Optimality and Sustainability:
Regulation and Intermodal
Competition in Telecommunications

by

Michael E. Einhorn

Dept. of Economics
Rutgers University

1986

#130

Research Working Paper Series, Center for Telecommunications and
Information Studies, Columbia University Graduate School of
Business, 809 Uris, New York, NY 10027. (212) 280-4222. ©Not for
citation, quotation, reproduction, or distribution without
written permission. All papers represent the author's view and
not necessarily that of the Center or its affiliates.



OPTIMALITY AND SUSTAINABILITY:
REGULATION AND INTERMODAL COMPETITION IN TELECOMMUNICATIONS

Michael A. Einhorn

Dept. of Economics
Rutgers University

1. Introduction

Over the past decade, federal and state regulators have
permitted increasing amounts of competition in markets that had
been restricted exclusively to public utility monopolies.
Consequently, a pressing issue in today's policy-making arena
involves whether residences and businesses should have the right
to forego public utility service in favor of alternative
technologies that existing competitors or potential entrants may
offer; Brautigam (1979) has termed this competitive fringe

intermodal competition. The issue is most relevant in the case

of large users of utility's services, who may be able to install
their own private technologies and 1leave the public utility
system altogether; e.g, large manufacturers frequently construct
their own power plants and large companies may install their own
telephone facilities. As the future of competition unfolds,
intermodal competitors will probably focus their attention
primarily on the utility's largest users.

Utility ©prices at some point must incorporate the
substantial fixed costs of the company's plant and equipment;
consequently, they must exceed, on average, their associated

marginal costs. These uneconomic price signals may induce large
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customers to forego the utility's service altogether. Once these
large customers exit, they would install substantial amounts of
private plant and equipment for alternative service; though
profitable to the exiting customers, these investments can be
economically inefficient from a social perspective nonetheless.
Consequently, social welfare could be reduced if intermodal
competition is permitted without allowing the wutilities the
opportunity to design appropriate pricing strategies.

Perhaps the most prominent (but certainly not the only)
contemporary example of large customer exit for competitive
alternatives arises in telecommunications. Under current policy,
a long-distance user may install and use alternative facilities
to reach his long-distance carrier; when customers do fhis, they
are said to bypass the local phone company which would ordinarily
provide long-distance access. Consequently, regulators and local
companies are caught in a bind. If long-distance access is
priced too high, the largest long-distance users will bypass the
local company. If regulators price long-distance access too low,
the local company cannot cover its fixed costs. In the case of
telecommgnications, these fixed costs include both the 1local
company's fixed costs of plant and equipment as well as a
contribution that toll usage must generate to subsidize single-
line customer access to the system; single-line access is now
priced -- largely for political reasons =-- well below its
associated marginal cost.

Contemporary theoretical research on optimal nonuniform

pricing (Spence (1977), Roberts (1979), Mirman and Sibley (MS,



1980), and Goldman, Leland, and Sibley (GLS, 1984)) has not
considered the problem that intermodal competition for large
customers poses to sustainability. Each of these papers designs
a nonuniform price schedule to maximize either social welfare or
consumer surplus subject to a binding profit constraint on the
utility's net earnings; the number of customers is fixed, but
usage per customer depends upon price. Each paper then prescribes
a nonuniform price schedule which prices some customer usage

above its associated marginal cost. The usage price eventually

falls to, but is never lower than, the associated marginal cost
of usage; the price schedule need not be a monotonically
decreasing function of usage. (Curve D; in Figure 1 illustrates
one possibility.) Based on a regulatory environment of a decade
past, these papers do not recognize the possibility that some
Customers, especially large ones, may leave the utility for an
intermodal supplier. Once the possibility of large customer
exit 1is recognized, we shall show that the optimal price

schedule can eventually fall below the associated marginal cost

of usage. Curve D, in Figure 1 illustrates one possibility; the
curve marked D, will be explained later in the paper.

This paper designs an optimal nonuniform price schedule for
a profit-maximizing or profit-constrained welfare-maximizing
utility that is faced with possible customer exit, especially by
large users. Respective utility and bypass costs are assumed to
be such that one cannot cost-dominate the other; i.e., there
exist usage levels at which each technology is the low-cost
technology. The principal conclusions are as follows. First,

the utility can and should retain some of these large users by



Figure 1: Optimal Nonuniform Price Schedules
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pricing some high-level customer usage below its associated
marginal cost; prices for low-level customer usage still should
exceed the marginal cost of production. Second, under an -
optimally designed nonuniform price schedule, the total payments
from each customer would exceed the total costs that the customer
imposes; though some usage by large customers is subsidized,
these customers generate a positive net contribution nonetheless.
Third, the wutility's price of providing access should be equal
to its associated marginal cost; this contrasts with optimal two-
part tariff pricing schemes (see 0i (1971), Ng and Weisser
(1974), Schmalensee (1981)) which sometimes charge customers
access prices which differ from the marginal costs of providing
it. Fourth, an optimal nonuniform price schedule would provide
economically correct signals to large customers regarding exit;
i.e., a customer will leave the utility if and only if the
competitor's costs of providing service are lower than the
utility's.

This paper is organized as follows. Section 2 provides a
basic theoretical and institutional discussion of the telephone
pricing problem and provides an intuitive justification of the
notion that some usage prices must be below marginal cost when
alternatives are available for large customers. Section 3
develops a mathematical model that is consistent with the problem
outlined in Section 2; necessary first-order conditions are
obtained. Section 4 mathematically derives several properties
of the optimal schedule, including below-marginal cost pricing

and the fact that no customer is subsidized. Section 5 extends



the analysis to some different kinds of bypass possibilities.
Section 6 investigates whether large customers make economically
efficient decisions (from a social welfare perspective) when
deciding whether to 1leave the utility. Section 7 introduces
positive access costs. Section 8 concludes the paper with
some implications for policy-making in the contemporary

regulatory arena.

2. A Simple Problem Illustrated

This section will discuss the cost-recovery problem, its
relevance to contemporary telecommunications regulation, and an
economically optimal solution. 1In specific, we shall show that a
profit-maximizing or profit-constrained welfare-maximizing
utility, when faced with intermodal competition for large users,
should price some high-level usage below its associated marginal
cost.

Assume that consumers may purchase products from a utility
which is either profit-maximizing or profit-constrained welfare-
maximizing. It has positive fixed costs K and constant marginal
cost C per unit of usage. Each utility customer pays a marginal
price per unit of usage of P(q); P may vary with a customer's
level of usage g. Each utility customer faces the same price
schedule; resale is not possible. The customer also pays an
initial access fee of A; the cost to the utility of providing
access to each customef is 2.

