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by
Nicholas Economides
I compare the incentives firms have to produce individual components
compatible with components of other manufacturers instead of "systems" composed
of components that are incompatible with components of competing manufacturers.
I show that, even in the absence of positive consumption externalities
("network" externalities), prices and profits will be higher in the regime of
compatibility. Equilibrium total surplus could be higher in either regime.

Both regimes overprovide variety compared to the surplus-maximizing solution.

In today's environment, many products are complex, specified by a long
array of characteristics. Part of the decision of the firm is to choose if it
should break this long array of features into two or more smaller parts, and
produce the products corresponding to the smaller arrays, instead of the product
that embodies the full array. We will call the products that correspond to
these smaller arrays components, and the product that corresponds to the full
array a system. Note that components are by their definition gomglements.1

Components produced by different manufacturers are compatible if it is
feasible for the consumers to combine them costlessly into a working system. In
this paper we will assume that there are two components which make up a system.
We will discuss competition under full compatibility (wvhen components produced
by all firms are compatible with each other) and under incompatibility (when no
components produced by different firms are compatible and no hybrid systems can

exist).2 Assuming availability of the same technology to all firms, we show two
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very strong results. First, that, for any given number of firms n, equilibrium

rice re under compatibility. Second, that, for given n, equilibrium

profits are higher under compatibility. These results are established although

we explicitly rule out positive consumption externalities (network
externalities) that would naturally lead to similar conclusions.3

The intuition behind the pricing result is quite simple. Suppose that a
firm faces the same demand function in both environments. Suppose that a firm
cuts the price of its component #1 under compatibility by Ap and similarly
shaves the price of its system by Ap under incompatibility. In the regime of
compatibility the demand response is in units of component #1, while in the
regime of incompatibility the demand response is in units of a system composed
of component #1 and component #2. Thus, an equal price cut will lead to a
higher value response under incompatibility. This signifies that the residual
demand under incompatibility is more elastic. Therefore competition is more
intense under incompatibility, and lower prices will prevail in that regime.
This argument is refined in section IV to take into account natural differences
in the residual demand faced by a firm in the two regimes. Since the number of
available systems (component combinations) is much larger under compatibility,
the "market area" of any system is significantly lower in this regime. We show
that this leads to even lower priceé under incompatibility.

Higher profits under incompatibility for any given number of firms n
implies that the free-entry equilibrium number of firms will be higher in that
regime. A larger number of competitors intensifies competition, and in general
may reverse the comparison of prices across the two regimes. However, we show
in section VII that for a well-established class of demand and transportation
cost functions the price comparison is preserved under free entry.

The organization of the paper is as follows. Section I presents the basic

model of differentiated products in two dimensions of variety. Section II
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establishes the equilibrium in the regime of»compatibility. Section III
describes the equilibrium under incompatibility. In Section IV I compare the
equilibrium prices of the two regimes. In Section V the equilibrium profits of
the two regimes are compared. Section VI discusses free entry. Section VII
analyzes an important special case where demand is inelastic and transportation
cost functions are quadratic. In this section I also characterize optimal
diversity and compare it with the free entry equilibria of the two regimes. In

section VIII we conclude.

1. The Set-up

Suppose that a gystem is composed of two components, #1 and #2. We assume
that each component is of no value to a consumer unless he also possesses a
complementary component. Consumers have differentiated preferences over the
features of each component, and therefore over the features of a system. Two
situations are envisioned. 1In the first, there is full compatibility. Any
component of type 1 is compatible with any component of type 2, and together
they make a feasible system. This can be achieved when there are known and
accepted standard specifications to which all firms adhere. In an alternative
environment there is complete incompatibility. No component of type 1 can be
combined with a component of type 2 unless they are manufactured by the same
firm.4

A differentiated good is a two-dimensional object (xl, x2), where Xy is its
specification in the dimension of component #l, and X, is its specification in
the dimension of component #2. Specifications of goods lie in a two-dimensional
space of characteristics. Consumers have single-peaked and diverse preferences

. 5 .
in the space of characteristics. Thus, consumers can be grouped according to

the specification they like most, and can be thought of as residing at their
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most preferred point. Products at distance "d" from the most preferred position
of a consumer are valued at f(d) less than the most preferred good, where £(d)
is an increasing and convex function passing through the origin.

Except for the differentiated products, there exists only one other
"outside"” good that represents all other goods (Hicksian composite good).
Formally, the total utility of consumers whose most preferred bundle is z =
(zl, z2), endowed with m units of the outside good, when they buy q units of
product "x", is

U (q, x, p,m = m+V/I(q, ;),

where

A

Vz(q. p) = k(q) - qp

is net the utility from the consumption of the differentiated product.

p(p, x, z) = p + £(|x - z[)
is the utility cost of a unit of X to a consumer of type z. In the locational
interpretation, ; is the "delivered price" to a consumer "residing" at z. k(q)
measures the total willingness to pay for q units by consumers residing at z.6
For expositional purposes we define the composition of the transportation cost
function £(.) and the distance function .| as 8C.):
g(a) = £(fa]).”

Consumers decide which product to buy, and how many units of it. All
consumers located at z buy the same product, the one that minimizes ;.
Maximizing the utility function Uz with respect to quantity, q, implies

; = k'(q),
and therefore the demand of consumers located at z is q = k"l(;) - X(;).
Consumers are distributed uniformly according to their most preferred

variety on a surface of a sphere that has a great circle of length 1. Consumers

receive utility from the consumption of a "system", that is from a pair of
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components of types #1 and #2. We assume that the technology of production is
the same for all firms, and consists of constant marginal costs for each
component and set-up costs F1 and F2 for components #1 and #2 respectively. Ve
assume no economies of scope so that the set-up cost for the production of
systems is F = F1 + F2. Below we use the symbol p to denote the differential
of price over and above constant marginal cost. We will call them priées, as if

marginal costs were zero, but the equivalence with the case of positive constant

marginal cost is obvious.

