Program Impact:
The Key Measure
of Audience Response

by Donna L. Hoffiman

Do not quote without the permission of the author. ©1984 Columbia Institute for Tele-Information

Columbia Institute for Tele-Information Graduate School of Business

Columbia University
809 Uris Hall
New York, NY 10027
(212)854-4222

Dorana L , Huffixizt

Assi.stint Professor

Gratuade School of Busimess
Columbla University

October 1984

Research Working Paper Series, Not fur cltadion, quotation, repanduction, or distributión wlthout wrlttem permission.

This paper was presented to the Columbia University Graduate Sclrool. of Busincss Conference: "Beyond Ratings: New Ditoctions in Andlence Measurement Research"

The rescarch doscrebed here was supported in pare by a Grant-in-Aid of Research from Sigma Xi, The Sclentiffe Research Society. Television Audience Assessment, Inc., under a grant from the John and Mary R. Markle Foundation, collected the data that were used in thís investigntion. T. would like to thank them for allowing me access to the data base from thair telovision audLence study, conducted In the Springfield, Illinois area in 1981.

Progran Inpact：The Key Measure of Audience Response

The quantitetive ratings and accompanying descriptions of atulence composition available today are us巨d in a number of ways by exentifives in the televi三ion and advertimiry indugtries to metse programbing and comitercial decimionm．A Eituation analyミis of the status of audience a三sesmment （Hoffman，1954）reveas that these traditional ratinge are wogfully inadequate for the task they have been put to．

The ratings deliver a house count，by age and sex，of who（actually，noti many getsethaldg is watching．Nething more．They provise mo informetion as to whether audiences pey attention to whet they view，life whet they view，or erigage in other behaviors besides vi＝wing during television watctirg．

There is a growing body of research that suggests that the television atuderice is rot the pasmive，fully attentive and engeged set of viewers the industry thimksit is．The Purpose of this paper is ta demonetrete that television ratings alone do not convey the full variatility in audience rempponse to progranc．

The very hypothesis that audiences feact to the programs they see on television asctimes the enistence of ar， evaluative comporent in the response．Therefore，it would be desiratle that any inde：purporting to møature＂progrant popularity＂contain such a momporent．The traditional，
quantitative ratings measure levels of channel viewimg cross－tabulated by age and sen categories．while this information is unquestionably useftil，it does not provide an s＝छescment of audience gttitudet toward prowrems，mor can it be arcepted as a \＃ubstitute for the fine－grained knowledge of how vietsres actually betaque during the viewing of programs．

This research injects the notion of a sutjective， evaluative companent inte audience reaction to televimion programa．This notion iz translated into an assessment of gregran ratirgs that coneiders attitudws and beraviars iri Eduitior to the guantitative ratirage．Conventional wigdom has it that if viewers＂watcin it，they like it．＂This wisdon is challenged with the suggestion that watching and liking oi televisior frograns are actually related in a much less direct and far more compley fashian．Three key research quegtigns are，m：plefed in this paper：

1．What are the qualitative dimen玉igns of alidience respurise to programs and how do television programs differ on theste dimersiams？

2．How do the important dimensions of audience resporses relate to the traditioral，quantitative progrant「こtingミ？

ङ．Finally，how do these dimensions relate to （self－reported）syert viewiry behaviors？

The asstmption thet progranm with high ratings deliver Migh ievels of appreciation to their atidiences is questionsu in this paper．It is suggested thet quantıtative ratings may
not convey emough imformation about audience likes and viewing habite and that qualitative information may be needed to provide a more camplete picture.

The ekamination of actual behaviors engegec in darimg televisign viewing is an important etep in this process. Todays television viewers have many demands an their time and neusełocld activity ievels may easily intemfere with viewing. The traditional ratings systems count these viewerg, assuring that to watch is to like. Yet, are theee vieweremeglly
 lamp," as Elizabeth fioberts (19B2) has Ex..qgested?

Methotology

The deta from an audience analysis etudy condincted by Talevisian Audiznce Assessment, Ima. (TAA) in Jume of 1981 werfe employed in this investigatian. Duririg the ten-day feriod Epanning Sunday, June 21 through Monday, Jurie 29,1981 , TAf conducted a teri-minute telephone coincidental survey of : Ess viewers in the Springfield, Illimeis Area of Domirant Infithence (ADI) ${ }^{\text {. }}$. The interviews were gonducted over seven daýa, from Sunday, June 21 through Thursday, Tume 25 and then dgain on Eundiay, June $2 E$ and Mondjy, June こc.

Fesporderts were asked about their apirions and behaviors during a primertime televisian programt they had been
or ware currently viewing. Dver fifty variables were measumed by TAA in their survey questionnaire. These included viewerm" reactions to the programe they san, behaviors they engaged in during viewimg, and a number of demographic characteristics. Each respondent celled was e戶fed ebout a television program teleasat during the second Malf-hour of the preceeding hour. For example, an individual called at $8:$ s. wās aeted about the proyram watched between $7: 30$ and $\overline{0} 00 \mathrm{p} \cdot \mathrm{m}$. that evening. The procedture was repeeted during Each sheeemeive prime--time hour. if an individuai had not watched a tolevimion progran in the appropriste time period, then he at she was not included irs the sample (EeE Fotertw anc Lemieum, 179: for a compiete discuseion of the Eampling methodalogy).

The mitife data base of t, SBE viewers wes mplit into two ㅍamplee sa that the major findings of the investigation could be replicated. All results reported irithi玉 paper tisf the "analyeis" Eampla. See Hoffman (1984) for a complete report of the amalyEes involving the "holdout" ฏample.

The analysis sample conteins dot individuals who cellectively viewed zi television programs. The distributien is disflayed in Table 1.

Insert Teble 1 about Fere

The thirty-one television programs alang with their respective Emple sizes are listed in Table 2.

Insert Table 2 about here

The Dimensions of Audience Response to Frograms


```
    Eight variables that measure viewer response to the
programming sean er, the Evering of the survey are inclutad in
this study. Theme variables mearad the variety of reactiens
and attitudes viewers had toward the particular progran they viemed.
```


Anticipate Enjoyment
Feeling

ANTICFTN
EN:UY
FEELING

Get More	ELSE
Grade	GR：ADE
Learn	LEARN
Flan Ahead	FLAN
Upset if Miseed	TOMOFROW

＂Anticipate＂measupes whether the program wes liveed forward to or not and uses a two－point yes／no seale．＂Enjoy＂ uses three paints to reagra the degree of enjaynerit the Fespendent anperianced from the prograir，rangimg from not much to very muth．＂Feselings＂a yemine item，tape whether the
 binary iten measuring whether the respondent wethed the Progran aj a＂way to pass the time＂or to＂get something mere＂ from it．Fempondents assigned a＂Grade，＂＂lite they give ir sthoul：＂to the program they had viewed，thus judging their 1e\％el of appreciation or sョtiョfaction with the progrant． ＂LEErn＂retards whether the respandent learmed anythirag from the program and $i=$ a yesinu item．＂Flan＂indicatee how the Frogran viewed was selectad：did the viewzr ehoose to watch the program arter he or she learnes it was on or diu the viewer plan ahead to see it？＂Hpeet if msiseed＂allowed the respandent to indicate whether he or she would be upset if， g 1 VEn that the progran was on tomarrou，it was missed．The seareh for qualitative dimensioms of exdience rejpunse to progranis begar with the defifition of three zonstructe hypetheeized to represent autience resporse to proyr＂ミnミ． Thesem conetructe are Frogram Iritent，Frogram Impact，arid Frogian Afpreaiation．The variables comprisimg each construct がも：

Intent	Imeast	Agereciation
Anticipate	Feeling	Enjoy
Flan Ahead	Eearn	Grade
	Get More Missed	

Erggram Intent measures the behavioral intention to view the television program. This construct captumes how mom the person was "motiveted" to 玉en the programn Strength of intention is operationaiized in terms aff whether the show was anticipated or not ¢"mnticipate"l and whether the viswer Flarned ahead to iwetch it ("F'lan Ahead") Inctusici of Antigipate at a variable in this constrate is reasanstle becatse a progran carnot be anticipated hriess the \because ifwer knows that it is ar. Therefore, a hich level or anticipatign, along hitt a frior plan to see the program implies a streng degree if behavioral intention to see the show.

The next construct ef interemt is Ergsiga foeget. What effect does a particular progran have on a yewer? Dees it Ğrab viewers or leave them flat? Here, Impact is hypathesazed to tap the emotional znd intellettual asperts of viewing. A program"s impact depands ori whether it touahes the wiewer"y feelings ("Feeling"), whether the viewer learnc from it ("Lear-a"), whether the viewer watched it as a way to fäs the time or to get more from it ("Get More"), and whettier the viewer would be upeet if it weremimend ("UpEet if MisEed"\}. EaEEd or: this defiritigri, Impact meajures both affectiver ard cognitive components of viewing.
favorable-unfavorable component of audience response to programs. the enjoyment an individual derives from a program ("Erigoy") and the "Grade" he or she gives it conceptualize Frogram Appreciation. This construct captures how much appeal the progran has. It can be thought of as an overall measure of Iiking for the program. It is similar to an attitude (Fightein \& Ajzen :975) in that it mperifies the direction of the evaluation of the program. However. it mast. be pointed gut that this is strictly an Empirical definition of program atさitilder

These three construits form the primary measures af audience response to programs. The construction of compesite VEriables based on these constructs if described if the next triree sections. The method of diseriminant arsalysie was used.

Frogram Ageregiation

A discriminant analy三is of the zi television frograms Leing the two audience reaction variables Enjoy and Grade was performed with the GAS procedure CANDISC 1SAS InEtitute, Inc.,

Ynsert Table J about here

The canonical correlation between ENJDY and GfADE and the first diecrimimant function is 0. S. This flinction is Etatistically significant (4ilk’s lambda =0.8447, $F(60,1258)$
 Ewactn, The within canomical structure values are the Within-clase correlationm between the canamical variable of Frogram Appreaiation and. Each original variatse. These correlations show that GFADE is the primary discrimimation among these 31 programs. The standardizeg canonical cqefficiente, when applied to the original standardized cramiaties, yield a canonical variable witín unit within-e゙iass variance. The raw canonical coefileients yield a שancrical variatie with unit within-class varianse when applied to the origiral unstandardized variableg. The saiv coefficients were used to obtain the composite variatle of Frogran Appraciatian from the original variables ENJOY and GF:ADE.

