Chapter 2
Piecewise Linear L1 Modeling

Kenneth O. Cogger

2.1 Introduction

Lester Taylor (Taylor and Houthakker 2010) instilled a deep respect for estimating
parameters in statistical models by minimizing the sum of absolute errors (the L1
criterion) as an important alternative to minimizing the sum of the squared errors
(the Ordinary Least Squares or OLS criterion).

He taught many students about the beauty of L1 estimation, including the
author. His students were the first to prove asymptotic normality in Bassett and
Koenker (1978) and then developed quantile regression (QR), an important
extension of L1 estimation, in Koenker and Bassett (1978).

For the case of a single piece, L1 regression is a linear programming (LP)
problem, a result first shown by Charnes et al. (1955). Koenker and Bassett (1978)
later developed QR and showed that it is a generalization of the LP problem for L1
regression. This LP formulation is reviewed in Appendix 1.

Cogger (2010) discusses various approaches to piecewise linear estimation
procedures in the OLS context, giving references to their application in Eco-
nomics, Marketing, Finance, Engineering, and other fields. This chapter demon-
strates how piecewise linear models may be estimated with L1 or QR using mixed
integer linear programming (MILP). If an OLS approach is desired, a mixed
integer quadratic programming (MIQP) approach may be taken.

That piecewise OLS regression is historically important is demonstrated in
Sect. 2.2, although the estimation difficulties are noted. Section 2.3 develops a
novel modification of MILP that easily produces L1 and QR regression estimates
in piecewise linear regression with one unknown hinge; an Appendix describes the
generalization to any number of unknown hinges. Section 2.4 presents some
computational results for the new algorithm. The final section concludes.
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2.2 Piecewise Linear Regression
2.2.1 General

The emphasis in this chapter is on the use of L1 and QR to estimate piecewise
linear multiple regressions. When there is only one possible piece, such estimation
is an LP problem. The LP formulations are reviewed in Appendix 1.

The term, “regression,” was first coined by Galton (1886). There, Galton
studied the height of 928 children and the association with the average height of
their parents. Based on the bivariate normal distribution, he developed a confi-
dence ellipse for the association as well as a straight line describing the rela-
tionship. Quoting from Galton, “When mid-parents are taller than mediocrity,
their children tend to be shorter than they.” In modern language, “mediocrity”
becomes “average” and his conclusion rests on the fact that his straight line had a
slope with value less than one.

Figure 2.1 illustrates his original data along with the straight line he drew along
the major axis of the confidence ellipse. Galton viewed this apparent tendency for
children to revert toward the average as a “regression,” hence his title for the
paper, “Regression Toward Mediocrity in Hereditary Stature.” One should note
that in Fig. 2.1, the vertical axis is Parental height and the horizontal axis is Child
height. In modern terms, this would be described as a regression of Parent on
Child, even though his conclusive language might best be interpreted in terms of a
regression of Child on Parent.
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Fig. 2.1 Excerpted diagram from Galton’s seminal regression paper
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Galton’s paper is of historical primacy. Wachmuth et al. (2003) suggested that
Galton’s original data are better described by a piecewise linear model. Their
resulting OLS piecewise linear fit is:

Parent = 49.81 4+ 0.270 * Child + 0.424 * (Child — 70.803) * I(Child > 70.803)

(P =8.28E — 25) (P = 1.41E — 04)

which can be generalized as a predictor.

V= Po+ Bix+ Prlx — H) - 1(x > H) (2.1)
I; x>H
0; x<H

1

where I(x > H) = { } and H is referred to as a hinge. The first

usage of the term, “regression,” might therefore better refer to piecewise linear
regression, which is obviously nonlinear in f, and H.

The Wachsmuth et al. (2003) study was based on OLS and is slightly incorrect
in terms of its estimates, but probably not in its conclusions. Its estimates were
apparently based on the use of Systat, a statistical software program edited by
Wilkinson, one of the authors.’

2.2.2 Specifics

Infrequently, the hinge location H is known. For example, in economic data, one
might know about the occurrence of World War 1II, the oil embargo of 1973, the
recent debt crisis in 2008, and other events with known time values; if economists
study time series data, their models can change depending on such events. In
climate data, a change was made in the measurement of global CO, in 1958 and
may influence projected trends. In the study of organizations, known interventions
might have occurred at known times, such as Apple Corporation’s introduction of
(various models) of iPod, iPad, etc.

