
Chapter 11
Avalanche Forecasting: Using Bayesian
Additive Regression Trees (BART)

Gail Blattenberger and Richard Fowles

11.1 Introduction

During the ski season, professional avalanche forecasters working for the Utah
Department of Transportation (UDOT) monitor one of the most dangerous high-
ways in the world. These forecasters continually evaluate the risk of avalanche
activity and make road closure decisions. Keeping the road open when an ava-
lanche occurs or closing the road when one does not are two errors resulting in
potentially large economic losses. Road closure decisions are partly based on the
forecasters’ assessments of the probability that an avalanche will cross the road.
This paper models that probability using Bayesian additive regression trees
(BART) as introduced in Chipman et al. (2010a, b) and demonstrates that closure
decisions based on BART forecasts obtain the lowest realized cost of misclassi-
fication (RCM) compared with standard forecasting techniques. The BART fore-
casters are trained on daily data running from winter 1995 to spring 2008 and
evaluated on daily test data running from winter 2008 to spring 2010. The results
generalize to decision problems that relate to complex probability models when
relative misclassification costs can be accounted for.

The following sections explain the problem, the data and provide an overview
of the BART methodology. Then, results highlighting model selection and
performance in the context of losses arising from misclassification are presented.
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The conclusion discusses why BART methods are a natural way to model the
probability of an avalanche crossing the road based on the available data and the
complexity of the problem.

11.2 The Little Cottonwood Canyon Hazard

The Little Cottonwood Canyon road is a dead-end, two lane road that is the only
link from Salt Lake City to two major Utah ski resorts, Alta and Snowbird. It is
heavily travelled and highly exposed to avalanche danger; 57 % of the road falls
within known avalanche paths. The road ranks among the most dangerous high-
ways in the world relative to avalanche hazard. It has a calculated avalanche
hazard index of 766 which compares with an index value of 126 for US Highway
550 crossing the Rockies in Colorado and an index value of 174 for Rogers Pass on
the Trans Canadian Highway.1 A level of over 100 on this index indicates that full
avalanche control is necessary.

There are over 20 major avalanche slide paths that cross the road. During the
ski season, the road is heavily utilized. Figure 11.1a shows daily traffic volume in
the canyon for February 2005. February is typically a month with a large number
of skiers in Utah. On peak ski days, over 12,000 automobiles travel to the two
resorts on the Little Cottonwood Canyon road or return to the city. Figure 11.1b
illustrates the hourly east–west traffic flow for February 26, 2005. The eastbound
traffic flow is from Salt Lake City to the Alta and Snowbird ski resorts and is high
in the morning hours. In the afternoon, skiers return to the city and westbound
traffic flow on the road is high.

Recognition of avalanche danger along this road and attempts to predict ava-
lanche activity began early. In 1938, the US Forest Service issued a special use
permit to the Alta ski resort. One year later, the Forest Service initiated full-time
avalanche forecasting and control.2 By 1944, avalanche forecasters maintained
daily records on weather and the snowpack. During the 1950s, forecasters began to
utilize advanced snowpack instruments and meteorological information for ava-
lanche prediction.3 Except where noted, the measurements apply to the guard
station.

Despite the fact that detailed physical measurements of climate and snowpack
conditions are available, the complexity of the avalanche phenomena makes
prediction difficult. Professional forecasters take into consideration multiple
interactions of climate and snowpack conditions. Variables that forecasters con-
sidered in previous studies and interactions among the variables differ among
forecasters, change through the season, alter across seasons, exhibit redundancy,

1 See Bowles and Sandahl (1988).
2 See Abromeit (2004).
3 See Perla (1991).
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and vary according to particular avalanche paths. For these reasons, a Bayesian
sum-of-trees model as presented by Chipman et al. (2010a, b) is employed.
Bayesian sum-of-trees models provide flexible ways to deal with high-dimensional
and high-complexity problems. These problems are characteristics of avalanche

Fig. 11.1 a Natural and controlled avalanches by path, 1995-2005, little cottonwood canyon.
b Daily traffic volumes little cottonwood canyon road, February 2005. c Hourly traffic volume by
direction saturday, February 26, 2005
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forecasting and the ensemble of Bayesian trees becomes the ‘‘forecaster.’’ Sets of
Bayesian forecasters contribute information that leads to a synthesized road clo-
sure decision. A closure decision is observable (the probability of an avalanche is
not) and we gauge the performance of our forecasters on their subsequent RCM.
Compared with other methods, the ensemble of Bayesian forecasters does a better
job.