The छtandardized \quad anonical coefficimnts affer further support for the interpretation that Progran Appresiation is defined primarily by GFiADE and that EMJOY contuibutes essentially riothing to this compowite. (Nevertheless, Educir is included in the limem combination.) the compowite for Frogram Appreciation, ifs terms of the standardized weights is: Appreciatian = 1. ○ヲ*EFADE - O.OC*ENJBY.

The television progran gromp centroids (class means) on the campo ite of Frogram Apprediation are informative, thaugh flemed, meastires of appreaiation and cannot be takem direatly as values on a scale of Frogram Appreitiation. This is becatse the gromp centraiderefleat meither the variability within巴ach program group nor the sample size or whith the scofe is based. To rentoly this situation, t-Ecotes were talculated for Each program gromp by dividing eath group eentroia by itc

= = 末tandard deviation af gromp Eentroid, and

These t-scores afe displayed if oreter of iricreasimg magnitude in Table 4 ,

Insert Tatle 4 about here

The t-Ecores have a number of important advantages over the group comptoide as Appreciatior scale values for sath program. First, these seores have been adjusted for both fhe
sample size of each program and the variability within each group of viewers．More important，the t－scores give us infarmation the sentrids cannot；viz．the degree to which the programs あctumly differ from the mean of the Appreisiation三cale．In essence，the t－scores are an approximate玉tetistical test of the nuli hypothesis that the program appreciation score is zero．T－scores greater than 2．00 in absolute value are significant at appraximetely the ous level．CnIy． 9 of the El prograne ar the Frogram Appresiation scale have values that are mtatistically different from zero． The Last Convertible，Napolean \＆Samartha，the first rotir of Dummy，bo Mimutes，The White Shadow and mbC Elose tp have significantiy high Frogran Appreciation scores，while the second hour of Maticganys Tim bonway and House calle have significantly low firgoran Appreaiatign scoree．

A similar dignmidinant anelysis was performed for the four variables camprising Frogram Impact．Fiecall that Frogram Impact is hypothesized to be a function of FEELING，LEARA， ELSE，and TOMOFFOW．The results are dimplayed in Table 5.

Insert Table 5 about here

The first canonical correlation (r=0.50) is significantly different from zera inilk's lambde = o.b24B, $F($ mpprox $)(120,2495.1)=2.6115, \quad P=0.0000)$. Inapection of the
 from a Ehow (LEARN) and watching it as a way to get more from it (ELSE) contribute most to diÆcrimination among these programe.

From the ztandardized canchimai weights, pre can \%ew that FEELING has relatively little woight in sonetruction of the comprsite, and that LEAFN, ELSE, and TOMOFF:OW are all weighted about equally, The composite of frogramimpact, in terms of these standardized weīghts is:

$$
\begin{aligned}
\text { Impact }= & 0.24 \text { FEELINE }+0.5 \text { 粗 }
\end{aligned}
$$

The Frogract Impact compreite was constructed using the rem cョnonical coefficientw.

The program t-scores are displayed in Table b.

```
Insert Table i abaut here
```

\qquad

Fifteen programs have ecores that are sigrificantly different from zero on the scale of frogram Impact. The Waltons, the second hour of Dummy, Little House, the firet hour of Dumy, the mecond and first hours of Foots, AEC Close Up and bat Minutes are significantly high in fregram Impact. Convergely, Eosom Ruddies, Facts of Life, Hart to Hart, House Calls, Charlie's Angels, Tim Conway and Maunum are Eignificantly low on the Frogram impact scale.

The discriminant anclysis of the 31 frograms meing ANTiCPTN arad FLAR is sumararized im Table 7 .

Insert Taもle 7 atout here

The first discrimimant function is significant with a
 0. $2521, F(60,1258)=1.7470, p=0.000 f$. This F-statiotic is evact.). The withir-cell correlatione of tie variables with the composite of frogram Intent suygest that lookirig forwary to the program \{ANTISFTS\} $i=$ the gremter abntrituter to discrimimation, though plañing ahead (FLAM) also contributes
heavily. The standardized weights give the same picture. The compaxite for Frogram Intent was constructed from the waw amnonical coefficients. In terms of standardized values, Frogram Intent is:

Intent $=0.6$ G*ANTICFTN $+0.52 * F$ LAN.

The progran t-score values on the composite of Frogram Intent are li戶ted in Table 8.

Insert Table B about here

Grily sixi programs have seores differing from zero on the new composite veriatie of Frogrant Intent. Thu shows aise significantly high an the scale: bo Minstes and Little House. AEC Close Up, God"s Children. Charliexs Angels and Tita Contwy are mignificantly low on the scale of Intent. As is evident from this composite, most viewers de not pian ahead, for 1 out: forwata to the shows they watch on televieion.

The bivariate correlations among the three compositws of audience repponse，using the program as the unit of analyェis（i，e．n＝さi），are：

> Intent Impact Appreciation

Intert $\quad 1.00$

Impact

.40	1.00
$10.02)$	
.30	.76
(0.10)	(0.001)

If a program ie judged hugh in infほet by its audience， ther it alca tends to be highiy appreainted．Convereely， prograns that are low in impact are also not well三ppreciates．This relaticnship is depicted graphicaily irt Figelre 1.

Insert Figutee 1 mbout bese

The relationship between frogram Appreaiatzon and Frogran Intent $i s l e s s$ neat．Fregrams which viewers intended to view are reasonably well appreciated，though stows which viewers did ngtintend to vi巨w（the most notable beimy AEL Close LP ）are also apfterieted．Inspection of the biveriate
scetter plat of Intent versus Appreciation (see Haffman, 1784) suggested that the program ABC Close wp is an outlier. For purpozes of exposition, it was deleted from the analymis; the correlation betweer Appreciation and Intent rises to o. Ss ($\mathrm{P}=0.003$) after this adjustment. This finding suggeste that showe which audiences intend to view are more appreciated than shows which audiences just "happen" upan. Naturaliy, this may enly imply the discovery of a consistency bias: if viewerg eay they intended to wateh a program, then why would they Eay they did nat appreciate it. Of coursé, it diay be thet viewers anticipate andy those show they appreviate, thouth it $i=$ entirely pasaible thet ari audience will eppreciatea a show it Kac mo intention of viewing (ABC Close Up beiriy a case in poirit).

The moderately positive relationship betwen froorant Yapact and Frogram Intent reveabs that ptograns high orn Interit, Extifit, for the most part, high Impact. Again, AES تlose Uf, due to its extreme intent score, may be considei-ed en outiier in this relationshif. Magnum may also be considered an outlief: it is above avarage on Iratent, yet extremedy low on Impact. If these two shows are deleted from the malysis, then the currelatior tetween Intent ard Impact riges to $0.64(p=0.00 \mathrm{~g})$ - a considerable improventent.

No claims are made as to causal connections, except to
 vieuling, theugh intentianc may be affected by euperience wikt the progran on prior ociasians. Audiences intend to wateh 5hows they appreciate and are affected by, and shows that have
a high impact on them are highly appreciated. Though knowing individuals, intentions to view a program may not enable precise prediction of whether they will finct it satisfyingy knowing that the program had on impact on them allows reasomable confidence in the claim that they appreciated it, tuo.

A_Di

In this section, the differ=nees among programs an tie triree composites of audience response are examined greptically. This was done by performirig a diecrisinant末neiyeim of the eight original variablet of audience remponse ary then fittirsy the three composites along with the orieinail varigセles into the diseriminant space. This analysis provides net only a means of discoverimg which, if any, of these audience respanme meastares discriminates well among progranc: but also a "check" on the validity of the three inoividtai discriminant anelyses described above.

The rewulte of the discriminant analysis of the eight Etiginal variatles appear in Table 7.
\qquad

Imeert Table 7 about here

There are clearly two dimensions in the tpace of these eight varimbles. This is an interesting result because the original hypothesis held that there were three conceptuaily distinct, though not necessarily independent. dimensiont af
 bean performed only on all variables combined, the conclumion may have formed that omly two legitimate dimensions of mudience response existed. As will be Evident uraphically in a memerts the diseriminart analysis of all eight variables combined preduces two arthogonal dimensions (in the metric of the within-ael error materix that are interpretable considering the three dimensions of audimnce responee previcusly conceptuelized. Ferforming a diserimimant analyois ○п еach set of variables separately allows the construction of the test poseitle composites in terme of those variablem. In this fashion, there $i=$ na raquirement that the new variableas be uncurrelated. Indeed, there is na Expectation that they be uncorrelated. In this ᄃense, the aiscriminant analyミis servea as an interpretive aid.

The first discriminant fanction is significant at $\mathrm{F}_{\mathrm{w}}=$
 0.485s], with a corresponding canonical correlation of O. 51. The withimméll correlations among the origimal variables and the new functions show thet the primary contributors to discrimination on the first function are LEARN and ELSE, witr

FEELING, TQMOFFOW and GFADE contributing somewhat less, in that order. ENJOY gantributes in the negative direction. The Etandardized canonical weights assist in interpmeting this furnction:

$$
\begin{aligned}
& \text { First Function }=0.56 \text { *LEARN }+0.52 * E L S E- \\
& \text { G. ZOwENJOY + 0.26*FEELING + } \\
& \text { O. 20*GEADE + 0.15*TDMOFTOW - } \\
& \text { 0.OG*ANTICPTN }+0.01 * F \text { LAN. }
\end{aligned}
$$

Notice that this loots very much like the composite of Frougram Impact. Interestingly enough, the composite of Frogrema Appreciation also appears within this fumetion, thousti "impact" makes the strongest contribution to discrimination ${ }^{2}$. The Eerond cananical function $i=$. statisticaily mignificant at the $p=0.0018 \mathrm{Eevel}$ of significance (wilk"s
 cotrelation comresponding to this function is equal to ged. The primary contributars to dismriminaticon on this fumstimen are FiAN and ANTICFTN in the positive direation, and FEELING in the negative direction. In terme of the standardizer fancoical cqafficients, the sacond discrimimant function \quad an be writters as:

$$
\begin{aligned}
& \text { Second Fhmetion }=0.50 \text { FFLAN }+0.46 * \text { ANTICFTN } \text { - } \\
& \text { 6. } 75 \text { FFEELINE }+0.40 \text { LEAFN }+ \\
& \text { 0.21*ELSE - 9.15*TGMGFROH - }
\end{aligned}
$$

This functian clusely resembles frogram intent with some fints of regative Impact and negative Appreciation ${ }^{3}$.