Any large consumer can entirely avoid purchasing from the



utility by installing an alternative technology. These
technologies would involve high flat-rate costs (Z*) and lower
costs per unit of production (C*) compared with the utility's
respective costs. Assuming that these alternative technologies
cannot be dominated at high usage levels, these technologies
represent the economically preferable choice for the largest
customers. Also assume that the intermodal market is competitive
(or contestable); i.e., flat-rate prices and usage prices A* and
P* of all non-utility alternatives equal their respective costs
z* and c*. Consumer 1i's total payments for alternative services
are A* + C*qi* where g;, 1s the usage of consumer i on the
alternative technology.

This framework represents aspects of the contemporary
market for telecommunications, where intermodal competitors may
slice the largest users away from the local companies. In
particular, most long-distance calls that are routed over local
company facilities are switched, meaning that the call is
processed and held through the 1local company's switching
facilities and transmitted to long-distance carriers over common
transmission lines. As a result, the marginal cost of a minute
of usage includes the associated operation and capacity costs of
the switching equipment which processes and holds the call.
Local companies now bill each long-distance carrier for its share
of switched access minutes that the utility handles; carriers
pass these charges back to their customers. Switched access
charges include an allocated portion of the local company's fixed

costs.

Alternative bypass technologies (including the utility's own



special access service which competes against other companies as
well as its own switched access) directly connect the customer to
the long-distance carrier, thereby avoiding some of the costs
that switched access usage entails. As a result, the marginal
cost of using a bypass technology can be lower than switched
access; furthermore, bypass includes no allocated fixed cost
subsidy. Because bypass installation entails substantial
initial costs, long-distance carriers have an incentive to induce
their‘ largest customers to circumvent local company .switched
access facilities with bypass circuits; because fixed utility
costs are allocated to switched access but not bypass minutes,
there is an uneconomic incentive favoring bypass.

Reliable estimates of the relevant costs of switched access
and bypass are hard to come by. New York Telephone (1986, vol.
1, page 1-29, chart 2) estimates that its average "traffic-
sensitive" cost per access minute (as determined by existing
accounting procedures) is 3.67 cents; however, the company also
claims that the true marginal cost of a switched access minute is
1.28 cents (vol 3, page 5-37, tab 1). The monthly levelized cost
of installing and maintaining a switched access line is somewhere
between $25 and $30 per month. The cost of a bypass channel
varies with the specific technology and the size of the user;
there are economies of scale in bypass installation. While
present costs of bypass may be in the vicinity of $100 per
circuit per month, these costs may fall substantially by the end
of the decade. $50 pér circuit or lower seems very possible in

some locations. (For estimates of bypass and local company



costs, see Bell Communications Research (1984), Jackson and
Rohlfs (1985))

Setting C = 1.0 cents per minute, Z = $25 per line per
month, and z* = $75 per circuit per month, bypass would be
economically efficient if monthly circuit usage gq; exceeded (Z* -
Z)/C = 5000 switched access minutes per month. At this level of
usage, bypass cost-dominates switched access. Since the
average large WATS caller uses 5500 access minutes per line per
month (Griffin and Egan (1985)), economic bypass by large long-
distance users may soon be, if it is not already, a realistic

threat to the local company.

Bypass Illustrated

In the remainder of this section, assume that customer usage
is inelastic with respect to its own price; Section 3 will relax
this assumption. If customer i were to remain with the utility,
he would impose costs of 2 + Cg;, where g; represents his usage.
If the customer were to choose an alternative supplier, he would
impose costs of z* + C*qi. Figure 2 represents the respective
costs of each. In Figure 2, customers who use less (more) than
q* would minimize social costs by choosing the utility (bypass
technology) ; q* is the intersection of the two cost schedules and
equals (Z* - Z)/(Cc - C*). From a standpoint of economic
efficiency, utility (bypass) technology is the dominant service
when usage is less (greater) than q*.

For first-best pricing, the utility would set A and P(q) at

marginal costs Z and C respectively. Under these circumstances,

payments to the utility A + Pg; = Z + Cqg; would be less (greater)



Figure 2: Comparative Costs of Utility and Intermodal Competitor
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than payments to competitors A* + P*qi =z* + C*qi if g3 < ( > )
q*. Bypass would then occur at q* and above. However, under
first-best marginal cost pricing, the utility would not be able
to cover its fixed costs (and necessary single-line subsidies)
K. As a result, this first-best solution could not be
satisfactory for any welfare-maximizing utility that faces a
positive fixed costs requirement. Furthermore, a profit-
maximizing utility certainly would not price at marginal cost.
For a payment schedule to generate positive profits, payments at
some usage levels g; must exceed costs; i.e., A + R(qi) > 2 +
qu.

In order to cover their variable and fixed costs, 1local
companies now bill long-distance carriers for their switched
access usage with a per minute traffic-sensitive component (which
is a flawed overestimate of actual marginal cost) plus a per
minute additional charge to cover the fixed costs K of the local
company. Even if the per minute traffic-sensitive costs
accurately reflected their associated marginal costs, the
effective price P of a switched access minute would still exceed
marginal cost C. Given the present pricing structure, a long-
distance carrier would be able to induce customer i to bypass if
A + Pg; > z* + C*qi. Assuming that A = Z (which is approximately
true for multiline telephone customers), bypass would occur if a4
> q@ = (Z* - A)/(P - C*) < q*; see Figure 2. From a social
welfare-maximizing perspective, bypass by consumers who use
between q@ and q* should not occur; because local company

service 1is actually cost-dominant, bypass is said to be



uneconomic. Bypass by users who use more than q* is (socially)

cost-justified and is termed economic.

Optimal Pricing

If permitted to implement a nonuniform price schedule, a
profit-maximizing or a profit-constrained welfare-maximizing
utility should be able to attract any customer that uses less
than q* units. To see this, note that the customer will forego
utility service only if payments to the utility A + R(qg;) exceed
payments under an alternative technology A* + P*qi, which have
been assumed to be equal to costs z* + C*qi. If exit should
occur, the utility would make no profit from this customer:
furthermore, social welfare would be reduced since utility
service provides the 1less expensive choice when a; < q*
Consequently, the utility may simultaneously increase its profits
and improve social welfare by changing its price schedule so that

Z + Cgy < A + R(g;) < A* + P*qi for all q; < q-* The

i
permissible region for the payment schedule lies between the
curves Z + Cq; and z* + Cq;% in Figure 2.