When the value of H is known, L1, QR, OLS and other statistical techniques are
easy to use. Simply use a binary variable with known value B =1 if x > H
(0 otherwise) in Eq. (2.1) and generate another known variable for use. This
produces a linear model with two independent variables, x and z = (x—H)B. For
L1 and QR piecewise multiple regressions with known hinges, the LP formulation
is described in Appendix 2.

! An empirical suggestion of the usefulness of piecewise linear models is that a Google search on
“piecewise linear regression” turned up hundreds of thousands of hits. Similarly large numbers of
hits occur for synonyms such as “broken stick regression”, “two phase regression”, “broken line
regression”, “segmented regression”, “switching regression”, “linear spline”, and the Canadian

and Russian preference, “hockey stick regression”.



20 K. O. Cogger

More frequently, the hinge locations H are unknown and must be estimated
from the data, as with the Galton, Hudson, and other data. Wachsmuth et al. (2003)
used a two-stage OLS procedure first developed by Hudson (1966) and later
improved upon slightly by Hinkley (1969, 1971). Their sequential procedure
requires up to Zio 21 (?) - (ln —H- 2) separate OLS regressions—where
H is the number of hinge points and » is the sample size. For the Galton data
(n = 928) with one unknown hinge point (two pieces), 1,851 separate OLS
regressions may be required with two unknown hinge points (three pieces),
1,709,401 separate OLS regressions may be required. Multicollinearity is known
to be present in some of these required OLS regression problems. Multicollinearity
can perhaps be overcome in these OLS issues by the use of singular value
decomposition (SVD). However, this may be incompatible with the sequential
procedure of Hudson (1966) which assumed the existence of various matrix
inverses. For moderate to large n, computation time also becomes a concern.

The main concern in this chapter is L1 and QR estimation of piecewise linear
regression with unknown hinge locations. Below, three charts in the case of L1
estimation are provided. The first two charts are based on the contrived data of
Hudson and the third is based on the real Galton data. For each chart, the minimum
sum of the absolute deviations (regression errors) is shown denoted as SAD or
>y |yi — ¥i| for fixed hinges found by exhaustive search; for each H, an LP
problem was solved:

Figures 2.2, 2.3, and 2.4 exhibit some features common to L1 and QR esti-
mation of piecewise linear regression functions. First, the SAD functions charted
are discontinuous at H = min(x) and H = max(x). Second, all derivatives of SAD
fail to exist at the distinct values H = x and other values as well. Third, SAD is
piecewise linear. Fourth, local maxima and minima can occur. Fifth, for any fixed
H, SAD is found in <1 s with standard LP software.

See Appendix 2 for the standard LP formulation with known hinges H. While
not present in Figs. 2.2, 2.3, and 2.4, it is possible for the global minimum of SAD
to occur at multiple values of H. Multiple optima are always possible in LP
problems. It must be emphasized that Figs. 2.2, 2.3, and 2.4 were obtained by
exhaustive search over all fixed values of H in the x range, requiring an LP

Fig. 2.2 Minimum SAD Hudson Data 1
versus H for Hudson data 1
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Fig. 2.3 Minimum SAD Hudson Data 2
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solution for each H in the range of the x data values. This illustrates the problems
involved in finding the global minimum SAD with various optimum seeking
computer algorithms.

Searching for the global optimum H in such data is problematic with automated
search routines such as Gauss—Newton, Newton—Raphson, Marquardt, and many
hybrid techniques available for many years. See Geoffrion (1972) for a good
review of the standard techniques of this type. Such techniques fail when the
model being fit is piecewise linear due to the nonexistence of derivatives of SAD
at many points and/or the existence of multiple local minima.

There are search techniques which do not rely on SAD being well-behaved and
do not utilize any gradient information. These would include the “amoeba” search
routine of Nelder and Mead (1965), “tabu” search due to Glover (1986), simulated
annealing approaches, and genetic algorithm search techniques.’

A number of observations can be made. First, the algorithms of Hudson (1966)
and Hinkley (1969, 1971) solve only the OLS piecewise linear problem. Second,
they provide the maximum likelihood solution if the errors are normally distrib-
uted, but they are computationally expensive, are not easily extended to the
multiple regression case, are not practically extended to multiple hinges, and
software is not available for implementation.