The program group centroids on eath diserimimant function ate displayed in Tatle 10.

InGert Table 10 about here

ABE Close Wg, the first and second hours of frote, the second hour of Dumay, little House and eo Minutes have large pesitive rieani on the first functign. Magnums Hart to Hert. Tima Conway, House Eabls, Gads Dhildren and Charlie's Arogels have moderately l grge negative meanc. Natice now similar the distribution of prouram meane is on this functige and the F'rograir Impact cimposite.

On the second function, 60 Minutes and bou Grant have remporatiy large means in the positive direction, while ABC Clase Up, God"g Children, the second hour of Dumbiy, the first Mour of Flamingo foad, knot's Landing and AEC Movie are ariented iri the opposite direction. This eorresponds cloミely with the dietribution of proursm means on the tntent contposite.

This analysis produced two uncorrelatad variates, while the analyses in the previous section do net. A particularly
interesting result emerges from this discriminant anayysis: Appreciation, or some variant of it, is not a primary contributor to diserimination among these televigion programs in either dimension. It seens clear from this analysis that. the impact a program has on the vinwing audience, and not its entertainment Yalue, ger se, determines the major direction of diEcrimination among these television prograns.

The diseriminant space of television programs is fisplヨyed in Figure 2.

Insert Fiqure 2 sbout here

50 that a better interpretation of the spaue may be ofiared. the eigtt original varimbles and the compasites ianstructed fi-ari these variables were fit into this space wsing the within-cell correletions among them and the two digeriminant functions. These corralations ate the cosines of the =ngiem betwest 巨ech variable and each furiction. Each variable is mepresented by a vector in the diseriminant space; the vector length is proportional to the squared multiple correlation of each variable with the two-dimensiomal discriminant space. Table 11 lists theme values.

Iri addition, the within-cell correlations anong the yarighles in the discriminant space are given by the cosines of the anglea betwent them. Therefore, variables that form smaller angles with earh other are more highly correlated than varietleョ thet farm wider englea.

The Frogran Impact composite virtually caincidew with the first discrimimant function. Frograms on the right Eide of the space are judged high ir impact, while prigurame to the seft are perceived by their whdience ta be low in impact. Wher the dissrimimant analysis of the futur varizbles comprising Impact was performed, it was observed that FEELING had the least to do with that rompoeite and beAfil the most. Now it can be graphicaily observed that impact may actually
 measured primarily by LEAFth and gifective igegstt - meamured primerily ay FEELING. Notiee that prograns that toucti the दudiences feelings are not necesearily the sent as prosrams they learn something from or watch as a wey to get more from. Though Appreciation is most elosely aligned with the first dimension of diserimination, and negatively related te the second, it i= mot nearly as important a contribstar to ditcriminatign as Impact is. The variable GRADE is scincident with the eomposite of Frogram Appreciation, but the variable

ENJOY s contribution is ensentially mil．It comes as no surprima that television prograne that are high in impart are also highly appreciated，whether that impact is intellectual or emotional．The second dimension of the diseriminent space san best be characterized by prograns that yiewers plan ahead to see，on the one hand，and by programs that touth their fealings，on the other．

The discriminant space of television progrants can be divided into three mure or less diftinct regigns and the fallowing interpretatign offarad．Eeginnimg an the lower right and moving counterclacivise，prograns in this partion of the epace，bounded by the vecters of FEELING and Impact are t市いこと：
－Hhich tomch viewer s feelings，
－which viewers appreaiate，and
－which viewers judge to be high in impact．

Frougams in the tupper right portion of the space， baunded by the vectors of Appreciation and Intent are those which viewers：
－mppreniate，
－judge to be figh in impact，amd
－plam ahead to view．

Shows in the left portion of the mpace，boundey by the second dxseriminant functipr，are those viewers：
－do not appreciatm．
－judge to be low in impacta and
－do not plan ahead to view．

These are the low ingact programs．
Frograms in the two high impact regions of the space are whit Earwise and Ehremberg（19g2）would tall＂demanding．＂ Demanding programs are these that invalve moreater effart on the part of the viEwer ir order to be watcrade In treif wのr－ds：

The theoretical interpretayism is that the
 arufar enjoyabie it has to be frelative ts more ト年laxing proyrsms）before people will take tFe trouble to watch it．（p．27）

 infarsmition programs are more demanding that Entertainamst grograms：Earwise and Emrembery alscr mensured demandingress অf progreata by having each viewtr indimate，千or eath pragrean， elther＂It made me thirak＂or＂It helped tmerelas．＂Measured in this fashian，demamding pragrams fraluded all the＂hatd＂ information prograns 1 if：e 1 ocal and retwert：пewe staws． Election specials，amd features and documenteries．Dn the avermge，jb perment of the viewers of these programc waid it made thesm thirks while faurteen percent saif it helped them
relax, felaxing programs included all the entertaimment shows like serials and movies, variety, game and quiz mows, the Winter olympice, and the "soft" information shows lite FM Magazine, world of Animals and Wild rimgdom. on the average, 55 percent of the viewers said it helped them relax and ten percent said it made them think. Orithe basis of these r"esults they conclude that there is a "sharp discrimination between demanding and relaking programs" and that this "ties in closely with [theirs earlier classification by program $t i \pm 1 e .^{12}$

The distinction between demanding and relaxing
 they suggest. This ig probably because their measure of demandimuness - "It made me think/it helped mer relax" - ie not玉巴nsiti:g enough to truly differentiate mung projrans.
 come closest to fitting into Earwime and Ehuenberge categarization of demanding prograifis, yet the arglment may be mavanced that other, so-ialled "entertaimment" type programs in the magh impact region of the discriminarit spacse alsa fit into this enteme, All the television proursms ir, these regions reguire a commitment from the viewer. As Earwise and Ehrenterg have characterized it, they require more of the viewers, but they give back more in return:

The greater the effort involved - e.g. far a very demanding program - the higher the gratificetion has to beto induce the viewer to bother to watch. Gtherwise he will watch a less demanding alternative, even if it is also rather lese rewarding. To overcome the attracticon of the "least objectionembe," a demanding program hes to be
especially rewarding in arder for the viewer to wemth it." (F. 27)

This aceounts for the location of. the appreciation vector in this region of the spare. The programs which have the highest impact are also faund to be the mast satisfying to the audiemce.

Though Earwise and Ehrenberg consider low demanding shows to be of the "entertaimment" type, the current investigation sưgests that otmer programe tesides informstion types may be demanding; the graphicei display makes this clearn Soots, Little House, Dumay, the waltoris - all reguire scimething of the viewer. Theme are rot prograns which art audience can casujbly view and say it has meglyy watched. The programs in the low impact regions of the efece fit in more with whet Farwise and Ehrenberg would cill "entertainment." These programs are net demanding, do not delivere an impact and consequently are not as highly appreciated as those trit do. For the most part, these programs are 玉ituation Gomedies aro actien-edventure mhows.

Inspartion of the t-score means on the three curposites Gf audience responee, arrayed by levele of frouram Imsect, is highly illuminating. Fifteen programs had significant frogram Impact stores, and sixteen ceuld not be reli aly determined. The means on each composite on plotted ayainst the threw progłant "typest of high impact, low impact and lindeteraineg in Figure J.

In\#ert Figure 3 about here

High impact progrems are more appreciated and looked forward to than low impact programs, by a wite maryin. Irf fact, law impact programs are not appreciated mor anticipated in asyance Ef viewing. High impact pregrams include mavies, speciais and family dremas for the most part. Situation samedies, astion-adventure series, and some drana programa are primarily low impart.

This investigation has shown that "demendingness" and Frogran Impact 6 an be considered one and the gane. Frogrant limpart is the measure of how much the viewer must give tu the program in order te get something back. The "give" is mast bisely in the form of attentian, the pay-off is ir appreciatien. Appreciation is the reward for the effort Expended.

Classifying programy marrowly in terms of their so-talled informaticn/entertainmert value misees the point. \hat{A} progrem does not have to contain hard news to mave an impact an the viewer. Further, twb paemitly distinct forms of impact have beam identified: inteileatual and Emotional. It may be possitule that a program can deliver both.

The TV Movie Dumay cencerned a young man, biaki, deaf and mute, accused of rapimg a white monan. this progran,
particularly the second hour, touched viewers' feelinge deeply ${ }^{4}$. Similarly, the episade of Knot"s Landing shown during the furvey weet: was partieularly poignant or moving to the audience.

In contrast, foots, 60 Minutes, Little House and the Waltons are shows viewers learn from and watch to get mote from. Thiש learming something fram a program is more in the sense of a lesson learned about life, rather than a set ef facts about some topic. It is easy to imagine viewers reporting learning from both foote and bol Minutes. In the case ef Little Haume and the waltons, these fartily dramas always carry a "stessage" ant meatly solve a pressimy dilemaj at the clobe of the hour. Certainly, these shows can touch feelings, but vi@wers apparently contider "IEarfing" as the mere saiient

These findings Euggest the concept of demandingness proposed by Earwise and Ehrenterg be proadened to include those programe which achieve a reasonatly large value on the scale of frogran Impact and not be defined a priors, or irt terns of whether the programs malie viewers "thimti."

Limking Audience Response to Frogran Ratings

In this section, the notion that "if viewers wateh it, they lisfe it," i三enamined. Firet, a composite meakure of audience 玉ize baspd or quantitative rating data is constructed and then thjs quantitative viewirg data is linked

The Springfigld, Illinois ADI progran ratings for Feiruary, May, and July of 1981 were used to construct a^{m} composite measure of audience siag for mineteen of the 3 televimicn programsin the data set. Arbitron ratingewere not available for the remaining twelve programs. fiational Wiel men fatinge were not employed because it was telieved that these numbers wete not nacesserily indicative of viewing behaviar for the lecal Sprimgfield audience.

