~

The Introduction of New
Technology and the Demand
for Educated Workers

Ann Bartel
Frank Lichtenberg

Do not quote without permission of the author.
c 1985. Columbia Institute for Tele-Information

Columbia Institute for Tele-Information
Graduate School of Business
809 Uris Hall
Columbia University
New York, New York 10027
(212) 854-4222



I. INTRODUCTION

The notion of the "learning curve," which was evidently first
formalized about half a century ago, has turned out to be a useful and
widely applicable concept in the analysis of production behavior. The
general acceptance of the learning curve hypothesis reflects a consensus,
as expressed by Kaplan, that "the cost of doing most tasks of a repeti-
tive nature decrease[s] as experience at doing these tasks
accumulate[s]."1 According to the standard learning curve model, costs
decline with accumulated experience, but at a diminishing rate. In his
seminal article on "learning by doing," Arrow noted that

A ... generalization that can be gleaned from many of the classic

learning experiments is that learning associated with repetition of

essentially the same problem is subject to sharply diminishing
returns. There is an equilibrium response pattern for any given
stimulus, towards which the behavior of the learnmer tends with
repetition. To have steadily increasing performance, then, implies
that the stimulus situations Qust themselves be steady evolving
rather than merely repeating.

The hypothesis that there is a learning curve associated with a
production activity has implications for the (dual) cost and production
functions which characterize that activity, or technology. In particu-
lar, the hypothesis implies that the duration of experience with the
technology is an argument of the cost and production functions, and that
the first and second partial derivatives of cost (output) with respect to
experience are negative (positive) and positive (negative), respectively.

Despite the recognition that experience ''matters' in cost functions,

it has, virtually without exception, been ignored in modern econometric

1 Kaplan (1982), p. 98.
2 Arrow (1962), pp. 155-156.



analysis of cost and production. Althéugh most such models include a
"technology" variable as an argument, that variable is supposed to
represent the "level" or "state" of technology (and changes in it the
extent of technical progress) rather than experience with technology.

The primary objective of most econometric studies of cost and
production is to analyze the structure and determinants of factor demand.
Factor demand equations are obtained by partially differentiating the
cost function with respect to factor prices, and setting the derivatives
equal to zero, to satisfy the necessary conditions of producer equilib-
rium. For this reason, whether or not experience is included in the cost
function will affect the specification of factor demand equations only if
experience affects costs '"non-neutrally," that is, only if it has other
than a purely first-order effect on costs. By analogy, the levels of
technology and of output, respectively, appear in factor demand equations
only if technological change is "biased" and productiop is nonhomothetic.

The major hypothesis to be developed and tested in this paper is
that experience does not enter the cost function "neutrally," and thus

(from a geometric perspective) that ceteris paribus increases in experi-

ence do not result in "parallel” shifts in the cost function. Conse-
quently, equilibrium shares of factors in production costs are a function
of the amount of experience with the technology, as well as of the
conventional determinants (e.g., relative factor prices).

More specifically, we postulate that highly-educated workers have a
comparative advantage with respect to learning and implementing new

technologies, and hence that the demand for these workers relative to the



demand for less-educated workers is a declining function of experience.3
We are not the first authors either to propose or to attempt to
rigorously test this hypothesis =-- Nelgon and Phelps (1966) incorporated
it as an assumption in a simple neoclassical model of economic gréwth;
Nelson, Peck, and Kalachek (1967) provided some interesting anecdotal
evidence; and Welch (1970) estimated a model of relative earnings of
workers by education category on cross-sectional U.S. farm data based on,
and providing some support for, the hypothesis. This previous literature
is reviewed in the next section of the paper. In section III we formu-
late and present estimates of variants of a model of the demand for
highly-educated workers, derived from a cost function in which experience
enters non-neutrally. The model is estimated on a panel of 61 U.S.
manufacturing industries observed in 1960, 1970, and 1980. A brief

summary and conclusions follow.

