

Using Lemma 1(a) at point xt we have

pt′(xt) > ASt′(xt) .

Finally, by tangency at the TPT equilibrium we have

ASt′(xt) = AC′(xt) .

Combining these inequalities we get

AC′(xc) > AC′(xt) .

But given the assumption in the beginning of the proof that xc > xt, and the convexity of AC

we have

AC′(xt) > AC′(xc) ,

which contradicts the last inequality. Therefore we must have xc ≤ xt.

Equal production at the two equilibria, xc = xt, is immediately ruled out since if it were

true we would have

AC′(xc) = pc′(xc) > ASc′(xc) = ASt′(xc) =

= ASt′(xt) = AC′(xt) = AC′(xc) ,

a contradiction. Therefore xc < xt. QED.

If we relax the parallel shift assumption, then the slopes of D and AS may change as

other firms enter or change their outputs. If the slope of AS increases (in absolute value) as it

shifts in, this increases the likelihood that xc > xt and vice versa if the slope of AS decreases.

This should be apparent from inspection of Figure 3.

III.B Comparing UP and NUP Equilibrium Numbers of Varieties
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To examine factors influencing the relative numbers of UP and NUP equilibrium product

varieties, it is necessary to take explicit account of the behaviors of other firms. Therefore, let

pi = pi(xi, x, n) be the inverse demand function for firm i in a market with n firms, where

x is the common value of output for all firms except firm i. Let ASi(xi, x, n) =

[∫
0

xi
pi(y, x, n)dy)]/xi be the associated average surplus function. With imperfect substitutes, pi

and ASi are declining in all three arguments.

Let n be the equilibrium number of firms in a symmetric equilibrium and set xi = x =

s, a common level of output for all firms in the market. Let P(s, n)≡ pi(s, s, n) be the industry

inverse demand function scaled to the size of a representative firm for an n-firm equilibrium.

Clearly, dP(s)/ds <∂pi/∂xi. That is, the industry inverse demand function is steeper than the

individual firm’s inverse demand function due to substitutability among products.

Given F and k, the fixed and marginal costs common to all firms, the industry inverse

demand function for the UP equilibrium number of firms passes through point B in Figure 3,

where P(xc, nc) = AC(xc) = k + F/xc. The industry inverse demand function for the NUP

equilibrium number of firms also passes through the point (xt, k), since at the non-uniform

pricing equilibrium, the marginal consumer is willing to pay marginal cost, i.e., P(xt, nt) = k.

Therefore the difference in prices (the markup at B) is equal to the average fixed cost at B:

P(xc, nc) - P(xt, nt) = F/xc.

Using a linear approximation on the LHS we have

(dP/ds)(xt - xc) + (dP/dn)(nt - nc) = - F/xc ⇔ nt - nc = - [F/xc + (dP/dx)(xt - xc)]/(dP/dn).

Since dP/ds < 0, dP/dn < 0, nt > nc ⇔ F/xc > (xt - xc) dP/ds . In the "standard" case of

Lemma 1 and Theorem 1, xt > xc, and the inequality is equivalent to the line P(s, nc) passing

through B in Figure 3, which is the industry inverse demand function for nc firms, intersecting

MC to the right of xt.
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Thus, while xt
>
< xc is determined by the relative slopes of the firm’s inverse demand and

average surplus functions, the slope of the industry inverse demand function must also be

considered to determine whether nt
>
< nc, that is, whether the UP equilibrium has more or less

than the optimum variety. The flatter is the industry inverse demand function, the more likely

is nt > nc. Further, the industry inverse demand function is steeper than the representative firm’s

inverse demand function, dP/ds <∂pi/∂x1, because increases in competitors’ outputs also suppress

its price. The price-suppressing effects of competitors’ products are greater the more

substitutable they are for the firm’s own product. Therefore, nt < nc is more likely the greater

the degree of substitutability between the products of competing sellers. The intuition for this

result is straight forward. The higher the degree of substitutability among products, the more will

the individual firm’s inverse demand function shift inward as firms expand their outputs with a

shift from UP to NUP pricing. For a sufficiently high degree of substitutability, the inward shift

of firm inverse demand functions will be so large that average surplus functions will end up

interior to the average cost function and some firms will have to leave the market if the break-

even conditions is to be satisfied.

