
Chapter 1
Regression with a Two-Dimensional
Dependent Variable

Lester D. Taylor

1.1 Introduction

This chapter focuses on how one might estimate a model in which the dependent
variable is a point in the plane rather than a point on the real line. A situation that
comes to mind is a market in which there are just two suppliers and the desire is to
estimate the market shares of the two. An example would be determination of the
respective shares of AT&T and MCI in the early days of competition in the long-
distance telephone market. The standard approach in this situation (when such
would have still been relevant) would be to specify a two-equation model, in
which one equation explains calling activity in the aggregate long-distance market
and a second equation that determines the two carriers’ relative shares. An
equation for aggregate residential calling activity might, for example, relate total
long-distance minutes to aggregate household income, a measure of market size,
and an index of long-distance prices; while the allocation equation might then
specify MCI’s share of total minutes as a function of MCI’s average price per
minute relative to the same for AT&T, plus other quantities thought to be
important.

The purpose of these notes is to suggest an approach that can be applied
in situations of this type in which the variable to be explained is defined in terms of
polar coordinates on a two-dimensional plane. Again, two equations will be
involved, but the approach allows for generalization to higher dimensions, and,
even more interestingly, can be applied in circumstances in which the quantity to
be explained represents the logarithm of a negative number. The latter, as will be
seen, involves regression in the complex plane.
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1.2 Regression in Polar Coordinates

Assume that one has two firms selling in the same market, with sales of y1 and y2,
respectively. Total sales will then be given by y = y1 ? y2. The situation can be
depicted as the vector (y1, y2) in the y1y2 plane, with y1 and y2 measured along their
respective axes. In polar coordinates, the point (y1, y2) can be expressed as:

y1 ¼ r cosh ð1:1Þ

y2 ¼ r sinh ð1:2Þ

where

r ¼ ðy2
1 þ y2

2Þ
1=2 ð1:3Þ

cos h ¼ y1

y2
1 þ y2

2

� �1=2
ð1:4Þ

sin h ¼ y2

y2
1 þ y2

2

� �1=2
ð1:5Þ

One can now specify a two-equation model for determining y1, y2, and y in
terms of cos h and r (or equivalently in sin h and r):

cos h ¼ f X; eð Þ ð1:6Þ

and

r¼ g Z; gð Þ; ð1:7Þ

for some functions f and g, X and Z relevant predictors, and e and g unobserved
error terms.

At this point, the two-equation model in expressions (1.6) and (1.7) differs from
the standard approach in that the market ‘‘budget constraint’’ (y = y1 ? y2) is not
estimated directly, but rather indirectly through the equation for the radius vector
r. This being the case, one can legitimately ask, why take the trouble to work with
polar coordinates? The answer is that this framework easily allows for the analysis
of a market with three sellers and can probably be extended to markets in which
n firms for n C 4 compete. Adding a third supplier to the market, with sales equal
to y3, the polar coordinates for the point (y1, y2, y3) in 3-space will be given by:

y1 ¼ r cos a ð1:8Þ

y2 ¼ r cos b ð1:9Þ

y3 ¼ r cos c ð1:10Þ
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r ¼ ðy2
1 þ y2

2 þ y2
3Þ

1=2; ð1:11Þ

where cos a, cos b, and cos c are the direction cosines associated with (y1, y2, y3)
(now viewed as a vector from the origin). From expressions (1.8)–(1.10), one then
has:

cos a ¼ y1

ðy2
1 þ y2

2 þ y2
3Þ

1=2
ð1:12Þ

cos b ¼ y2

ðy2
1 þ y2

2 þ y2
3Þ

1=2
ð1:13Þ

cos c ¼ y3

ðy2
1 þ y2

2 þ y2
3Þ

1=2
ð1:14Þ

A three-equation model for estimating the sales vector (y1, y2, y3) can then be
obtained by specifying explanatory equations for r in expression (1.11) and for any
two of the cosine expressions in (1.12)–(1.14).