3 We are agnostic as to the extent to which this advantage derives
from skills conferred by education as opposed to a possible (selec-
tion) function of education =-- in other words, how much school

produces "learning ability," versus how much (exogenously) better
learners choose to attend school.



I1I1. THEOREFICAL PERSPECTIVES AND LITERATURE REVIEW

This section has three’main objectives. We begin by attempting to
provide a theoretical justification for the hypothesis that the demand
for educated, relative to uneducated, workers declines with experience on
a technology. We then distinguish this proposition from others concern-
ing the relationship between education and technical change. Finally, we

review existing evidence apposite to our hypothesis.

A. Hypothesis Regarding Education and Technology

Two premises -- one about the impact of the introduction of new
technology on the production environment, the second about differences in
the way educated and uneducated workers function in that environment --
are sufficient to justify our hypothesis about the effect of experience
on the structure of labor demand. The first premise is that the degree
of uncertainty as to what constitutes effective task performance deblines
with experience on a technology. The replacement of an existing technol-
ogy by a new one represents a major "shock" to the production environ-
ment, and workers (and perhaps management as well) initially are very
uncertain as to how they should modify their behavior. The transition
from old to new technology results in job tasks and operating procedures
which are not only different but, in the short run at least, less well-
defined. Wells (1972) has argued, in the context of the "product

life-cycle" model, that in its infancy "the manufacturing process is not



broken down into simple tasks to the extent it will be later in the

product's 1ife."4 Nelson et al also observe that

the introduction and early operation of new processes [creates] an

environment of uncertainty and imperfect knowledge. But the growth

of understanding about particular processes, and the learning
experiences of early use, ultimately lead to specialization of
function and subdivision of labor. As knowledge progresses, it
results in routigized and mechanized processes capable of being
easily operated.

The second premise underlying our hypothesis is that the productivi-
ty of highly-educated relative to less-educated workers is greater, the
more uncertainty characterizing the production environment. Nelson and
Phelps argue that "education enhances one's ability to receive, decode,
and understand information.”6 Presumably this is why, according to Welch
"educated persons ... can distinguish more quickly between the systematic
and random elements of productivity responses."7 When a new product or
process has recently been introduced, there is "more (remaining) to be
learned" about the technology, and there is a greater premium on the
superior "signal-extraction" capability of educated labor.

Before considering the existing empirical evidence and our own new
results, it behooves us to contrast the hypothesis developed above to two
other propositions about the relationship between education and the

introduction of new technology, or technical change. These contrasts

involve two distinctions, one between the adoption and the implementation

Wells, pp. 8-9.

Nelson, et al.

Nelson and Phelps, op. cit., p. 69.
Welch, op. cit., p. 47.
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of new technology, the other between the short-run and long-run impact of
technical change on skill or educational requirements. "

There is abundant evidence, from studies of both consumer and
producer (entrepreneur) behavior, that more highiy-educated individuals
tend to adopt innovations sooner than less-educated individuals. Wells,
for example, cites evidence from the marketing literature that "early
[consumer] purchasers of a new product ... are generally found to be
more educated."8 And Nelson and Phelps, citing Rogers' work on the
diffusion of innovations in U.S. agriculture, assert that "it is clear
that the farmer with a relatively high level of education has tended to
adopt productive innovations earlier than the farmer with relatively
little education."9 Such evidence motivates Nelson and Phelps to analyze
a theoretical model of the process of technological diffusion and the
role of education predicated on the assumption that "the time lag between
the creation of a new technique and its adoption is a decreasing function
of some index of average educational attainment ... of those in a posi-
tion to innovate" [emphasis added].10

Our hypothesis is that educated workers have a comparative advantage

with respect to the implementation of innovations, which occurs follow-

ing, and conditional on, adoption. (The learning curve depicts the
improvement in performance following adoption of a new technology.)