By contrast, there is no reason why a profit-maximizing or
profit-constrained welfare-maximizing utility should ever have a
customer who uses above q*. To see this, note again that since
alternative suppliers are competitive with one another, payments
A* + P*qi must equal costs z2* + C*qi. To attract the
customer, the utility would have to offer a lower-priced service,
which means that it must price service below z* + C*qi; this is

below the utility's own costs of Z + Cq; (since a; > q*; see

Figure 2). Consequently, the utility could attract the customer
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only by losing money on it. Furthermore, the social cost of the
alternative service is below the utility's for customer usage
more than q*. Therefore, customer i's choosing the utility is
irrational from both a welfare-maximizing and a profit-maximizing
perspective.

If permitted to price with a nonuniform price schedule, a
profit-maximizing or a profit-constrained welfare-maximizing
utility will then retain (lose) all customers that use less
(more) than q* units; in this case, bypass will result if and
only if it is economic. For either a profit-maximizing or a
profit-constrained welfare-maximizing firm, A + R(q*) = Z + Cq*
must hold at the bypass point q*. Figure 3 illustrates three
possible payments schedules; note that each permits economic
bypass but disallows uneconomic bypass. Consequently, first-best
marginal cost pricing (i.e., A = Z, P = C) is sufficient, but not
necessary, for providing the economically correct signals for
bypass in the case, assumed here, when usage is perfectly price-
inelastic.

In payment schedule 1, each customer pays to the utility an
amount which always exceeds the respective costs that it imposes;
i.e., A + R(qi) > Z + qu for all q; < q*. Consequently, each
customer makes a positive contribution to the utility's profits
and no customer is subsidized. In payment schedule 2, each
customer who uses more than q@ pays just enough to cover its
imposed costs; each customer who uses less than q@ makes a
positive contribution to the utility's profits. No customer is

subsidized in schedule 2. 1In payment schedule 3, each customer
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who uses more than q# pays less than its imposed costs; each of
these customers must be subsidized by customers who use less than

q#-

We now shall demonstrate that regardless of which payments
schedule is implemented, the price of usage must at some point be
below its associated marginal cost. First, note that A + R(g;) >
Z + Cqg; (for some g; < q*) must hold somewhere if non-negative
profits are to be secured. Let Ri,* represent the revenue that

the utility secures from a customer's usage between g; and q*;

C(q* - d;) represents the associated cost of this additional
usage. At usage q*, payments A + R(q*) = A + R(qi) + Ri,* and
costs Z + Cq* = 2 + Cq; + C(q* - qi). Since A + R(q*) = Z + Cq*

and A + R(gy) > 2 + Cq; at some d; < q*, Rjx < C(q* - g;) must

hold. The incremental price of usage P(q) must then be below its

associated marginal cost C somewhere between q; and q*.
Consequently, the utility will subsidize gome high-level

usage by large customers to keep them from uneconomically

bypassing. This does not mean that the utility necessarily
subsidizes any of these customers in total; e.gq., see payment
schedule 1. In payment schedule 1, prices for low-level usage

(near 0) are above marginal usage cost and each customer, large
or small, generates in these 1low-level blocks a positive
contribution toward the utility's profits. For larger customers
(nearer to but still 1less than q*), this "profit-cushion" is
returned via some subsidized usage at the high-end. Prior to q*,
each customer, in total, pays more to the utility than it costs.

Once the "profit-cushion" is burned off entirely (at q*, where A

+ R(q*) = Z + Cq*), the utility is powerless to prevent‘bypass;

12



customers that use more than q* cannot be profitably restrained
from leaving. However, from an economic perspective, these
customers should leave because the alternative supplier can serve
them at lower cost.

In payment schedule 1, some usage prices are below their
associated marginal costs. However, no customer is subsidized
"in the whole". The next section will demonstrate that payment
schedule 1 presents the basic paradigm for the optimal nonuniform

price schedule.

3. A Mathematical Model: Optimizing Conditions

This section will develop a mathematical model of a utility
and its maximizing strategies, its customer subscriptions, and
resulting usage patterns. We shall state useful assumptions and
definitions, define an objective function and an optimal control

problem, and derive necessary first-order optimizing conditions.

Variables, Definitions, and Assumptions

Customers of a utility vary among one another depending upon
their intensities of usage. Assume that consumer demand-for-
product curves do not cross (see Faulhaber and Panzar (1977) ;
Spence; MS; GLS); i.e., dn(Pa) > 9, (Pa) if and only if dn, (Pg) >
d,(Pg) for all customers m and n and all usage prices Pp and Pg.
The same is true for A%+ 9nxs Ppx, and Pp, where the asterisk
represents usage and prices for an alternative technology. Given
the non-crossing assumption, we may index each consumer by an

ordinal parameter i which represents the intensity of his
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preference for the product. i increases with intensity and lies
between 0 and 1; i is continuously distributed with frequency
f(i). Let a (e) designate the infimum (supremum) of intensities
i of customers who are served by the utility; (a, e) E: [0, 17.

Assume that customer intensity 0 is such that dyg = 0 at p >
0. In this section, assume that the utility cannot provide any
additional benefit to its customers ©beyond paid usage;
consequently, people subscribe to the utility only in order to
purchase service. Section 6 will relax this assumption. In
making these assumptions, we have implicitly disallowed any price
design which could cover K without distorting customer usage or
subscription in some manner; while this possibility would be
fortuitous from a welfare-maximizing standpoint, the resulting
optimization problem would be trivial.

Represent usage by customer i as g;/ his marginal price is
Py = P(q;) = dR/dq; . The net welfare W; of consumer i on each

system is written:

3.1a) Wi(qj) = U;j(gj) - R(gy) - A

3.1b) Wie(dis) = Uj(dy4) - CFqye - A

where:

U, (g;y) = consumer i's willingness to pay for usage q3

For an individual to maximize personal utility, dU;/dg; = dR/dq;
* %*
= Pi or dUl*/dql* = P = C,
Society's consumers can be divided into two groups. If
utility services were unavailable, small consumers would rather

forego service altogether rather than install an alternative
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technology; i.e., 0 > Win- By contrast, large consumers would
install an alternative system; i.e., Wix > 0. Let b designate

the borderline customer between the small and the large group.

Assumption 1: a < b < e, In words, the utility serves both

small and large customers.

If they exist, utility customers i with W; = 0 will be
indifferent between having utility service and having no service
at all. While a small utility customer need not be indifferent,
utility customers with W, = 0 must be small consumers. To prove

this, recall that a large consumer i has Wi > 0. If 0 =W a

i
large consumer would then drop off the utility system altogether
(since W3y = 0 < Wi4). By contrast, a small consumer has-W;, < 0;
consequently, he would prefer being an indifferent customer of
the utility rather than move to an alternative technology.