Clearly, cost plays a role in determining the relative values of nt and nc. Consider, for

example, a unidimensional spatial market with products evenly distributed throughout the product

space in equilibrium.15 For any seller, the degree of substitutability between its product and the

products of it closest competitors is greater the more tightly sellers are packed in the product

space. Increasing fixed costs would reduce the number of firms in a UP equilibrium and increase

the average distance between those who remain. This would reduce the substitutability between

competitors’ products, which would increase the likelihood that nt > nc.

IV. An Example

15 See, for example, Salop (1979) and Economides (1989).
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We illustrate this analysis by examining symmetric UP and NUP equilibria for inverse

demand functions of the form

pi = a - bxi
α - (n - 1)xc

γ, (2)

where α, γ, a, b, c > 0, xi is the representative firm’s output, n is the number of firms in the

market, and x is the level of output of any firm other than i. This functional form gives us

considerable flexibility in examining the independent effects of the curvature of the own and

firm-proportionate industry inverse demand functions. Whenα = γ = 1, both the firm and

industry demands are linear; in that case the demand can be generated by a representative

consumer with quadratic utility function

U = v + Σi axi - (Σi bxi
2 + 2Σi Σj≠i cxixj)/2,

with i, j = 1, ..., n, and v > 0.16

The cost function C(x) = F + kx is also common to all firms. At the NUP equilibrium,

price is equal to marginal cost, p = k and, since entry drives profits to zero, F equals the area

above k under the representative firm’s inverse demand function up to quantity xt. Solving for

xt gives

xt = [(α + 1)F/(αb)]1/(α+1). (3)

The number of varieties is

nt = {(a - k)[(α + 1)F/(αb)]-γ/(α+1) - b[(α + 1)F/(αb)](α - γ)/(α+1)}/c + 1. (4)

In contrast, the free-entry UP Cournot equilibrium is characterized by two conditions:

16 Firm inverse demand functions are concave iffα > 1. When α = 1, the industry inverse
demand function is concave ifγ > 1.
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∂Πi/∂xi = 0 ⇔ pi - k = αbxi
α,

and
Πi = 0 ⇔ (pi - k)xi = F.

Solving for the Cournot UP equilibrium values of xi and n, we have,

xc = (F/αb)1/(α+1), (5)
and

nc = {(a - k)[F/(αb)]-γ/(α+1) - b(α + 1)[F/(αb)](α - γ)/(α+1)}/c + 1. (6)

It is immediate by inspection that xt > xc, as long asα > 0. Note that this result holds

for both concave and convex demand functions, whereas Theorem 1 guaranteed the result only

for concave functions.

Comparing the equilibrium numbers of products in UP and NUP competition, we have

nt - nc = (F/ab)-γ/(α+1){b(F/ab)α/(α+1)[α+1 - (α+1)(α-γ)/(α+1)] - (a - k)[1 - (α+1)-γ/(α+1)]}/c. (7)

This comparison makes clear the importance of fixed costs in determining whether product

diversity at the UP equilibrium exceeds or falls short of the optimum, which is provided by the

NUP equilibrium. The terms in both square brackets in (7) are positive forγ > 0. The first

square brackets is multiplied by an increasing function of fixed cost. Thus, when fixed costs are

high, the free entry UP equilibrium number of varieties exceeds the optimum (NUP) number, nt -

nc. Specifically, let F1 be the critical fixed cost that makes diversity the same across

regimes.17 nt > nc iff F > F1. We can also show that asγ increases, the critical value of F1

increases;18 therefore for largeγ, it is more likely to have nt > nc.

17 F1 = αb{(a - k)[1 - (α+1)-γ/(α+1)]/b[α+1 - (α+1)(α-γ)/(α+1)]} (α+1)/α.

18 dF1/dγ is proportional and of the same sign as

(a-k)(1+α)-1+γ/(1+α)[1+α-(1+α)α/(1+α)]Log[1+α]/{b[(1+α)γ/(1+α) -(1+α)α/(1+α) + α(1+α)γ/(1 +α)]2}
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V. Equilibria with Non-Zero Competitive Responses

Up to this point, the analysis has assumed that competition is Nash in quantities. It is

fairly easy to modify the framework set out in Section III so that Nash equilibria in other

strategic variables, such as price or market share can be compared with the UP and NUP Nash

quantity equilibria and the optimum. These comparisons provide additional insights into

competitive NUP pricing strategies, including the possibility of competitive two-part tariffs with

per unit charges less than marginal cost. Facilitating these comparisons is the fact that Nash

competition in another strategic variable can always be expressed in terms of the amount by

which a seller’s competitors’ quantities must change to hold their values of the strategic variable

constant in the face of its own changes in this variable.19 For example, the Bertrand assumption

that a seller believes that its competitors will not change their prices in response to a cut in its

own price is equivalent to the belief that they will reduce their outputs enough to hold their

prices constant.