Under the hypothesis about the relationships between education and
adoption, on the one hand, and education and implementation, on the other

hand, the direction of causality between education and innovation are

8 wWells, op. cit., p. 9.
9 Nelson and Phelps, op. cit., p. 70.
10 Nelson and Phelps, op. cit., p. 72.



opposite. Education "causes" individuals to adopt (earlier); the adop-
tion of an innovation (which requires implementation for full realization
of benefits) "causes" increased relative demand for educated workers. In
our empirical work we analyse the relationship between the
education-structure of labor cost (or employment) and an indicator of the
"presence" of new technologies, and we implicitly assume the latter to be
exogenous. This assumption might appear to be of questionable validity
in view of the preceding discussion. But because our education data
refer to total employment in an industry, and individuals responsible for
making adoption decisions account for a very small fraction of total
employment, we believe we are primarily capturing the effect of (previ-
ous) adoption on educational demand rather than the effect of education
on the propensity to adopt.

The second hypothesis from which we wish to distinguish our story
might be referred to as the "biased technical change hypothesis." If
technical change is biased or nonneutral, the transition from an old to a
new technology will result in permanent changes in equilibrium factor
shares, holding output and relative factor prices constant.ll In order
to test for the presence of nonneutral technical change, an indicator of
technology -- either a time trend, or an index of diffusion of a new
technology -- is sometimes included in aggregate or industry-level

econometric cost functions.12 Most studies of biased technical change

11 A general framework for analyzing technical change biases was
developed by H. Biswanger (1974), Binswanger. "The Measurement of
Technical Change Biases With Many Factors of Production,"

American Economic Review, December, 1974.

12 For example, Levy et al's measure of technology for underground
mining is the fraction of production carried out by what are consid-
ered relatively new methods: continuous, shortwall, and longwall




have addressed the question of whether technical change is (aggregate-)
labor-saving (non-labor using) -- the answer is generally affirmative --
not whether new technologies are biased towards particular types of
labor. An exception is the study by Denny and Fuss, who found that "the
labor-saving impact [of technical change in the Canadian
telecommunications industry] was felt most severely by the least skilled
occupations.13

Models incorporating biased technical change abstract from the
process of implementing new technologies (which is precisely our con-
cern); the implicit assumption is that the structure of factor demand
does not vary after adoption. Our hypothesis is that the process of
adjustment to (implementation of) the new technology is educated-labor-
using. We do not venture to speculate as to whether in long-run equilib-
rium, new technologies are more educated-labor using than the

14 It is an implication of our

technologies which they replace.
hypothesis, however, that sectors or industries characterized by high
rates of innovation, which are, as a result, continuously implementing

new technologies, will tend to create the most opportunities (demand) for

highly-educated workers.

mining, while Denny and Fuss' index of technology for the Canadian
telecommunications industry is based on the percentage of telephones
with access to direct distance dialing. See Levy et al (1983) and
Denny and Fuss (1983).

13 Denny and Fuss, op. cit., p. 161.

14 We agree with Binswanger (op. cit., p. 975), however, that long-run
technical change biases may be endogenous, determined by relative
factor prices, although his evidence suggests that "it takes very
substantial changes in factor prices in order to perceptually
influence the biases." '
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B. Previous Work on "Experience on a Technology" and Labor Demand

We turn now to a brief summary of the existing evidence concerning
the relationships between "experience" on a technology and the
education-structure of labor demand. In the early 1960s, Bright studied
the effects of automation on job-skill requirements in metal working,
food and chemicals. He observed that the skill requirements of jobs
first increased and then decreased sharply as the degree of mechanization
grew. The conclusion of his study was that, in the long run, automated
machinery would require less operator skill.

Nelson et al (1967) provide some anecdotal evidence on the tendency
of the average educational attainment of workers to decline as a technol-

ogy matures:

The early ranks of computer programmers included a high proportion
of Ph.D. mathematicians; today, high school graduates are being
hired. During the early stage of transistors chemical engineers
were required to constantly supervise the vats where crystals were

grown. As processes,yere perfected, they were replaced by workers
with less education.