I Equ jum Under Compatibilit

Consider first full compatibility. Let n firms produce each component.
Let component #1 be located on the vertical axis, while component #2 is located
on the horizontal axis. See figure 1. We assume that single-maker systems
(each composed éf components made by the same firm) are located symmetrically on
the diagonal at positions ... (-4, -d), (0, 0), (4, d), ... Hybrid systems are
composed of components made by different firms. They lie on the nodes of a grid
of width and length d. A firm derives profits from sales of component 1
(horizontal demand HD) and from sales of component 2 (vertical demand VD).

Next we discuss a symmetric equilibrium. Let all other firms, except firm
1, offer component #l (#2) at price ﬁl (ﬁz). Firm 1 quotes prices 12} and P,
respectively for components #1 and #2. The demand for its component #1, HD,
comes from consumers who buy the other component from any of n-1 other firms as
a part of a hybrid system, and from consumers who buy it as a part of the
single-maker system sold by firm 1. Consumers in the first category are located
in n-; areas like the shaded box in figure 1. The demand for component #l in
each box can be written as D(p1+ﬁ2, ﬁ1+ﬁ2; d), where p1+f)2 is the total price

consumers pay for the hybrid system they buy, and §1+§2 is the total price of a
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competing neighboring hybrid system. The parameter d denotes the extent of the
market, i.e. the horizontal width of the shaded box.

In general D(pj, p; A) denotes the demand of firm j quoting price pj while
all other firms quote p, when all firms are equispaced at distances d on a
straight line, and consumers are uniformly distributed according to their most
preferred products on a strip of width A across the line of location of firms.
See figure 2. We call D(pj’ p; A) the "standard demand in a market of width A".

The demand for component #1 from consumers that buy both components from
firm 1, located in figure 1 in the square of the dotted lines around (0, 0), is
D(pl+p2, ﬁ1+p2; d). Therefore total demand for component #l is

HD(p,, Py, Py» Py) = (m = 1ID(P+B,, P +Pyi d) + D(Py+P,, Py+Pyi ).
Similarly, the demand for component #2 is

VD(py, Py, Bys By) = (m - L)D(By+p,, P+Py d) + D(Py+p,. Py¥Pys 4).
Therefore, the profit function of firm 1 is,

Hc(pl. Py, By» Pp) = P{HD + pVD - Fy - Fy.

Maximization with respect to Py implies

0 = IS(py, Py. Py+ Py) = HD + py(n-1)Dy (P1+by, By+Pyi &) + PyD1(Py+P,y, Py¥Py @)
+ Py (D) (P1+P,, P*Pyi d) + Dy(P+Py, Py+Pyi D1,
where subscripts of D and HC denote partial derivatives. At a symmetric
equilibrium Py =Py = ﬁl - 52 = p(d), where p is expressed as a function of the
width of the market. Substituting in the first order condition and dividing by
n we deduce that ﬁ(d) solves,
D(2p, 2p; d) + DD (2p, 2p; d) + P[Dy(2p, 2p; ) + D,(2p, 2p; d))/n = 0. (D)
Equilibrium price for a system under compatibility 159
p¢ = 2p(a).

Equilibrium profits are

C* Cc, C C C o c.,C C
- =0(p /2, p/2,p/2,p/2) =pD(p, p; d)yd-F.



III. Equilibrium Under Incompatibility

Let there be n "systems" available, each comprised of a component of type 1
and a component of type 2. Any component of type 1 is incompatible with any
component of type 2 which is not made by the same firm. Thus, under
incompatibility the competing products are "systems" rather than components.
Competing products (indicated by x) are located equidistantly on a diagonal of
the grid in figure 1. Figure 2 for A =1 shows the locations of the systems,
located d apart, from a point of view rotated 45°. The perpendicular "width" of
the area where consumers are located is 1. Thus, firms face "standard demand"
in a market of width 1.

When all other firms sell a system at p, the profits of a firm quoting p
are

' (p, ) = oD, B; 1) - F.
Assuming concavity of HI in p, maximization implies
M (p, 3) = D(p, B; 1) + pD(p, B; 1) = 0.
At a symmetric equilibrium p = p(l), where p is expressed as a function of the
width of the market. p(l) solves
D(p, P; 1) + PD (P, P; 1) = 0. (2)
The price of a system at equilibrium is
Pt = B(1),
and equilibrium profits are

I* 1,1 1 1., 1 I
I =0 (p,p)=pD(P,p;: 1) -F.

IV, Comparison of Equilibrium Prices

Comparing equations (1) and (2) we see two differences. First, 2p and p
enter the first two terms of (1) and (2) in slightly different ways. The nature

of competition is crucially determined by this difference as seen below.
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Second, the width of the market under incompatibility is 1, while under
compatibility the problem is expressed in terms of standard demand in a market
of width d. This second difference is a consequence of the fact that available
product combinations lie much closer to each other in the specification space
under compatibility than under incompatibility. The effective extent of the
market differs across the two cases.

We discuss the two differences separately. To abstract from the second one
we consider a fictitious market structure under incompatibility. Let firms be
located d apart in a market of width A. When all other firms charge p, a firm
charging p has profit function

if(p, 5; &) = pD(p, B; &) - F.1°
The first order condition at a symmetric equilibrium is
D(P, P: A) + PDy(P, P; A) = O. ' (2")
Let its solution be E(A). We are interested in the fictitious market of width
A = d, so that the effective extents of the markets are equal under
compatibility and incompatibility.