1.3 Regression in the Complex Plane

An alternative way of expressing a two-dimensional variable (y1, y2) is as

z ¼ y1 þ iy2 ð1:15Þ

in the complex plane, where y1 and y2 are real and i =
ffiffiffiffiffiffiffi
�1
p

. The question that is
now explored is whether there is any way of dealing with complex variables in a
regression model. The answer appears to be yes, but before showing this to be the
case, let me describe the circumstance that motivated the question to begin with.
As is well-known, the double-logarithmic function has long been a workhorse in
empirical econometrics, especially in applied demand analysis. However, a serious
drawback of the double-logarithmic function is that it cannot accommodate vari-
ables that take on negative values, for the simple reason that the logarithm of a
negative number is not defined as a real number, but rather as a complex number.
Thus, if a way can be found for regression models to accommodate complex
numbers, logarithms of negative numbers could be accommodated as well.

The place to begin, obviously, is with the derivation of the logarithm of a
negative number. To this end, let v be a positive number, so that -v is negative.
The question, then, is what is ln(-v), which one can write as

ln �vð Þ ¼ ln �1vð Þ
¼ ln �1ð Þ þ ln vð Þ;

ð1:16Þ
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which means that problem becomes to find an expression for ln(-1). However,
from the famous equation of Euler,1

eip þ 1 ¼ 0 ð1:17Þ

one has, after rearranging and taking logarithms,

ln �1ð Þ ¼ ip ð1:18Þ

Consequently,

ln �vð Þ ¼ ip þ ln vð Þ: ð1:19Þ

To proceed, one now writes ln(-v) as the complex number,

z ¼ ln vð Þ þ ip; ð1:20Þ

so that (in polar coordinates):

ln vð Þ ¼ r cos h ð1:21Þ

ip ¼ i r sin h; ð1:22Þ

where r, which represents the ‘‘length’’ of z—obtained by multiplying z by its
complex conjugate, ln(v)–ip, is equal to

r ¼ p2 þ ln vð Þ2
� �h i1=2

: ð1:23Þ

This is the important expression for the issue in question.
To apply this result, suppose that one has a sample of N observations on

variables y and x that one assumes are related according to

f y; xð Þ ¼ 0; ð1:24Þ

for some function f. Assume that both y and x have values that are negative, as well
as positive, and suppose that (for whatever reason) one feels that f should be
double-logarithmic, that is, one posits:

ln yið Þ ¼ a þ b ln xið Þ þ ei; i ¼ 1; . . .;N: ð1:25Þ

From the foregoing, the model to be estimated can then be written as:

zi ¼ a þ bwi þ ei; ð1:26Þ

where

ln yð Þ if y [ 0

1 See Nahin (1998, p. 67).
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z ¼ p2 þ ln �yð Þ2
�h i1=2

if y� 0 ð1:27Þ

and

lnðxÞ if x [ 0

w ¼ p2 þ ln �xð Þ2
�h i1=2

if x� 0: ð1:28Þ

1.4 An Example

In the Third Edition of Consumer Demand in The United States, the structure and
stability of consumption expenditures in the United States was undertaken using a
principal component analysis of 14 exhaustive categories of consumption expen-
diture using 16 quarters of data for 1996–1999 from the quarterly Consumer
Expenditure Surveys conducted by the Bureau of Labor Statistics (BLS).2 Among
other things, the first two principal components (i.e., those associated with the two
largest latent roots) were found to account for about 85 % of the variation in total
consumption expenditures across households in the samples. Without going into
details, one of the things pursued in the analysis was an attempt to explain these
two principal components, in linear regressions, as functions of total expenditure
and an array of socio-demographical predictors such as family size, age, and
education. The estimated equations for these two principal components using data
from the fourth quarter of 1999 are given in Table 1.1.3 For comparison, estimates
from an equation for the first principal component in which the dependent variable
and total expenditure are expressed in logarithms are presented as well. As is
evident, the double-log specification gives the better results. Any idea, however, of
estimating a double-logarithmic equation for the second principal component was
thwarted by the fact that about 10 % of its values are negative.

The results from applying the procedure described above to the principal com-
ponent just referred to are given in Table 1.2. As mentioned, the underlying data are
from the BLS Consumer Expenditure Survey for the fourth quarter of 1999, and
consist of a sample of 5,649 U. S. households. The dependent variable in the model
estimated was prepared according to expression (1.27), with the logarithm of y, for
y B 0, calculated for the absolute value of y. The dependent variable is therefore,
z = ln(y) for the observations for which y is positive and [p2 ? ln(-y)2]1/2 for the

2 See Taylor and Houthakker (2010), Chap. 5).
3 Households with after-tax income less than $5,000 are excluded from the analysis.
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observations for which y is negative. All values of total expenditure are positive and
accordingly require no special treatment.