The effect [of the introduction of new technology on the demand for
education] is not just on the production work force. Technological
advance changes the whole pattern of information that must flow
between economic units.

High remuneration of technically trained sales people in the
electronics industry, for example, relates to their a?élity to
communicate new developments to the potential market.

Welch (1970) investigated the relationship between the demand for

labor by education category and an indicator of experience (actually, an

indicator of the "newness" of inputs, or of the lack of experience) using

15 Nelson et al., op. cit., p. 144-5.
16  Nelson et al., op. cit., p. 16.



11

1959 cross-sectional (state) farm data. Welch implicitly assumed that
workers (at least in some educational categories) were immobile across
states, so that wages were not equalized across states. In his model
relative wages by education class are endogeneous, determined by
(exogeneous) quantities of labor by education class, nonlabor inputs, and
the "newness" indicator, in addition to other variables. The measure
that he uses to proxy the rate of flow of new inputs (hence the degree of
inexperience with the technology) is a weighted average of expenditures
per farm for research over the past nine years. Welch found that the
wage rate of college graduates relative to that of "laborers with conven-
tional skill" was positively and significantly related to research
expenditures. But because, as he argues, "agriculture is probably
atypical inasmuch as a larger share of the productive value of education
may refer to allocative ability than in most industries,"17 evidence from
other sectors (and perhaps based on different assumptions and methodolo-
gy) is needed to determine the validity and applicability of the

hypothesis.

17 Welch, op. cit., p. 47.
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III. ECONOMETRIC SPECIFICATION
In order to test the hypothesis discussed in Section II we begin
with the following cost function for each industry:
(1) ¢ = F(W,Q,T,AGE)
where C = Total cost of primary inputs18
W = Vector of exogeneous primary input prices
Q = level of real output
T = technology level
AGE = age of the technology
Alternatively we can specify the industry's restricted variable cost
function as:
(2) V€ =F(W’', Q, T, AGE, K)
where VC = variable cost
W' = vector of exogeneous prices of the variable inputs19
K = the industry's stock of capital
This approach has become more popular in the literature on produc-
tion and cost because of the recognition that at least some factors of
18 We are assuming, for convenience, separability of raw materials from
other inputs in the cost function.
19 We assume that the supply of labor to all industries is infinitely

elastic at exogenous wage rates. Relative prices are believed to be
constant across industries, at least in the long run, because of
mobility between industries. Welch's 1970 study of technical change
and the demand for educated workers in agriculture treated quanti-
ties as exogeneous. Since he studied one industry across 49 states,
this assumption is reasonable if inter-area migration is unlikely.
The likelihood of inter-area migration suggests that, data permit-
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production, are '"quasi-fixed." According to the specification in (2),
the industry chooses its cost-minimizing variable inputs needed to
produce output Q, conditional on the stock of its quasi-fixed factor, the
capital stock.20 In addition to its being consistent with notions about
the variability of different kinds of inputs, this specification is also
particularly useful to us because it enables us to focus on the composi-
tion of variable (labor) cost, rather than that of total cost.

We approximate equation (2) with a translog variable cost fuﬁction

for each industry i:21

77 1 7! A
(3) 1n VCi aq t aiQ ani + ?aijlnkj + @?iﬁijklnkjlnwk
lnTi + ?dijT(lnk j)Ti + ai
ZaijQ(anj) . ani + ?aijAGE(ln“j) . AGEi

+

*AGE

%7 AGE “A%E

+

+

?ain(an5) . 1nKi tH

This specification allows for non-neutral technologiﬁal change, as
measured by the parameters aijT’ nonhomotheticity as measured by aijQ and
differential abilities to adjust to new technologies, as measured by
aijAGE' The parameters in equation (3) are specific to each industry but
are assumed not to vary over time within an industry. By Shepard's

lemma:

(4) 81nVCi/81nWj = (SVCi/GWj)(Wj/VCi) = Sij J=1...m

ting, it would have been preferable for him to use some instrumental
variables for factor quantities.