We now show that |

pC = 25(a) > B(@) (3)
so that, in markets of equal extent, firms have higher prices under
compatibility. Evaluating Hg at pl =P - 51 - 52 - E(d)/Z. and substituting
D(ﬁ, B; A) from (2') at A = d yields

1G/2, $/2, 5/2, 3/2) = BI(L - WD (B, B @) + D,(B, B D1/2 > 0.
This is positive because D1 is the negative slope of the demand and 02 is

positive because the demand increases in the price of the substitute good. From

4
(1), we have Hg(ﬁ, ﬁ, P, ﬁ) = 0. Assuming X II1
j=1

< 0, a common assumption that

3

guarantees uniqueness of the non-cooperative equilibrium, (3) follows
immediately. Therefore, when the markets are of the same effective size, prices

are higher under compatibility.
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The intuition for this result is simple. Starting from the same levels of
prices and demand, consider a price increase in one component that produces the
same decrease in demand under both compatibility and incompatibility. Under
incompatibility the loss of profits is higher because systems sales are lost
rather than sales of one component. Thus, profits are more responsive to price
under incompatibility than under compatibility. This is another way of saying
that the residual demand facing a firm is more elastic under incompatibility.
As a consequence, firms are going to choose lower prices under incompatibility.

The situation is reminiscent of Augustin Cournot's (1927, pp. 99 - 103)
price-quoting monopolists in complementary goods.11 Cournot assumes that one
unit of brass is produced by costlessly combining one unit of copper and one
unit of zinc. When the demand for brass is D(p), the symmetric equilibrium of
two competing monopolists in zinc and copper is described by

D(p) + pD'(p)/2 = O. (©)

However, a monopolist of both zinc and copper will sell at the price that solves

D(p) + pD’(p) = 0.12 ")

Equation (C) resembles equation (1) (p = 25) except for its last term, while
equation (C') resembles (2') at A = d (p=- 5). Cournot observes that "the root
of equation (C) is always greater than that of equation (C') ...". The
intuitive reason is not given by Coﬁrnot, but it is exactly the same as the one
given above. A drop in the price of one of the ingredients (say zinc) increases
equally the demand for zinc in the case of independent monopolists as it
increases the demand for both zinc and copper in the case of a single monopolist
of both metals. Therefore equal price reductions result in a larger revenue
increase for the "fused monopolist". Facing a more elastic demand, the "fused

monopolist” chooses lower prices than the two independent monopolists.13
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In view of equation (3), to complete the comparison between pc and pI, we
now compare 5(1) and E(d). This comparison is necessary because the distances
between neighboring products under compatibility are significantly lower than
under incompatibility. We find conditions such that p(A) is decreasing in A.
Then pI = p(l) < p(d) and combining with (3) we will have pI < pC. p(A)
decreasing in A mcans that as we increase the width of the market perpendicular
to the axis of location of the firms the resulting equilibrium price decreases.
This means that competition for customers located further away the firms is more
intense than for consumers located closer to the axis.14

As in every model of locational differentiation, here‘too when a firm
increases its price it loses customers on two margins. In the first margin
customers are lost to neighboring firms as the boundary of the market area of
the firm moves closer to its location. In the second margin, customers are lost
to the "outside" good as they decide to switch from consumption of a
differentiated product to consumption of the homogeneous good. It is useful to
analyze the effects of the increase in the width of the market strip separately
for each margin.15 In subsection A we analyze the effects of the first margin
which are determined by the locational variation of the boundary dividing the
market areas of the firms. In subsection B we analyze the effect of the second

margin which depends on the elasticity of demand generated by consumers

"located" at any point z.

A. Inelastic Demand

We start the analysis of the first margin by assuming that the demand is
inelastic so that the second margin is zero. Let all consumers buy one unit of
a differentiated product.16 Consider the boundary dividing the market areas of

two neighboring firms. Normalizing the firms’ locations at (a, 0) for firm 1
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and at (-a, 0) for firm 2, this boundary is the locus of z = (zl, 22) that
fulfill
g(a + z, zz) - g(a - zy, 22) - Ap = 0,
where Ap = Py - P,- When firms quote equal prices, the boundary dividing their
market areas is the perpendicular bisector of the segment connecting the
locations of the firms.17 As firm 1 increases its price, the boundary dividing
the market areas moves to the right, closer to the location of this firm, and
dzl/dAp - 1/[g1(a + 2z, 22) + gl(a - 2Zq, z2)] > 0,
where subscripts of g denote partial derivatives. The shape of the boundary for
unequal prices determines the intensities of competition at varying distances
from the axis of locations of firms.

Consider first the case where the boundary moves parallel to itself as
prices change, remaining perpendicular to the segment connecting the locations
of the firms. Then, a doubling of the width of the strip doubles the demand,

D(P, P; A) = A-D(p, P; 1). (4)
As a firm increases its price, the market boundary moves towards it remaining
perpendicular to the axis of locations of the firms. The loss of customers is
measured by Dl(p, E; A), and it clearly doubles as the width doubles,

D (P, B; A) = A'D (P, P; 1). (5)
Since both the demand and its margih are proportional to the extent of the
market, the equilibrium price is independent of the size of the market.
Combining (5) and (6) implies that

D(F, $; A) + Py (P, B; A) = A[D(B, P; 1) + BD; (P, i )]
Therefore (2') is equivalent to (2), and
p(1) = p(A) (6)

for all A, and in particular for A = d. Combining (3) and (6) yields

o0 = 25(d) > p(d) = p(1) = pl. B
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Therefore the price of a system under compatibility is higher than under
incompatibility.

