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1. Introduction

Since the breakup of the AT&T network, 1local telephone
companies (LTCs) have faced the problem of how to price service
to recover fixed network costs. There are two serious
complications which limit the application of early literature on
nonuniform tariffs (Spence (1977); Roberts (1979); Mirman and
Sibley (MS, 1980); and Goldman, Leland, and Sibley (GLS, 1984))
to this problen. First, customers can use alternative bypass
technologies to avoid the local network; these alternatives would
appeal to large users and consortia of small users. If large
users are not captive, local companies can not excessively price
usage to these customers. Second, although small users
apparently are more captive, political pressures from consumer
advocates and legislators will not permit small-user prices to be
increased excessively either. Therefore, local companies must
determine how to recover their fixed costs when both ends of
the customer spectrum are powerfully resistant to price
increases.

In a forthcoming article (Einhorn (1987)), I demonstrate
that a profit-maximizing or profit-constrained, welfare-
maximizing local telephone company that is faced with possible
(large) customer bypass should be permitted to price some high-

level customer usage below the associated marginal usage cost;



low-level usage prices still should exceed marginal cost. Under
such a tariff, I showed that each customer would still make a
positive net revenue contribution toward recovering the company's
fixed costs; furthermore, only economic bypass would result.
However, the paper placed no limits on what the local company may
charge small users. We now add the additional constraint that
small-user utility must not fall below a prespecified 1level;
i.e., the level that prevailed under an earlier uniform tariff.
In this way, we meet consumerist fears that policies designed to
eliminate large customer bypass may cause harm at the small-usage
end of the customer spectrum.

The resulting nonuniform tariff that I shall design does not
maximize social welfare or utility profits but is Pareto-
improving; i.e., each customer can be made better off with a
nonuniform price schedule than with a uniform price schedule that
prices usage above marginal cost. Willig (1978) has demonstrated
this result already and argued that customer usage prices should
eventually fall to (but not below) marginal cost. However, he
does not derive the shape of the best Pareto-improving schedule
nor does he consider the potential for large customer bypass. I
shall derive the shape of the best Pareto-improving schedule;
when large customer bypass is possible, any Pareto-improving
schedule should still eventually price some large customer usage
below marginal cost. The only bypass that will result under an
ideal Pareto-improving schedule will be economic.

This article is part of the theory of regulation under
assymetric information. In this case, we shall assume that

customer usage intensities are distributed across a spectrum;



LTCs and regulators form a Bayesian prior (e.g., Baron and
Myerson (1981)) regarding the distribution of these intensities
but have no idea of the usage intensity of any one customer.
Consequently, it is necessary to construct a cost-recovering
tariff using only the distribution of expected usage.

This article is organized as follows. Section 2 discusses
the basic problem and the notion that marginal cost can sometimes
legitimately exceed usage price. In Section 3, I extend a prior
analysis of Spence to derive a profit-constrained nonuniform
price schedule where no customer's welfare is reduced from a
prespecified level.VSection 4 derives the basic results of the
model; Section 5 considers some additional complexities ignored
in Section 3, including large customer bypass. Section 6

concludes the paper.

2. A Simple Problem Illustrated

This section will discuss the cost-recovery problem in
telecommunications and an economic solution to that problem. In
particular, it will be shown that a profit-maximizing or profit-
constrained welfare-maximizing utility facing bypass alternatives
for large customers should price some high-level usage below

marginal cost.

Bypass Illustrated

Each telephone customer can reach his long-distance carrier
through any of his (many) installed circuits, which can feature

any mixture of bypass and switched access technologies. Assume



that the operating company has fixed costs K, constant switched
access line costs Z, and constant marginal usage cost C. Each
customer pays an access fee A per line and a varying marginal
price P(q) per unit of line usage q; let R(g) represent the
usage-sensitive revenue associated with g. Each switched access
line faces the same price schedule.

Bypass circuits have higher initial costs (Z*) but lower
usage costs (C*). Assume that bypass technologies are
economically efficient choices for the most heavily-used circuits
and that the bypass market is competitive with prices equal to

1 Bypass circuit i's payments are 72* +

their marginal costs.
C*qi*; qi*(c*) is usage on the bypass circuit.