20 See Mohnen et al. (1984) for a thorough development of this
approach.

21 We suppress time subscripts on the variables.
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where sij —'the share of input j in variable cost in industry i.
The factor share equations can be written as follows:
(5) S5 = @55 + gRygiloWy + 0y Ty + @y501nQ + 0yl 0p ¢+ AGE,

+ dinani + Pt j=1...n

Since we estimate equations (5) on panel data rather than on a
time-series database for each industry, we are only able to estimate the

mean of each parameter. We rewrite equation (5) to reflect this:

(6) Sij = aj + iﬁjklnwk + aJ.TTi + orJ.anQi + ajAGE . AGEi
+ ajkani + € jJ=1...n

where £; = Wy + (055 = o)+ (R(By 5y - ByydnW) (g - oyp) ¢ Ty
t 050 7 Y5010 * (@55a0p 7 Uyac) T ACE;

G

- &J.K)lnxi

Data limitations require us to impose two other restrictions on
equations (6). First, since we are unable to adequately measure the
variation across industries in Ti’ the technology index, we delete it
from the equation and assume that aijT is uncorrelated with AGE.22
Second, we proxy the age of the industry's technology by the age of its
capital stock. If one accepts the notion of embodied technological
change, then the age of the capital stock equals the age of the technolo-
gy. Even if technological change is not completely embodied, we expect

there to be a strong relationship between the age of the capital stock

and the age of the technology. The strength of the relationship may vary

22  The mean of Ti is, of course, captured in our time dummies.
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aéross industries, as we show below. The link between the age of capital
and the age of technology results from the assumption that innovations
are cost-reducing. Then, output increases, thereby producing an increase
in investment and a younger capital stock.23 The link can also be
interpreted as consistent with the product life cycle approach (Wells,
1972). This approach argues that early in a product's life, a low
capital to labor ratio is used because of frequent design changes. Once
a stable production technique is established, intense capital investment
occurs, thereby producing a correlation between age of the capital stock

and age of the technology in a cross section of industries.

23 Jorgenson's 1971 survey of the literature on investment concluded

that output was clearly the major determinant of investment in fixed
capital.

~
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IV EMPIRICAL RESULTS

A. Data

Equétion (6) is estimated on a pooled cross-section time-series data
set containing 61 manufacturing industries in each of the years 1960,
1970 and 1980.24 Data on the demographic characteristics of the workers
in these industries were obtained from the Labor Demographics Matrices of
the Bureau of Industrial Economics (BIE). Information on the age of the
industry's capital stock is taken from the Bureau of Industrial Econom-
ics' Capital Stocks Data Base. Data on real output are from the
Census/SRI/Penn Data Base which is derived primarily from the Annual
Survey of Manufactures and the Census of Manufactures,25 and finally,
information on the R&D intensity of each industry is obtained from the
technology matrix constructed by F.M. Scherer (1984). All of the equa-
tions that we estimate include time and industry dummies, thereby con-
trolling for permanent differences across in&ustries and changes common
to all industries, such as secular and aggregate business cycle effects.
Our equations should therefore be interpreted as being estimated on

deviations from industry means.