11.3 Data

An earlier study was performed on the road closure decision in Little Cottonwood
Canyon (See Blattenberger and Fowles 1995, 1994). The data of the earlier study,
however, went from the 1975–1976 ski season through 1992–1993. The present
study uses training data running from 1995 to spring 2008 and test data from
winter 2008 to spring 2010. Various sources were used for the data in the earlier
study including US Department of Agriculture data tapes. The current study makes
use entirely of data from the UDOT guard station. Partly as a result of recom-
mendations made in the earlier study, additional variables were recorded and are
now available from the guard station. These new variables are used here.

Fig. 11.1 continued
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As in the earlier study, two key variables describe closure of the road, CLOSE,
and the event of an avalanche crossing the road, AVAL. Both are indicator
variables and are operationally measurable constructs, a key requirement to our
approach. Unfortunately, these two variables are less precise than desired. For
instance, the observation unit of the study is generally one day unless multiple
events occur in a day, in which case CLOSE and AVAL appear in the data as
multiple observations. The occurrence of an avalanche or, for that matter, a road
closure is a time-specific event. It may happen, for example, that the road is closed
at night for control work when no avalanches have occurred. The road is then
opened in the morning, and there is an avalanche closing the road. Then, the road
is reopened, and there is another avalanche. This sequence then represents three
observations in the data with corresponding data values CLOSE = (1, 0, 0) and
AVAL = (0, 1, 1). An uneventful day is one observation. If the road is closed at
11:30 at night and opened at 7:00 the following morning, it is coded as closed only
within the second of the 2 days. The variable AVAL is the dependent variable to
be forecasted in this analysis. The variable CLOSE is a control variable used to
evaluate model performance.

The data from the UDOT guard station are quite extensive. All of the
explanatory variables are computed from the UDOT data source to reflect the
factors concerning the avalanche phenomenon. The variables are local, primarily
taken at the Alta guard station. Measures can vary considerably even within a
small location. They can vary substantially among avalanche paths and even
within avalanche paths.

A listing of the variables used in this study and their definitions is given in
Table 11.1. All the variables, excepting NART, HAZARD, SZAVLAG, WSPD,
and NAVALLAG, were measured at the guard station. WSPD, NART, HAZARD,
and SZAVLAG are new to this study. The variable HAZARD was created in
response to the request in the previous paper (Blattenberger and Fowles 1995).
HAZARD is a hazard rating recorded by the forecasters. NART is the number of
artificial artillery shots used. NAVALLAG is the number of avalanches affecting
the road on the previous day. SZAVLAG weights these avalanches by their size
rating. High values of number of artillery shells fired, NART, would indicate that
real-world forecasters believe that there is instability in the snowpack requiring
them to take active control measures. WSPD, wind speed, is taken at a peak
location. It was not consistently available for the earlier study. The redundancy
among the variables is obvious. For example, WATER = DENSITY * INTSTK,
where DENSITY is the water content of new snow per unit depth and INSTK,
interval stake, is the depth of the new snow. There are no snow stratigraphy
measures. Only monthly snow pit data were available. Snow pits are undoubtedly
useful to the forecaster to learn about the snowpack, but snow pits at the Alta study
plot do not reflect conditions in the starting zones of avalanche paths high up on
the mountain, and monthly information was not sufficiently available. As noted
above, some attempt was made to construct proxies for stratigraphy from the data
available. The variable called RELDEN is the ratio of the density of the snowfall
on the most recent snow day to the density of the snowfall on the second-most

11 Avalanche Forecasting: Using Bayesian Additive Regression Trees (BART) 215



recent snow day. This is an attempt to reconstruct the layers in a snowpack. The
days compared may represent differing lags depending on the weather. A value
greater than 1 suggests layers of increasing density, although a weak layer could
remain present for a period of time.

The data employed by forecasters are fortunately redundant,4 fortunate because
this can compensate for imprecision. The redundancy is well illustrated by the fol-
lowing story. Four professional forecasters at Red Mountain Pass in Colorado all had
similar performances in the accuracy of their forecasts. When questioned subse-
quently the forecasters listed a combined total of 31 variables that they found
important in their projections; individually, each of the forecasters contributed less
than 10 variables to the 31 total. Each focused on a collection of variables. Of the 31
variables, however, only one was common to all four of the forecasters (Perla 1970).