In the remainder of this section, assume that customer usage
is own-price inelastic. With utility (bypass) service, circuit i

would impose costs of Z + Cq; (Z*

+ C*qi) (see Figure 1). In
Figure 1, economic efficiency would be promoted if circuits that
use less (more) than q* chose switched access (bypass). Ideally,
prices A, and P, would equal marginal costs 2 and C,
respectively; circuit bypass would then occur (efficiently) at
usage levels q* and above. But marginal cost pricing would not
recover LTC fixed costs. Consequently, A + R(qi) > Z + Cay is
needed somewhere at usage levels q; < q*.

If P were constant and above C, circuit i would profitably

*

bypass if A + Pgq; > 27 + C*qi. Assuming that A = Z, bypass would

occur if q; > q@ = (Z* - Z)/(P - C*) < q*; see Figure 1. Bypass
by circuits that use between q@ and q* (above q*) is uneconomic

(economic) .



Optimal Pricing

With a nonuniform price schedule, a profit-maximizing or
profit-constrained, welfare-maximizing LTC could retain any
circuit with q; < q*. To see this, note that the customer will
forego switched service only if A + R(g;) > z* + C*qi. If bypass
occurred, the LTC would make no profit from this circuit; social
welfare would be reduced as well since a; < q*. Consequently,
LTC profits and social welfare would both increase if the price
schedule were altered so that Z + Cg; < A + R(qi) < z* 4 C*qi for
all g; < q*. The permissible region for the payment schedule
lies between Z + Cq; and z* + C*qi in Figure 1.

By contrast, the LTC could not and should not retain any
circuit with usage above q*. To retain the circuit, switched
access must be priced at or below z*¥ + C*qi < Z + Cq; -
Consequently, the LTC's costs would exceed its revenues.
Furthermore, bypass costs are below the LTC's. Therefore,
switched access is both inefficient and nonprofitable to the LTC.

Under a correctly implemented price schedule, bypass would
result if and only if it were economic. At a; = q*, A+ R(q*) =
Z + Cq*. Because demand for usage is price-inelastic, efficient
choice requires that A + R(q;) ;é z* + C*qi when Z + Ca; 2 z* 4
C q; .-

Under any second-best efficient price schedule (so that
first-best marginal cost pricing is excluded), P(qg) < C at some
point g < q*.2 As the next section will confirm, this does not

mean that any circuit will necessarily be subsidized in total;

the net revenues that a circuit generates prior to reaching the



subsidy range will be sufficient to cover the maximum subsidy.3

Pareto-Improving Pricing

We now can present a Pareto-improving tariff that can make
some customers better off without harming anyone. Suppose that
the initial l1ine and usage charges are A, and P,. Assuming that
line charges are not sufficiently high to recover fixed costs
alone, P, > C. If this tariff were implemented alone, uneconomic
bypass would result at q@ = (Z = Aj)/(Cc - P,). Presumably, net
revenues recovered from usage prior to q@ would be sufficient to
cover fixed costs. To stop uneconomic bypass and secure
additional revenues, the local company could add a second block
running through q*, as shown in Figure 1. As illustrated above,
usage price in the second block P, must be below marginal cost C.

By retaining lines that use above q@, the LTC keeps circuits
that it would otherwise 1lose and enjoys some positive
contribution from each retained switched access line. By choosing
LTC service instead of bypass once the second block is offered,
large customers indicate, by revealed preference, that they have
been made better off. The net contribution from large-circuit
retentions can be used to reduce the usage price of small-block
customers below P,i; therefore, small customers can benefit as
well. The tariff then manages to recover 1local company fixed
costs while improving everyone's utility beyond their original

levels at Ay, Pg.

3. A Mathematical Model: Pareto-Improving Nonuniform Tariffs

Spence derives a nonuniform price schedule that maximizes



social welfare subject to the constraint that LTC profits are
non-negative. We shall now extend his analysis to require that

no customer's utility be lowered from an initial 1level that

resulted under previous line and usage charges. Demand for
usage 1s price-elastic: each customer has at most one circuit,
which can be switched access or bypass. Section 5 relaxes this

latter assumption.

Variables, Definitions, and Assumptions

Demand-for-usage intensities vary among customers. Assuming
that demand curves do not cross (see Faulhaber and Panzar (1977);
Spence; MS; GLS), each customer can be indexed by an ordinal
parameter i £ [0, 1], which is continuously distributed with
cumulative distribution function F(i) and density f(i) =
dF(i)/di. Let a designate the infimum and d the supremum of
intensities i of LTC customers; (a, d) € [0, 1]. This section
assumes that both a and d are fixed; Section 5 will make both
variables-of-choice.