Key to the comparisons of Nash equilibria in different strategy spaces is the fact that all

zero-profit equilibria are characterized by tangencies of firm-perceived average revenue and

average surplus schedules to a common average cost function. Changes in the average revenue

and average surplus schedules that firms believe constrain their profits shift these tangencies with

fairly obvious implications for equilibrium outputs and numbers of firms.

Let ∆i represent firm i’s belief regarding∂xc/∂xi. Up to this point we have worked with

the assumption that∆i = 0, i.e., that firms set output on the belief that their competitors’ outputs

are fixed. Let ri(xi) be the schedule of prices for product i that incorporates i’s beliefs regarding

its competitors’ output responses to variations in its own output. ri has slope ∂pi/∂xi +

∆i(∂pi/∂xc), and is flatter or steeper than pi for ∆i negative or positive, respectively. Because

which is positive since the first square brackets and the logarithm are positive.

19 See Economides (1995) for a formal proof of this equivalence.
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firm i attempts to maximize (ri - ki)xi - F, a zero profit symmetric equilibrium is characterized

by conditions

pi(xc) = AC(xc)

and

pi(xc, xc, n) + (∂pi/∂xi + ∆i∂pi/∂xc)xi - k = 0,

where k is marginal cost as before.

These two conditions imply dAC/dx =∂ri/∂xi = ∂pi/∂dxi + ∆i(∂pi/∂xc); thus, firms’

perceived inverse demand functions are tangent to their average cost functions, dAC/dxi = (k -

AC)/xi. Substituting from the first order condition for k and setting AC = p gives dAC/dx

= ∂pi/∂dxi + ∆i(∂pi/∂xc). Otherwise firms would not be satisfied with price equal to average cost.

Let ri
z be ri for ∆i = 0 and let ri

n be ri for some ∆i < 0, as would be the case with

Bertrand competition for example. Consider the Cournot (fixed quantities) UP equilibrium

described in Section III. The UP equilibrium with∆i = 0 is depicted in Figure 4 by the

tangency of ri
z(xc

*, xc
*, nc

*) with AC(x) at xc
*. ri

n(xi, xc
*, nc

*) also passes through this point of

tangency. (xc
*, nc

*) cannot be a UP equilibrium if∆i < 0 as reflected in ri
n because each of the

nc
* competitors will lower its price in an effort to move into the region above AC to the right

of the point of the tangency with ri
z. Thus, with Bertrand competition equilibrium UP outputs

would be larger than the Nash quantity equilibrium output.

Larger equilibrium outputs also imply fewer firms for a Bertrand equilibrium than for a

Cournot equilibrium. Each equilibrium tangency must lie on a firm-scaled industry inverse

demand function. We showed in Section III.B that industry inverse demand functions are steeper

than firms’ inverse demand functions when∆i = 0. Therefore, as illustrated in Figure 4, q2, the

industry inverse demand function passing through the ri
n-AC tangency must lie to the right of

q1, the industry inverse demand function passing through the ri
z-AC UP equilibrium tangency.

The fact that q2 is to the right of q1 implies fewer firms in the negative conjecture UP



19

equilibrium.

Clearly the conclusions of this analysis are reversed if∆i > 0. ri will be steeper than

pi so that equilibrium outputs will be smaller than xc
* and the equilibrium number of firms will

be greater than nc
*.

The analysis of NUP equilibria for Bertrand and other beliefs that are non-Nash in

quantities parallels that for UP equilibria. Each firm captures all of the surplus associated with

its own output, so Πi = ∫
0

xi
p(y, xc, n)dxi - kxi - F. Let δi be the amount by which the

representative firm expects its competitors’ outputs to change in response to a small positive

change in its own output when prices are non-uniform. Then the NUP equilibrium is described

by the following conditions:

ASi = AC
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and

pi + δi∫0
xi

∂pi/∂xcdxi - k = 0.

When δi = 0, we have pi = k, the standard result for monopolists able to perfectly

discriminate in price and the constant quantities (zero conjecture) NUP competitive solution of

Section II. This is also the welfare optimum. However, the equation of non-uniform pricing

with optimum variety and output breaks down if competitors are not expected to hold their

outputs constant because pi ≠ k in equilibrium.