Eighteen explanatory variables extracted from the guard station data were
included. The large number of variables is consistent with the Red Mountain Pass

Table 11.1 Variables used in the analysis

VARIABLE
NAME

VARIABLE DEFINITION

YEAR
MONTH
DAY

Forecast Date (year, month, day)

AVAL Avalanche crosses road : 0=no, 1=yes
CLOSE Road closed: 0=open 1=closed
TOTSTK Total stake - total snow depth in inches
TOTSTK60 If TOTSTK greater than 60 cm.TOTSTK60 = TOTSTK - 60 in centimeters
INTSTK Interval stake - depth of snowfall in last 24 hours
SUMINT Weighted sum of snow fall in last 4 days weights=(1.0,0.75,0.50,0.25)
DENSITY Density of new snow, ratio of water content of new snow to new snow depth
RELDEN Relative density of new snow, ratio of density of new snow to density

ofprevious storm
SWARM Sum of maximum temperature on last three skidays, an indicator of a

warmspell
SETTLE Change in TOTSTK60 relative to depth of snowfall in the last 24 hours
WATER Water content of new snow measured in mm
CHTEMP Difference in minimum temperature from previous day
TMIN Minimum temperature in last 24 hours
TMAX Maximum temperature in last 24 hours
WSPD Wind speed MPH at peak location
STMSTK Storm stake: depth of new snow in previous storm
NAVALLAG Number of avalanches crossing the road on the previous day
SZAVLAG The size of avalanche, this is the sum of the size ratings for all avalanches

inNAVALLAG
HAZARD Hazard rating of avalanche forecasters
NART Number of artificial explosives used

4 The word redundant more generally than correlation is used in this paper. This indicates when
several variables are designed to measure the same thing or may be functions of each other.
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story described. The four forecasters in the story all had similar forecasting per-
formance each using a few but differing variables.

All of the explanatory except NART, NAVALLAG, HAZARD, and SZAV-
LAG can be treated as continuous variables. NART, NAVALLAG, HAZARD, and
SZAVLAG are integer variables; AVAL and CLOSE are factors. Descriptive
statistics for these variables in the training data are given in Table 11.2. The
training DATA consist of 2,822 observations.

Many of the variables were taken directly from the guard station data. Others
were constructed. TOTSTK or total stake, INTSTK or interval stake, DENSITY or
density, HAZARD or hazard rating, TMIN or minimum temperature, TMAX or
maximum temperature, WSPD or wind speed, and STMSTK or storm stake came
directly from the guard station weather data which is daily. TOTSTK60, SUMINT,
WATER, SWARM, SETTLE, and CHTEMP were computed from the guard
station weather data. NART, NAVALLAG, and SZAVLAG were constructed
from the guard station avalanche data. These last three variables are not daily, but
event specific and needed conversion into daily data.

SZAVLAG employs an interaction term taking the sum of the avalanches
weighted by size.5 Descriptive statistics for the 2,822 observations of these vari-
ables in the training data are given in Table 11.2.

The test data consist of 471 observations. Descriptive statistics for the test data
are given in Table 11.3.

The data are surely not optimal. A relevant question is whether they are
informative for real-world decision making. The imprecision and redundancy of
the data channel our focus to the decision process itself.

11.4 The BART Model

BayesTree is a BART procedure written by Hugh Chipman, Ed George, and Rob
McCulloch. Their package, available in R, was employed here.6 This is well
documented elsewhere and only basic concepts and the relevance to the current
application are introduced here.7

BART is an ensemble method aggregating over a number of semi-independent
forecasts. Each forecast is a binary tree model partitioning the data into relatively
homogeneous subsets and making forecasts on the basis of the subset in which the
observation is contained. The concept of a binary tree is illustrated in Fig. 11.2a
and b. Figure 11.2a presents a simple tree which explains some vocabulary. All
trees start with a root node which contains all the observations in the data set. The

5 In computing SZAVLAG the measure which we use is the American size measure, which is
perhaps less appropriate than the Canadian size measure. However, a similar adjustment might be
relevant.
6 Chipman et al. (2009).
7 See Chipman et al. (1998, 2010a, b).
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Table 11.2 Descriptive statistics used for the TRAINING data

Variables Min. 1st Qu. Median Mean 3rd Qu. Max.