2 The author has not applied any of these to piecewise linear estimation.
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2.3 A New Algorithm for LL1 and QR Piecewise Linear
Estimation

L1 or QR multiple regression with no hinges (one piece) is an LP problem as
reviewed in Appendix 1. The choice of either L1 or QR is dictated by the choice of
a fixed parameter 0 € [0, 1].

For piecewise multiple regression with one hinge, Eq. (2.1) may be converted to

. [ Bix; x<H

Y= { Byx; x>H (2.2)
where the hinge H is defined as

{x: (B, B))x=0} (2.3)

In simple linear piecewise regression, H will be a scalar value. In the piecewise
multiple regression case, H will be a hyperplane. Generally, for a continuous
piecewise linear fit,

y = max(fx, f>x) OR § = min(B)x, Bix) (2.4)

If H is known, an LP problem may be solved for L1 or QR with an appropriate
choice of 0 € [0, 1]. Multiple known hinges are also LP problems. See Appendix 2.
For L1 or QR piecewise multiple regression with one unknown hinge, there are
two possible linear predictors for each observation. This follows from Eq. (2.2).
For all observations, a Max or Min operator applies. This follows from Eq. (2.4).
Therefore, an overall continuous piecewise linear predictor must satisfy the

following:
N 1= Bix; X€S1}
=9 % 2.5
Y {YZ:ﬁlzx§ x &S 23)
y = max(fx, fx) OR 3 = min(f|x, B>x) (2.6)
where S is a chosen subset of x. The particular subset chosen in Eq. (2.5) can be

0; x; €8
L xi ¢S
enforced as linear inequalities in MILP using the Big-M method. The single choice
in Eq. (2.6) can be described by a single binary decision variable B1 and can also
be enforced as linear inequalities using the Big-M method (Charnes 1952).
Combining the following 8n linear constraints enforce Egs. (2.5) and (2.6) in any
feasible solution to the L1 or QR piecewise linear multiple regression problem
with one unknown hinge:

described by n binary decision variables Bl; :{ } and can be
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Vi <Vi+M-
Vi < 9itM -
i <yi+M-
Vi < Vi+M-
Vi <Vi+M-
i < Yo+ M-
i <yi+M-
Vi <yi+M-

23
B1;Vi
B1;Vi
(1-B1):V
(1=Bl)v (2.7)
(1—Bl) + M-Bl;Vi

(1—Bl) + M- (1 —Bl,);Vi
Bl + M -B1;;Vi
Bl + M- (1 —B1,);Vi

For large M, it is clear that the constraints in Eq. (2.7) result in the following
restrictions on any feasible solution to the L1 or QR piecewise linear multiple
regression with one unknown hinge (Table 2.1):

Estimating a piecewise multiple linear regression with L1 or QR and one
unknown hinge (two linear pieces) may therefore be expressed as the following

MILP problem:

min : z”: (Oeiy + (1 — 0)e;)

Such that:

Vi

Vi <yu+M

Vi < yut+M-
i <yi+M-
Y < Vi+M-
Vi <Ju+M-
Vi < yu+M-
Vi<yi+M-
Y < Vi+M-

—Ji=eiy

i=1

Y1 = Pixi; Vi
Voi = ﬂlzxi; Vi
—e_; Vi
e >0; Vi

e;_ Z 0; Vi

-Bl1; Vi

B1; Vi

(1 -B1); Vi

(1—B1); Vi

(1-Bl) + M-Bl;; Vi
(1-B1) + M-(1—-Bl;); Vi
Bl + M -Bl; Vi

Bl + M- (1—Bl;); Vi

ﬁl? /32
Bl

are decision vectors unrestricted in sign
is a binary decision variable
are binary decision variables.
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Table 2.1 Results of

. . B1 B1; Result
enforcing Eq. (2.7) for = = ~
large M 0 0 Vi = mm(y i» i) o
0 1 Yi = min(Yu;, I2i) = Y
1 0 yi = max (Y1, Y2i) = i
1 1 yi = max (Y1, $2i) = i

This MILP problem has 5n 4+ 4 continuous decision variables, n + 1 binary
decision variables, and 11n constraints. The choice between L1 and QR piecewise
linear regression is made by the choice of 6 € [0, 1]. From the notation, the f§
vectors may be of arbitrary dimension, permitting piecewise multiple linear
regressions to be estimated with L1 or QR. If desired, some of the equality con-
straints may be combined to modestly reduce the number of constraints and
continuous variables, but in practice the computation time depends mostly on the
number of binary decision variables. M must be a large positive number suitably
chosen by the user. Too small a value will produce incorrect results; too large a
value will cause numerical instability in MILP software. M > 2|y;|; Vi provides a
reasonable value for M.