Since

dzzl/dApdz2 - -[glz(a+zl, z2) + glz(a-zl, 22)]/[gl(a+zl, zz) + gl(a-zl, zz)]z,
(8)
this case of parallel movement arises when the cross partial derivative with
respect to coordinates is zero: Bi1p = 0. This is the case when the disutility
of distance is linear in the square of the Euclidean distance,
g(x, ) = AlGxy - ypP* (- y%L,
where A is a positive scalar. Such a specification has been used in
one-dimensional settings by Claude D'Aspremont et al. (1979) and Nicholas
Economides (forthcoming). The same boundary movement results when the
transportation cost function is linear in the "block distance™ between points,
g(x, 3) = Allx; -yl + |x, - y,l1,
A scalar. This transportation cost function is used extensively in urban
economics. See B. Curtis Eaton and Richard Lipsey (1980).

Alternatively, the boundary can be concave towards the firm that raises its
price above the opponents’. See figure 3. Let consumer A at (zl, 22) be
indifferent between buying from either firm. Suppose Py > P, so that zy > 0.
Consider the choice of consumer B located on the vertical through A at distance
d22 closer to the axis of locations of the firms. When he buys from firm 1, he
receives approximately g2(21 - a, 22)-d22 more utility than the consumer at A.
Similarly, when he buys from firm 2, he recelves approximately
g2(zl + a, zz)-dz2 more utility than the consumer at A. He prefers to buy from
firm 1 when g2(z1 - a, zz)-dz2 > g2(21 + a, z2)-d22. This is implied from 819 <
0 because zy > 0 and a > 0. Thus, the boundary is concave towards the

higher-priced firm if and only if the cross partial derivative of the
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transportation cost function is negative.ls. A boundary that bends more and more
towards the axis of location of the firms as the higher-priced firm increases
its price implies that, as the higher-priced firm increases its price, more and
more consumers are lost far away from the axis than close to it. Thus
competition is more intense further away from the axis. This implies lower
equilibrium prices as the width of the market increases,19 i.e.,

P(24) < p(A).
Since d < 1, using (3) it follows that
o€ = 25(a) > B(@ > B = p’. 9
Therefore the inequality between pC, and pI is stronger here than in the case of
parallel boundary movement (equation (8)).

Transportation cost functions in the family

c 2 ¢ 1/t .
g (x, y) = A} Z Ix1 - yil' , t e (l, ), A >0,

which include the Euclidean distance function for t = 2, X = 1, fulfill 81 <0
and therefore result in a boundary that is concave towards the higher-priced
firm.20

To formally state the results of the last two sections we assume:
Al: The cross partial derivative of the transpo tation cost function (defined
on _coordinate differences) is non-positive

This condition is sufficient to insure that the boundary is concave towards
the firm that quotes the higher price (or stays perpendicular to the axis of

location of the firms).

Proposition 1: When consumers have inelastic demand functions, and_ the

transportation cost function follows assumption Al, prices are higher for all

firms under compatibility.21
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B, Ge

We now analyze the effects of doubling the width of the market on the
equilibrium price because of the substitution of the differentiated product with
the "outside” homogeneous good. Above, we named this the "second margin" of the
demand.

We compare equilibrium prices between two markets of widths A and 2A under
incompatibility. Demand in a market of width A is generated by typical
consumers located at z = (Zl’ zz) with z, e [0, A/2], and by their symmetric
counterparts in [0, -A/2]. In the following discussion we disregard the latter
by utilizing symmetry. In the "upper part® of a market of width 2A, demand is
generated by consumers at 2z as above and by consumers located at z' = (zl, z,
+ A/2). We can write the profit generated by consumers at z as

- pX(p + g(2))
and the profit generated by consumers at z' as
n» = PX(p + 8(z')).

Since z' is farther away from the location of the offered system than z is,

there exists a non-negative price p such that
X(p + g(2')) = X(p + p + g(=)).7
Therefore 7. can be written as B

x (P, P) = PX(p + p + g(2)).

Note that when p = O, LA . It is as if the marginal cost of goods
delivered at z’ were higher by p than of goods delivered at z. We can now

utilize the standard result that "when the demand is concave, increases in the
constant marginal cost decrease the differential of the (monopolist’'s) price
over marginal cost". Thus, we assume,

A2: The demand for consumers "residing" at any point of the space is downward

sloping and weakly concave.
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Under A2, the price that maximizes L is higher than the price that
maximizes “z"23 Competition is more intense further away from the axis of
location of the firms. Since a firm's profits function is the summation of wz's
when the width of the market is A, while it is the summation of xz's and nz,’s
when the width of the market is 2A,24 the equilibrium price will be higher for
the smaller width A,
p(24) < p(A).
It follows that
p(d) = p(l/m) > p(1), (10)
and, combined with (3), |
pC = 25(d) > B(@) > F(V) =o' (11)
Therefore, ignoring the effects of the movement of the boundary, and
concentrating on the variation of Consumption of old customers, under A2 the
equilibrium priées are higher in the compatibility regime. We have shown in the
previous section that when transportation cost functions follow Al, and when old
customers do not change the level of their consumption, then equilibrium prices
are higher under compatibility. Combining the effects of the two margins we
have:
Proposition 2: When transportation costs follow Al, and consumers' demand
functions follow A2, equilibrium grices are higher in the regime of full
compatibility.