AVAL 0.0 0.0 0.0 0.0361 0.0 1.0
CLOSE 0.0 0.0 0.0 0.1247 0.0 1.0
TOTSTK 0.0 33.46 63.78 61.44 90.16 159.1
TOTSTK60 0.0 25.0 102.0 104.5 169.0 344.0
INTSTK 0.0 0.0 0.0 6.076 8.00 84.0
SUMINT 0.0 0.0 7.75 15.10 24.0 122.75
DENSITY 0.0 0.0 0.0 4.694 8.333 250.0
RELDEN 0.0025 1.0 1.0 4.574 1.0 1,150.0
SWARM 0.0 52.0 68.5 67.40 86.0 152.0
SETTLE -110.0 0.0 0.0 -0.6542 0.0769 43.0
WATER 0.0 0.0 0.0 5.836 7.0 90.0
CHTEMP -42.0 -3.0 0.0 0.0138 3.0 40.0
TMIN -12.0 10.0 19.0 18.14 26.0 54.0
TMAX 0.0 26.0 35.0 34.58 44.0 76.0
WSPD 0.0 12.0 18.0 18.05 24.0 53.0
STMSTK 0.0 0.0 0.0 7.577 1.0 174
NAVALLAG 0.0 0.0 0.0 0.0698 0.0 14.0
SZAVLAG 0.0 0.0 0.0 0.203 0.0 42.0
HAZARD 0.0 0.0 1.0 0.921 2.0 4.0
NART 0.0 0.0 0.0 0.2392 0.0 23.0

Table 11.3 Descriptive statistics used for the TEST data

Variables Min. 1st Qu. Median Mean 3rd Qu. Max.

AVAL 0.0 0.0 0.0 0.04176 0.0 1.0
CLOSE 0.0 0.0 0.0 0.1810 0.0 1.0
TOTSTK 0.0 24.21 74.80 61.68 90.55 141.70
TOTSTK60 0.0 1.5 130.0 106.9 170.0 300.0
INTSTK 0.0 0.0 0.0 6.385 8.000 62.0
SUMINT 0.0 0.0 8.725 15.92 23.38 87.75
DENSITY 0.0 0.0 0. 4.476 8.225 47.5
RELDEN 0.02105 1.0 1.0 4.073 1.0 266.7
SWARM 0.0 55.0 69.0 70.07 86.0 144.0
SETTLE -90.0 0.0 0.0 -1.034 0.0 2.667
WATER 0.0 0.0 0.0 6.081 7.5 72.0
CHTEMP -21.0 -4.0 0.0 0.00232 4.0 23.0
TMIN -9.0 11.0 19.0 18.5 26.0 41.0
TMAX 0.0 27.0 35.0 35.69 44.0 72.0
WSPD 0.0 12.5 18.0 17.95 24.0 57.0
STMSTK 0.0 0.0 0.0 13.47 14.75 189.00
NAVALLAG 0.0 0.0 0.0 0.0951 0.0 8.0
SZAVLAG 0.0 0.0 0.0 0.2877 0.0 24.0
HAZARD 0.0 1.0 2.0 1.65 2.0 4.0
NART 0.0 0.0 0.0 0.4246 0.0 22.0
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data set is bifurcated into two child nodes by means of a splitting rule, here
INTSTK [20. Observations with INTSTK [20 are put into one child node;
observations with INTSTK\20 are put into the other child node. Subsequently, in
this diagram, one of the child nodes is split further into two child nodes. This is
based on the splitting rule, SWARM [50. This tree has 3 terminal nodes, illus-
trated with boxes here, and two internal nodes, illustrated with ellipses. The
number of terminal nodes is always one more than the number of internal nodes.
The splitting rules are given beneath the internal nodes. This tree has depth 2; the
splitting employs two variables, INTSTK and SWARM. This partitioning of the
data according to the splitting rules given here is shown in a scatter plot in
Fig. 11.2b. This scatter plot highlights the actual observations when an avalanche
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crosses the road. Each observation is contained in one and only one terminal node.
A forecasting rule for this partition is given and the misclassification rate for each
node in Fig. 11.2b is illustrated.8

The basic BART model is

yi ¼
Xm

j¼1

g XijjT j;M j
� �

þ uij; uij�N 0; r2
� �

where i is the observation number (i = 1, … ,n) and j is the jth tree (j = 1, … ,m).
Here, the variable yi is the indicator variable AVAL, indicating whether an ava-
lanche crosses the road. Each forecaster, j, in the ensemble makes forecasts
according to his own tree, Tj, and model, Mj—where Mj defines the parameter
values associated with the terminal nodes of Tj. It is a sum-of-trees model,
aggregating the forecasts of the m forecasters in the ensemble, each forecaster
being a weak learner.