In order to investigate the relatignship between progran ratings and the measur玉s of zudience responice, a compesite indey of atdience size was constructed uming the method of principal components analysis. The companents of thi.s index are:

February Swepe
May Sweeps
July Sweep:

These mizelires of audience size are the frbitron progrant ratinge for the Springfield, lllingis ADI durine geth of three "SWEEPS" periods in 1781 farbitron fiatings Co., 19E1. The fryitron ratings for the sweeps periode are not Pirfect measures if audience size for the proçrams in the Eamplen first, none of these ratings was obtained irithe seme
weet: that the programs were teleasat. This is due to the fact that these ratings are obtained four times a year during "Sweeps" weats;" and the ten-day period during which the suirvey was conducted did not fall in a Sweep week ${ }^{5}$. Second, programming varies, often wildiy, throughout the year, particularly during Sueeps weelss, \#o that program lead-ince and lead-outs are not consistently the same. This may have the effect of altering in unknown ways the viewing levele for the prograns investigated, Finally, absolute levels of viewiry diffet by montti= of the year, with the summer months traditionsily reflecting the lowest levels of viewing and the winter monthe the fighest.

The ratimge from the three SwEeps periods far nimetsem television prograns in the sample are dieplayed in Tabie 12.
\qquad

Inmert Table 12 about here

Fatings did not exiet for si\% show im the May Sweeps period. For these shows, a rating was estimated by taking the average of the Fetruary and July ratinge and roundimy to the nearest Fien integer. Study of this tatie indicates that it is no simple matter to obtain quantitative messures of audience for television progremes. ' Regularly 'scheduleag programe may be
preampted and programs oftem change timeslots, particulatiy ठurimg SwEeps periods.

A direct meamure of audience size ic avallable for each program; this is the actuel sample size associated with each progran. These values reflect the mumber of viewers over the ten-day period who reported watching the television program and are displayed in the final column of Table 12. This measure of "rating" it not perfect, either. shows were not includzd in the analymis unless their sample sizas were large enomgh (n) 10) to make statistically peliable etatementa. This Autanatirally excluded "umpopulam" programe. Hence, the Eanple ig biased in favor of well-watchee shows frem the start.

The cofrelations among the various measufes af audiertce siこe are displayed in Tatle l※,

Insert tiable 13 about here

A11 threw ratings mespures are highly. correlated, with February and May the highest, fallowad by May and July and then February and July. It stands to reason that Febratary and July wauld have the smallest correlation of the three since they have the largest spread of time between them. None of
thif correlations among rating and programi fample tize are statisticaly sigmificant and all three of the these. correlations are of relatively Iow magnitude.

A composite SwEEFS inder was construmted from the three measurea of rating for each progran using principal componemts analysis. The means mad standard devistions an the three ratingp meewtures are difplayed if Table 14 a along with the results of the principal components analysis.

Insert Table 14 about here.

The average ratine for a frogram shown durimy the febrtary

The first principal companent of these data accounts for 92.0 percent of the variance iri the correlation metria. The compasite sweefs scare for each progran is calculated as:

In Essence, at simple suff of these ratinus waiz formed to arrave at the camposite inde\%.

The nimeteen programs are arrayed in order of their magnitude on the SWEEF'S index in Table 15.

Insert Table 15 about here

House Calls, bo Mirutes and Lou Grant have the highest values or this inde\%, and Flamingo Foad ffirst and semonal holusi, Eharlie's Angels and Napolean s Samantha have the lawest玉cares.

The corpelatign between program sample $=12 e$ and the
 in thjerelationship. It has a prouram sample size of 44 the highest in the sample - and a SWEEfS score of -o. BB, Lou Srant may be an outlier in the opposite direstion. It hes the highest sumefs score (i.74), yet a small progran jample wize (17). If, for the moment, these two programs are ignored, then the relationship setween progran sample eize and shetfs is much stronger. The correlation betwean progran eample size and SWEEFS is 0.62 ($p=0.008$) with these two programe deleted. This result implies that sample size is actualiy a reasonably
good surrogate for program ratings and that the omple sizes are not particularly biamed. For the moet part, programs with low ratings tend to have small sample sizes and programe with high ratings tand to have large sample sizes. One wonders why CHIFE and Lou Grant do not fit the general pattern. Why did CHIFs attract so many viewers in the sample and so few during the sheeps weat? Why does Lou Grant have such a high (composites rating, yet have so few viewers during the survey periad?

It ig only speculation; but pertraps on the survey Everistga in question, viewers in the sample wetched CHIF's for
 had a popalar guest star; "nothing Else" was on duririy that timestat. Assume that viewers who ordinarily mould have wetched samething Elwe watched CHIFs beciuse it was the least objectionatue alternative that evening. Then, it would filliow that EHIFs would reseive a low frografi Intent score. Feviewing the scare of ChiFs an this composite revejas that
 zero. Thue, there is no evidence that this is not the case. A reasonable conclusion is that chrfe' large program sample size may not be a reliatble ejtimate of its "true" audience eize. In the case of Lou Grant, suppose viewers whe ordinarily watch this'program viewed Eomething elam imstead. Ferhaps they were attracted by a special on arother chanrel, or a ghest star im another series. Ferhaps these viewers deaided not to watch television at all during that times?ot. Then, the program sample size for hou Grant nay not be a
reliable indicator of its true audience size.
Barming the exceptions already noted, the ratings index constructed and the direct measure of audience size are highly associated; thi \leq suggests that both are reasonably accutate meambres of the size of the viewing wudience for a televieion program. If either program sample siza or SheEfs were biased, then they would not correlate so highly. of course, they could both be biased in the same dirertion, but this is not lifely considering that these ratings wore not based on viewing levele ouring the actual survey perioo. Though the SWEEFS index does not apply directly to the perticuler program Efi sodes in the sample, it is taken, along with frogran sample size, as a reliable measure of audience size for each progr 3π.

The currelation between Frogram Apprecistion and progran sample size is -0.4.5 (p=0.054). it is depicted かraphically in Figure 4 .

Insert Figure 4 about here

The program bo Mimutes is an outlier in this relationship because itc Appieciation store (2.5 (in) is much larger than ane would predict fram knowledge ot itm sample size \{egt, given the rest of the data. If 60 Minutes is deleted from analysis, then the correlation between Program Appreciation and sample שize is -0.67 (p\#0.024). Frograms that fave small audiences: as measured ty thay sample sizes, are more appreciated than programs that have lamge atuiances, estept for bo Mirutes. CHIFE, with the largest sample Eize (44), does nat have the
 it is not necessarily an outiler. Hawever, it has already beer noted that chifs true audience size is telieved to be somewhat siraller than 44. If this were the casee, ther it woult fit more clowely the negative relationship observed between Appreaiation and sample size.

A similar relationक्षhif is observed between frogtani Appreciation and audience eize when the correl ation between Appreciation and the SWEEFS inder $i=$ calculated. This correlatian, aE depicted ir Figure 5, is -0.1.7 (p=0.4e).

Insert Figure 5 abolit here

Both bo Minutes and Lou Grant, with Appreciation scores larger than expected (2.56 and $1 . B 9$, respectively) given their SWEEFS scares (1.71 and 1.74, respectively), may be considered outliere iry the relationship. If we delete these two programs, then the correlation increases in magnitude to -0.64 (p=0.0@s). Frograms that have small audiences; aw measured by the SWEEF'S index, receive gigher Appreciation saores than programe that have large audiences, except for 60 Minutes and Lou Grant.

If the SWEEF'S index and progran sample size jre surrogates for audience size, sufpose beth are employed simbleaneously to predict Frogram Appreciation. The squared mutiple correlation is o. agz for the regression of Appreciation on Eample Eize and sweefs and the reiationstip is not statistically significant $\{p=0.16$. The studentized residual for bo Minutes is 2.75, suggesting that it is an outlier in this medel.

Lou Grant and ou Minutes appear consistently as outliers in the regreseion of Appreciation on the measures of mudience छize. Lou brant is aberrant in the regressign of progrant sample size on Swevfe and frogram Appreciation on SWEEPS. SO Minutes is an outliar if the regressions of Frogrem Appreaiation on both swEEPS and samplesiae. Ignoring these two problematic prourans for the moment and performing the multifle regression again provides an interesting result: the squared multiple correlation is now o. EE and statisticaly sigrificant $\{F[2,14]=1 *, 16, p=0.006$). keep in mind that this
is the sguigeted correlation and as suah reports variance accounted for．
．Frogram Appreaiatíen can be predicted reasonably well from program ratingt and program sample size separately，but winen both are used together，fappeaiation is predieted far better．Fiegardiess of what direction the problem is approached from：Frograg Agereciation ig negatively related to aindigence side．The larger the size of the audience，the lower is the average appreciation for the program．

Can an explaration be provided for these resulte？Ir the regresmion of Frogram Appreciation on the SWEEFS index，it was noted that bath bo Mimutes and Lou grant appeared to deviate from the yeneraily obsarved negative relationship． According to the model，Eince both have high ratings，both Ehorld Mave low Appreciation suares．Yet，their＇Appresiation scorete arm among the highert in the sampla．These programe are unj que ir some wラy，Gompared to the other seventeen in the
 differences are noted with respect to age and sen．bo Mimutes is primarily viewed by men and women im the 5ちw age greup and
 \＃5t category give high marks to the programs they view．It would appear that this reasanatly homogenequs，lares andience for bo Mimutes is a mighly appreciative audifnce as wely．Leu Grant attracts female ard male viewars from $18 \mathrm{~m} . \mathrm{A}$ and some femeleㄹ im the 55＋cakegory．Women are more appreciative than men，in q甲пeral，ant this relatively homogeneous audience is also a highly appreciative oneb．It would appest that the
audiences for 60 Minutes and Lou Grant watch these programe because they appreciate them. Eut what about the remaining seventeen programs? Can it be that audiences watch them Eecause they do ngt appreciate them?

MEFHEE's (190さ) notions on natural Esposure and popularity can be invoked to euplain the curious relationahip atserved between frogram fppreciation and program ratings. Though mis theories of mass behavior were not developed in ternjof the television viewimy audience, they apply equally well to thig situEtion. Ey definition, the most popular prearama is the one that has the most. people in its audience. McFhee has shown that the must popular program is almo the orie with the greatest relative proportion of lestet infgrang viewers - individtals "least reacted" by other shows in the same category'. Therefore, a disproportionate share af the popular programis audimace, a larger fraction of its alrmady 1arger audience, consists of these "least informed" viÆwers.

Mofhee suggests that the most popular programs withis timealots (altarnatives within a class) possess a uniqueness beyond the quantitative advantage of popularity itself. This he terms a "monopoly," which the popular program has amony the individtuls least inforined about the class of alternatives and "thus least in a powition to defend themselves against abuses of popularity." In other words: these individanse are more
subject to advertisemente, promotions and word-of-mouth which encourage the viewer to watch the prograin. .