Assume that intensity 0 is such that customer usage dg = O
at P > 0.4 Represent optimal usage by customer i on a switched
access circuit as d;7 willingness to pay for service and net
welfare then depends upon intensity i and usage (. The net

welfare of consumer i on switched access circuits can be written:

3.1) Wij(a) = W(i,q,P(q)) = Uj(d) - R(g) - A

where:

U;(q) = U(i,q) = consumer i's willingness to pay for q.



R(g;) = usage-sensitive revenue paid for usage a3

A

access fee per customer line

We assume that av; (q)/dq > O, dzUi(q)/dq2 < 0, and
d2U(i,q)/didq > 0. For individual i to maximize utility,
QUi () /A9 | gugi = GR(D)/4q |goqi = Pi-

The remainder of this section employs three assumptions:

Assumption 1: All customers i & (a, d) are switched access
customers.

Assumption 2: The price schedule is continuous over (a, d) and
differentiable except at a finite number of points.

Assumption 3: The price schedule is single-crossing. (A price

schedule P(q) is single-crossing at q; if, for any i such that

P(qj) <= aAU;(0)/dq | g=qgir P(dy) £ dU;(q)/dq g=qj for 93 < qj
(GLS) .

As a result of Assumption 1 and Assumption 2, we may
integrate over customer intensities between endpoints a and d; a
proof of Assumption 1's validity is available upon request.
Assumption 2 disallows gaps and jumps (see Burtless and Hausman
(1978), GLS) in the price-schedule; Section 4 relaxes this
assumption. Assumption 3 ensures that second-order conditions
for a wutility maximum are always met; it is equivalent to
assuming that customer usage increases with customer intensity at
all prices P;. The single-crossing assumption also insures that
customer 1i's demand curve intersects the price schedule from
above at q;i it must either be assumed to hold (Spence, MS) or

be imposed as a constraint (Mirrlees (1976); Roberts; GLS).



First-Order Maximizing Conditions

Turning to the formal optimization problem, we define

aggregate consumer welfare W:

d
3.2) W = S Wi(ql)dF(l).
\¥

Utility profits are defined:
3.3) X = 5 [A + R(g;) - Z - Cqg;]dF(i) - K.
Q.

In a Pareto-improving tariff, no customer can be made worse
off than he was initially; i.e., Wi(g3) > Wi,(dy,) where the o
subscript indicates initial levels of welfare and usage that
prevailed originally under customer and usage charges A, and Pg.

If Wl = W

jor We shall term the customer original-indifferent. We

shall then term this constraint the original-indifference
constraint.

The objective function can be expressed as follows:

3.4) L = (1 - g)w + gX + g hi(Wi - Wio)di
Q.

If g =1 (1/2), (3.4) is a straightforward profit- (welfare-)
maximizing problen. A profit-constrained welfare-maximizing
problem must weight X more heavily than W; consequently, 1/2 < g
< 1 for a profit-constrained welfare-maximizing problem. (For
more explanation, see Schmalensee (1981), MS.) The last RHS tern

in (3.4) is the Kuhn-Tucker term needed to ensure that Wi(d;) >

Wio(djo) for all customers 1i. The multiplier h; must be
nonnegative for all 1i. If h; > 0, customer i is original-
indifferent.



A trivial extension of a derivation by Spence (1977) shows

that (see Einhorn):

3.5a) g(dUi<q)/dq\q=qi - C)£(4)
+ (1 - 29 + hy) (Q®U(i,q)/9idq) [F(d) - F(i)] = 0O

3.5b) X>0;9g>0; gx =0

3.5C) Wi(ql) > Wio(qio); hl

v

0; hj[W;i(d;) = Wio(d55)] = 0.

]

For all i, dUi(q)/dq‘q=qi dR(q)/dq‘q=qi = P(dqj). Equation

(3.5a) can then be reexpressed:
3.5a') P; = P(gj) = C + (29 - 1 - hy)t(i) (9%U(i,q)/didg q=qi)/9

where:

I

t (i) [F(d) - F(i)]/f(i) > oO.