Consequently, we shall call the state of indifference where Wy, =

0 as small-indifference.

Utility customers for whom Wix = W; will be indifferent

i
between purchasing utility service and using an alternative
technology. By reasoning similar to that in the above paragraph,
we may show that large consumers are the only utility customers
for whom W;, = W; is possible; however, not all large utility

customers need be indifferent. The state of indifference where
W; = Wi, will be termed large-indifference.

Given the definitions of infimal and supremal intensities a
and e and Assumption 1, a consumer with i < a (i > e) will prefer
having no service at all (an alternative technology) even if

utility services are available. That is, W.

i < 0 for i<ag; W <

1

15



Wi for i > e.

The set of utility customers S is complete if S = (a, e)
except for a countable number of points. The set S is incomplete -
if 3 (a', e') € [a, e] such that (a', e')¢ S.

The remainder of this section will employ the following

assumptions:
Assumption 2: S is complete

Assumption 3: The price schedule is continuous (though not

necessarily smooth) over (a, e).

Assumption 2 means that if consumers i and k (k > i) are utility
customers, all consumers j where i < j < k will be utility

customers as well; no gaps are permitted in the spectrum of

customer intensities. As a result, we may integrate over
customer intensities between endpoints a and e. Assumption 3
disallows downward or upward jumps in the price-schedule. A

downward jump in the price schedule produces a nonconvex budget
set (see Burtless and Hausman (1978)). As a result, no consumer
may consume within a finite neighborhood of the kink;
consequently, gaps arise in customer usage levels (even if
intensities are continuously distributed). By contrast, an
upward jumping price schedule produces a Xkinked convex budget
set; in this case, customers tend to bunch up at the kink.
(for more on gapping and bunching, see Burtless and Hausman,
GLS.)

The appendix proves that a profit-maximizing or a profit-

constrained welfare-maximizing firm would meet Assumption 2;

16



furthermore, no upward discontinuities would ever arise in an
optimal nonuniform price schedule. While downward
discontinuities do seem possible, the basic results of this paper
hold if these discontinuities are present.

We now shall define a very important property of a

nonuniform price schedule:

Definition: A price schedule P(q) is single-crossing at q

if, for any i such that P(q) 5,'3Ui(q)/gqi, P(q') <

JUi(d')/9q" for q' < g (GLS).
Assumption 4: The price schedule is single-crossing

Assumption 4 ensures that second-order conditions for a
profit-maximum or a profit-constrained welfare maximum are always
met; it is equivalent to assuming that customer usage increases
with customer intensity at all prices P;. This is known as the
monotonicity constraint (Roberts, GLS). Note that uy =9Ui(q)/9qi
is consumer i's marginal willingness to pay for an incremental
change in usage at d;. Consequently, u; represents the price on
consumer i's demand function that corresponds to di;. The single-
crossing assumption then insures that customer i's demand curve
intersects the price schedule from above at d;7 Dy(i) in Figure 4
is single-crossing. If single-crossing did not hold at a
particular dj, then g; would not be a point where utility is
maximized; since D, (i) in Figure 4 is double-crossing, utility is
minimized at d; (since u;(q) < P(gq) for g < d;) - Note that
qu/ai < 0 at g; for D, (i) as well.

Some authors (Roberts, GLS) have considered what constraints

17



Figure 4: Single-Crossing and Double-Crossing Price Schedules
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on the price schedule are necessary if the monotonicity
constraint fails to hold on an unconstrained price schedule which
meets necessary, but not sufficient, first-order conditions. The -
monotonicity constraint must either be assumed to hold (Spence,

MS) or imposed as a constraint (Mirrlees 1976); Roberts; GLS) .

First-Order Maximizing Conditions

Turning to the formal optimization problem, we define

aggregate consumer welfare W:

e |

3.2) W= j WidF (i) + g Wi xdF (1)
Q, e

Utility profits are defined:
1

3.3) X = S (R; - Cq;)dF(i) - K

Q
A profit-maximizing utility will attempt to maximize profits X
(eq. 3.3). A profit-constrained welfare-maximizing utility will
attempt to maximize consumer welfare (eq. 3.2) subject to the
constraint that profits are non-negative (X > 0).

For each customer i served by the utility, there are two
additional constraints that face either type of strategist.
First, for i to remain a utility customer instead of foregoing
service altogether, W; > 0; customers for whom equality holds are
small-indifferent. Second, for i to remain a utility customer
instead of Jjumping to an alternative supplier, W; > Wiws
customers for whom equality holds are large-indifferent.

Given the appropriate maximands, profit constraints, and

indifference constraints, we may construct the objective

18



function:
Q e

3.4) L=(1-4g)W + gX + S hi(Wi - 0) + S‘ ji(wi - Wi*)
Q. Q

The last two terms on the right hand side of eq. 3.4 represent
the constraints that are needed to ensure that W; 2> 0 and Wy >
Wi for all customers 1i. If hy (ji) > 0, customer i is small-
(large-) indifferent. If hy (j;) = 0, customer i is not small-
(large-) indifferent. It is impossible for either h; or j; to be
negative.

Eq. 3.4 can be converted to a straightforward profit-
maximizing problem by setting g = 1 and to an unconstrained
welfare-maximizing problem by setting g = 1/2. A profit-
constrained welfare-maximizing problem must weight profits X more
heavily than consumer surplus W; consequently, 1/2 < g < 1 for a
profit-constrained welfare-maximizing problem. (For further
explanation of this Lagrangean formulation, see Schmalensee, MS.)

Since Wi =0y - Ry for all i &€ (a, e):

3.5)  dw/di

JdU/Ii + (JU1/3q; - R/IJq;) (dqy/di)

QU/3i

The second equality follows since consumers are utility-
maximizers and, therefore, dU;/dg; = dR/dq; = P;.
Write W;:
\
3.6) Wy = Wy + S (U/3i)dj
U

Substituting 3.6 into 3.4:

\

<
3.7) L= (1 - q) S WidF(i) + (1 - g) & W, 4dF (i)
W\ e

19



g
+ g S (Ui - Wi - qu)dF(i)
e \¥

e
+ h;w;di + S‘ Ji (W = Wi,)di
¥ '

€
= S [g(Ul - qu) + (1 - 29 + hl + ji)Wa + (1 - 29
o .

\
+ hy + 3y) g (JU/3i)daj1dF (1)
Ve

R
)
+ (1 - 9) g WixdF (i) - g JiWixdF (1)
e '

d
= g [g(Ui - qu)f(l) + (1 - 2g + hi + ji)Waf(l) + (1
Q.

e
=29 + h; + 3;)(QU/3i) g, £(j)ajldi
\ ?Q
+ (1 - g) g WisdF (i) - g JiWi#dF (1)
e Q

The third equality in equation 3.7 involves reversing the order
of integration in the last term. The basic derivation is due to
Spence.