The binary search space has 2! combinations to search and is a major factor
in execution time for MILP if the sample size is large. For the Hudson data, n = 6
and the binary search space has only 128 combinations; execution time is <0.1 s
for the MILP formulation. For the Galton data, n = 928 and the binary search
space has 4.538E + 279 combinations to search; execution time takes several days
for the MILP formulation. To dramatically reduce execution time for large n, it is
wise to recognize any a priori restrictions on the two pieces. Often, such a priori
restrictions are quite weak.

The x values for the Galton data, for example, may be arranged in nonde-
scending order. Below the estimated hinge, all cases must have one of the two
linear predictors; above the estimated hinge, all cases must have the other predictor.
This means that without loss of generality the constraint B1; <Bl;, ; i=2:n
may imposed which reduces the binary search space to size n + 1 rather than 2"*+!,
With this additional linear constraint added to the MILP, the Galton piecewise
linear estimation is solved in about 20 min rather than several days.

The MILP solution does not directly produce an estimate of the hinge. The
definition of the hinge in Eq. (2.3) may be used to produce this estimate from the
MILP solution. In the case where the two f vectors are of dimension two
(piecewise linear regression with a constant term and scalar x values), this solution
is a scalar value. Generally, when the two f§ vectors are of dimension p, the
solution of Eq. (2.3) will be a hyperplane of dimension p—1 as described by
Breiman (1993), there is no meaningful scalar hinge value for p > 2 and the hinge
may be defined as any scalar multiple of the difference between the two f§ vectors.
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Table 2.2 MILP on the X = (123.456) X = (12.3.456)

Hudson (1966) data y = (1,2,4,43,1) y = (1,2,4,7.3,1)
(Hudson 1) (Hudson 2)

Estimates

Por 10.000 14.500
P —1.500 —2.250
Boz —0.500 —0.500
Pz 1.500 1.500
SAD 1.000 2.250
Estimated hinge 3.500 4.000
Execution time (s) 0.043 0.037

At the time of the Hinkley (1969, 1971) and Hudson (1966) papers, linear
programming was in its infancy. Hillier and Lieberman (1970) noted at that time,
“Some progress has been made in recent years, largely by Ralph Gomory, in
developing [algorithms] for [integer linear programming].” Even 6 years later,
Geoffrion (1972) observed, “A number of existing codes are quite reliable in
obtaining optimal solutions within a short time for general all-integer linear pro-
grams with a moderate number of variables—say on the order of 75 ...... and
mixed integer linear programs of practical origin with [up to 50] integer variables
and [up to 2,000] continuous variables and constraints are [now] tractable.” It is
not surprising that Hudson and others in the mid-1960s were not looking at
alternatives to OLS.

At present, large MILP problems may be handled. Excellent software is
available that can handle MILP for problem sizes limited only by computer
memory limits. The next section reports some computational results. Appendix 3
shows how the MILP formulation is easily extended to more than one unknown
hinge.

2.4 Computational Results

Table 2.2 shows that solutions from the MILP formulation are correct for both
Hudson data sets. The recommended values of M from the second section were
used. There is complete agreement with Figs. 2.2 and 2.3 which were produced
with exhaustive manual search. The suggestion in the second section for reducing
the size of the binary search space to n + 1 = 7 was also incorporated.

Table 2.3 shows that the MILP solution is correct for the Galton data. Again,
the recommended values of M from the second section were used and reduced the
binary search space to size n 4+ 1 = 929. There is complete agreement with
Fig. 2.4 which required exhaustive manual search.
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Table 2.3 MILP on the

Galton

Galton data

Estimates

Por 67.5

B 0

Poa 33.9

Bra 05

SAD 1160

Estimated hinge 67.2

Execution time (s) 1339.28

2.5 Computer Software

Implementing the new algorithm depends on computer software. There is now
much available. Probably the most widespread is Solver in Excel on Windows and
Macs, but it is limited in the formulation to n = 48 cases unless upgrading to more
expensive versions.