Eut why do these popular programs have the advantage? McFhee rejects the idea that it is because "ignorant people prefer only the popalar." Rather, it is because of two

1. The "weakern program alternative has a Emaller chance of osing "learrea" on a giver enpoㅍure to this set of alternatives, =nd
2. The popular pragram altermatives have more advant age and this depends on promotion and publicity. "Chance events alane give the stronger aiternative greater monopoly antory people with lese exposure to the topic."

Thus, the monopaly-like temdency
that the weater alternatives are at their weakest and the stronger alternatives at their sterongest amons poople who tmow the least - im due to the unhappily reinforcimg effects not only of a)heterogeneity of motivation to seek out unobvious alternatives, but also of b) chance Events even within a population absolutaly homugeneowe in all such good irtentions.

For minimbin exposure can arise either way, by motive or by chance, and miniman enposure of people le三ds to the same consequence in either sase: a "natural" tendency toward moriopaly of the popular over the uninformed. (p.1®S)

The popular programs have more of an opporturity to attract $\because 1$ ewers, both informed and unimformed, so that there are mote ifodividuals in the audience, relative to the less
popular programs，who are under the influence of the＂naturai monopoly．＂A reasonable conclusion is that these＂least informed＂viewers are much less likely to appreciate whet they are watching than the better informed viewers of the progiam． The urimiformed viewers of the popular program dilutit the Appreciation score of the program and this gives rise to the obeerved negative correlation among fragram Apprecietion and axdiance ธiざセ．

What these analyses have revealed is that if viewets ＂Wミ．th＂it，they do not Meressarily appreaiate it．Iri fact， the most＂popalar＂programe semem to attract the most heteroqeneous audiences in terma of their eppreciation for the progrem．Frogram ratinug may truly measure noting more than the size of the audience．

How do these findings relate to the observatians previously made comcernimg Frogram Impact？Seven programs sesred significantiy law on Impenct and eight prourams scored significantly migh．The mean sample size for the eight migh impact proorams is 18 （standard deviation＝ 9.76 ）．For the seven low impact programs the average mample size it 24．14 （जtandard deviation＝7．64）．The test of the nuil hypothesis of no mean difference yielde a t－statistic of is，se istamart Error of difference $=4.64$ ）．With 13 degreep of freedom，the
nuil Mypothesis cannct be rejected (p greater than 0.10). However, 60 Minutes has previbusly been estemished as a "tuni que" program. Its sample size of B E Ekews upward the migh impact program type mean. If 60 Minutes is deleted, then the mean sample size far the high impact prograns drops ta 15.14 with a Eorrespandingly smaller standard deviation of 6,29 . The t-statietic for the test of no differerice between these two program sample size means is now equal to 2.41 sstandard error Of difference = 5.74). Thi Etatistic is signficant (p=0.025), eg the null nypothesis of no diffefence is rejecter.

A swEEFs score exists for all seven bew impact programe, but anly three of the high impact progrems. Tinis is because the high impact pragrams terd to be movies and speiials for which springfield ADI ratinys were not availatle. However, a surroqate for ratings, frogran sample Eize, Exists for all. उi programs in the sample. In Figure e, Frogram Impact is plotted against progran sample size for all Bi progrants in tiom sample.

Insert Figure t about here

The correlation between Frogran Impact and program sample size is -o. SE \{p $=0.051 j$. If so Minutes is deleted from the
analy $=0.001$ level．

A छeries of statistical exercises shown that programm with large audienues are lese appreciated than ptograme with small audiences and that high impact programs are more appreciated，on the average，than low impact programs．Now it can be seen graphically that high impact programs tend to attrect smaller audiences than low impact programs，as well．

Barwise and Ehrenberg found that the demanding programs （thard information shows）received Migher liking Ecares compared with entertainment programs and attracted smaller audiences．The observations made here are comsimtent with this result and fallow from the＂investment of effort＂model they propose to explain the results．

For the most part，the popular progians attract axaliences who wateh television primarily＂ヨs a way to pess the ちime．＂It $i=$ not that these viewers watch progrems they do not affreaiate，tut rather watth programs they mill not sieve to appreciate．Television i $=$ not 50 mach entertaimment as it is filler．Unpopular programs attract audiences who watch television to＂get more fromit．＂They do get mores this is in the fors of appreciation．

Frogram Impact and Viewing Eehavior An impligit assumption of the previous analy离es has
teen that consideration of a program＂s impact，in addition to－ its quantitative rating，can aid decision－makers．In this． section，two analyses are presented that offer another piece of infarmation．It is nat encugh to show that programe differ on impact and that ratings do not mecessarily imply appremiation．What is needed is an analyeis that can reveal how Frogram Impact is associated with actual viewing bemavior．If tehaviar varies systematically with a program＇s impact，then information emergea that can form the care of a more complete base form decieion makiry．

Five sets of variables specifying behaviors individuals ware disely to enqage ifi during viewing were miensured．The variatues can be alassified accordirig to the type of viewisug behavior they are intended to tap：

Activitis응
Cトロローシ
$\mathrm{Ds}^{-} \mathrm{inking}$
Esting
Frone
Fieading
Recreation U゙もた！

Wes Distracted
Was Not Distracted

Did Not Leave Left During Ad
Left During F＇rograin Left During Both

L̄w Attention
High Attentira

Fiespandents were permitted to choose lip to five activities they engaged in during viewing of the program from a \quad i drinking，eating，talking or：the telephone，reading，enyguing in recreation and＂other．＂They aiza reported whether or not
they talked during the program, and if they did, what the convertation was about: the progran and things other than the program. Respondents were also asked to indicate whether they left the room at all during viewing of the television progran and reported ane of the following: Ifeft during the ad, left during the frogram itenlf, left durisig both the ad and the program, or did not leave at all. In additian, viewers reported the level of attention they paid to the televisipn program and if engaging iri activities distracted them while they were vieving.

Each of the seven activity variabies is iogically two Variablé, since a respondent could irdicate not performing the attivity in question. A respondent actually had a shoice of might activitiers since not engaging in any activities is itself an activity.

In order to assess the degree to whi:h a programe impart affects the activities an individual is likely to Engage in during viewing, the following procedtite was performed. Fiespondents were ascigred to one of three greups on the basis of what type of program they viewed. if they viewed a high impact program, then they were asalgred to the high impact group. If they viewed a low iapact prograis, then they were assigned to the low impact grouf. If the program they viewed was "average" in impact 〈actually, a progrem whose
impact could nat reliably be determined as either high or low），then they were assigned to the average impact group． Within each proup，the proportion of individuals who engaged in each activity was recorded and arrayed in a matrio． Altogether，there were eighteen entivities：the eight activity variables $x 2$ and the distraction variable 2 ．This pragram impact type－by－activity matria is reproduced in Table 16.

Insert T解le 16 \＃bout here

A correspondence analysie（Greenacre，1984）was perfarmed ori this z－ちy－£E matrix of programimpact types ard activities．E Talting on the telephone，eating，engaging in＂ธther＂amt Engaging in general were fitted into the space as ＂玉upplementary＂poirts．

The two－dimensignal correspondence analysis is diEplayed in Figure 7.

[^0]These two dimensions account for 100% of the variance in the data. Looking at the activity points $\langle r e p r e s e n t e d ~ b y ~ "+" ~$ nセmトs reveals similarities and differences in activities amang the program impact types. Natice that the left side of the space is characterized by distranting activities (FHONE, CHOFES, FECFEAT, OISTRACT:, and a gengral engaging in activity (ENGAGE). As we move toward the right side of the space, there is a characterization of not partaking in activities and sperifically, nat distrastirg ones iNQ DISTRACT, NO FECFieft, Na CHDFizs . When individuale do engage in activitifs, they are riat distracting, e.g. arinkimg (DFINEt. It is Easy to see that, ift terms of impact, there are three clear regions in thie space, defined ty the three pfogran impart types. Earh progran impact type point in Figure 7 represents the profile Ef activities for that particular type of impact. High impast is on the right, average on the left, and low positive on the second dimensigri. Note that both 1 ow and hayh impact program types are associated with drimbing behavior during viewing. However, only the law and average impact types are similar to Each other in general terms of the types of activitief engaged iri.

The comparisen betweer, the activity variables and the proyram impact types are instructive. A particular impart type profile tends to a position which corresponds to the activity eategories which are prominent in that impart type profile.

What emerges from this analysis is the findimg that
viewers of high impact programs tend to behave iri ways Egmelementary with viewimg, while viewers of lowimpact programs behave in ways gogeetitive with viewing. Eating and drinting are not consigered dietracting activities, while Feading, talking on the phone, and engaging in recreation are distracting.

The essociation betwean raom legvins beriavior and Frogrant Impact is examined in this section. The room leaving Yariatig is admittedly a crude mezEure of room leaving behavior. It does not sperify how often the individual left the roonf, or even when, exactly (during which ad? how many ads? duming which portion of the show? . However, it does provide a rough measure of the benavior of interest. Nestly half (42.25\%) of all inctividalals reforted me room leaving whatsoever during viewing. Twenty-five and 2 half. percent indicated leaving the roam during both the program ane the ad. Almost twenty percent left the room during the commercial break, while only 12.31 percent reported leaving omly during the grogram.

The attention and talking variablee were included in this enalysis to add clarity, The proportions of the different behavigrs engaged in during viewing are arrayed by proyran impact type in Table 17.

Insert Table 17 about heme

A carrespondence analysis was performed on this z-by-b thatri: of program impact types and behaviors. The categories of talking about the progran and talking mbout things other than the program were fit in as mupplementary points after the inita ai analyeis. The two-dimensional display is shown in Figure 8.

Insert Figure B \&bout hære

All the behaviore on the left 玉ide of the Epace Etigeemt a low interest in the programs or perhape just equally strang interests in things other than the program. Low atteneion to the program, leaving during the show, no talkimg atout the program, talking atout thinge other than the pragram, talking, and ieaving during both the commersial and the program all imply a low degree of viewing effort on the part of the
viewer. On the other hand, the right side of the epace contains the variables high attention, no room leaviriy, leaving only during the ad, no talking talling about the program and not talking about other things. Again, as irithe correspondence analysis of activitife, three clear regions in the space emerge, all defined by program impact type. The high impact frogran type is orawn to the region of the space with behaviars sigrifying a high interest in the ehow arod implyjing a great deal of effort on the pert of the viewer. The law and average impact types are in the reyion of iow effort andinterest.