We shall displace eq. 3.7 with respect to dy, a, and e.
Herein 1lies a crucial distinction between this model and the
earlier optimal nonuniform pricing models of Spence, Roberts,
MSl, and GLS; while these authors displace welfare with gy or its
equivalent, they assume that the endpoint intensities a and e are
fixed. However, profound differences will arise if the endpoint e
is a variable of choice. Note that if a is an interior solution
(a > 0), Wy = 0 must hold; if e is an interior solution (e < 1),
Wo = Wg, must hold.

The optimizing conditions are then:
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3.8a) g(dUj/da; - C)f(i) + (1 - 2g + hy + 33) (Q2U/Qida) [F(e) -

F(i)] = O

3.8b) (9 - hy - 1)Waf(a) - g(R, - Cq,) = -9g(R, - Cq,) < O
a > 0; ag(Ra - Cg,) =0
3.8c) (1 + Jg = 9)(Wg = Wex) + 9(Rg = Cdg) = g(Ry ~ Cqy) > O

e < 1; (e - 1)9(Rg - Cq,) =0

The first equalities in 3.8b and 3.8c result from the fact that

Wy = 0 and Wy, = W , at interior solutions for a and e.

The relevant Kuhn-Tucker conditions are:

3.8d) X>0;g>0; g =20
3.8e) Wy > 0; hy > 0; hyW; =0
3.8f) Wi > Wi%: 35 2 00 3y - w;t) = o
For all i, du;/dq = dR/dq = P(g;). Equation 3.8a can then

be reexpressed:
3.8a')  Pj = P(gj) = C+ (29 - 1 - hy - j;)t(i)(d?u/didq)/qg
where:

t(i) = [F(e) - F(i)]/f(i) > 0

4. An Optimal Nonuniform Price Schedule

This section will demonstrate that the curve D, in Figure 1
is an accurate prototype of an optimal nonuniform payments

schedule once large customer exit is possible. We shall derive
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the shape of the price schedule through a series of lemmas and
theorems; if short, proofs of some lemmas and theorems have been
relegated to endnotes. In deriving the shape of the optimal price
schedule, we shall prove in the process that usage price P(qg)
must be below its associated marginal cost C at some point. We

shall then demonstrate that no customer is subsidized.

Prices for Low-Level Usage

The first subsection derives results that are relevant to

the small-usage end (g < dp) ©of the price schedule. Most

importantly, we shall show that consumer a is the only small



customer who may be indifferent, usage prices for non-indifferent
customers (including all small customers i > a) must exceed
marginal cost, and the smallest utility customer (a) will have a

usage g, equal to zero.

Lemma 1.1: If a = inf(S), W; > 0 for all i > a.2

1

By the definition of small-indifferent, Lemma 1.1 proves that no
customer i > a can be small-indifferent. This means hi = 0 for i

> a.

Lemma 1.2: If customer i is not small- or large-

indifferent, P; > c.3
Lemma 1.3: If P; < C, then customer i is indifferent.%
Note that the converses of both lemmas are not necessarily true.
Lemma 1.4: For all i & (a, b], P; > C.°

Theorem 1: a, = 0.

Proof: Two cases are possible: a = 0 (a corner solution) or

a > 0 (an interior optimal point).

If a = 0, for any p > 0, g, = O. This follows from the
definition of customer intensity 0 (i.e, for a = 0, ¢ = 0 when P
> C).

Let a > 0. We shall prove that g, = 0 by contradiction.

Suppose that q, > 0. For i > a, customer i is not indifferent;
therefore, P; > C (Lemma 1.2). Because jumps are not permitted,
P, > C. At a , Wy = 0; Ua = R;. Because we have assumed
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single-crossing (see definition), W, = 0 requires u

a dUa/dq =

a
P(q) for all g < g, (see proof of Lemma 1.1). This means that

the price schedule and the demand curve for customer a must

coincide between 0 and q,; i.e., the price schedule is
monotonically downward-sloping to some point P, > C. At an
optimum a > 0, R, = Cg, must hold (see eq. 3.8b); this implies
for some prices at g < g, that P(q) < C. But this contradicts

the fact that the price schedule is monotonically downward-

sloping. It is then impossible for g, < 0. E.O.P.

Prices for High-Level Usage

We now turn to properties of the schedule at gq > dyp- We
shall show that some large customers must be indifferent (if e <

1) ; furthermore, usage price P(q) for these customers must be at
*

C” (and therefore below C). Although some high-level usage by
large users is subsidized, no customer is subsidized "in the
whole".

Theorem 2: If e < 1, then some customers i e (b, e) must be
large-indifferent between having utility services or not; i.e.,

Wy = Wi, for some i & (b, e).

Proof: Proof by contradiction; assume that no customer is

large-indifferent. Therefore, ji = 0. At infimal a, dy = 0 (see

Theorem 1); therefore, R(gy) = Cgq, = O. Lemma 1.1 demonstrated
that for i > a, hi = 0. Since demand curves do not cross one
another, d2U/dqdi > 0; furthermore, g > 1/2 in a profit-
maximizing or a profit-constrained welfare-maximizing
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optimization problem. From eq. 3.8a' and the above facts, P(d;)
> C for all i & (a, e). 1If e is a customer, t(e) = [F(e) -
F(e)]/f(e)‘ = 0 (see definition of t(i) following eq. 3.8a');
therefore, P(qg) = C (see eq. 3.8a').

Eg. 3.8c requires R, = Cgy, for e < 1; this clearly cannot
occur if g, = O, P; > C for all gq; e (45, dg), and P, = C.

Therefore, some customers must be large-indifferent. E.O.P.

Corollary 2.1: If e < 1, P; < C at some point on the

utility's price schedule.®

We now shall begin to derive the shape of the price schedule

after‘intensity b. A preliminary lemma will be useful.

Lemma 3.1: Let c represent the intensity of the smallest

large-indifferent customer. Suppose for some i (i > c¢), P; > c*.

Then for some j e (¢, 1), Pj < c*.