Let Ri(xi) be the schedule of values for its average surplus that incorporate firm i’s

beliefs regarding its competitors’s output responses to changes in its own output.

∂Ri/∂xi = [pi - ASi + δi∫0
xi

∂pi(y, xc, n)/∂xcdy]/xi.

The two equilibrium conditions imply20

dAC/dxi = ∂Ri/∂xi = ∂ASi/∂xi + δi∫0
xi

∂pi(y, xc, n)/∂xcdy]/xi,

and, because ASi = Ri = AC in equilibrium, that Ri is tangent to AC.

Assume δi < 0. Then Ri is flatter than ASi, which implies an equilibrium tangency

with the average cost curve that is to the right of the ASi-AC tangency of the zero conjecture

NUP equilibrium. So, if the representative firm believes that its competitors will reduce their

outputs in response to an increase in its own output, then equilibrium NUP outputs will exceed

the optimal value of xn
*. Similarly, equilibrium NUP outputs will be less that the optimum if

firms believe δi > 0.

Define Q(s, n) = [∫
0

s
pi(xi, s, n)dxi]/s. Q is a firm-scaled industry average surplus function

analogous to the firm-scaled industry inverse demand function P(s, n) which was defined in

20 The first inequality is produced by substituting from the first order condition for k in
dAC/dxi = (k - AC)/xi and then substituting ASi for AC from the zero profit condition, dASi/dxi

= (pi - ASi)/xi gives the second equality.
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section III.B.21 For n = nn
*, Q(s, nn

*) passes

through the AS-AC tangency of the NUP

equilibrium for δ = 0, and, because products

are substitutes, Q(s, nn
*) is steeper than the

ASi curve at the tangency, as shown in

Figure 5.

For n continuous, there is a firm-

scaled industry average surplus curve through

every point on the average cost curve.

dASi/dxi, dASi/dxc, and dASi/dn are all negative. Therefore industry average surplus schedules

that lie to the right of Q(s, nn
*) must have fewer than nn

* firms. Because forδi < 0 the Ri-

AC tangency is to the right of the tangency forδi = 0, there will be fewer than the optimum

number of firms, nn
*, if δi < 0. A parallel analysis shows that the NUP equilibrium number of

firms is greater than nn
* if δi > 0.

An implication of δi ≠ 0 in the first order condition is that competitive firms employing

two-part tariffs will set the per unit charge below marginal cost ifδi < 0, and above marginal

cost if δi > 0. The intuition is straight forward. If i’s competitors respond to an increase in xi

by reducing their outputs, i’s inverse demand function shifts outward, which allows i to increase

the size of the fixed component of the tariff. The increase in the fixed component of the tariff

compensates i for what would otherwise be losses on a per unit charge below marginal cost.

21 Note, however, that Q(s, s, n) is not the area under P(s, s, n) because only xi is
allowed to vary in calculating Q, whereas P is determined by varying xi and xc together.
xc is fixed at s in Q(s, n); therefore it must be less than the area under P(s, s, n), which is
one nth of the total surplus provided by the industry. This is an alternative way of demonstrating
Spence’s (1976) result that even when firms practice perfect price discrimination, so that
consumers receive no net benefit from the marginal firm, there is surplus leftover that is not
captured by consumers in a monopolistically competitive industry.
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Similarly, if firms believe that increasing their own outputs will stimulate their

competitors to do likewise, the per unit component of a two-part tariff will be set above marginal

cost because of the belief that the cost of selling more will include a downward shift in its

inverse demand function. Analogous results should hold for other types of full surplus extracting

non-linear pricing schemes.

VI. Concluding Remarks

We examined the use of two-part tariffs and more generally non-uniform pricing in

monopolistic competition. We found that the non-uniform pricing equilibrium is characterized

by a tangency between the average cost and the average surplus function. (The average surplus

function is simply the consumers’ surplus up to quantity x divided by x.) This tangency is

reminiscent of the traditional tangency between average cost and demand characterizing

equilibrium for monopolistic competition with uniform pricing.