This model seems particularly applicable to this situation. Recall the story of
the four forecasters at Red Mountain Pass in Colorado. The forecasters had
comparable performance. They each chose less than 10 variables out of the 31
available on which to base their forecasts. Only one of the chosen variables was
common among the forecasters. Here, aggregate is over an exogenous number of
forecasters, each with his own tree and his own selection of variables.

The trees for the m forecasters are generated independently. Each tree is gen-
erated, however, with a boosting algorithm conditional on the other m - 1 trees in
a Gibbs sampling process, consequently the term semi-independent. Given the m
trees generated in any iteration, the residuals are known and a new r2 distribution
is based on these residuals. An inverse gamma distribution is used for r2 and the
parameter distributions in the next iteration employ the r2 drawn from this
distribution.

A Markov Chain of trees is generated for each forecaster by means of a sto-
chastic process. Given the existing tree, Tjk-1, for forecaster j at iteration k-1, a
proposal tree, T*, is generated. The generation of the proposal tree is a stochastic
process done according to the following steps:

Determine the dependent variable, Rjk, or the ‘‘residuals’’ for Y conditional on
the m-1 other trees, Rjk ¼ Y �

P
l 6¼j g XjTly;Mly

� �
; where l = k-1 if l [ j, and

l = k if l \ j.
A decision is made on whether the tree will be split as defined by the proba-

bility, a(1 ? d)b.9

8 This partition scores poorly but is only used to illustrate the concepts.
9 The default value for a, 0.95, is selected. This implies a high likelihood of a split at the root
node with a decreasing probability as the depth of the tree, d, increases. The default value of b is
2. However, b = 0.5 is used to obtain bushier trees (trees with more terminal nodes). The story
used in the text had forecasters using less than 10 variables, but at least 3.
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Given a decision to split, a decision is made on the type of split. The types of
splits and their associated probabilities are: GROW (0.25), PRUNE (0.25),
CHANGE (0.4), SWAP (0.1). These are described in Chipman et al. (1998). At the
root node, there is only one option, GROW. The option CHANGE is feasible only
if the tree has depth greater than or equal to two. For each type of split, there are a
finite number of choices. GROW will occur at terminal nodes. CHANGE occurs at
a pair of internal nodes, one the child of the other.

The next decision concerns the variable on which the split is made and the
splitting rule, again among a finite number of choices. The variables are equally
likely. The number of potential splits depends on the variable selected, but for each
variable, the potential splits are equally likely.

Given this proposal tree, a posterior distribution is determined for each terminal
node based on a ‘‘regularization’’ prior designed to keep individual tree contri-
butions small. Parameters are drawn from the posterior distribution for each ter-
minal node.

The proposal tree is accepted or rejected by a Metropolis–Hastings algorithm

with the probability of accepting T* equal to a ¼ min qðTjk�1;T�Þ
qðT�;Tjk�1Þ

pðY jX;T�ÞpðT�Þ
pðY jX;Tjk�1ÞpðTjk�1Þ ; 1

� �

where q(Tjk-1, T*) is the transition probability of going from Tjk-1 to T* and q(T*,
Tjk-1) is the transition probability of going from T* to Tjk-1. The function q() and
the probabilities P(T*) and P(Tjk-1) are functions of the stochastic process gener-

ating the tree. The ratio, p Y jX;T�ð Þ
p Y jX;Tjk�1ð Þ is a likelihood ratio reflecting the data X and Y,

ensuring that the accept/reject decision is a function of the data.
Acceptance of a tree is dependent on there being a sufficient number of

observations in each terminal node of T*.
If the tree is accepted Tjk = T*, otherwise Tjk = Tjk-1.
The Markov Chain Monte Carlo (MCMC) is run for a large number of iterations

to achieve convergence. The individual forecaster’s trees are not identified. It is
possible that trees may be replicated among forecasters in different iterations. The
objective here is not parameter estimation but forecasting.