Proof: Proof by contradiction. Suppose that P(qj) > c* for
all j e (¢, i) and that P(q;) 2 c*. Figure 5 displays the
respective demand curves for customers c and i D, and Dj, one
possible price schedule P(q), and the bypasser's usage price P* =
c*. Area ABC (FGC) represents the net consumer surplus that
customer ¢ (i) enjoys with utility service; with an alternative
technology, customer c (i) would enjoy a net consumer surplus of
area ADE (FDH) minus the flat-rate fee A* (oxr Z*). Since c¢ is
large-indifferent, area ADE - A* = area ABC; therefore, A* = area

BCDE. Since i is a utility customer, area FDH - A% < Area FGC;

therefore, Ny 2 area GCDH. But area GCDH = area BCDE + area GBEH.
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Unless area GBEH = O, A* cannot possibly equal both area

BCDE and area GCDH. Furthermore, area GBEH cannot equal zero if
Py > c* for § & (c, i) and P; > c*. E.O.P.
Given Lemma 3.1 and Assumption 4, the utility's price -

schedule P(q) must correspond with customer c's demand curve
u.(q) from point B to point E; i.e., the price schedule falls
along customer c's demand schedule from some price P; (2 C) down
to c*. Immediately beyond E, P(gq) < C*. Theorem 4 will

demonstrate that only equality may hold.

Theorem 3: Let dox represent the usage level of customer c
at marginal price c* (i.e., point E in Figure 5). Then R(dgx)
2% + C¥ggy-

Proof: Given Lemma 3.1, usage price P, for consumer c might
fall to c* or lower; the utility's price schedule P(g) and
consumer c's demand curve must coincide between points B and I,
which might be the same as E. At point E, consumer c can
purchase usage at marginal usage price C*, which is below
marginal cost C; therefore, user c must be large-indifferent
between utility and bypass services at point E. (see Lemma 1.3)
By extension, the consumer must be indifferent between E and any
price between B and I. Since the marginal usage price at E (C*)
is also the marginal usage price under bypass, it follows (from
the idea of indifference) that customer payments for usage prior
to dcx Must be equal under utility and bypass payment schedules;

this means R(ges) = Z*v+ C*qc*. E.0.P.

Theorem 4: C* is the minimum price for usage.
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Proof: Proof by contradiction. Let (i, Jj) represent the
first interval of prices P, Pj that are below C*; i > c and j <
e. This interval must precede any P > c* for intensities above
c; see Lemma 3.1. i = c is possible if the price schedule falls

below E to I in Figure 5.

Let P; represent the marginal price of usage for consumer j;

J
his usage is qy = qj(Pj). Given the nature of the interval (i,
j) and Assumption 3, P < c* < ¢. Ssince P < C, consumer j is

J - J
indifferent between utility and bypass service; see Lemma 1.3.

Therefore,

4.1)  Uj(d3) - R(g3) = Uj(qqs) - 2° - c*q;
. 3193 95 SRSk SR

where:

Ajx = optimal usage by consumer j on a bypass system

3 represents consumer j's optimal usage on the utility's price
schedule; consequently, qj* cannot be preferred to qj if P(q) is

the relevant price schedule. Therefore,

4.2) Uj(qj) - R(Qj) > Uj(qj*) - R(qj*)

Revenue R(qj*) is the sum R(gox) + Rc*,j*' where the latter term

represents utility revenue between dox and qj*. Theorem 3 proved

that R(qus) = 2 + C¥q,; substituting, R(dj4) = z* + C¥g_y +

Rc*,j*' Given that the interval (i, j) must precede any P > c*
after consumer c, Rc*,j* < C*(qj* = dgox) - Therefore,
_ - g* _ c* - R )
4.3) Uj(qj*) - R(qj*) - Uj (qj*) qc* c*,j*
* * *
> Uj (qj*) -2 - C qc* - C (qj* - qc*)

* *
Uj(qj*) -Z =-C qj*
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*
Combining egs. 4.2 and 4.3, Uj(qj) - R(qj) > ‘Uj(qj*) -z -

C*qj*. The inequality in 4.3 contradicts eq. 4.1, which defines

the indifference condition. Therefore, we have just contradicted -

our initial assumption that customer j was indifferent. E.O.P.
Corollary 4.1: P; = c¢* for all customers i & (c, e)7.

In words, Theorem 4 and Corollary 4.1 mean that if Py, = c*

at usage g 4, the price schedule is flat until usage de- In
Figure 5, price P(gq) falls along consumer c¢ demand curve from
point B to point E and then stays fixed at C*. Area GBEH then
equals 0. Consequently, both consumer ¢ and i > ¢ can remain
utility customers, although both are large-indifferent. (see

proof of Lemma 3.1.)
Corollary 4.2: If e < 1, e is not a customer.®

We now prove that although some high-level usage is

subsidized, no customer is subsidized "in the whole".
Theorem 5: R; > Cq; for all customers i & (a, e).

Proof: Since c is the first indifferent customer, P(qj) > C

for i < ¢ (see Lemma 1.2); the theorem is then obviously true
for i & (a, c). For i € [c, e), R, can be expressed:
4.4) Re =Ri +Ri,e
where:
Ry = revenue from customer with intensity i & [c, e)
Ri,e = additional revenue gain from usage between
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q; and g

Similarly, Cg, can be expressed:

4.5) Cqy = Cqy + qu,e

If e < 1, Ry = Cq, is a necessary first-order optimizing
condition (see eg. 3.8c). Subtracting eq. 4.5 from 4.4 and
rearranging terms, Ri qu = qu,e - Ri,e' Since usage above
dox 1s priced above C*, Ri,e = C*(qe - d3) < C(gg = qj) = qu,e'

Therefore, R - qu > 0 or, equivalently, Ry > Cqy. E.O.P.

Theorem 5 then proves that each customer makes some
positive contribution toward the utility's revenue requirement;
payment schedule 1 in Figure 3 is an accurate representation of
this. Each unit of customer usage before d. is priced above
marginal cost C. Consequently, a customer's high-level usage can
be subsidized -- for an interval -- through the excess revenue

that the utility secured from his own low-level usage prior to

qc*'

To summarize this section, the utility sells each unit of
output g < d. above marginal cost C. At customer c, the schedule
falls from a price that is above C down to C*, which is below C.

For g > q., P. = ¢c* < C; the utility actually subsidizes the
c

i
last units that it sells to its largest customers. The minimum
price for usage is c*. No customer that uses g, or more would
remain a customer. Finally, no customer is subsidized in the

whole.

Figure 1 then depicts the basic shape of an optimal
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nonuniform price schedule when a wutility faces a bypass
technology which cannot be dominated at large levels of usage;
the price schedule need not be monotonically decreasing prior to
dc- The curve marked D, -- until now unidentified -- represents

the demand curve of the smallest large-indifferent customer c.