Non-uniform pricing dominates uniform pricing as a competitive strategy when both are

feasible. Consideration of various ways in which full-surplus-extracting, non-uniform prices

might be implemented suggests that non-uniform pricing is probably quite common; pricing

strategies traditionally viewed as examples of uniform prices are quite likely non-uniform prices

instead. Previous attempts to estimate inverse demand functions for differentiated products such

as ready-to-eat cereals (Scherer (1979)) and beer (Baker and Bresnahan (1985)) have assumed

uniform pricing. Our analysis raises the very strong possibility that the uniform pricing

assumption, as well as the implied demand and surplus estimates and policy conclusions of these

analyses, is inappropriate for these industries.

There are a number of important differences between the UP and NUP equilibria. The

most important difference is that the NUP equilibrium is efficient while the UP equilibrium is
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inefficient, when firms take their competitors’ output as given.22 Depending on the relative

slopes of inverse demand functions and average surplus functions, the UP equilibrium output per

firm may be greater or less than the NUP equilibrium output per firm. UP equilibrium output

increases relative to NUP equilibrium output the flatter is the representative firm’s inverse

demand function relative to its average surplus function. Uniform pricing may lead at

equilibrium to a greater or smaller number of firms (and varieties) than non-uniform pricing. The

greater the degree of substitutability between the products of competing sellers, the larger is the

UP equilibrium number of firms relative to the number of firms at a NUP equilibrium.

Conversely, increasing fixed cost reduces the number of firms in a UP equilibrium relative to the

number for the corresponding NUP equilibrium.

22 However, the correspondence of non-uniform pricing with efficiency breaks down when
firms are not Cournot competitors in quantities. For example, Bertrand equilibria (whether UP
or NUP) have fewer firms than Cournot equilibria.
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Appendix

Lemma 1: (a) For a weakly concave demand curve, the average surplus curve is

flatter than the demand curve, AS′(x) < p′(x) .

(b) The average surplus function is concave (convex, linear) if and only if the

demand function is concave (convex, linear).

Proof: By definition, AS(x) = ∫
0

x
p(y)dy)/x. Therefore AS′(x) = [p(x) - AS(x)]/x < 0,

AS′(x) = [AS(x) - p(x)]/x, p′(x) = - p′(x). Now,

p′(x) > AS′(x) ⇔ p(x) - xp′(x) > AS(x). (1)

For linear demand, average surplus is the price at x/2, i.e., the willingness to pay at the mid-point

of the triangle under the demand up to point x. That is, AS(x) = p(x) - xp′(x)/2, and therefore

(1) holds. For a concave demand function, surplus (and therefore average surplus) at x is

smaller than for the linear demand passing through (x, p(x)). Therefore for a concave demand,

AS(x) < p(x) - xp′(x)/2, and (1) holds again.

To prove part (b), note that

AS′′(x) = (xp′ - 2p + 2AS)/x2 < 0 ⇔ AS < p - xp′/2.

As we have argued above, the inequality on the RHS holds for concave demand, holds as an

equality for linear demand, and is reversed for convex demand. QED.

Remark: The proof shows that, for a linear inverse demand function, AS is strictly flatter

than D. Therefore, the same will be true for some convex functions. However, there exist
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convex demand functions such that AS is parallel to or even steeper than D.23 Cobb-Douglas

demand functions result in steeper AS curves than demand functions.24

23 For example, inverse demand p(x) = c1 + c2 + c2log(x), c2 < 0, results in total surplus
S(x) = x[c1 + c2log(x)] and average surplus AS(x) = c1 + c2log(x). Then the slope of the
demand isequal to the slope of the average surplus, p′(x) = AS′(x) = c2/x. For this demand
function, the average surplus curve is an upward parallel shift of the demand curve. Modifying
this example slightly, we can find a demand curve such that its AS curve is steeper than the
demand. Consider p(x) = c1 + c2 + c2log(x) + 2c3x, c2 < 0, c3 > 0. Then S = x[c1 + c2log(x)]
+ c3x

2, and AS = c1 + c2log(x) + c3x. Now p′(x) = c2/x + 2c3, while AS′(x) = c2/x + c3. For
small c3 > 0, we have AS′(x) > p′(x) .

24 Say p1 = x1
-ax2

b, with a > 0, so that x1 = p1
-1/ax2

b/a, and the elasticity of demand is −1/a.
Then p1′(x1) = ax1

-a-1x2
b, and AS(x1) = x1

-ax2
b/(1 - a), AS′(x1) = ax1

-a-1x2
b/(1 - a). Therefore

AS′(x1) > p′(x1) ⇔ 1/(1 - a) > 1, true for 1 > a > 0.