4. An Optimal Nonuniform Price Schedule

Spence derives the shape of the optimal nonuniform price
schedule when the original-indifference constraint is not binding
(i.e., h; = 0 in (3.5a')); see Figure 2. The schedule need not
be monotonically increasing; P(g) must be greater than or equal
to C and eventually P(g) must fall to C. We now consider the

implications of adding the Pareto-improving constraint to an

optimal nonuniform price schedule.

Theorem 1: Let [b, c] represent the first band of customers who
are original-indifferent. Suppose that P(qy) > P, for some i &

(b, c¢]. Then for some j & (b, i), P(qj) < Po'5

10



! Figure 2: Unconstrained and Pareto-Improving Nonuniform Price Schedules
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either Ay, Py or A,, Pg), we may require that each customer be
better off under the nonuniform price schedule than under either
of the two original alternatives. Because consumer demand curves
do not cross one another, only one customer can be indifferent

between Ay, P, and Aq, Pl' Therefore, at most only one customer

o
can be indifferent between the two original price schedules and
the nonuniform alternative. Let [b, c¢] ([b', c']) represent the
spectrum over which customers are indifferent between Ag, Py (Aq,
P,) and the nonuniform price schedule; from the above remarks, c
< b' is necessary.8

A Pareto-improving price schedule therefore would have two
plateaus. If ¢ = b', we would jump from one plateau to the second
by moving down the demand curve of customer ¢ = b'. If b' > c,
there would be an interval of unconstrained customers between the
two plateaus; usage price P(qg) would be fixed over the plateau;

(see Figures 4a and 4b.) Adding additional original-indifference

constraints to the problem is now a trivial extension.

5. Inmportant Extensions

This section introduces three important extensions to the
model of Section 3. First, both endpoints a and d may be
variables of choice (d may be variable if large customers can
bypass the LTC.) Second, each customer can have more than one
switched access 1line. Third, regulators might not have
information regarding F(i) and may need to impose an even more

constrained Pareto-improving schedule than derived above.

12
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Bypass Alternatives

Assuming that bypass vendors constitute a competitive
market, access and usage prices will be driven to costs z* and
c*. Usage of customer i is then dix = qi(C*). Under bypass, the

welfare of customer i would be:
. * *
5.1) Wix(dijs) = W(i, dj4, C7) = Uj(dj%) - Cdysx - Z

Prospective customers may then choose between bypass, LTC service
(see eq. 3.1), and no service at all. We assume that bypass
technologies can be economic at a sufficiently high 1level of
usage; i.e., c* < ¢ and z2* > Z. Therefore, P, > C > c*.

Potential consumers can be divided into two groups. If

utility services were unavailable, small consumers would rather

forego service altogether rather than bypass; i.e., 0 > Wis(djx) -

By contrast, large consumers would rather bypass; i.e., Wi*(qi*)
> 0.

We now let endpoint intensities vary; we choose a and 4 to
maximize social welfare subject to binding profit- and original-

indifference constraints.

Assumption 4: a is a small customer and d is a large one.

Given the definitions of infimal and supremal intensities
and Assumptions 3-4, a consumer with i < a (i > d) would prefer
having no service at all (bypass) even if switched access were
available. That is, Wi(g;) < 0 for i < a; Wi(d3) < Wix(gjs) for
i > d. If customer intensities are continuously distributed,

customers a and d would be indifferent between utility service

13




and their next best alternative.

The relevant welfare-maximand is then:

d \

5.2) W = Xwi(ql)dF(l) + Swi*(qi*)dF(i).
Qo d

Utility profits are defined as before:

3.3) X = S [A + R(gj) - Z - Cqg;]dF(i) - K.
Q
We must add two Kuhn-Tucker conditions to (3.3) to require

that each customer prefer or be indifferent to LTC service
(versus his next best alternative). The objective function can

be expressed as follows:

d d
5.3) L = (1 - g)W + gX + & hy (Wy - Wyo)di + g ki (W; - 0)di
d G Q
+-g my (W = Wi4)di
Q

The k; terms are Kuhn-Tucker constraints that require each
customer to prefer or be indifferent between utility service and
no service at all; i.e., Wi (q5) > O. The m; terms are Kuhn-
Tucker constraints that require each customer to prefer or be
indifferent between LTC service and bypass; i.e, Wi(ga;) >
Wis(dis).