5. Creamskimming

Up until now, we have assumed that the bypass alternative is
the more efficient technology at a sufficiently large level of
usage; i.e, c* < ¢ and z* + C*q < Z + Cg. Another possibility
which may occur in some markets is that bypass alternatives may
be less efficient than utility technologies at all 1levels of
usage (i.e, marginal cost is c* where ¢ < c* <« P). If the
utility's usage price is above its marginal cost, inefficient
technologies still may attract some large customers; this is
known as creamskimming. From an economic perspective,
creamskimming should never occur; under earlier nonuniform price
schedules (Spence, Roberts, MS, GLS) represented by Schedule 1 in
Figure 6), it can occur. However, a utility can eliminate
creamskimming entirely by implementing a constrained nonuniform
price schedule 1like Schedule 2; P = c* is a plateau which is now
above C. Area XYZ equals z* + C*qc*, where c represents the first
large-indifferent customer. I believe that the shape of this
curve is intuitively obvious given my previous discussion; a

mathematical derivation is available (Einhorn (1986)).

6. Efficient Bypass

29



Figure 6: Optimal Nonuniform Price Schedule Vs. Creamskimming
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Section 2 demonstrated that if usage is completely price-
inelastic, customers will bypass under a nonuniform price
schedule if and only if it is socially beneficial to do so. We
now shall introduce a non-zero .price elasticity and formally
confirm the validity of Section 2's results.

Customer i will stay with the utility (choose bypass) if his

net consumer surplus is greater (less) under the utility; i.e.,
. * *
6.1) Uj(g3) = R(g;) > (<) Uij(dj%) = 27 - Caj«

From a social perspective, customer i should stay with the
utility (choose bypass) if social surplus is greater (less)

under the utility; i.e.,
* *
6.2) Uiaj) - €Cag > (<) Uj(qis) - 27 - Cqyq

We first consider a customer who elects to stay with the
utility. From Theorem 5, R(qj) > Cg; for all customers i < e.
Therefore, U; (q3) - Cq; > Ui(qi) = R(gqj) for these customers.
Since eq. 6.1 must hold with a > sign for a customer who stays
with the utility, it immediately follows that U;(qy) - Cq; >

U(gi%) - z* - C*qi*. From eq. 6.2, this is socially optimal.

\
Now consider whether it would be efficient for the utility

to attract bypassers with i > e. In order for the utility to
attract these users, it must continue to price usage beyond q, at

C*, which is below its own marginal cost C. These customers will

be large-indifferent; therefore,
’ * *
6.3) Uj(4j) - R(qj) =Uj(gjs) - 2" - C di*
Furthermore, dj = gj« for i > c. Since pP; = c* for i > e, R(qy)
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= * s - . 7 h econd
- R(gy) + C*(q3 - 9g) = Cde *+ C (g3 - D) < Cq;i the s

equality follows since R(qg) = Cdg at e < 1 (see eq. 3.8C).

Therefore, Ui(qi) Cg; < Uj; (ay) - R(gy) - It follows from ed.

*

- - c*q; . 6.2,
6.3 that Ui(qi) - Cgy < Ui(qi*) Z Cd;x- From eqg

consumers i > e should choose bypass.

7. Positive Access Costs

This section will consider two complications which apply to
telephone service. First, customer flat-rate access costs Z are
positive. Second, telephone customers can enjoy some free
benefits without having to purchase additional usage; e.g.,
simply by installing a phone, a customer may make free local
calls, receive calls, and have the security of beind able to
reach emergency numbers whenever necessary. The need to
purchase toll usage q is consequently not the only motivation for
a customer selecting service; i.e., U;(g3) > 0 even if gy = 0.
U; (0) differs between consumers; assume that U; (0) > Uj(O)if and
only if i > j.

Allowing for both non-zero A and Z and U; (0) > o, eq. 3.1la
defines the welfare W; of customer i. Eq. 3.2 still represents
aggregate consumer welfare. Utility profits are now expressed:

e
3.3') X = g (A + R; - 2 - Cq;)dF(i) - K
Qo

The objective function in eq. 3.4 is still relevant, mutatis
mutandis. Optimizing condition eq. 3.8a does not change, but eq.

3.8b and 3.8c do:
3.8b") -g(A + Ra -Z - an) < 0; a > 0;
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ag(A + Ry, - Z - Cgqy) =0

3.8c!) g(A + Ry, = 2 - Cqg) 2 0; e < 1;
(e - 1)g(A + Re =2 -Cq,) =0
Regarding eq. 3.8b', intensity a represents a marginal

customer who is willing to pay a flat-rate fee of A in order to
access a utility's product; dy 2 0 and a > 0. We shall assume,
quite realistically, that a > 0 (since a > 0, not every small
consumer joins the utility system) but d, = 0 (some people who do
subscribe to the utility do not purchase any toll usage) .
Consequently, a necessary first-order condition in eq. 3.8b' is
that A + R, - Z - Cq, = 0. Clearly, it makes no sense -- in a
nonuniform price schedule -- for either a profit-maximizing or a
profit-constrained welfare-maximizing utility to keep off any
potential customer as long as the customer is willing to cover
the incremental costs that he imposes upon the utility;
furthermore, all potential customers who are unwilling to cover
their incremental costs should be kept off. Since g = 0 for some
customers, this would require A = Z. If q = 0, then d, = O0;
therefore, Ry = 0 = Cq, must hold as well; the necessary first-
order condition of eq. 3.8b is then met.

Note that A = Z is quite different from the usual result
regarding access or entry prices in the two-part tariff
literature (0i, Ng and Weisser, Schmalensee). In this

P4

literature, A z 72 is possible; if d; = 0 (where a is the smallest

customer), A > Z results.

All of the theorems, lemmas, and corollaries of Section 4
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and 5 carry forward to the case when A and Z are positive. The

proofs of these are straightforward.
8. Conclusion

Current pricing policy in telecommunications is a fair
distance away from economically efficient pricing. As a result,
regulators and local telephone companies now ponder the dangers
of uneconomic bypass which may result when usage charges are
increased to cover the company's fixed costs. Politicians and
consumer advocates continue to argue that low cost flat-rate fees
are necessary. Finally, regulators and economists are left to
debate whether divestiture was desirable and whether further
extensions of competition can prove worthwhile.