B. Results
Table 1 presents our findings. The dependent variable is the share

of labor cost attributed to highly educated workers, defined as 13+ years

24 The 61 industries and their SIC counterparts are listed in Appendix
A. These are the industry sectors used by the BIE for their labor
demographic matrices. The industry codes in the other datasets that
we use are all matched to the 61 BIE codes

25 See Griliches and Lichtenberg 1984b for a complete description.
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of education. Since our data set does not report labor cost, we approxi-
mate it by using the information on employment in the following way. We
have two classes of workers: highly educated (Ll) and less educated
(L2). Define £ = Ll/(Ll + L2) which is Ll's share in total employment;
and W = wz/wl, the ratio of less educated to highly educated wages. Then

it can be shown that Ll's share in labor cost is given by26
_ -1 -1
(1) s;= A+wEt -1

We have information on £ from the BIE and we can obtain an estimate of W
from the Current Population Reports. Since we assume W is constant
across industries, equation (7) is simply a nonlinear transformation of
the employment shares27
Columns (1) and (2) of Table 1 try alternative measures of the age
of the capital stock; the first column uses the average age of the plant
and equipment while the second column uses the average age of equipment.
Both ha?e therhypothesized signs but equipment age is more significant.
In fact, in a regression not shown here plant age did not matter at all.
This is not surprising since technology is more likely to be embodied in

the industry's equipment. Hence, the remainder of Table 1 uses equipment

age to measure the age of technology in the industry.

26 Since S, = W.L./(W L1 + WL)=1/(1 + WL,/L,)).
27  The results we present belo& are virtually“identical to those that
use the employment share.



Dependent Variable:

(

" Table 1 -

*
Labor Cost share of Employees with 13+ Years of Education

(t-statistics in parentheses)

Independent
Variable

1

AGECAP~
-1
AGEEQ

AGEEQ™ 1+
OWNRD

AGEEQ™ 1
TMPRTRD

Log(CAPITAL)

Log (OUTPUT)

RZ

N

(1)

0.555
(2.47)

0.9625
183

(2)

0.445
(2.80)

0.9630

183

(3)

0.386
(2.49)

0.036
(3.00)

0.9656

183

“All equations include year and industry dummies.

(4)

0.312
(1.94)

0.041
(3.66)

-0.9666

174

(5)
0.319
(1.98)
2
(3
0.009 0.
(0.51) (0.
0.035 0
(2.14) (1
0.9667 0.
174 174

(6) (M
.073
.14)
43.721
(1.87)
018 0.018
98) (0.95)
.026 0.035
.58) (2.20)

9683 0.9666
174
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AGEEQ is entered into the equation in inverse form, so that the
effect of increases in AGEEQ on the labor cost share of highly educated
workers is given by:

3s

(8) ﬁ—éﬁﬁ = -B,/AGEEQ?

where Bl is the estimated parameter shown in Table 1. This specification
reflects our hypothesis that‘the effect of AGEEQ on S1 is nonlinear, with
bigger effects occurring at younger equipment ages.28 Recall from our
discussion in Part II that this is precisely the prediction from the
learning curve approach.

Columns (3), (4) and (5) in Table 1 add the logarithms of the real
capital stock and real output to the cost share equation. Note that the
capital stock is not significant, once we control for the level of real
output.29 We find no evidence that the labor cost share of highly
educated workers is related to the overall stock of capital; rather it is
the mean age of that capital that is important.' Real output, however, is
significant, indicating either that the production function in the
industries we are studying is non-homothetic or that there are cyclical

factors affecting labor demand.30

28 This specification fit the data marginally better than a linear or
log functional form

29 This is an important finding because, one might have argued that the
observed relationship between the age of the capital stock and the
labor cost share was due to a correlation between age of the capital
stock and the amount of the stock, i.e. 1industries with more
capital would have, by definition, younger capital.

30 An alternative way to examine the impact of output is to use infor-
mation on changes in output over the last decade. We tried a vector
of annual differences in output and found no significant
relationships.
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Note that Bl is statistically signifiéant in all columns of Table 1,
confirming our hypothesis about the effect of the introduction of new
technology on the relative demand for educated workers. We can gauge the
magnitude of this impact in the following way. Consider two very differ-
ent industries: (1) Wood Containers, in which, in 1980, the mean age of
the equipment is 8.66 years (the inverse of the mean age is .118) and the
labor cost share of highly educated workers is .307 and (2) Electronic
Components and Accessories in which, in 1980, the mean age of equipment
is 5.19 years (the inverse of the mean age is .195) and the labor cost
share of highly educated workers is .433.31 According to the estimated
parameter on AGEEQ.1 in column 5, 20 percent of the observed difference
in the labor cost share of highly educated workers between these two
industries is due to the difference in the age of their technologies.