V., Comparison of Profits
We now compare equilibrium profits under the two regimes. Note that the
profits functions under symmetry in both regimes can be written as special cases

of one function. Let

¥(p; A) = pD(p, p; A)/A - F.
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It is immediate that
I
1(p/2, p/2, /2, p/2) = ¥(p; d), T (p, p) = ¥(p; 1).
Then the equilibrium profits under compatibility and incompatibility are

respectively,

C* I*

1 - wp% @, 1 - vl b, (12)
In the comparison of equilibrium profits, there are two differences to
recognize. First, the maximum distance consumers travel under compatibility is
significantly lower than under incompatibility. Thus, ¥ is evaluated at d under

compatibility, and at 1 > d under incompatibility. Second, equilibrium prices

are different. The difference in profits is

C
P
I* C* 1 I
I - = [Wps 1) - ¥ )] - [ ¥ (p; d)dp. (13)
I
P
Consider a doubling of the width of the market from A to 2A under
incompatibility. Because consumers in the new area are located further away
from the position of the available product, the "delivered price" is higher for
them. Since demand is (weakly) downward slopping, as the market width doubles,
the demand expands but does not double. Therefore,
D(p, p; d)/d = D(p, p; 2d)/(2d) = .... = D(p, p; 1).
Hence,
*
wpl; @) = wpl; 2d) = ... = w(pt: 1) ~ 1t (16)
i.e. for fixed prices firms make lower profits as the width of the market
expands. The term in brackets in equation (13) is non-positive.
* *
To complete the proof that HI is smaller than HC it is sufficient to show
I C C* c I
that ¥(p"; d) is less that ¥(p ; d) = NI . Since p > p , and assuming that ¥
is concave (which is the sufficient condition for the uniqueness of the

equilibrium and its global stability) it is sufficient to show that Wl(pc; d) >

0. Using (1) we have
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Wl(pc; d) = pc[(n - 1)(Dy +Dy) + nD,]/(2nd),
where the subscripts denote partial derivatives. D1 + D2 is the effect on
demand of firm 1 of an equal price increase by all firms. Such an increase
leaves the boundaries dividing market areas unaffected. Therefore D1 + 02
measures the loss of consumers located within the market area of a firm to the
"outside" good. Thus D1 + D2 < 0. D2 > 0 is the change in the demand when the
opponent increases his price. Since the two terms have opposite signs, the sign
of Wl(pc; d) is ambiguous. Wl(pc; d) will be positive for a relatively
inelastic demand where D1 + D2 is small and overshadowed by the positive D2. We
assume,
A3: The demand is relatively inelastic so that nD2 =z -(n - 1)(D1 + Dz).
Then

C
P c I
J v (p; d)ydp = ¥(p7; &) - ¥(p7; d) > 0. : (15)
I
%
Combining (14) and (15) yields

I* C*

- vl b s el O <ve® @ -1
Therefore profits will be higher in the regime of compatibility.

Note that condition A3 is by no means necessary. Even when it is violated,
C

P
it is still possible that W(pc; d4) - W(pI; d) = f Wl(p; d)dp > 0, since by
1

P
utilizing (2') we have that Wl(pI; d) = pID2 > 0. Further, the first negative
term in (13) could outweigh the worst case when W(pc; d - W(pI; d) < 0.
Proposition 3: Under assumptions Al., A2 and A3, firms make higherx profits

under compatibility.

Thus, we have two very strong results. Under general conditions that are
far from pathological, and in the absence of "network" externalities, firms have

higher equilibrium prices and profits in the regime of compatibility. Clearly
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our results can easily be generalized to the analysis of systems that are

composed of three or more components.

VI, Free Entry

The analysis this far has been done under the assumption of a fixed number
of competing firms. An entry stage can be added as a first stage, and price
competition can be viewed as a second stage. In this framework, the fixed cost,
F, is paid in the first stage and considered bygone in the second stage. Since
for any number of firms, n, profits under incompatibility are lower than under
compatibility, free entry will result in a smaller number of active firms under
incompatibility:

n <n.
This implies that firms would locate their products closer under compatibility:

a = 1/n€ < 10! - ab.

Even with the number of firms equal, the minimal distance a consumer had to
travel (on the average) to an available product location was lower under
compatibility, where products were available on a grid rather than on a line.
Under free entry, under compatibility, consumers have to travel even less to
find an available combination of features.

Prices fall as competing firms come closer in product specification. Since
under free entry firms will be located closer under compatibility, the
inequality between prices in the two regimes (derived when the number of firms
was fixed) will not necessarily be preserved to the free entry conditions. The
following special case shows that under typical assumptions prices will be

higher under compatibility even when free entry is allowed.



Let all consumers buy one unit of a system and let the transportation costs
be quadratic in the Euclidean distance, g(a) = a12+ a22. This is an important
special case that has been discussed in detail in the differentiated products
1iterature.25 In a market of width A (see figure 2) the standard demand
generated for a system sold at price pj when other firms charge p is

D(py, P A) = a@ +p - pj)/d.26
Under compatibility A = d and hence
D(py + Byr By + Byi @ = & + By - Py
Equation (1) yields the equilibrium price,
oC = 2p = 242
Under incompatibility A = 1 and hence
D(py, B3 1) = (& + 5 - B/
Equation (2) yields the equilibrium price,
pI - d2.
Thus, when the same number of firms are active, the price of a system under
compatibility is twice as high as under incompatibility.