The price strategy developed in this paper can go some way
to resolve several of these conflicting concerns. Under optimal
nonuniform price schedule, large long-distance users would enjoy
substantial volume discounts for using 1local company switched
access facilities to reach their long-distance carriers.
Consequently, these customers would face "more correct"‘(though
not perfect) signals when deciding whether to bypass or not.
While small customers should optimally pay flat-rate fees A to
cover their associated flat-rate costs 2z, it is possible to
subsidize these customers as well; that is, the monthly flat rate
fee could be constrained below its associated marginal cost.
The resulting shortfall in company revenues must be recovered by

modifying usage charges elsewhere.
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ENDNOTES

IMirman and Sibley incorporate some notion of bypass
alternatives in their paper (p. 664); they implicitly assume that -
bypass systems are in place and that customers may route calls
over these circuits if utility prices get too high. However,
this really begs the question; unless bypass technologies can be
installed cost-free, the nonuniform price schedule of Mirman and
Sibley does not incorporate the costs of installing the bypass
alternatives. That is, a discrete decision must first, be made
whether or not to install a bypass technology and a comprehensive
welfare-maximizing analysis should incorporate the costs of that
decision.

2Proof of Lemma 1.1: Since a = inf(s), Wylay) = 0 and U,(qy)
= R(qg,) for this user (see eqg. 3.1a). Let u,(q) = gUa/Qq
represent the marginal value of unit g ( < d,) to customer a.
Given the single-crossing assumption (Assumption 4), uy(q) = P(q)
for g < d;- Since demand curves do not cross one another,
(d2U/dqdi) > 0; therefore, u;(q) > u,(q) = P(q) for all g if i >
a. It immediately follows that Uj(ay) > Uy(ay) = R(q,) at
usage da- therefore, Wj(qy) = Uj(d3) - R(gy) > 0. Since W; is
maximized at q;, Wilay) > Wi(g;) > 0. Therefore, Wi(q;) > oO.

3Proof of Lemma 1.2: 1If customer i is not indifferent, h; =
Jj = 0. P; > C follows from eq. 3.8a’'.

4proof of Lemma 1.3: Contrapositive of Lemma 1.2.

5Proof of Lemma 1.4: If Pi < C, the customer would be
indifferent (Lemma 1.3); since i < b, this would mean that W, =

0. This contradicts Lemma 1.1.
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®proof of Corollary 2.1: One of two states must hold -- all
customers are indifferent or some customers are not indifferent.
Given Lemma 1.1, the first state is impossible. For customers who

are not indifferent, P; > C (Lemma 1.2). For eq. 3.8c to hold

when e < 1, R, = Cdgi in order for this to hold, Pj < C must hold

for some other —customers j > b.

* .
"proof of Corollary 4.1: From Theorem 4, P; < C is

. * .
impossible. From Lemma 3.1, P; > c* requires Pj < C” for j e (c,
*

i); therefore, P; > c* is impossible as well. Therefore, P; = C

is the only possibility for prices after point E in Figure 5.

8proof of Corollary 4.2: If e < 1, Ry = qu is a necessary
first-order optimizing condition (see eq. 3.8c); since t(e) =
[F(e) - F(e)]/f(e) = O (see immediately after eq. 3.8a'), P = C
if consumer e were a customer. From the proof of Theorem 4, it

is obvious that consumer e will leave the utility since its

. . . *
marginal price is above C.

APPENDIX:ADDITIONAL THEOREMS

This appendix will prove two assumptions that were made in
Section 3.
Theorem Al: S cannot be incomplete if the utility maximizes

profits or constrained social welfare.

Proof: With no loss of generality, suppose that there is
one gap in S. S then consists of (a, e), (a', e') and maybe any
endpoint; a' > e.

The new objective function is written:
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I} !

€ Y e
A.1) L= (1-9g)f g WidF (i) + K Wi dF (1) + WidF (i)
oL e !
) e Q@
+ S Wi4dF(1)] + g j (R; - Cqy)dF(i)
e/ 9,
|
+ SQ (Ry = Cqy)dF(i)] + hy (W - 0)di + g 3i Wy
W g S
where:
Wi =0 if i & (e, a') <D
Wi' = Wi* if i & (e, a') > b

P(q), a, e, a', and e' are under the utility's control.
Assuming that 0 < a < e < 1 and that the profit constraint
is binding, the optimizing conditions are:
A.2a) P; = C+ (29 - 1 - hy - j;)t(i)(d%v/dida)/g
for i & (a, e)

A.2b) Py =C+ (29 - 1 - h; - j;)t' (i) (a%U/didq) /g

for i € (a', e')

A.2cC) R; = Cqy for i = a, e, a', e
e Q'
A.24) @ (Ri - qu)dF(i) + S ,(Ri - qu)dF(l) = K
Q
A.2e) W; >0 for all i & S
A.2f) W, > Wi* for all i & s

Either b > e or b < e. If b > e, Wy > 0 for all i &€ (a, e)
(see Lemma 1.1); therefore, P; > C (Lemma 1.2) for i € (a, e).

At a, Theorem 1 would still hold; d; = 0. At e, P C; see eq.

e=
A.2a. Under these circumstances, eqg. A.2c cannot hold for i = e;

i.e., Rg = Cq, is not possible.
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If b < e, then Ry = Cq, can hold. The results of Section 4

still carry forward, mutatis mutandis. Therefore, for some

customer c e (a, e), Pg = c*. From Theorem 4 for all i & (c, e),
*

Py = c* and Wi = Wiai therefore, Rc,i = C (qy - qc). For

consumer j > e,

A.3) Ry = Rg + Rg 3

A necessary conditicn for consumer j to choose to be a customer

is that:
A.4)  Rg < CT(a3 - dc)

Suppose that j > a‘. From eq. A.2c, R, = Cg, and Ryr =
an.; therefore, Re,a' = C(qa. - qe). Then Rc,j = Rc,e + Re,a'
+ Ra',j = C*(qe - de) t+ C(ayr - dqg) + Ra',j' Eqg. 4 can be

satisfied only when Ra',j < C*(qj - dg) < C(qj - d4:) for all j

& (a', e'). But this condition is impossible if two other
optimizing conditions in eq. A.2c hold; Ryr = Cgyy and Ry =
Cqers 1implying Riigr = Rgr = Ryt = C(Qgr - due). Since the

presence of a gap leads to impossible conclusions for a profit-

maximizing or social welfare-maximizing firm, no gap in s will

occur.
Theorem A2: The price schedule can have no upward
discontinuities.
Proof: In eq. 3.8a', i can be scaled, without 1loss of

generality, so that d2U/dqdi is constant; i will be continuously
distributed. Since h; = 0 (Lemma 1.1), upward discontinuities at
P; can only result from downward discontinuities in j at P;.

Since j; > 0, lim Jp > 0 is necessary if downward discontinuities
=
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are to arise in j; since jh > 0, Wh* = W, for consumers h

immediately before i. By Theorem 3 and 4, P; = c* for all i > h;
since ¢* is a minimum price, no upward discontinuities are -

possible.
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