Up to this point, we have been assuming that a, the effect of

JAGE’
AGE in the ith industry, is constant across industries. It seems
reasonable to argue that aijAGE varies across industries in some
systematic way. In particular, aijAGE is likely to be a function of the
R&D-intensity of the industry. Our argument that the age of the indus-
try's capital stock is a proxy for the age of the industry's technology
is better suited to R&D-intensive industries, where new capital is most

likely to embody new technology. Hence, we allow the following specifi-

cation for di,j,AGE:

(9) o 5 ace = 95 ace © ROy

31 These two industries are chosen because they have, respectively, the
highest and lowest mean equipment ages in the sample.
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We use two different measures fof RDi' The first is OWNRD which equals
the ratio of the industry's 1974 R& expenditures to its 1974 nominal
output. The second is IMPRTRD which is the ratio of 1974 R& "imported"
from other industries, i.e. embodied in products purchased from other
industries, relative to the industry's 1974 nominal output. In princi-
ple, we might expect BSi/SAGE to depend more on IMPRTRD than on OWNRD
because IMPRTRD measures the R&D that is embodied in the industry's
capital stock. However, as can be seer in columns (6) and (7), the
effect of AGEEQ is more significant when we use OWNRD rather than
IMPRTED, probably because of the large amount of error in measuring

32 Further, when AGEEQ“l and AGEEQ_1 * OWNRD are used together,

IMPRTRD.
the coefficient on AGEEQ-1 is not significant, while the interaction term
is (these coefficients are not shown or Table 1). These findings demon-
strate that the effect of the age of technology on the labor cost share
of highly educated workers is heavily dependent on the R& intensity of

the industries.

32 See Scherer's (1984) discussion ¢ the complicated algorithm in
constructing imported R&. Griliches and Lichtenberg (1984a) also
found that the imported R&D variatle had an insignificant effect on
productivity growth, holding OWNK. constant again suggesting the
existence of substantial measuremzat error in this variable!
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IV CONCLUSIONS

As we stated in the introduction, the purpose of this paper was to
develop and test the hypothesis that experience on a technology is an
important determinant of the equilibrium shares of inputs in production
costs. Specifically, we have argued that highly-educated workers have a
comparative advantage with respect to learning and implementing new
technologies, and hence that the demand for these workers relative to the
demand for less-educated workers is a declining function of experience.
The hypothesis was tested on a pooled cross-section time series data set
containing 61 manufactufing industries in each of the years 1960, 1970
and 1980; the findings strongly support our argument.

We have shown the importance of distinguishing the process of

implementing new technologies from the concept of technological change as

a once-and~for-all transformation of the production function. While the
latter assumes that the structure of factor dezand does not vary after

adoption, our evidence suggests that the process of adjusting to a new

technology is educated-labor-using. The implication of this is that
sectors or industries characterized by continually high rates of innova-
tion will tend to create the most opportunities for highly-educated
workers. Further, the comparative advantage of educated workers in
implementing new technologies also implies that economies with a ready

availability of educated workers will be more innovative, ceteris pari-

bus, than economies without this labor pool. Eence, policies that
encourage the acquisition of education can fac:litate an economy's

international competitiveness.
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We have focused on the increase in the employment and cost shares of
educated workers that results from the introduction of new technology.
Further work should consider the extent to which these increases are due
to increases in éducation within versus between occupations. We plan to
examine whether the increase in the demand for educated workers has
resulted in an increase in the share of high level occupations in addi-
tion to, or in lieu of, an increase in the average level of education

within occupational categories.
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APPENDIX A
Description of Industries

& W N —

~Nou

10.
11.
12.
13.