From Table 1.2, one sees that, not only is total expenditure an extremely
important predictor, but also that the R2 of the logarithmic equation is considerably
higher than the R2 for the linear model in Table 1.1: 0.5204 versus 0.0598.
However, as the dependent variable in logarithmic equation is obviously measured
in different units than the dependent variable in the linear equation, a more
meaningful comparison is to compute an R2 for this equation with the predicted
values in original (i.e., arithmetic) units. To do this, one defines two dummy
variables:

d1 ¼ 1 if y [ 0 ð1:29Þ

d2 ¼ �1 if y� 0

d2 ¼ �1 if y� 0; ð1:30Þ

Table 1.1 Principal component regressions BLS consumer expenditure survey 1999 Q4

Variables PC1 linear PC2 linear PC1 double-log

Estimated
coefficient

t-value Estimated
coefficient

t-value Estimated
coefficient

t-value

intercept 123.89 0.34 936.53 0.94 -1.5521 -20.85
totexp 0.48 209.39 -0.08 -14.04 1.0723 215.23
NO_EARNR -108.59 -5.28 64.41 1.03 -0.0088 -2.20
AGE_REF -5.27 -4.67 6.46 2.10 -0.0007 -3.52
FAM_SIZE -37.14 -1.90 43.88 0.83 -0.0060 -1.80
dsinglehh 177.78 3.48 -297.13 -2.14 0.0527 5.95
drural 77.15 1.32 -549.14 -3.47 -0.0140 -1.41
dnochild 40.45 0.77 -299.72 -2.10 -0.0220 -2.46
dchild1 303.05 4.28 143.66 0.75 0.0612 5.06
dchild4 -63.40 -0.81 479.38 2.25 -0.0021 -0.16
ded10 -6.50 -0.08 92.49 0.40 -0.0022 -0.15
dedless12 183.89 0.53 -207.06 -0.22 0.1193 2.01
ded12 39.82 0.12 288.75 0.31 0.1000 1.69
dsomecoll -4.09 -0.01 292.48 0.31 0.0810 1.37
ded15 -279.17 -0.80 1419.24 1.50 0.0727 1.22
dgradschool -358.85 -1.02 2022.19 2.12 0.0675 1.13
dnortheast -63.66 -1.24 96.39 0.69 -0.0232 -2.65
dmidwest -91.50 -1.92 -266.89 -2.06 -0.0395 -4.85
dsouth -26.85 -0.60 -424.42 -3.51 -0.0266 -3.49
dwhite -202.39 -2.64 208.95 1.00 -0.0328 -2.51
dblack 8.01 -0.09 129.24 0.52 0.0107 0.69
dmale -39.06 -1.13 59.61 0.64 -0.0088 -1.50
dfdstmps 138.25 1.55 -525.22 -2.17 0.0439 2.86
d4 -12.15 -0.20 141.63 0.87 0.0076 0.74
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and then:

p ¼ ẑ2 � d1p
2

� �1=2
: ð1:31Þ

A predicted value in arithmetic units, p̂ follows from multiplying the expo-
nential of p by d2:

p̂ ¼ d2ep ð1:32Þ

An R2 in arithmetic units can now be obtained from the simple regression of
y on p̂4:

ŷ ¼� 587:30þ 1:3105 p̂ R2 ¼ 0:6714

�19:39ð Þ 107:42ð Þ:
ð1:33Þ

Table 1.2 Double
logarithmic estimation of
second principal component
using expression (1.27)

Variables Estimated coefficient t-value

intercept -3.1450 -11.54
Lntotexp 1.2045 66.03
NO_EARNR -0.1161 -7.97
AGE_REF -0.0014 -1.92
FAM_SIZE -0.0017 -0.14
dsinglehh 0.2594 8.00
drural -0.1269 -3.48
dnochild -0.0294 -0.89
dchild1 0.2519 5.69
dchild4 0.1586 3.24
ded10 0.0410 0.76
dedless12 -0.0839 -0.39
ded12 -0.2072 -0.96
dsomecoll -0.2101 -0.97
ded15 -0.2290 -1.05
dgradschool -0.1416 -0.65
dnortheast 0.0522 1.63
dmidwest 0.0084 0.28
dsouth -0.0118 -0.42
dwhite -0.0117 -0.24
dblack 0.1248 2.18
dmale -0.0693 -3.21
dfdstmps 0.2198 3.91
d4 -0.0266 -0.71
R2 = 0.5204