It is possible to derive formal optimizing conditions as in
Section 3 (see Einhorn). However, a less formal discussion makes
the basic points. We may conceive of the two next-best
alternatives (i.e., no service at all and bypass service) as
being two additional original-indifference constraints with A =

* *

0, P = 0 and A = Z2°, P = C". As discussed in the previous

section, a nonuniform price schedule with several original-

14



indifference constraints must jump from plateau to plateau with
gaps of strong preference possibly in between; that is, there
can be constrained sections where customers on any plateau are
small-, large- , or otherwise original-indifferent.

We now shall characterize the small- and the large-
indifference plateaus. We first differentiate (5.3) with respect

to a and A4d:

5'4a) (g = ha - l)wa(qa)f(a) - g(A + R(qa) -2z - an)

-9(A + R(gy) - 2 - Cqy) < 0;

a > 0; ag[A + R(qa) - Z - Cqg,y]l =0

5.4Db) (1 + kg - 9)[Wg(dg) = Wax(dg+)] + 9(A + R(gg) - 2 - Cqy)
9(A + R(gq) - Z - Cag) > 0;

d <1; (d - 1)g[A + R(gg) - 2 - Cggl =0

The first equalities in (5.4a) and (5.4b) result from the fact
that Wy(gy) = 0 and Wo(gg) = Wox(dex) when a > 0 and e < 1.

From (5.4a), A + R(gy) = 2 + Ca,7 i.e., revenues from
customer a must just cover his associated costs. Because
customer a is indifferent, Walay) = Ugi(gy) - R(ay) - A = 0;
therefore, Usy(ay) = 2 + Ca,- This means that customer a should
obtain LTC service if the resulting social benefit U,(a,) equals
the associated social cost 2z + Cq,. If customer a is the infimal
intensity of the customer spectrum, no customer i > a can be
small-indifferent.? Consequently, for small di, P(qy) is either
at an unconstrained level somewhere above marginal cost C (as in
(3.5a')) or it falls to usage price P,.

From (5.4b), A + R(dg) = Z + Cgqi i.e., revenues from

15



customer d are Jjust sufficient to cover its costs. Since the
marginal usage cost of bypass c* < C, the utility must extend
its c* plateau until it breaks even on usage dgq of the largest
customer. Above dgq- it is necesssary to dissuade large customers
from staying with switched access; this can be done by raising
the marginal usage price (for usage beyond dg) above c* (see
Einhorn). Einhorn demonstrates that bypass will occur if and
only if it is economic. Figure 5 illustrates an Pareto-improving

optimal nonuniform price schedule with large customer exit.

Multiline Customers

To this point, we have assumed that each customer has one
access line. However, the model can be easily generalized to
allow for multiline customers. Einhorn shows that results from an
optimal nonuniform schedule for switched access line usage (with
large customer bypass) can be extended to a multiline model if we
assume that each bypass circuit has a flat-rate line (usage) cost
of 2* (C*), each switched access line has a usage-sensitive price
schedule P(q), P(q) is the same for each switched access line,
and dP(q)/dg < O for usage ¢ on each switched access line.

Because of the last assumption, marginal wusage price on any
switched access line monotonically decreases as more calls are
routed over the line; a profit-maximizing customer should always
concentrate usage by routing calls over his available lines in an
unchanged order. Assuming that circuit demand curves for
different customers do not cross, all installed switched access

lines can be unambiguously designated by an ordinal demand

intensity parameter i with i continuously distributed with

16



Let ¢, represent the usage level of customer b if the
marginal price of usage is P, (i.e., point E in Figure 3). At
this point, we prove Lemma 2.1, which will be useful for proving

Theorem 2.

Lemma 2.1: R(dyy) = Ay + Podpg-®

Theorem 2 establishes that the price schedule has a plateau at

P, over the interval (b, c]:

Theorem 2: P(q;) cannot be less than P, for i € (b, c].7

We can combine Theorem 1 and Theorem 2 to state a major

corollary:

Corollary 2.1: P; = P, for all customers i € (b, c].