LP_Solve is free and capable up to the memory limits of a computer; this
package may be imported into R, Java, AMPL, MATLAB, D-Matrix, Sysquake,
ScilLab, Octave, FreeMat, Euler, Python, Sage, PHP, and Excel. The R environ-
ment is particularly notable for its large number of statistical routines. GAMS and
other commercial packages are also available for the OLS formulation. The
LP_Solve program has an easy IDE environment for Windows, not requiring any
programming skills in R, SAS, etc. All computation in this section was done using
LP_Solve.

2.6 Conclusions

Piecewise linear estimation is important in many studies. This chapter develops a
new practical MILP algorithm for such estimation which is appropriate for
piecewise linear L1 and QR estimation; it may be extended to OLS estimation by
MIQP by changing the objective function from linear to quadratic.

Software is widely available to implement the algorithm. Some is freeware,
some is commercial, and some is usually present on most users’ Excel platform
(Solver), but the latter is quite limited in sample sizes.

Statistical testing of piecewise linear estimators with L1 and QR is not dis-
cussed in this chapter but is an important topic for future research. It is plausible
that in large samples, the asymptotic theory of L1 and QR will apply.

Since the piecewise linear L1 and QR estimates will always produce better (or
no worse) fits than standard linear models, it is suggested that all previous studies
using standard linear models could be usefully revisited using the approach.
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Appendix 1. Standard L1 or QR Multiple Regression

The estimation of a single multiple regression with L1 or QR is the following LP
problem:

min : i (Oeir + (1 — 0)e;).

i=1
Such that:
yi—Bxi=ei —ei; Vi
€t 2 0, Vi

e, >0; Vi,
fp  unrestricted.

In this primal LP problem, the x; are known p-vectors and the y; are known
scalar values. f§ is a p-vector of decision variables. For L1, choose 8 = 0.5; for QR
choose any 0 € [0, 1]. This well-known LP formulation has 2n + p decision
variables and n linear equality constraints. For this primal LP formulation, duality
theory applies and the dual LP problem is:

max : Z Aiyi.
i=1
Such that:
X'7.=0
0—1§)»,‘§05 Vi.

This LP problem has n decision variables, p linear equality constraints, and
n bounded variables, so it is usually a bit faster to solve for large n. Importantly,
the optimal values in A may be associated with important test statistics developed
by Koenker and Bassett.

Appendix 2. L1 or QR Piecewise Multiple Regression
with Known Hinges

With one known hinge, Eq. (2.2) describes the predictor and Eq. (2.3) defines the
hinge. Let x be a p-vector of known values of independent variables. Typically, the
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first element of x is unity for a constant term in the multiple regression. The hinge
given by Eq. (2.3) will then be a p-vector, H, which is here assumed known. Define
X; x<H
x—H; x>H
of x and H. Since x and H are known, z has known values. This results in the LP
problem:

the p-vector z = { } with individual calculations for each element

min :

(Oeis + (1 — 0)e;_)

n
i=1

Such that:
yi— Bixi— Przi = eir —ei; Vi
€+ 2 0, Vi

e Z 0; Vl
B1, B> unrestricted.

For more than one known hinge, this LP can be easily extended; simply add
additional f vectors and additional z vectors for each additional hinge to the
formulation.

Appendix 3. L1 or QR Piecewise Multiple Regression
with Unknown Hinges

The solution for H = 1 hinge and two pieces is clearly found with the MILP
formulation in the second section. Let this solution be denoted by y; = ¥(1);; Vi
[with notation changes to Eq. (2.7)] which chooses one of the linear pieces
(315, y2i) as the regression for each i.

For H = 2 hinges, there are three possible pieces (¥1;, ¥2:, ¥3:). This reduces to
a choice between one of two linear pieces (§3;, $(1);) and a second set of binary
variables and constraints such as Eq. (2.7) (with notation changes) enforces this
choice to solve the problem for H = 2. This solution can be denoted by y(2),; Vi.

This inductive argument can be continued for H = 3, 4, etc. For any number of
hinges, an MILP formulation can be created with H(n + 1) binary variables, the
main determinant of computing time.
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