4 t-ratios are in parentheses. All calculations are done in SAS.
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However, before concluding that the nonlinear model is really much better than
the linear model, it must be noted that the double-log model contains information
that the linear model does not, namely, that certain of the observations on the
dependent variable take on negative values. Formally, this can be viewed as an
econometric exercise in ‘‘switching regimes,’’ in which (again, for whatever rea-
son) one regime gives rise to positive values for the dependent variable while a
second regime provides for negative values. Thus, one sees that when R2s are
calculated in comparable units, the value of 0.0598 of the linear model is a rather
pale shadow of the value of 0.6714 of the ‘‘double-logarithmic’’ model. Conse-
quently, a more appropriate test of the linear model vis-à-vis the double-loga-
rithmic one would be to include such a ‘‘regime change’’ in its estimation. The
standard way of this doing this would be to re-estimate the linear model with all
the independent variables interacted with the dummy variable defined in expres-
sion (1.30). However, a much easier, cleaner and essentially equivalent procedure
is to estimate the model as follows:

y ¼ a0 þ a1d1 þ b0 þ b1d1ð Þŷp þ e; ð1:34Þ

where ŷp is the predicted value of y in the original linear model and d1 is the
dummy variable defined in expression (1.29). The resulting equation is:

ŷ ¼ 2407:26 � 8813:13d1 � 0:5952� 4:7517d1ð Þŷp

43:47ð Þ �109:94ð Þ �14:41ð Þ 51:39ð Þ
R2 ¼ 0:5728:

ð1:35Þ

However, ‘‘fairness’’ now requires that one does a comparable estimation for
the nonlinear model:

ŷ ¼ 315:41 � 80:88d1 þ 1:7235 þ 0:8878d1ð Þp̂
11:04ð Þ �0:90ð Þ �52:58ð Þ 75:95ð Þ

R2 ¼ 0:8085:

ð1:36Þ

As heads may be starting to swim at this point, it will be useful to spell out
exactly what has been found:

To begin with, one has a quantity, y, that can take negative as well as positive
values, whose relationship with another variable one has reason to think may be
logarithmic.

As the logarithm of a negative number is a complex number, the model is
estimated with a ‘‘logarithmic’’ dependent variable as defined in expression (1.27).
The results, for the example considered, show that the nonlinear model provides a
much better fit (as measured by the R2 between the actual and predicted values
measured in arithmetic units) than the linear model.

Since the nonlinear model treats negative values of the dependent variable
differently than positive values, the nonlinear model can accordingly be viewed as
allowing for ‘‘regime change.’’ When this is allowed for in the linear model (by
allowing negative and positive y to have different structures), the fit of the linear
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model (per Eq. (1.35)) is greatly improved. However, the same is also seen to be
true (cf., Eq. (1.35)) for the nonlinear model.

The conclusion, accordingly, is that, for the data in this example, a nonlinear
model allowing for logarithms of negative numbers gives better results than a
linear model: an R2 of 0.81 versus 0.58 (from Eqs. (1.35) and (1.36)).

On the other hand, there is still some work to be done, for the fact that knowledge
that negative values of the variable being explained are to be treated differently as
arising from a different ‘‘regime’’ means that a model for explaining ‘‘regime’’ needs
to be specified as well. Since ‘‘positive–negative’’ is clearly of a ‘‘yes–no’’ variety,
one can view this as a need to specify a model for explaining the dummy variable d1 in
expression (1.29). As an illustration (but no more than that), results from the esti-
mation of a simple linear ‘‘discriminant’’ function, with d1 as the dependent variable
and the predictors from the original models (total expenditure, age, family, educa-
tion, etc.) as independent variables are given in Eq. (1.37)5:

d̂1 ¼ 0:0725 þ 0:00001473totexp þ other variables

0:83ð Þ 27:04ð Þ
R2 ¼ 0:1265

ð1:37Þ

1.4.1 An Additional Example

A second example of the framework described above will now be presented using
data from the Bill Harvesting II Survey that was conducted by PNR & Associates in
the mid-1990s. Among other things, information in this survey was collected on
households that made long-distance toll calls (both intra-LATA and inter-LATA)
using both their local exchange carrier and another long-distance company.6 While
data from that era are obviously ancient history in relation to the questions and
problems of today’s information environment, they nevertheless provide a useful
data set for illustrating the analysis of markets in which households face twin sup-
pliers of a service.