11.5 Results of the BART Application

11.5.1 Break-in Period

The MCMC is known to converge to a limiting distribution under appropriate
conditions, and a number of iterations are discarded to insure the process has
settled down to this distribution. It is not established, however, when this con-
vergence is reached. The MCMC history of forecasts, for a number of dates in the
training data in Fig. 11.3a–d, is examined. In these figures, a break-in period of
5,000 iterations was used, with 50 trees or forecasters. Each point, in the history, is
the aggregation of the 50 forecasters for that iteration. A number of days were
selected to see how the process does in differing conditions. Although there is
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variation among the iterations, the forecasts ‘‘mix’’ well in that there is no func-
tional trend among the iterative forecasts. The MCMC standard error varies among
the dates selected but is relatively uniform within each date.

11.5.2 Splitting Rules

Before discussion of the performance of the forecasting model, some of the
choices concerning the BART process were looked at. First the number of trees or
as called above the number of forecasters is specified. For comparison purposes,
50, 100, and 200 trees were used. Also, the parameters of the splitting rule for the
tree-generating process, P(split) = a(1 ? d)b, had to be specified. The default
value a = 0.95 was selected. This implies a high likelihood of a split at the root
node with a decreasing probability as the depth of the tree, d, increases.

Fig. 11.3 The MCMC history of forecasts for a number of dates in the training data
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The parameter b relates to the bushiness of the tree. First, the average number of
terminal nodes per iteration and per tree for the first 3,000 iterations after the
break-in period was examined. These are given in Table 11.4.

The choice of 50 trees and b = 0.5 yields an average of 3.4 terminal nodes. To
be consistent with the Perl, a story on Red Mountain Pass was examined. While
Table 11.4 describes the average number of trees, there is substantial variation
among the forecasters in any single iteration. The frequency distribution of tree
sizes among forecasters within the last iteration is pictured in Fig. 11.4. While tree
size may vary substantially for any specific forecaster across iterations, the last
iteration should be representative for post break-in iterations.

This is consistent with each forecaster in the story making his decision based on
less than 10 variables.

11.5.3 Variable Choice

In the Red Mountain Pass example that the four forecasters had only one variable
in common in spite of the fact that their forecasts were comparably accurate. An
interesting comparison is the variable choice among the forecasters. This is
illustrated in Fig. 11.5 for 50 forecasters showing a box-and-whisker plot for
variable use among 50 forecasters in 3,000 postburn-in iterations. The vertical axis
gives the number of forecasters using each variable. A value of 50 would indicate a
variable used by every forecaster. No such variable exists. All variables on average

Table 11.4 Average tree size per tree and iteration. Given n tree = number of trees and split
parameter b Power = b

n tree 0.5 0.6 0.7 0.8 0.9 1 1.2 1.5 2
50 3.421 3.162 3.118 2.974 2.872 2.848 2.697 2.500 2.338
100 3.283 3.146 3.061 2.961 2.904 2.822 2.673 2.499 2.315
200 3.252 3.196 3.056 2.967 2.881 2.797 2.657 2.500 2.317
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were used by at least five forecasters. This conforms again with our comments on
the redundancy of the variables and the Red Mountain Pass story.

The most commonly used variable was NART, the number of artificial
explosives used, and the least commonly used variable was HAZARD, a hazard
rating of the forecasters. It may be noted that the decision to use artificial
explosives more accurately reflects the forecasters’ evaluation of avalanche hazard
than the hazard rating itself.

SWARM, the presence of a warm period, and CHTEMP, the change in tem-
perature, are also prominent variables, as is SZAVLAG, the recent occurrence of
many large avalanches. There are numerous indicators of snow depth and storm
size for forecasters to choose among. There is redundancy between TOTST and
TOTSTK60 relating to the depth of the snow pack. Similarly, redundancy exists
among INTSTK, SUMINT, and STMSTK, measures of storm activity, as well as
among DENSITY, WATER, and RELDEN, among WSPD, and SETTLE and
among the temperature variables TMIN, TMAX, CHTEMP, and SWARM. All are
selected by some forecasters with similar frequencies but no one dominates.
Although Fig. 11.5 illustrates variable choice for 50 forecasters, similar results
were obtained for 100 and 200 forecasters.