*
Equilibrium profits under compatibility are HC - 2d3 - F, while under

*
incompatibility they are HI - d3 - F. As functions of the number of active

*
firms in the industry, n = 1/d, they can be written as HC (n) = 2/n3 - F and
*
HI (n) = l/n3 - F. At a free entry equilibrium firms have entered until profits
are zero. Thus, there are nC - (2/F)1/3 and nI - (1/F)1/3 active firms

under compatibility and incompatibility respectively. As proved in generality

earlier, nC > nI. The implied equilibrium prices are PC(nC) - 21/3F2/3 and

PI(nI) - F2/3. Therefore under free en there are a oximat 6% more
firms in the regime of compatibility and prices are a roximat 6% h ‘ner.27
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The comparison between the surplus generated in each regime is not obvious.
Since profits are zero in both regimes it is sufficient to look at consumers’
surplus. Under compatibility, for any fixed number of produced goods there is a
larger number of available combinations (systems); this tends to make consumers’
surplus larger under compatibility because it reduces the distance consumers
"travel”. Also, under compatibility the number of active firms is larger. This
contributes positively to consumers’ surplus under compatibility for the same
reason. However, prices are higher under compatibility, and this tends to
reduce consumers’ surplus in this regime. Thus the direction of the comparison
cannot be decided a priori. We now calculate and compare ﬁotal surplus at the
equilibria of the two regimes.

In a market of width A (see figure 2) the surplus that accrues to consumers

who buy a particular system at price p is

d/2 A/2 2 2 2 2
cs(a, &) =4 [ [ (k-p-z;" - 2z,7) dz, dz; =Ad(k -p-A/I2 -d /12).
0 0

Under compatibility, the market area of each system is a square of dimensions
d=1/n by A = 1/n, and there are n2 such market areas. Thus total consumers'’
surplus under compatibility is

csC(n) = nl-es(l/m, 1/n) = k - p - 1/6n°.
Profits of a typical firm are II(n) = p/n - F, so that total surplus is

sC(n) = csC(n) + ni(n) = k - nF - 1/6n°. , (16)

Under incompatibility, the market area for each system is a parallelogram
of dimensions d = 1/n by A = 1, and there are n such market areas. Thus
consumers’ surplus is
cslem) = n-es(l, 1/n) = k - p - 1712 - 1/12n%,

Profits of a typical firm are II(n) = p/n - F, so that total surplus under
incompatibility is

sln) = csl(n) + nl(n) =k - oF - 1/12 - 1/12n°. (17)
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A direct comparison of (16) and (17) reveals that SI(n) < SC(n), as
expected, since for any fixed number of firms there are on the average more
product combinations available to the consumers under compatibility and they
travel shorter distances. However, the comparison of actual realized surplus at
equilibrium can go either way since the equilibrium numbers of firms differ,
nC » nI. See figure 5. Substituting nC and nI in (14) and (15) we derive the
realized total surplus at the two equilibria,

$Cnly =k - (131222373, sTal) -k - a3’ - 112

Total surplus is higher under compatibility iff

F<1/[132Y3 - 1)1%/? = 0.04738,

which corresponds to nI 2 3 or nC 2 6. Thus, e compati ee-entr
equilibri s socially pre ed t e free-entyry equilib under
incompatibilit and on xed costs are small, or equivalently if and

only if the number of active firms at the compatibility equilibrium is larger or
equal to six.

A planner able to choose the number of active firms will always choose
compatibility because it makes available all the hybrid systems to the great
benefit of consumers without loss to the collective interests of the producers.
Total surplus under compatibility (equation (16)) is maximized at ng - (1/3F)1/3
active firms, a number that is smaller than both the free entry equilibrium
number of firms under compatibility, nC - (2/F)1/3, and under incompatibility,
nI - (1/F)1/3. See figure 5. We observe an over-abundance of varieties in both
regimes compared to optimality. This result is in the same vein with the

traditional result in markets for substitute products differentiated by one of

their characteristics as in Steve Salop (1979) and Economides (forthcoming) .
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VIII. Concluding Remarks

Two factors were crucial in establishing our results. First, the
elasticity of the (residual) demand the firm faces when it competes in
components is lower than when it competes in systems. Second, the extent of the
market is larger under incompatibility. A direct consequence of the first
factor is the fact that prices are higher under compatibility. This result is
strengthened by the difference of the extents of the markets when the demand
function at any "location" is concave. The first factor is the fundamental
driving force of the result. The intuition behind it is not confined to the
specific model of differentiated products, and can be used in any situation
where complementary goods may be produced either independently by two or more
oligopolists or by the same oligopolist.

The analysis of this paper points to the desirability from the point of
view of the firm of a regime of full compatibility. Arguments pertaining to
positive consumption ("network") externalities advanced by Michael Katz and Carl
Shapiro (1985) and others result in the same conclusions, albeit for different
reasons. Why, then do we sometimes observe products sold as systems that are
not decomposable into components (such as the original Macintosh by Apple), or
being composed of incompatible components (VHS vs. Beta video cassettes and
players)? The model presented here assumes that the same technology of
production of both components is available to all firms, and that there are no
cost savings from the combination of both components as a system. Our results
do no necessarily carry over to a situation where one firm has a technological
advantage in the production of one of the components or a strategic advantage in
the game. Further, when the technological advantage comes from proprietary
information, a system-producing firm may be unwilling to disclose the

specifications that could make the linkage of two components feasible, because
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such a disclosure could make some of the proprietary information public and lead
to early imitation. This reasoning may explain the undecomposable design of the
original Macintosh as well as the absence of close imitations (clones). 1In an
asymmetric setting a firm can sometimes introduce a new incompatible product
attempting to establish a new industry "standard", and as a consequence
establish itself, at least in perception, as the leader of the industry. It
seems that attempts to establish leadership in the field were primary
considerations in the introduction of competing standards in the video recorders
industry. The analysis of compatibility under asymmetric strategic and
technological conditions is still undeveloped.