14.
15.
16.
17.

18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.

Sector Title. .

Food and Kindred Products .

Tobacco Manufactures. .

Broad and Narrow Fabrics, Yarn,
and Thread Mills . .

Miscellaneous Textile goods and

Floor Coverings .

Knitting Mills .

Apparel. .

Miscellaneous Fabrlcated textlle
Products.

Lumber & Wood Products, Exc
Containers. . .

Wood Buildings & Moblle Homes

Wood Containers. e e

Household Furniture. .

Other Furniture & letures .

Paper & allied products, exc.
containers, Boxes & (Paper Mllls,
Exc. bulldlng paper).

Paper mills, Exc. Bu11d1ng Paper .

Paperboard Containers & boxes.

Printing & Publishing.

Chemicals & Selected Chem1ca1
Products, exc. Nitrogenous &
Phosphate Fertilizers,
Fertilizers (mixing only), and
Agricultural Chemicals.

Nitrogenous & Phosphatic
fertilizers, Fertilizers (mixing
only) & Agricultural chemicals,
nec .

Plastic and synthetlc materlals

Drugs, Cleaning & toilet
preparations. .

Paints & allied products .

Petroleum Refining . .

Misc. Products of Petroleum & Coal .

Paving & Roofing Materials . .

Rubber & misc. Plastics Products .

Leather Tanning & Finishing. .

Footwear & Other Leather Products.

Glass & Glass Products .

Cement, Hydraulic. .

Stone & Clay Products, exc.
Hydraulic Cement. ..

Blast Furnaces, Steel Works and
Rolling and Flnlshlng M1lls .

Iron & Steel Foundries, Forgings,
and Misc. Metal Products.

Primary Nonferrous Metals.

1972 SIC Code
20
21

221,222,223,224,226,228

227, 229
225
231,232,233,234,235,236,237,238

239

241,242,243 ,249
2451,2452

244

251
252,253,254,259

261,263,264 ,266
262
265
27

281, 286, 289

287
282

283,284

285

291

299

295

30

311
313,314,315,316,317,319
321,322,323

324

325,326,327,328,329
331

332,339
33,334,335,336



34.
35.

36.
37.

39.

40.
41.
42.
43.

b4,
45.

46

47.
48.
49.
50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.

Metal Containers . .

Heating, Plumbing, & Fabrlcated
Structural Metal Products .

Screw Machine Products .

Metal Stampings. .

Other Fabricated Metal Products

Ordinance and Accessories, exc.
Vehicles & guided missiles.

Engines & Turbines .

Farm & Garden Machinery.

Construction & Mining Machlnery

Materials Handling Machinery &
Equipment . .

Metalworking Machlnery & Equ1pment .

Special Industry Machinery and
Equipment . .

General Industrial Machlnery and
Equipment . . .

Misc. Machinpery, exc. electrical .

Office, Computing, and Accounting.

Service Industry Machines.

Electrical transmission &
distribution equipment and
industrial apparatus.

Household appliances . . .

Electric Lighting & W1r1ng
Equipment.

Radio, T.V. and Communlcatlon
equipment .

Electronic Components &
Accessories . . .

Misc. electrical machlnery,
equipment, & supplies .

Motor vehicles & equipment .

Aircraft & Parts . .

Other transportation equlpment .

Professional, scientific, and
controlling instruments &
supplies. . . .

Optical, ophthalmlc and

photographic equipment & supplies .

Misc. Manufacturing Equipment.

26

341

343,344

345

346
342,347,349

348
351
352
2531,3532,3533,3795

3534,3535,3536,3537
354

355
356
359

357
358

361,362

363

364

365,366

367

369

371

372,376
373,374,375,379(exc.3795)
381,382,384,387

383,385,386
39