11.6 Realized Cost of Misclassification

Before turning to forecast performance in the test period, Fig. 11.3a–d illustrate
some relevant concepts. These figures illustrate the history of postbreak-in itera-
tions on particular dates, a jagged black line. The actual event that occurred is

Fig. 11.5 Illustrates variable
choice for 50 forecasters
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shown by a dotted line at zero or one; the road closure is given by a dashed line
again at zero or one. The forecast for each date is the average of the iterative
values shown by a dotted dash line.

On 13 February 1995, the model predicted a low probability of an avalanche
crossing the road; this was correct, but the road was closed. On 1 January 1998, the
model predicted a moderate probability of an avalanche crossing the road; the road
was closed, but again there was no avalanche. On 27 December 2003, the model
predicted a low probability of an avalanche crossing the road; the road was not
closed, and there was no avalanche. On 28 January 2008, the model predicted a
high probability of an avalanche crossing the road; the road was not closed, but
there was an avalanche.

We now turn to the forecast performance of the BART model in the test period,
a common measure of forecast performance is root mean squared error, RMSE.
The RMSE values for the avalanche forecasting models are as follows
(Table 11.5).

The BART model with 100 forecasters wins on this criterion. However, as
noted earlier, all forecasting errors are not equivalent. This issue needs to be
addressed in evaluating the forecasts.

If one assumes that the forecasters act to minimize expected losses associated
with their road closure decision, the asymmetric loss function is:

Loss ¼ k � p þ q

In this loss function, p represents the fraction of the time that an avalanche
crosses the road and it is open and q represents the fraction of the time that an
avalanche does not cross the road and it is closed. The term k is a scale factor that
represents the relative cost of failing to close the road when an avalanche occurs to
the cost of closing the road when an avalanche did not occur. Both p and q are
observable, while k is not. The decision rule to minimize expected loss implies an
implicit cutoff probability, k* = 1/(1 ? k), such that the road should be closed for
probabilities greater than k* and kept open for lower probabilities. In Blattenberger
and Fowles (1994, 1995) found a value of k = 8 to be consistent with the historical
performance of the avalanche forecasters and in line with revenue losses to the
resorts relative to loss of life estimates.10

Table 11.5 Root mean square error for test period

Linear Logit BART 50 BART 100 BART 200 Guard station

0.165 0.165 0.163 0.161 0.162 0.397

10 Details are in Blattenberger and Fowles (1994, 1995). UDOT data indicate that, on average,
there are 2.6 persons per vehicle, 2.5 of which are skiers. Of these skiers, 40 % are residents who
spend an average of $19 per day at the ski resorts (1991 dollars). Sixty percent tended to be
nonresidents who spent an average of $152 per day (1991). A road closure results in a revenue
loss in 2005 of over $2.25 million per day based on average traffic volume of 5,710 cars during
the ski season.
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To evaluate BART model performance, the RCM or loss was examined. It is
calculated as a function of the cutoff probability. Figure 11.6a compares RCMs for
linear, logit, and BART predictions (from a 50 tree model). The experts’ perfor-
mance over the testing period as a horizontal line at 0.22 was also plotted. BART
performance is nearly uniformly lower than other models for cutoff probabilities
from 0.1 to 0.6. Figure 11.6b adds BART models with 100 and 200 forecasters for
comparison purposes.

All of the BART models outperform the logit and the linear models. They also
outperform the guard station decisions, although the guard station decisions are
immediate and are subject to certain legal constraints.11

11.7 Conclusion

This paper illustrates the advantage of using BART in a real-world decision-
making context. By summing over many models, each contributing a small amount
of information to the prediction problem, BART achieves high out-of-sample
performance as measured by a realistic cost of misclassification. The philosophy
behind BART is to deal with a complicated issue—analogous to sculpting a
complex figure—by ‘‘adding and subtracting small dabs of clay’’ (Chipman et al.
2010a, b). This method seems well suited to the problem of avalanche prediction
where individual professional forecasters develop an intuitive approach and cannot
rely on a single analytic model.

Fig. 11.6 Compares RCMs for linear, logit, and BART predictions (from a 50 tree model)

11 The road must be closed while artificial explosives are used.
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