Our model compares two extreme situations of full compatibility and full
incompatibility. Since we do not analyze situations where some firms produce
compatible components and some do not, we cannot claim that in geheral firms
acting non-cooperatively will choose mutual compatibility. However, in the
special case of duopoly, each firm has the ability to force incompatibility in
the industry. Then, the two-stage game, where firms choose between
compatibility and incompatibility in the first stage and choose prices in the
second stage, has the compatibility regime as a unique perfect equilibrium.

This is an immediate consequence of the fact that profits are higher under
compatibility.

Recent work (Economides (1988)) has shown that this tendency towards full
compatibility holds even when firms have the opportunity to vary the degree of
compatibility of their components with the components of the competitor. The
degree of compatibility is measured by the cost of an interface that is required
to make a hybrid system function. Economides (1988) shows that in a two-stage
duopoly game, where the degree of compatibility is chosen in the first stage,
and prices are chosen in the second stage, the perfect equilibrium is at full

compatibility, i.e. at zero interface cost.
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Footnotes
* I thank Tina Fine, Andreu Mas-Colell, Roy Radner, Susan Rose-Ackerman, Hal
Varian and two anonymous referees for their comments and suggestions. Research

support from the National Science Foundation is gratefully acknowledged.

1. It should be clear that a system cannot be broken into arbitrary components,
and it may be impossible to break some systems into components. However, there
are many examples of products that can be broken into components. Stereo
systems can be broken into three components: receiver, amplifier and speakers,
or alternatively into two components: receiver-amplifier and speakers. A
personal computer can be broken into two components, monitor and central unit,
and this is in fact the way most non-portable MS-DOS systems are sold.
Alternatively, personal computers can be sold as systems, as was the original
Macintosh by Apple. Indeed, personal computers are typically made of a number
of compatible components, including the "mother-board", disk drives, disk drive
controllers, video output card, input/output card, etc. It is an interesting
fact that in the first PC line, IBM had itself manufactured only the

"mother-board", and limited itself to the assembly of the other components.

2. Carmen Matutes and Pierre Regibeau (1986) discuss a similar duopoly model.
In their model, consumers are located on a square according to the peaks of
their utility functions. Consumers at every position have a linear demand
function of the delivered price. Transportation costs are proportional to the
sum of the coordinate differences (block metric). In the regime of
incompatibility, the two systems are located at the opposite corners on the

diagonal of the square, while, under compatibility, systems at all four corners
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are available. Using direct computation, they show that prices and profits are
higher in the regime of compatibility. Our paper shows that prices and profits
are higher under compatibility for general consumers’ demand and transportation
cost (disutility of distance) functions. Our method of proof is different. We
express the demand a firm faces in each regime in terms of a "standard demand in
a market of width A" (see section II) and thereby we are able to compare prices
and profits across regimes without using a specific functional form for
consumers’ demand at each location or for their disutility of distance. We
describe competition among n firms, and in section VII we show that higher
prices and profits in the compatibility regime are maintained under free entry

conditions.

3. Consumption can create a positive externality when it enhances the value of
a complementary good that has some public good features. For example the
purchase of a VHS video tape player increases the value of the library of

VHS films, which in turn increases the value of another VHS player unit. 1In
that context, producing a product that is compatible with large groups of other
products is desirable because of the direct enhancement to its value afforded by
the network externality. 1In this paper we abstract away from any such positive
consumption externalities. See Katz and Shapiro (1985) for an extensive

discussion of network externalities.

4. An intermediate situation could result if components of type 1 made by
different firms do not necessarily follow the same specifications, but the
manufacturer of one of the components provides free of charge an interface which
allows éompatibility. This case opens the possibility for firms to compete in
the pricing of the interface and to attempt to discriminate. We leave this case

open for further research.
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5 Product variation in two characteristics has been discussed by Eaton and

Lipsey (1980), Economides (1986), and Frank Fetter (1924) among others,

6. A distance function |.| froulfg t04(+ maps the vector of differences in
coordinates to non-negative real numbers. It fulfills loj = o, fal = ||-a,

la] > 0 for a = 0, and |a] + [b] = [a + b||. The disutility of distance
(transportation cost function) is an increasing and (weakly) convex function of

distance, i.e. £'(d) > 0, £"(d) > 0 and £(0) = 0.

7. g(a) is not necessarily a distance function, in the sense that it may not
follow the triangle inequality. Some commonly used disutility of distance
functions, such as f(d) = kd and f(d) = d/(1 + 4d), result (in composition with a
distance function d(a)) in transportation cost functions g(a) that fulfill the
triangle inequality. However, others, including the commonly used quadratic
transportation cost function £(d) = d2, can result in functions g(a) that may
not fulfill the triangle inequality. For example, f(d) = d2 applied to the
Euclidean distance function results in g(a) =~ al2 + a22, which fails the
triangle inequality for any three points that do not form a right-angled

triangle.

8. 1In the special case of inelastic demand where every consumer buys one unit
(a-la-Harold Hotelling (1929)) the utility function is

U, (x, P, m) =k +m-p - £(Jx - z|).

9., Maximizing with respect to p, under s etry results in the same condition
g P 2 ymmetry

L.
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10. Of course Hf(p, p; 1) - HI(p, P).

11. 1In fact this problem is the dual of the standard quantity-setting Cournot
duopoly in substitute goods. See Hugo Sonnenschein (1968) and Theodore

Bergstrom (1988).

12. This is immediate from the fact that the monopolist of both markets
maximizes Hb - (pz + pc)D(pz + pc) while the independent monopolist of zinc

. z
maximizes II” = pzD(pz + pc) and assumes that dpc/dpz 0.