From the proof of Lemma 2.1, P(q) and D), must coincide from
points B to E (Figure 3); it follows from Corollary 2.1 that
Py = P, from g, (point E) to do-

We have established the general form of a Pareto-improving
price schedule (see Figure 2). Unlike Spence's nonuniform price
schedule, the new schedule reaches a plateau (b, c] along which
P(gq) = P,. For usage charges prior to the plateau, A + R(qap,)
A, + Pqp,. If the original-indifference constraint were binding,
g would be higher under a Pareto-improving schedule than under an
unconstrained schedule; customers i who are not original-
indifferent (i & [b, c]) would consequently face higher prices
under a Pareto-improving schedule.

If more than one original-indifference constraint existed

(i.e., each customer must be better off than he would be under

11



cumulative distribution function F(i) and density f(i) =
dF(i)/di. Results from Section 3 emerge unchanged, owing to the
fact that intensity of line usage is now ordinally ranked in an
unambiguous fashion as was intensity of customer usage before.

To ensure Pareto-improvement in a multiline model, we add
the requirement that net willingness—to—pay for usage on any
switched access line i [Wi(d3) - R(gj) - A] must not be less than
willingness-to-pay for usage on the same line under the original

A_]:; while this requirement is not

tariff [Wi(d30) oli

Podio
necessary for Pareto-improvement for any multiline customer, it
is sufficient. It guarantees that the results established above
for single-line customers can be extended to multiline customers
as well. Given this requirement and the assumptions stated
above, the results of the single line model (integrated over
customer intensities i) can be extended mutatis mutandis to a
multiline model as well. For each switched access line, P(q)
declines (possibly through one or more plateaus). Eventually,
P(q) = ¢* < c. At a prespecified level of usage dgr A + R(gyg) =

Z + Cgg; bypass will occur above this point. Einhorn provides

more details.

More Limited Information

To this point, we have assumed that regulators and the LTC
have a Bayesian prior regarding F(i) (although no knowledge
regarding a particular customer's usage intensity 1i); however,
even this much information might not be available. Information on

F(i) would be needed to enforce Lemma 2.1, which can allow

17



P(q;) > Py for dg;i < dpgs and is needed to design the best
Pareto-improving price schedule of Section 4.

Without this information, Pareto-improvement can still be
guaranteed by requiring that A < A, and P(q) < P, for all qj.
This would require replacing the original-indifference constraint

Wi > Wy, with A < A and P(q) < P,. Under these conditions, P(q)

must not exceed P,; as before, a plateau (b, c] can exist where

P(q) = P,. However, endpoint conditions on supremal intensity d
still hold (eq. (5.4b)); usage price must eventually fall to c*.
As before, at supremal usage dg, A + R(qd) = 2 + Cdg.

Figure 6 illustrates an alternative Pareto-improving
nonuniform price schedule with large customer bypass. Assuming
that no information on F(i) is available, the LTC may nonetheless
improve upon the original prices Ay, Py by identifying the likely

point q@

and customer size where uneconomic bypass would occur
(assuming that P, exceeds C); at this point, the utility may add

a second block (P(q) = C*) for usage between q@ and q*. The only

*
I

information needed to construct the tariff in Figure 6 is P, C
and some information regarding customer demand responses to

determine q@.

6. Conclusion

This paper has demonstrated several important points
regarding the prices that LTCs should bill to long-distance
users. First, given any set of initial uniform prices Ay, Py
with P, > C, it is possible to make each LTC customer better off

by implementing a nonuniform price schedule; this schedule can be

designed to make each customer better off than he was originally.

18
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Second, when large customer bypass presents a problem, this
nonuniform price schedule should have an outer block where usage
is priced below marginal usage cost; large customers would
nonetheless provide a net revenue contribution because prices in
the inner block would exceed marginal usage cost. Third, under
any correctly implemented Pareto-improving schedule, bypass will
result 1if and only if it 1is economic. Fourth, although
information regarding F(i) can help in the design of a Pareto-
improving price schedule, such information is not necessary to
Pareto-improving the uniform tariff A,r Py (P, > C); a nonuniform
price schedule can be construcuted that unambiguously benefits

each customer even without any prior knowledge of F(i).
ENDNOTES

lpecause bypass technologies display increasing returns at some
usage levels, we assume that consortia of users can form to
exploit optimally any possible economies of scale:; alternatively,
users may purchase bypass service from optimally-scaled
resellers.