For notation, let v and w denote toll minutes carried by the local exchange
company (LEC) and long-distance carrier (OC), respectively, at prices plec and poc.
In view of expressions (1.6) and (1.7) from earlier, the models for both intra-
LATA and inter-LATA toll calling will be assumed as follows:

5 Interestingly, a much improved fit is obtained in a model with total expenditure and the thirteen
other principal components (which, by construction, are orthogonal to the principal component
that is being explained) as predictors. The R2 of this model is 0.46.
6 Other studies involving the analysis of these data include Taylor and Rappoport (1997) and
Kridel et al. (2002).
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cos h ¼ a þ b income þ c plec=pocð Þ þ socio-demographic variables þ e

ð1:38Þ

r ¼ a þ b income þ c plec þ kpoc þ socio-demographic variables þ e ;

ð1:39Þ

where

cos h ¼ v

r
ð1:40Þ

z ¼ v2 þ w2
� �1=2

: ð1:41Þ

The estimated equations for intra-LATA and inter-LATA toll calling are tab-
ulated in Tables 1.3 and 1.4. As the concern with the exercise is primarily with
procedure, only a few remarks are in order about the results as such. In the
‘‘shares’’ equations (i.e., with cos h as the dependent variable), the relative price is
the most important predictor (as is to be expected), while income is of little

Table 1.3 IntraLATA toll-calling regression estimates bill harvesting data

Variables cos h v/w

Estimated
coefficient

t-ratio Estimated
coefficient

t-ratio

Models
constant 0.5802 6.90 32.0549 2.48
income -0.0033 -0.83 -0.0921 -0.15
age 0.0006 0.11 -1.8350 -2.13
hhcomp 0.0158 1.48 0.5623 0.34
hhsize 0.0257 2.06 -1.6065 -0.84
educ 0.0093 0.84 0.4702 0.28
lecplan 0.1887 4.02 34.5264 4.78
relpricelec/oc -0.0950 -6.13 -6.5848 -2.77

R2 = 0.1391 df = 653 R2 = 0.0579 df = 653

Variables z v ? w

Estimated
coefficient

t-ratio Estimated
coefficient

t-ratio

Models
constant 160.3564 4.69 175.1315 4.75
income 2.6379 1.74 2.7803 1.70
age 2.1106 -2.58 -5.3457 -2.35
hhcomp 4.0298 1.31 6.0187 1.39
hhsize 4.6863 0.30 2.9896 0.59
educ 4.1600 -0.25 -0.5218 -0.12
lecplan 17.6718 6.36 129.1676 6.78
pricelec -345.1262 -4.85 -393.7434 -5.13
priceoc -74.9757 -1.44 -98.7487 -1.75

R2 = 0.1277 df = 652 R2 = 0.1414 df = 652
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consequence. In the ‘‘aggregate’’ equations (i.e., with z as the dependent variable),
of the two prices, the LEC price is the more important for intra-LATA calling and
the OC price for inter-LATA. Once again, income is of little consequence in either
market. R2s, though modest, are respectable for cross-sectional data. For com-
parison, models are also estimated in which the dependent variables are the ratio
(v/w) and sum (v ? w) of LEC and OC minutes.

Elasticities of interest that can be calculated from these four models include the
elasticities of the LEC and OC intra-LATA and inter-LATA minutes with respect
to the LEC price relative to the OC price and the elasticities of aggregate intra-
LATA and inter-LATA minutes with respect to the each of the carrier’s absolute
price.7 The resulting elasticities, calculated at sample mean values, are tabulated in
Table 1.5. The elasticities in the ‘‘comparison’’ models are seen to be quite a bit

Table 1.4 InterLATA toll-calling regression estimates bill harvesting data

Variables Cos h v/w

Estimated coefficient t-ratio Estimated coefficient t-ratio

Models
constant 0.2955 2.74 1.2294 0.20
income -0.0048 -0.92 0.2326 0.78
age 0.0156 2.23 -0.1116 -0.28
hhcomp 0.0157 1.21 1.1785 1.59
hhsize 0.0062 -0.36 0.0616 0.06
educ 0.0239 1.56 0.3775 0.43
lecplan -0.0135 -0.16 -3.6824 -0.75
relpricelec/oc -0.0855 -3.41 -2.2135 -1.54