These analyses have shown that the activities individurals engmge in during viewing ant their viewing Eehaviars vary systematically with a program* = impact. High impact programe encourage tehavior complenentary with viewing and this behavior is consistent with the theory that high impact programs reguire mare effart. viewimg iti this case is purfosefal. Low impart programs ernceurage behaviar competitive witt viewing. Television is, in this situstions as Roberts (1982) has suggested: a "talking lamp."

Discussion

There are a number of findings from this investigation Which are useful not only as guides to fature research, but alsu as aids in medie decision-mading. The methodologicai and
theoretical limitations of the investigation are discussed thoroughly in Hoffmain (1994) and will not be repeated here.

 television progran. It defines the effort an individual must put into a opogram in order to get something bacts. The input
 appreciation.

However, most people watht television as a way to pass the time; they shun demandins viewing. When this happens; Frograms are not judged as favorativ, room leaving is more or less "randem" with respect to the program, activities are competitive with viewing, distraction is high and attention is low. Yet, when viewers decide to watch to get more, viewirig $i \leq p l a m n e d i n$ advance, the program $i s$ evaluated favorebly, activities terd to complement the viawiry experience, attentign is hiğh, distraction is low, and roum leaving is ぃonsistent with viewing the program.

Though most viewers do mat plan their viemime in acvance, in some ceses program is "epeciab" Enculyh to warrant that extra effort. These are programe nigh in fropram Impact. If a program is high in impact, then it icalsa highiy appreciated. The results suggest, though by no meane conclusively, that neither frogrem Intent nor frogram Appreciation discriminatas weil among proorams, relative tu Frogram Impact.

Eased on the results reported here, Frouram Appreciation, an exaluative measume of audiersce response, is
not a crucial measure．Its high powitive correlation with Frogram Impact and ite relative inability to discrimincte well among programs suggest that it $i=$ the redundant variabie．In the interests of economy and parsimony，if one can only collect \quad one measure，it should be Frogram Impact．

Impact actually consigts of two dimensions：an intellectual or cogritive component and an emotional or affective component．This is seen most flearly in the discriminant spame of television programs．FEELING moct Elasely measures the affective component and LEAFN taps the iritelfectiah component．The frogram impect seale discriminates well among television programs and provides a suitatale and effective means for deseribing and Esplairing numerous ampects of the viewing ewperience．Tha resilte
 sudged higher in impact sactually cognitive impacty than prograng drawing larger audi\＃nces．if．Froyrem Impact isethe k＝y measure of audience responsey then this may be the fiey firgding．

The somiwhat Eurious result was ohserved that the si玉s

 that ther were a limited number of televieian programs in the sample．However，support for the reliatility of the result ᄃomes from other sources．Barwise，Ehrenterg，arsd Goodharit〈176i\} al三o observed a negative relatianshif between audience ᄃize and audience appreciation．They claneified programs into two types，information and antertaimment，and found that when
these programs are lumped together the correlation between audience appreciation and audience size is negative. .

The measure of Program Appreciation is defined by the variable GRADE, "like they give in school." Feal that the canonical coefficient for ENJOY, ar obvious surrogate for liking, was essentially zero. Program Appreciation appears not to measure progrant liking, per se, but rather, considering the high correlation between Appreciation and Impact, the grade the viewer gives to the program" its Exectition.

This interpretation is reasonable, also, considering the restive correlation between fating and appreciation. Individual a atm assumed to watch what they like and like what they watch. If Appreciation measures evaluations rather than i enjoyment, then we would expect that the high rated shows mould be low on Appreciation. In a qualitative sense, mast highly mated shows (there are notable exceptions as tie Gutifers demonstrated are not very good in terms of what they deliver to their audiences, and the variable GF:ADE measures that fact. Most of the programs with large audience sizes were situation comedies and action-adventure programs. Network i audience share has been declining since the beginning of this decade and ane reason often advanced is the derivative ard bland nature of most network programming. The data suggest that audiences concur.

These findings have implications for advertising effectiveness. The research reported here provides evidence that different types of advertisements may be implied for each
type of impact. For eyample, in a low impact program, it may be necessary to grab the viewer's attention with the commercial message, while in a high impact program, the viewer is already attending and so a different ad E\%ectition style may be warranted. Ferthaps ad effectiveness can be maximized by matifing the at irithe same "etyle" as the show. Anderson and Field"e (1984) work on "attentional imertia" would support a Eimilar conclusion. Future wort will need to concentrete om the implications of two-dimensional frogram Impact construmt.
 affective Impact may be positively related ${ }^{7}$. In additien, for programs high in impact, different advertising enecutions may也e implied, fepending on whether the impact is affective ar ᄃagnitive.
gecause high ratings in general imply increasingly lass attentive, less present viewers, and lower ratimgs imply increasingly more attentive, more "desirathe" viewers, the Fatincs should be adjusted - say a number between zerm ant one - to reflect the proportion of viewers in the roons who we car: assume are viewimg the ad. The research reported here surgezts this number depends on program impact.

The traditional ratirgs systems in tse todzy simply Earingt and do not convey all the information needed to understand audience response to programt. The researet, reported here testifies to this fact. What this implies about the mse of quantitative ratimys for marketing arod medie פecisigns warrante serious consideretion. Much more wort an the sehavioral asseasment of the viewifg audience must be dane
 may be，cen be wimed as toal by deajaion－makiers．

Those interested in the behaviaral aspects of the vigwing audience must conientrate on developing a sound， thegreticai basi＝for a＂qualitative＂constrtat sucF，a§ Frogram Impact and demanstrate the link betweesi it and atvertising effectiveness，what ran follow from this linkage are the strategic quidelines that will demonstrate gaw qualitative ratimbs cars serve as mome than supplemertal descriptors of viewing Eehsvior．

1．The Area of Dominant Influenme is a geographiagl televisionit market area．Argitron uses this definition of market areat iry its local market rating services．Niel툐른 uses b Einilar classification in its syttens called the Designated Marret Aがこa（DMA〕．

2．The within－tell correlation betweam Frouram Appreciation and Frayran Impact is o．4t．

ふ．The withinーぁell agrrelation betwoen Frocram Intent and Frosram Impact is o． 40 and the withirimceli worrelation betiveen Intent and Appreviation is 豸．ङ̈．

4．ABC Movie also megistered emationally witt viewers．I 4fas unable to learn what the content af the moviewas，but venture a 乌以综s that it packed a punch．

동．For this reason，ratinugs de mot exist at ail far twelve of the si progranc ir the sample．

名．In montrast：Hocise Callsx which fits the general patterriof Maving a large ratins and a law Appreciation score，is wetched
 categories and $18-34$ aategories，men i i the 18 － 44 ᄃategary and women in the S5＋catesory．This audience is not homogeneoks with respect to demographits not does it appear to be histily appreaiative．

7．A＂catesory＂is defined here as the timeslot since one Gan argue that an individual＇s program choices are made froms what is on at the time during which he or she＂decides＂to wetch．
B. There are eightaen columne representing the activities instead of nine, because the data must be "doubled" to reflect the two logical alternatives of each itan.
7. Kncts Landing, Dallas, Dynasty and Falcon Crest, for enample, would ali probably score migh in affective impact, but inight score low in cognitive impact. These programs have high matings and are high irimpact, also.

REFERENCES

Anderson, D.R. \& Field, D.F. Online and offline assesstment of the television audience. Working paper, University of Massachusetts, 1984.

Arbitron Ratiogs Co. Television Market Report, Springfield, IL 1981 Program Title Index and ADI Trend Estimates. Technical Report, Arbitron Ratings Co., Inc., 1981.

Barwise, T.P. \& Ehrenberg, A.S.C. The Liki\#g and Viewing of Regular TV Programs. Research Report, London Besiness School, 1982.

Barwise, T.P., Ehrenberg, A.S.C., \& Goodhardt, G.J. Audience appreciation and audience size, Journal of the Market Research Society, 21:4, 269-289, 1981.

Fishoin, M. \& Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1975.

Hoffman, D.L. A Multivariate Analysis of Audience Attitudes and Behaviors During Television Viewing. Unpublished doctoral dissertation. University of North Carolina, 1984.

Roberts, E.J. A qualitative view: program appreciation and involvement. Paper presented at the 28 th Amual Conference and Research Expo of the Advertising Research Foundation. New York City, March 3, 1982.

Roberts, E.J. \& Lemieux, P.H. Audience Attitudes and Alternative Program Ratings: A Prelfminary Study. Techaical Report, Television Audience Assessment, Inc., 1981.

SAS Institute, Inc. SAS User's Guide: 1982. SAS Institute, Inc., Cary: North Carolina, 1982.

List of Figures
Figure l: Scatter Plot of Program Appreciation against Program Inpact

Figure 2: The Discriminant Space of Television Programs
Figure 3: Means on Audience Response Measures by Levels of Program Impact

Figure 4: Scatter Plot of Program Appreciation against Program Sample Size

Figure 5: Scatter Plot of Program Appreciation against the SWEEPS Index

Figure 6: Scatter plot of Program Impact against Program Sample Size

Figure 7: Correspondence Analysis of AcEivities and Program Impact Types

Figure 8: Correspondence Analysis of Viewing Behaviors and Program Impact Types

Discriminant Space of TV Programs

Means on Audience Response Measures
(by Levels of Program Impact)

Program Impact vs. Program Sample Size

Correspondence Analysis of Activities \& Program Impact Types

Correspondence Analysis of Viewing Behaviors \& Program Impact Types

Table l: Sumary of Programs in the Analysis Sample
Table 2: Sumary of Progran Sample Sizes
Table 3: Discriminant Analysis Results for Program Appreciation

Table 4: Group Centroids and t-scores for Program Appreciation

Table 5: Discriminant Analysis Results for Program Impact

Table 6: Group Centroids and t-scores for Program Impact

Table 7: Discriminant Analysis Results for Program Intent

Table 8: Group Centroids and t-scores for Program Intent

Table 9: Discriminant Analysis Results for All Eight Variables of Audience Response

Table 10: Group Centroids on the First and Second Discriminant Functions

Table 1I: Within-cell Correlations and Squared Multiple Correlations of Audience Response Variables with the Discriminant Space

Table 12: Program Ratings and Program Sample Sizes for Nineteen Programs

Table 13: Correlations Among Measures of Audfence Size ($\mathrm{n}=19$)

Table 14: Principal Components Analysis for Three Measures of Ratings

Table 15: SWeeps Scores-for Nineteen Programs
Table 16: The Proportion of Individuals who Engaged in Activitles for Three Types of Program Impact

Table 17: The Proportion of Individuals who Engaged in Behaviors for Three Types of Program Impact

Program Iype

	Weekly 1	Weekly 2	Movies/ 2	Al 1
	Series	Series	Specials	
Count	19	1	11	31
Hear Sample Size	25	10	17	21
$\begin{aligned} & \text { Total Sample } \\ & \text { Size } \end{aligned}$	469	10	182	661
$\begin{array}{ll} \text { Notes: } & 1 . \\ & 2 . \\ & \text { All } \end{array}$	Ratings Ratings figures	lable. availab ded to	est whole	r.