13. Equations (1) and (C) differ in the term in brackets of (1) that does not
appear in (C). ‘This term comes from the fact that under compatibility a firm
sells both components to some customers. In Cournot, in the case of competing
monopolists, each monopolist had exclusive production of his metal. The fact
that we are able to show that, in markets of the same extent, prices will be
higher under compatibility suggests that the conclusion of Cournot for
homogeneous goods can be extended to a comparison of the "fused" monopolist (who
produces all of both metals) to a situation of duopoly between firms producing

some (but not all) of each metal.

14. More precisely, competition is more intense for consumers located away from

the axis of location of the firms.

15. For a detailed discussion of the marginal consumer in neoclassical theory

see William Novshek (1980).
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16. The assumption of inelastic demand has been extensively used in the
literature of differentiated products, starting with Hotelling's (1929) seminal

paper.

17. Without loss of generality, let firms 1 and 2 be located at (a, 0) and
(-a, 0) respectively and quoting prices Py =P, = P The boundary is defined by
p+ £([(-a, 0) - (z;, z)) =P+ £(J(a, 0) - (z;, 201D
<=> [(-a, 0) - (zq, 2| = (&, O) - (24, z)
<=> [(-a-zq, 22)" = l(a-2,, zz)“ <=> u(a+zl, 22)" - "(a-zl, 22)"

<=> a + zy = a - z1 <m> - 0,

%1
which defines the perpendicular bisector.

18. Formally, this is immediate from (8).

19. With reference to figure 4, let all other firms except firm j charge P.
When firm j charges p., the boundary of its market area to the right is vertical
to the axis of location at the midpoint of [xj, xJ+1]. As firm j increases its
price above p, let the right boundary shift to the left and become concave
towards xj. Figure 4 shows the boundary for market widths A and 2A. In this
figure, C and C + H are proportional to the demand in markets of width A and 2A,
C=D(. ; A)/2, C+ H=D(. ; 2A)/2. F and F + G represent the margins of the
demand in these two markets, F = lDl(' ; A)|/2, G+ F = IDl(' : 2A)|/2. Since
the boundary is concave towards the firm with the higher price, the margin grows
faster than the demand as the width A doubles. Therefore competition in the
outlying strip [A/2, A] is more intense than in the inmner strip [0, A/2]. It

follows that competition in the combined strip [0, A] is more intense than on

[0, A/2], and therefore equilibrium prices fall as A doubles. Formally, H<C
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and G>F => H/C<1<G/F => (H+0C)/C<2<(G+F)/F
=> D(. ; 2A)/D(. ; A) < |D1(' : 2A)|/|D1(. ;A
Using (2') we derive
[ ¢ 5 28 ]/[py ¢ 5 A = [pca)/p@MTIDC. 5 24)/D(. ; A)]}.
Substituting the ratio of the margins and simplifying yields

p(2a) < p(A).

-1+1/¢t
t t-1 t
] |x1 - yll , and ng(x' y) -

2
20. g;(xr y - X[ 21 lxi - yil

) t]-2+1/c

Xy - ¥ <0 since t>1

t-1
1777 1%, - 9,

It-l

2
At(-1 + l/t)[ z |xi - yil le - Y

i=-1
implies -1 + 1/t < 0. For a detailed discussion of the market boundary when

the transportation cost is linear in the Euclidean distance (t=2, A = 1) see

Fetter (1924) and Economides (1986).

21. We note that it is also possible to find transportation cost functions that
violate Al and exhibit g1 > 0. An example is

g(x, ) = [lx) - vyl + I, - y, 1%,
the square of the block metric distance, for which 819 ~ 2 > 0. For this
transportation cost function the result of proposition 1 may be reversed. As
the following example shows, this transportation cost function is not a distance
function because it violates the triangle inequality. Take A = (0, 0), B =
(0, 1) and C = (1, 0). Then g(A, B) =1, g(B, C) = 4, g(A, C) = 1, which

implies g(A, B) + g(A, C) = 2 <4 = g(B, C), and the triangle inequality fails.

22. Of course, by its definition, p will, in general, be different for

different locations of consumers.
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23. Let p* be defined as the solution of
ax_,/3p = X(p" +p + g(2) + PX(p" +p + g(2) = 0.
Then -
dp*/dp - -[X'(p*+p+g(2)) + p*X"(P*+p+g(z))]/[2X'(p*+p+g(2)) + p*X"(p*+p+g(z))]

which is negative when the demand is (weakly) concave.

24. The profit function in market of width A is

A/2 21

I ~ ~
I (p, p; A) = pD(p, P; A) =4 [ J x, dz, dz, - F,
0 0

where 21 - 21(22, P, E) is the boundary to the right of the market area of

-X

firm j defined by
P + g(xj - zl’ 22) =P + g(xj+1 - zl, zz).
The profit function in a market of width 2A can be similarly expressed as

A/2 il-x

I ~ -
o' (p, p; 24) = pD(p, P; 28) =4 [ f (x, + =,,) dz, dz, - F.
0 0

25. See D'Aspremont et al. (1979) and Economides (forthcoming).

26. The boundary between the market areas of firms j and j+1 located d apart

and quoting prices pj and p respectively is 21 - (d2 +p - pj)/(Zd). Then the

INZ !

demand for firm j is D(pj, p; A) = 4 f f dz1 d22 - A(d2 +p - pj)/d.
0 O

1/3

27. @ - alym! = %S - prmhiplly = 277 - 1 = 0.2599,
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Figure 1: Compatible Components
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Figure 2: "Standard" Demand in a Strip of Width A.
Location of Systems Composed of Incompatible

Components for A =1






Figure 3: The Boundarir Dividing the Market Areas is
Concave Towards the Higher-Priced Firm
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Figure 4: Market areas for p larger than '5
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Figure 5: Total Surplus in the two Regimes