R2 = 0.0626 df = 387 R2 = 0.0184 df = 387

Variables z v ? w

Estimated coefficient t-ratio Estimated coefficient t-ratio

Models
constant 217.1338 3.41 234.9010 3.50
income 2.3795 0.94 2.1877 0.82
age -7.7823 -2.32 -7.8776 -2.23
hhcomp -0.5843 -0.09 -1.7198 -0.26
hhsize -3.8697 -0.48 -4.2879 -0.50
educ 20.5839 2.79 24.1515 3.11
lecplan -3.9209 -0.09 -2.8309 -0.06
pricelec -91.1808 -0.82 -124.9212 -1.07
priceoc -576.5074 -2.98 -599.6088 -2.94

R2 = 0.0838 df = 386 R2 = 0.0888 df = 386

7 The elasticity for LEC minutes in the ‘‘cos h’’ equation is calculated as ĉ�h�z=�v, where h denotes
the ratio of the LEC price to the OC price. The ‘‘aggregate’’ elasticities are calculated, not for
the sum of LEC and OC minutes, but for the radius vector z (the positive square root of the sum
of squares of LEC and OC minutes). The OC share elasticities are calculated from equations in
which the dependent variable is sin h.
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larger than in the ‘‘polar-coordinate’’ models for the LEC and OC shares but are
virtually the same in the two models for aggregate minutes.

As the dependent variables in the ‘‘polar-coordinates’’ and ‘‘comparison’’
models are in different units, comparable measures of fit are calculated, as earlier,
as R2s between actual and predicted values for the ratio of LEC to OC minutes for
the share models and sum of LEC and OC minutes for the aggregate models. For
the ‘‘polar-coordinate’’ equations, estimates of LEC and OC minutes (i.e., v and w)
are derived from the estimates of cos h to form estimates of v/w and v ? w. R2s are
then obtained from simple regressions of actual values on these quantities. The
resulting R2s are presented in Table 1.6. Neither model does a good job of pre-
dicting minutes of non-LEC carriers.

Table 1.5 Price elasticities Models in Tables 1.3 and 1.4

cos h, Z V/W, V ? W

Elasticity Value Elasticity Value

IntraLATA toll
Share Share
LEC (own) -0.18 LEC (own) -0.52
LEC (cross) 0.12 LEC (cross) 0.55
OC (own) -0.24 OC (own) -0.29
OC (cross) 0.34 OC (cross) 0.59
Aggregate Aggregate
LEC price -0.45 LEC price -0.45
OC price -0.11 OC price -0.12
InterLATA toll
Share Share
LEC (own) -0.24 LEC (own) -0.52
LEC (cross) 0.12 LEC (cross) 0.15
OC (own) -0.05 OC (own) -0.20
OC (cross) 0.09 OC (cross) 0.40
Aggregate Aggregate
LEC price -0.11 LEC price -0.13
OC price -0.70 OC price -0.66

Table 1.6 Comparable R2s for share and aggregate models in Tables 1.3 and 1.4

Toll market cos h z v/w v ? w

Models
IntraLATA 0.0428 0.1432 0.0579 0.1414
InterLATA 0.0058 0.0892 0.0184 0.0888
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1.5 Final Words

The purpose of these notes has been to suggest procedures for dealing with
dependent variables in regression models that can be represented as points in the
plane. The ‘‘trick,’’ if it should be seen as such, is to represent dependent variables
in polar coordinates, in which case two-equation models can be specified in which
estimation proceeds in terms of functions involving cosines, sines, and radius-
vectors. Situations for which this procedure is relevant include analyses of markets
in which there are duopoly suppliers. The approach allows for generalization to
higher dimensions, and, perhaps most interestingly, can be applied in circum-
stances in which values of the dependent variable can be points in the complex
plane. The procedures are illustrated using cross-sectional data on household toll
calling from a PNR & Associates Bill Harvesting survey of the mid-1990s and data
from the BLS Survey of Consumer Expenditures for the fourth quarter of 1999.
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