Program
ABC Close Up 10
$A B C$ Movie 10
American Gigolo 14
Bosom Buddies 27
Charlie's Angels 22
CHIPs 44
Convertible, The Last 10
Dunmy (first hour) 27
Dummy (second hour) 14
Facts of Life 28
Flamingo Road (first hour) 18
Flamingo Road (second hour) 11
God's Children, All 16
Hart to Hart 21
House Galls 32
Jeffersons 23
Knots Landing 17
Little House 14
Lou Grant 19
Magnum 37
Mahogany (first hour) 32
Mahogany (second hour) 18
Napolean \& Samantha 23
Odessa File 20
One Day at a Time 23
Roots (first hour) 10
Roots (second hour) 11
Tim Conway 34
Waltons 20
White Shadow 18
60 Minutes 38

MULTIVARIATE TEST STATISTICS AND F APPROXIMATIONS
STATISTIC VALUE F MUM DF DEN DF PROB $>F$
Wilks' Lambda $0.8449351 \quad 1.842936 \quad 60 \quad 1258 \quad 0.0001307303$

WITHIN CANONICAL STRUCTURE CAN1

ENJOY	0.5390
GRADE	0.9975

STARDARDIZED CANONICAL COEFFICIENTS
CAN 1
ENJOY -0.08B8
GRADE 1.0904

RAW CANONICAL COEFFICIENTS
CAN 1
$\begin{array}{lr}\text { ENJOY } & -.1287806481 \\ \text { GRADE } & 0.0356422789\end{array}$

PROGRAM NAME	GROUP CENTROID	PROGRAM NAME	t-SCORE
	-0.50507	HOUSE CALLS 2	-2.9159
HOUSE CALLS2	-0.48191	TIM CONWAY	-2.1309
ODESSA FILE	-0.45778	MAHOGGANY2	-2.0697
BOSOM BUDDIES	-0.36446	ODESSA FILE	-1. 9963
FACTS OF_LIFE	-0.35629	FACTS OF LIFE	-1.5909
TIM CONWAY 1	-0.33547	BOSOM BUDBIES	-1.5909
HART TO_HART	-0.24917	MART TO HART	-1.1298
MAGNUTM -	-0.24680	MART TO HART	-1.0400
MaHOGANY 1	-0.17996	ONE DAY TIME2	-0.8846
ONE DAY_TYME2	-0.17991	CHIPS2 ${ }^{\text {ONE }}$	-0.8823
CHIPS2	-0.15401	CHARLIES ANGELS	-0.5778
AMER GIGOLO	-0.11903	ATER GIGOLO	-0.3820
CHARLIES ANGELS	-0.1054	GODS CHILDREN	-0.2928
JEFFERSONS2	-0.06843	JEFFERSONS2	-0.2744
GODS CHELDREN	-0.06548	KNOTS LANDING	0.1153
WhLTONS	0.08030	WALTONS	0.4454
ABC MOVIE11	0.18079	AEC MOVIEII	0.4667
FLAMINGO_ROAD12	0.30860	FLAMENGO ROADI2	1.0413
FLAMI NGO ${ }^{-}$ROADI 1	0.31611	FIAMING ROAD 1	1.2527
LOU GRANT2	0.35066	DUMPY 12	1.27014
WHITE SHRDOW	0.36320	LITTLE HOUSE1	1.8014
Dinmy ${ }^{\text {a }}$	0.37668	ROOTSI2	1.88890
60 MTAUTES2	0.38897	LOU GRANT2	1.9921
DUMPY11	0.43014	ROOTS 11 R	2.1613
NAP_AND SAM1	0.43606	CONVERT1BLE 2	2.3427
CONVERTIBLE2	0.53721	NAP AND SAMI	2.4590
R00TS12	0.55883	60 Minlites2	2.5568
LITTLF HOUSE 1	0.57821	60 Minutes2	2.5840
ROOTS11	0.62827	White Sha ow	4.0677
$A B C$ CLOSE_UP	0.88375	$\mathrm{ABC}_{\sim} \mathrm{CLOSE}_{-}$	

CANOMICAL VARIABLE SCORES
Statistics
Mean $=0$
Within-cell Standard Deviation $=1.0$
Minimum Value $=-2.11$
Maximum Value $=1.72$

	CANONJCAL	ADJUSTED	APPROX	VARIANCE	CANONICAL
	CORRELATION	CAN ERROR	STD ERROR	RATIO	R-SQUARED
1	0.503458863	0.461676690	0.029058609	0.3395	0.253470827
2	0.313014625	0.236276325	0.035111153	0.1086	0.097978155
3	0.201742936	.	0.037340694	0.0424	0.040700212
4	0.181086809	.	0.037648504	0.0339	0.032792432

MULTIVARIATE TEST STATISTICS AND F APPROXIMATIONS

STATISTIC	VALUE	F	NUM DF	DEN DF	PROB $>$ F
Wilks' Lambda	0.6247955	2.611503	120	2495.082	0.000

WITHIN CANOKICAL STRUCTIRE.

CAN1

FEELING	0.6052
IEARN	0.8053
ELSE	0.7373
TOHORROW	0.5551

STANDARDIZED CANONICAL COEFFICIENTS
$\mathrm{CAN1}$

FEELING	0.2415
LEARN	0.5910
ELSE	0.5031
TOHORROW	0.5551

RAW CANONICAL COEFFICIENTS
CAN1
FEELING 0.4832782850
LEARN 1.1951602168
ELSE 1.0668525446
TOMORROW 0.3145561118

	CANONICAL CORRELATION	ADJUSTED CAN ERROR	APPROX STD ERROR	VARIANCE RATIO	CANONICAL R-SQUARED
1	0.336238830	0.266632010	0.034524227	0.1275	0.113056551
2	0.198229178	0.084353666	0.037395399	0.0409	0.039294807

MULTIVARIATE TEST STATISTYCS AND F APPROXIMATIONS

STATISTIC	VALUE	F	NUM DF	DEN DF	PROB $>F$
Wilks' Lambda	0.8520912	1.746957	60	1258	0.0004689668

WITHIN CANONICAL STRULTURE
CAN 1

ANTICPTN	0.8858
PLAN	0.7919

STANDARDIZED CANONICAL COEFFICIENTS

CAN 1

ANTICPTN 0.6915
PLAN 0.5224

RAW CANONICAL COEFFICIENTS
CANI
ANTICPTN $\quad 1.3820213269$
PLAN 1.1875247985

PROGRAM NAME	GROUP CENTROID	PROGRAM NAME	t-SCORE
MAGNLM	-0.66352	Magnum	-5.2654
TIM CONWAY 1	-0.59884	TIM CONWAY 1	-3.9224
HOUSE CALLS2	-0.53945	CHARLIES SNGELS	-3.6100
HART TO HART	-0.50964	HOUSE_CALLS2	-2.9056
CHARİES ANGELS	-0.50853	HART TO HART	-2.5527
GODS CHILDREN	-0.45795	FACTS OF LIFE	-2.2675
AMER GIGOLO	-0.44930	BOSOM ${ }^{\text {BLDDDIES }}$	-2.0236
FACTS OF LIFE	-0.42125	GODS_CHILDREN	-1.9426
Bosom budidies	-0.37254	AMER-GIGOLO	-1.6891
ONE D $\bar{A} Y$ TIME2	-0.28278	ONE DAY TIME2	-1.2548
FLAMINGO_ ROAD11	-0.26831	FLAMTINGÖ_ROAD11	-1.1129
FLAMINGO-ROADI2	-0.26175	CHIPS2	-1.0054
CONVERTIEBLE2	-0.23699	CONVERTIBLE2	-0.9807
Mahogany2	-0.20444	MAHOGANY 1	-0.8539
CHIPS2	-0.17120	Marogany2	-0.7577
MAYOGANY 1	-0.16405	ODESSA FILE	-0.7576
ODESSA FILE	-0.16394	FLAMINGO ROAD 12	-0.7472
WHITE SHADOW	-0.07067	WHITE SHADOW	-0.2733
JEFFERSONS 2	-0.00958	JEFFERSONS2	-0.0421
NAP AND SAlf1	0.23661	NAP_AND_SAM1	1.0480
KNOTS LANDING	0.27841	LOU GRANT2	1.0834
LOIJ GṘANT2	0.28911	XNOTS LANDING	1.1026
WALTONS	0.56833 .	ABC MOVVE11	1.8031
ABC MOUIEll	0.67237	WALTONS	2.1380
DUAMY11	0.78742	DIMPYY 12	3.8383
60 MINITES 2	0.90910	EITTLE HOUSE 1	4.0228
DUPTY 12	1.02563	DEMMY1I	4.2121
ROOTS12	1.03963	R00TS 12	4.4731
EITTLE HOUSE 1	1.11839	ROOTSll	4.6372
ROOTSI 1	1.27151	ABC_CLOSE UP	4.9580
ABC_CLOSE_UP	1.35957	$60_{-} \mathrm{MINJTES} 2$	6.4141

CANONICAL VARIABLE SCORES
Statistics
Mean $=0$
Within-cell Standard Deviation $=1.0$
Minimum Value $=-1.19$
Maximum Value $=1.87$