210 prove this, note that A + R(4gj) > 2 + Cg; for some g; < g

if fixed costs are to be covered; A + R(q*) = A + R(qi) + [R(q*)
- R(gy)] and Z + Cq* = Z + Cqgy + C(q* - d;)- Since A + R(q*) = Z
+ Cq* and A + R(q;) > 2 + Cq; at some q; < q*, R(q*) - R(gj) <
C(q* - di) for that d;. Therefore, P(g) < C somewhere between a;
and q*.

31f customer i were subsidized, then D(gj) = A + R(gy) < 2 + Cqj -

Let (I,, I,) designate the interval of subsidized customers; with
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no loss of generality, assume that there is only one subsidy
interval. For customers i in (I, I,), both LTC profits and
total social welfare (but not consumer surplus) can be increased
by setting P(g;) = C. 1If this were done, customers i > I, would
be made worse off, since their inframarginal payments prior to
dr, would increase by G = D(dt;) - D(dp;). But each customer (>
I,) could be restored to his original utility level via a lump
sum income grant of G. (If any further subsidy interval results,
the process could be repeated.) Therefore, both LTC profits and
social welfare may be increased without making any customer
outside (I,, I,) any worse off; the offsetting gain in producer
surplus more than offsets any reduction in consumer surplus in
(I, I,).

41n making this assumption, we have implicitly excluded the
possibility that access fees may be increased without distorting
customer subscription in some manner; this possibility would be
fortuitous from a welfare-maximizing standpoint, but the
optimization problem would be trivial.

SProof by contradiction. Suppose that P(qj) > P, for all j & (b,
i) and that P(g;) > Pg. Figure 3 displays the relevant demand
curves for customers b and 1 (D, and D;), one possible price
schedule P(q), and the original usage price P,. Area ABC (FGC)
represents the net consumer surplus that customer b (i) enjoys
with utility service; with bypass, customer b (1) would enjoy a
net consumer surplus of area ADE (FDH) minus the flat-rate fee
z*. Since b is original-indifferent, area ADE - A, = area ABC;

therefore, A, = area BCDE. Since i is original-indifferent, area

FDH - AO = area FGC; therefore, A, = area GCDH. But area GCDH =
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area BCDE + area GBEH; unless area GBEH = 0, this equality cannot
hold. Area GBEH cannot equal zero if P(qj) > P, for j & (v, i).
E.O.P.

®proof: From Theorem 1, P(q;) < P, for some customer i > b.
Since Assumption 3 implies that P(g) cannot cross Dy, twice, P(q)
and Dy must coincide from B to E; see Figure 3. At E, consumer b
can purchase usage at price P,, the same as originally. Since
consumer b is original-indifferent, inframarginal payments prior
to gy, must be the same under the two alternatives; therefore A +
R(qbo) = A, + Podpo- E.O.P.

7pProof by contradiction. Let 1 represent the first point (i > b)

where P(q;) < P,. Because customer i is original-indifferent:
4.1) Uj(di) - R(aj) = A = U;(dijo) — Podip — Ap-

We may express:

4.2)  R(gj) = R(gpy) + [R(d;) - R(gpg)]
= Ao + PquO - A+ [R(qi) = R(qbo)]l
where the second equality follows from Lemma 2.1. Substituting

(4.2) into (4.1) and rearranging terms yields:

4.3) Uj(ai) - [R(93) - R(Ape)] = Uj(die) — Poldie = dpo) -
Since P(qa;) < P, U; (93) > U;(gay,) - Since P(q) = P, for
all g between dpo and di, R(g;) - R(dp,) < Po(d;o - dpo) - But

then equality cannot hold in (4.3), which means P(qgq) < P, is not

possible. OQ.E.D.

Note: If P(qy) = Py, Uj(qj) = Uj(gq;j,) and R(qy) - R(dgye)
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Po(d;o = dpo) i (4.3) would hold.
81f ¢ > b', there would be more than one customer intensity that
is indifferent between the three alternatives; if customer demand

curves do not cross one another, this makes no sense.

%Proof: Since a = inf (8), Wy(ay) = 0 and Uy (g,) = R(gy) for this
user; see (3.1la). Since demand curves do not cross, U; (ay) >
Us(ay) and Wi (gy) = Uj(dy) - R(gy) > 0 for i > a. Since Wi (q) is

maximized at g = g3, W;(g;) > W;(g,) > O.
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