PROGRAM NAME	GROUP CENTROID	PROGRAM NAPE	t-SCORE
ABC CLOSE UP	-0.72656	ABC CLOSE UP	-3.9424
CODS CHILEREN	-0.57098	GOD \bar{S} CHIL $\overrightarrow{0} R E N$	-3.4521
ABC MOVIEII	-0.48895	CHARLIES ANGELS	-2.4341
CHARLIES ANGELS	-0.45517	TIM_CONWATI	-2.1031
H0HOGANY2	-0.35507	ABC^{-}MOVIE11	-1.7190
ODESSA FIEE	-0.34102	ODESSA FILE	-1.6938
DIMMY1 $\overline{2}$	-9.33964	DUMTY $1 \overline{2}$	-1.4870
TIM CONWAY	-0.33473	MAHOGANY2	-1.3630
JEFFERSONS2	-0.26400	FLAMINGO ROAD11	-1.1734
Flamingo roadil	-0.25668	JEFFERSONS2	-1.1605
KNOTS LAMDING	-0.22423	KNOTS LAADING	-0.9934
WHITE SHADOW	-0.17990	FACTS OF LIFE	-0.8542
FLAMINGG_ROAD12	-0.17644	WHITE_SHADDOW	-0.8298
EACTS OF LIFE	-0.16304	BOSOM BUIDIES	-0.7206
BOSOM B Bupleies	-0.13194	HOUSE CALLS	-0.5396
HOUSE CALLS2	-0.10135	FLAMINGO_ROAD12	-0.4910
HART TO_HART	0.01306	HART TO HART	0.0654
CHIPS2	0.04785	MAHOGANY	0.2901
MAhOgany 1	0.05925	ONE DAY TIME2	0.2986
ONE DAY_TIME2	0.07116	CHIPS2	0.3481
MAGÑ̃M -	0.07564	AHER GIGOLO	0.3770
AMER GIEOLO	0.11227	magnta	0.4568
ROOTSI2	0.18280	foots12	0.4989
D6MYY 1	0.27035	CONVERTIBLE2	1.2386
NAP AND SAMI	0.31151	DUNMY 11	1.3500
LOU' GRANT2	0.37001	LOU GRANT2	1.3782
CONVERTIBLE2	0.43956	NAP-AND_SAM1	1.4556
WALTONS	0.47949	ROOTS11	1.8204
ROOTS 11	0.57777	WALTONS	1.9069
60 MINUTES 2	0.65072	60 MINUTES2	4.1494
LITTLE HOUSE!	0.95903	EITTLLE HOUSE!	4.4418

CANONICAE VARIABLE SCORES

Statistics

```
Mean = 0
Within-cell Standard Deviation = 1.0
Minimum Value = -1.003
Maximum Value = 1.57
```

	CANOAICAL	ADJUSTED	APPROX	VARIANCE	CANONICAE
	CORRELATION	CAN ERROR	STD ERROR	RATIO	R-SQIARED
1	0.514000308	0.467329908	0.028641120	0.3591	0.264196317
2	0.357208269	0.276748157	0.033958212	0.1463	0.127597747
3	0.280450494	.	0.035863404	0.0854	0.078652479
4	0.250472185	.	0.036482939	0.0669	0.062736315
5	0.210673508	.	0.037197329	0.0464	0.044383327
6	0.195869690	.	0.037431594	0.0399	0.038364935
7	0.170799612	.	0.037789409	0.0300	0.029172507
8	0.136793146	.	0.038196569	0.0191	0.018712365

MULTYVARTATE TEST STATISTICS AND F APPROXIMATIONS

STATISTIC	VALJJE		$\begin{array}{cc} \text { NOM DF } & \text { DEN DF } \\ 240 & 4844.7 \\ 203 & 4269.9 \end{array}$	PROB > F	
Wilks' LambdaWilks' Lambda	$\begin{array}{lll} \mathrm{a} & 0.4852845 & 1.9739 \\ \mathrm{a} & 0.6595298 & 1.3230 \end{array}$			0.0000	
	WITHIN			STANDARDIZET	
	CANONICAL STRUCTURE				
	CAN1	CAN2	CAN:	CAN2	
FEELING	0.5919	-0.5236	0.2692	-0.7473	
LEARN	0.7788	0.1616	0.5681	0.4049	
ELSE	0.7128	0.1607	0.5277	0.2085	
TOMORROW	0.5306	0.0290	0.1538	-0.1503	
ENJOY	0.2310	-0.0320	-0.3051	-0.1503	
GRABE	0.4813	-0.1058	0.2028	-0.2693	
ANTICPTN	0.2145	0.5119	-0.0597	0.4589	
PLAN	0.2294	0.5763	0.0089	0.5086	

RAW CANONICAL COEFFICIENTS

	CAN1	CAN2
	0.538602528	-1.495402539
FEELING	1.148928731	0.818885719
LEARN	1.118998469	0.442122092
ELSE	0.328039258	-0.320586991
TOMORROW	-0.442406302	-0.140086248
ENJOY	0.006629778	-0.008801813
GRADE	-0.119275625	0.917113843
ANTICPTN	0.020318721	1.156135144

gROUP CENTROIDS ON CANONICAL VARIABIES

PROGRAM NAME	FIRST FINCTIION	SECOND FLNCTION
ABC CLOSE UP	1.6048	-0.9150
ABC-MOVIEİ	0.6884	-0.5099
Are ${ }^{\text {R }}$ GIGOLO	-0.3707	0.3313
BOSOÂ BUDDIES	-0.4166	0.1619
CHARLIES ANGELS	-0.4940	-0.4882
CHIPS2	-0.1859	0.1267
CONVERTIRLE2	-0.2156	-0.1546
DUMMY11	0.8185	-0.2607
DIMMY 12	1.0295	-0.6219
FACTS OF LIFE	-0.3652	0.0553
FLAMINGO-ROADII	-0.2361	-0.5917
FLAMINGO ${ }^{-} \mathrm{ROAD12}$	-0.2388	0.0006
GODS CHILDREN	-0.5000	-0.8048
HART TO_HART	-0.5935	0.2720
HOUSE CALLSS	-0.5501	0.0892
JEFFERTSONS2	0.0087	-0.0517
KNOTS LANDING	0.3034	-0.5722
LITTLE HOUSE 1	1.0245	0.1086
LOU GRANT2	0.2629	0.5850
magñum	-0.7696	0.2646
MAHOGANYI	-0.2279	0.1021
Mahogany	-0.1443	-0.1577
NAP AND SAMI	0.2625	-0.1558
ODESSA FILE	-0.1835	0.0408
	-0.2162	0.2501
Rooss 11	1.1607	-0.0563
ROOTS 12	1.1829	0.2181
TIM CONWAYI	-0.5629	-0.1946
WALTONS	0.5568	0.2485
WHITE SHADOW	-0.0887	-0.2647
60_MINUTES2	0.9110	0.8093

CANONICAL VARIABLE SCORES
Statistics

First Canonical Variable
Mean $=0$
Withio-cell Std Dev $=1.0$
Minimum Value $=-1.99$
Maximum Value $=2.81$

Second Canonical Variable
Meac $=0$
Wittia-Cell Std Dev $=1.0$
Minimam Value $=-2.66$
Haximum Value $=3.03$

Variable	Within-cell	Correlations	R^{2}
	First Function	Second Function	
ANTICPT	0.21	0.51	0.31
PLAN	0.23	0.58	0.38
Intent	0.26	0.64	0.48
TOMORROW	0.53	0.03	0.28
ELSE	0.71	0.16	0.53
FEELING	0.59	-0. 52	0.62
LEARN	0.78	0.16	0.63
Lopact	0.97	0.05	0.94
ENJOY	0.23	-0.03	0.05
GRADE	0.48	-0.11	0.24
Appreciation	0.49	-0.11	0.25

Program Name	1981 Sweeps Period				
	Day/Time	Feb	May	July	Sample
Bosom Buddies	Th 7:30	16	13	12	27
Charlie's Angels	W 7:00	$9{ }^{1}$	8	8	22
CHIPs	Su 7:00	12	12	7	44
Disney	Su 6:00	10	9.	6	23
Facts of Life	W 8:30	16	14	11	28
Flamingo Road 1	4 8:00	10^{2}	7*	4	18
Flamingo Road 2	1 8:00	10^{2}	7*	4	11
Hart to Hart	Tu 9:00	20	19	20	21
House Calls	M 8:30	26	20	21	32
Jeffersons	Su 8:30	20	17	14	23
Knot's Landing	Th 9:00	22	16^{*}	11	17
little House	M 7:00	19	14	7	14
Lou Grant	M 9:00	28	21	25	19
Magnum, P.I.	Thin 8:00	22	18	13	37
One Day at a Time	Su 7:30	23	14	12	23
Tim Conway	M 7:30	17^{3}	16%	14	34
Walcons	Th 7:00	20	20	12	20
White Shadow	M 7:00	12	10*	74	18
60 Minutes	Su 6:00	29	23	21	38
${ }^{1}$ Saturday 7:00	Program shown on this day and time slot during the sweeps period.				
${ }^{2}$ Tuesday $9: 00$	Program stown on this day and time slot during the sweeps period.				
${ }^{3}$ Saturday 7:30	Program shown on this day and time slot during the sweeps period.				
4 Wednesday 7:00	Program shown on this day and time slot during the sweeps period.				

Sample Size Feburary May July Sweeps

| Sample Size | 1.00 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| February | $.23^{1}$ | 1.00 | | | |
| May | $.36^{2}$ | .92 | 1.00 | | |
| July | $.30^{3}$ | .86 | .89 | 1.00 | |
| Sweeps | $.31^{4}$ | .96 | .97 | .95 | 1.00 |

1. $\mathrm{p}=0.34$
2. $\mathrm{p}=0.13$
3. $\mathrm{P}=0.21$
4. $p=0.20$

Note: All others significant at $p=0.0001$

Program Name	Sweeps Score
Flamingo Road (1)	-1.44
Plamingo Road (2)	-1.44
Chariie's Angels	-1.20
Napoleon \& Samantha (Disney)	-1.18
White Shadow	-0.94
CHIPs	-0.80
Little House	-0.27
Bosom Budides	-0.23
Facts of hife	-0.21
Tim Conway	0.16
One Day at a Time	0.23
Knot's Landing	0.26
Jeffersons	0.39
Waltors	0.49
Magnum	0.52
Hast to Hart	0.87
House Calls	1.33
60 Minutes	1.71
Low Grant	1.74
Statistics ($\mathrm{a}=19$)	
Sweeps	Sample Size
Mean 0.0	24.68
Standard Deviation 1.0	8.79

[^0]: Insert Figure 7 about here

